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1 Uniform Convergence IB Analysis and Topology

1 Uniform Convergence

1.1 Uniform Convergence

Definition 1.1. Let E be a set and fn : E → R be a sequence of functions. The sequence is said to
converge pointwise to another function f : E → R if

f(x) = lim
n→∞

fn(x)

for all x ∈ E.

This is an easy definition that is simple to check. However, there is a problem. Ideally, we want
to deduce properties of f from properties of fn. For example, it would be great if the continuity of
all fn implies continuity of f , and similarly for integrability and values of derivatives and integrals.
However, it turns out we cannot. The notion of pointwise convergence is too weak.

Example. Consider a sequence of functions fn : [−1, 1] → R defined by fn = x1/(2n+1). These are all
continuous, but their pointwise limit function is

fn(x) → f(x) =


1 x ∈ (0, 1]

0 x = 0

−1 x ∈ [−1, 0)

which is not continuous. The continuity of functions is not preserved.

Example. Consider a sequence of functions fn : [0, 1] → R be the piecewise linear function formed by
joining the points (0, 0), ( 1n , n), (

2
n , 0), (1, 0). The pointwise limit of this function is fn(x) → f(x) = 0.

However, we have ˆ 1

0

fn(x) dx = 1 for all n, but
ˆ 1

0

f(x) dx = 0 .

The limit of the integral is not the integral of the limit.

Example. Let fn : [0, 1] → R be

fn(x) =

{
1 n!x ∈ Z
0 otherwise

,

which all have finitely many discontinuities, so are Riemann integrable. However, its limit is

fn(x) → f(x) =

{
1 x ∈ Q
0 x /∈ Q

,

which is not integrable. So the integrability of a function is not preserved by pointwise limits.

We need a stronger notion of convergence without being too trivial. In the above example, we
may see that the problem of pointwise convergence is that different points converge at different rates
to f – it can be arbitrarily slow for some points. We need fn to converge to f at the same pace.

Definition 1.2. A sequence of functions fn : E → R is said to converge uniformly to f : E → R if
∀ϵ > 0, ∃N ∈ N such that ∀n > N , |fn(x)− f(x)| < ϵ for all x ∈ E.

Remark. Uniform convergence naturally implies pointwise convergence.

The definition does not require E to be a subset of R, but many of our theorems will require it to
be, or else we cannot sensibly integrate or differentiate our functions.

We will now see that the uniform limit function retains certain properties from the original
sequence.

1



1 Uniform Convergence IB Analysis and Topology

Theorem 1.3 (Continuity of the uniform limit). Let Ω ⊆ R. Given a sequence of continuous
functions fn : Ω → R, if fn → f uniformly on Ω, then f is continuous.

Proof. We will show that f is continuous at an arbitrary a ∈ Ω. Given ϵ > 0, there exists some
N ∈ N such that for all n ≥ N and x ∈ Ω we have |fn(x)− f(x)| < ϵ/3. Then since fn is continuous,
there exists δ > 0 such that |x− a| < δ implies |fn(x)− fn(a)| < ϵ/3. Then if x ∈ Ω and |x− a| < δ,
we have

|f(x)− f(a)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(a)|+ |fn(a)− f(a)| ≤ ϵ

as required. □

Remark. Another way of thinking this is the uniform convergence allows us to swap the limit:

lim
x→a

f(x) = lim
x→a

lim
n→∞

fn(x) = lim
n→∞

lim
x→a

fn(x) = f(a) ,

which implies continuity at x = a.

Lemma 1.4 (Boundedness of the uniform limit). Let fn → f uniformly on a set Ω. If fn is
bounded for every n, then so is f .

Proof. Fix some n ∈ N such that for all x ∈ Ω, we have |fn(x)− f(x)| < 1. Then since fn is bounded,
there is an M ∈ R such that |fn(x)| ≤ M for all x ∈ Ω. Thus

|f(x)| ≤ |f(x)− fn(x)|+ |fn(x)| ≤ M + 1

so f is bounded. □

Theorem 1.5 (Integral of the uniform limit). Let fn : [a, b] → R be a sequence of integrable
functions. If fn → f uniformly on [a, b] then f is integrable and

ˆ b

a

fn dx →
ˆ b

a

f dx .

Proof. Since every fn is integrable, they must be all bounded and hence f is also bounded. It suffices
to check that Riemann’s criterion is satisfied.

Given ϵ > 0, we have N ∈ N such that for all n ≥ N , x ∈ [a, b] implies |fn(x)− f(x)| <
ϵ. Then since fn is integrable, there exists a dissection D = {x0, x1, . . . , xm} of [a, b] such that
UD(fn)− LD(fn) < ϵ.

Now for each k ∈ {1, . . . ,m} and any x, y ∈ [xk−1, xk], we have

|f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)|
≤ |fn(x)− fn(y)|+ 2ϵ .

Therefore, the difference between the supremum and infimum of f in [xk−1, xk] can be identified as

sup
x,y∈[xk−1,xk]

|f(x)− f(y)| ≤ sup
x,y∈[xk−1,xk]

|fn(x)− fn(y)|+ 2ϵ .

We can multiply by (xk − xk−1) and sum over k to get

UD(f)− LD(f) ≤ UD(fn)− LD(fn) + 2ϵ(b− a) ≤ ϵ(2(b− a) + 1) ,

so f is integrable.

The integral can be easily identified,∣∣∣∣∣
ˆ b

a

fn dx−
ˆ b

a

f dx

∣∣∣∣∣ ≤
ˆ b

a

|fn − f | dx ≤ (b− a) sup
s∈[a,b]

|fn − f | → 0 .

□

2



1 Uniform Convergence IB Analysis and Topology

Remark. Similarly, this can be seen as changing the place of the limit:
ˆ b

a

lim
n→∞

fn(x) dx = lim
n→∞

ˆ b

a

fn(x) dx .

Theorem 1.6 (Term-wise integration). Let fn : [a, b] → R be a sequence of integrable functions.
Then if

∑∞
n=1 fn(x) converges uniformly on [a, b], the function x 7→

∑∞
n=1 fn(x) is integrable and

ˆ b

a

∞∑
n=1

fn(x) dx =

∞∑
n=1

ˆ b

a

fn(x) dx .

Proof. Let gn be the sequence of partial sums. gn converges uniformly so we can apply the previous
theorem. □

However, the relationship between uniform convergence and differentiability is more subtle. The
uniform limit of differentiable functions need not be differentiable. Even if it were, the limit of the
derivative is not necessarily the same as the derivative of the limit, even if we just want pointwise
convergence of the derivative.

Example. Let fn, f : [−1, 1] → R be

fn(x) = |x|1+1/n
, f(x) = |x| .

Then fn → f uniformly. Each fn is differentiable throughout [−1, 1] - this is obvious at x 6= 0. At
x = 0, the derivative is

f ′
n(0) = lim

x→0

fn(x)− fn(0)

x
= lim

x→0
sgn(x)|x|1/n = 0 .

However, the uniform limit f is not differentiable at x = 0.

Example. Let
fn(x) =

sinnx√
n

for x ∈ R. Then
sup
x∈R

|fn(x)| ≤
1√
n
→ 0 ,

so fn(x) → f = 0 uniformly on R. However, the derivative is

f ′
n(x) =

√
n cosnx ,

which does not converge to f ′ = 0.

We need a condition even stronger than uniform convergence to preserve differentiability and
derivative.

Theorem 1.7 (Term-wise differentiation). Let fn : [a, b] → R be a sequence of continuously
differentiable functions. If ∃c ∈ [a, b] such that

∑∞
i=1 fi(c) converges and

∑∞
i=1 f

′
i(x) converges

uniformly on [a, b], then
∑∞

i=1 fi also converges uniformly to a continuously differentiable function
f , and

f ′(x) =
d

dx

 ∞∑
j=1

fj(x)

 =

∞∑
j=1

f ′
j(x) .

Proof. Let g(x) =
∑∞

k=1 f
′
k(x) for x ∈ [a, b]. The general idea is that we want to solve the differential

equation f ′ = g subjected to the initial condition f(c) =
∑∞

n=1 fn(c). Let λ =
∑∞

n=1 fn(c) and define
f : [a, b] → R by

f(x) = λ+

ˆ x

c

g(t) dt .

3



1 Uniform Convergence IB Analysis and Topology

Note that g is integrable:
∑∞

k=1 f
′
k → g uniformly implies that g is continuous and hence integrable.

By the fundamental theorem of calculus, f ′ = g and f(c) = λ. So we have found such an f that
satisfies the conditions set out. All that remains is to prove the uniform convergence of

∑∞
k=1 fk → f .

Also by the fundamental theorem of calculus,

fk(x) = fk(c) +

ˆ x

c

f ′
k(t) dt .

For ϵ > 0, there exists N ∈ N such that |λ−
∑n

k=1 fk(c)| < ϵ and |g(t)−
∑n

k=1 f
′
k(t)| < ϵ for all

n ≥ N . Then we have∣∣∣∣∣f(x)−
n∑

k=1

fk(x)

∣∣∣∣∣ =
∣∣∣∣∣λ+

ˆ x

c

g(t) dt−
n∑

k=1

(
fk(c) +

ˆ x

c

f ′
k(t) dt

)∣∣∣∣∣
≤

∣∣∣∣∣λ−
n∑

k=1

fk(c)

∣∣∣∣∣+
∣∣∣∣∣
ˆ x

c

(
g(t)−

n∑
k=1

f ′
k(t)

)
dt

∣∣∣∣∣
≤ ϵ+ |x− c|ϵ
≤ ϵ(b− a+ 1) .

□

1.2 The General Principle of Convergence

Definition 1.8. A sequence of functions fn on a set Ω is uniformly Cauchy if ∀ϵ > 0, ∃N ∈ N such
that ∀m,n > N and x ∈ Ω, we have

|fm(x)− fn(x)| < ϵ .

Theorem 1.9 (General principle of uniform convergence). Let fn : Ω → R be a sequence of
functions. It converges uniformly to some f : Ω → R if and only if it is uniformly Cauchy.

Proof.

(⇒) Let fn → f uniformly. Then given ϵ > 0, ∃N ∈ N such that ∀n > N ,

sup
x∈Ω

|fn(x)− f(x)| < ϵ

2
.

Then if n,m > N , for all x ∈ Ω, we have

|fn(x)− fm(x)| ≤ |fn(x)− f(x)|+ |fm(x)− f(x)| < ϵ ,

so fn is uniformly Cauchy.

(⇐) Now let fn be uniformly Cauchy, then ∀x ∈ Ω, the sequence of real numbers fn(x) is Cauchy
and hence convergent. Let

f(x) = lim
n→∞

fn(x) .

We want to show that fn → f uniformly. Given ϵ > 0, choose N ∈ N such that ∀n,m > N
and ∀x ∈ Ω, we have |fn(x)− fm(x)| < ϵ/2. Fix some x ∈ Ω, then choose m such that
|fm(x)− f(x)| < ϵ/2. Then

|fn(x)− f(x)| ≤ |fn(x)− fm(x)|+ |fm(x)− f(x)| < ϵ .

Note that this result is independent of x, although the choice of m does depend on x. Hence
fn → f uniformly. □

4



1 Uniform Convergence IB Analysis and Topology

From this, we have our important Weierstrass M-test for uniform convergence.

Theorem 1.10 (Weierstrass M-test). Let fn : Ω → R be a sequence of functions. Assume that
∀n ∈ N, ∃Mn ∈ R+ such that supx∈Ω |fn(x)| ≤ Mn. If

∑∞
n=1 Mn converges, then

∑∞
n=1 fn(x)

converges uniformly on Ω.

Proof. Let Fn(x) =
∑n

k=1 fk(x). For x ∈ Ω and n ≥ m, we have

|Fn(x)− Fm(x)| ≤
n∑

k=m+1

|fk(x)| ≤
n∑

k=m+1

Mk .

Now given ϵ > 0, we can choose N ∈ N such that
∑∞

k=N+1 Mk < ϵ. Then for every x ∈ Ω and
n ≥ m ≥ N , we have

|Fn(x)− Fm(x)| ≤
∞∑

k=m+1

Mk < ϵ .

Fn is uniformly Cauchy and hence uniformly convergent. □

1.3 Power Series

Definition 1.11. A complex open disk D(a,R) is the set

D(a,R) = {z ∈ C | |z − a| < R} ,

where a ∈ C and R ∈ R+.

We are interested in whether a complex power series converge uniformly within its radius of
convergence.

Example. Consider the power series
∞∑

n=1

zn

n2
,

which has a radius of convergence R = 1. Let z ∈ D(0, 1). Then |fn(z)| ≤ 1/n2. We have
∞∑

n=1

1

n2
=

π2

6

is convergent, so by the Weierstrass M-test, this power series converges uniformly on D(0, 1).

Example. Consider
∑∞

n=0 z
n which has the radius of convergence R = 1. It has bounded partial sums

for z ∈ D(0, 1), but it converges to 1/(1− z), which is unbounded on D(0, 1). Hence, the convergence
is not uniform, otherwise the boundedness will be preserved.

We can see that the uniform convergence fails right at the boundary. We can keep the uniform
convergence if we move slightly away.

Theorem 1.12 (Uniform convergence of power series). Let
∑∞

n=0 cn(z − a)n be a complex
power series with a radius of convergence R. Then ∀r ∈ (0, R), the power series converges uniformly
on D(a, r).

Proof. Fix some w ∈ C such that |a− w| ∈ (r,R). Define ρ = r
|w−a| so that ρ ∈ (0, 1). Since∑∞

n=0 cn(w − a)n converges, we have cn(w − a)n → 0 as n → ∞. Thus there exists some M ∈ R+

such that |cn(w − a)n| ≤ M for all n ∈ N.

5
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Now if we take z ∈ D(a, r) and n ∈ N, we have

|cn(z − a)n| = |cn(w − a)n| ·
(
|z − a|
|w − a|

)n

≤ M

(
r

|w − a|

)n

≤ Mρn .

Then since
∑∞

n=0 Mρn is convergent, by the Weierstrass M-test, we have that the power series is
converging uniformly on z ∈ D(a, r). □

Corollary. Let
∑∞

n=0 cn(z − a)n be a complex power series with radius of convergence R. Then

(i) the power series is continuous within its radius of convergence;

(ii) the derivative of the power series is
∞∑

n=1

ncn(z − a)n−1 .

It is not guaranteed that a power series converge uniformly on its whole disk of convergence.
However, we have shown that we can get arbitrarily close to its radius of convergence, and we can
still have some amount of uniform convergence.

Consider a power series
∑∞

n=0 cn(z − a)n with radius of convergence R and a point w ∈ D(a,R).
We can always find some r such that |w − a| < r < R, so ∃δ > 0 such that |w − a|+δ < r. Therefore,
we can always find an open disk around w with radius δ such that it is completely contained within
D(a, r).

a

D(a,R)

D(a, r)

w

We then have D(w, δ) ⊂ D(a, r), where the power series is guaranteed to converge uniformly.

This inspires a helpful definition.

Definition 1.13. A subset U of C is open if for all w ∈ U, there exists δ > 0 such that D(w, δ) ⊂ U .

From our discussion above, it is clear that an open disk is open.

Definition 1.14. Let U ⊂ C be open and fn be a sequence of functions on U . We say that fn
converges locally uniformly on U if for all w ∈ U there exists some δ > 0 such that fn converges
uniformly on D(w, δ) ⊂ U .

We can then formalise our discussion above into the following theorem.

Theorem 1.15 (Local uniform convergence of power series). A complex power series centred
at a with radius of convergence R converges locally uniformly on D(a,R).

6



2 Uniform Continuity and Integrability IB Analysis and Topology

2 Uniform Continuity and Integrability

2.1 Uniform Continuity

Recall the standard notion of continuity.
Definition 2.1. Let Ω ⊆ C and f : Ω → C (or R). We say that f is continuous at a ∈ Ω if given
any ϵ > 0 we can find a δ > 0 such that |f(a)− f(x)| < ϵ for all x ∈ Ω, |x− a| < δ.

We say f is continuous if it is continuous at every a ∈ Ω.

In our above definition, we allow δ to depend on both ϵ and a. Similar to how we define uniform
convergence, we can analogously define uniform continuity.
Definition 2.2. Let Ω ⊂ C and f : Ω → C (or R). We say that f is uniformly continuous if given
any ϵ > 0, we can find δ > 0 such that ∀x, y ∈ Ω, |x− y| < δ, we have |f(x)− f(y)| < ϵ.

It is easy to see that uniform continuity implies continuity, but the converse does not hold in
general.
Theorem 2.3 (Heine–Cantor theorem). Let f : [a, b] → C be continuous. Then f is uniformly
continuous.

Proof. Suppose such f is not uniformly continuous. Then ∃ϵ > 0 such that ∀δ > 0, there is some x, y
with |x− y| < δ such that |f(x)− f(y)| ≥ ϵ.

Take δ = 1/n. We can find some sequences xn, yn ∈ [a, b] such that |xn − yn| < 1/n and
|f(xn)− f(yn)| ≥ ϵ. Then by Bolzano–Weierstrass theorem, we can find some convergent subsequence
xnj → x for some x ∈ [a, b]. But then

∣∣xnj − ynj

∣∣ < 1/nj for all j, so we must have ynj → x as well.

Then
∣∣f(xnj

)− f(ynj
)
∣∣ ≥ ϵ for every j, which implies that f(xnj

) and f(ynj
) cannot converge to

the same point. But by continuity of f , we must have f(xnj
) → f(x) and f(ynj

) → f(x), which is a
contradiction. Thus f must be uniformly continuous. □

2.2 Riemann Integrability

Theorem 2.4 (Integrability and uniform continuity). Let f : [a, b] → R be continuous. Then
f is Riemann integrable.

Proof. Given ϵ > 0, since f is uniformly continuous, there is some δ > 0 such that |f(x)− f(y)| <
ϵ/(b− a) whenever |x− y| < δ and x, y ∈ [a, b].

Now choose some integer n ≥ (b − a)/δ, and define the dissection D = {x0, . . . , xn} with xi =
a+ i(b− a)/n. Then we have

sup
x∈[xj−1,xj ]

f(x)− inf
x∈[xj−1,xj ]

f(x) ≤ ϵ

(b− a)

for all 1 ≤ j ≤ n, and thus

UD(f)− LD(f) =

n∑
j=1

(xj − xj−1)

[
sup

x∈[xj−1,xj ]

f(x)− inf
x∈[xj−1,xj ]

f(x)

]

≤
n∑

j=1

b− a

n

ϵ

b− a
= ϵ ,

and thus f is Riemann integrable by Riemann criterion for integrability. □
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*Non-examinable fun

Below are some remarkable results that are non-examinable.

Theorem 2.5 (Weierstrass approximation theorem). If f : [0, 1] → R is continuous, then there
exists a sequence of polynomials pn such that pn → f uniformly. The sequence can be given by the
Bernstein polynomial:

pn(x) =

n∑
k=0

f

(
k

n

)(
n
k

)
xk(1− x)n−k .

Remark. There are many other ways to construct a sequence of polynomials converging uniformly to
a continuous function f .

Proof. Denote
pn,k(x) =

(
n
k

)
xk(1− x)n−k .

We can derive a few facts about these functions. Clearly, pn,k(x) ≥ 0 ∀x ∈ [0, 1]. Also, by the
binomial theorem

n∑
k=0

(
n
k

)
xkyn−k = (x+ y)n ,

so we get
n∑

k=0

pn,k(x) = 1 .

Differentiating the binomial theorem with respect to x and putting y = 1− x gives
n∑

k=0

(
n
k

)
kxk−1(1− x)n−k = n .

Multiply by x gives
n∑

k=0

(
n
k

)
kxk(1− x)n−k = nx ,

or equivalently
n∑

k=0

kpn,k(x) = nx .

Differentiating the binomial theorem twice gives
n∑

k=0

k(k − 1)pn,k(x) = n(n− 1)x2 .

Adding these two results gives
n∑

k=0

k2pn,k(x) = n2x2 + nx(1− x) .

We will combine our results in a weird way:
n∑

k=0

(nx− k)2pn,k(x) = n2x2 − 2nx · nx+ n2x2 + nx(1− x)

= nx(1− x) .

8



2 Uniform Continuity and Integrability IB Analysis and Topology

Now given ϵ, since f is continuous on [0, 1], it is uniformly continuous. So pick a δ such that
|f(x)− f(y)| < ϵ whenever |x− y| < δ. Then for each fixed x, we can write

|pn(x)− f(x)| =

∣∣∣∣∣
n∑

k=0

(
f

(
k

n

)
− f(x)

)
pn,k(x)

∣∣∣∣∣
≤

n∑
k=0

∣∣∣∣f(k

n

)
− f(x)

∣∣∣∣pn,k(x)
=

∑
k:|x− k

n |<δ

∣∣∣∣f(k

n

)
− f(x)

∣∣∣∣pn,k(x) + ∑
k:|x− k

n |≥δ

∣∣∣∣f(k

n

)
− f(x)

∣∣∣∣pn,k(x)
≤ ϵ

n∑
k=0

pn,k(x) + 2 sup
x∈[0,1]

|f(x)|
∑

k:|x− k
n |≥δ

pn,k(x)

= ϵ+ 2 sup
x∈[0,1]

|f(x)| 1
δ2

∑
k:|x− k

n |≥δ

(
x− k

n

)2

pn,k(x)

≤ ϵ+ 2 sup
x∈[0,1]

|f(x)| 1
δ2

n∑
k=0

(
x− k

n

)2

pn,k(x)

= ϵ+
2 sup |f |
δ2n2

nx(1− x)

≤ ϵ+
sup |f |
2δ2n

.

Hence given any ϵ and δ, we can pick n sufficiently large such that |pn(x)− f(x)| < 2ϵ. This is
independent of x so the convergence is uniform. □

We may want to explore more on integrability. We know that a function is integrable if it is
continuous. But it need not be. It could be discontinuous at finitely many points and still be
integrable. If it has countably many discontinuities, then we still can integrate it. How many points
of discontinuity can we accommodate if we want to keep integrability?

Definition 2.6. A subset A ⊆ R is said to have (Lebesgue) measure zero if for any ϵ > 0, there exists
a countable (possibly infinite) collection of open intervals Ij such that

A ⊆
∞⋃
j=1

Ij ,

and
∞∑
j=1

|Ij | < ϵ ,

where |Ij | is the length of the interval.

Examples.

(i) The empty set has measure zero.

(ii) Any finite set has measure zero.

(iii) Any countable set has measure zero. If A = {a0, a1, . . . }, take

Ij =
(
aj −

ϵ

2j+1
, aj +

ϵ

2j+1

)
.

Then A is contained in the union and the sum of lengths is ϵ.

9
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(iv) A countable union of sets of measure zero has measure zero, using a similar proof strategy as
above.

(v) Any non-trivial interval does not have measure zero.

(vi) The Cantor set, despite being uncountable, has a measure zero. The Cantor set is constructed
as follows: start with C0 = [0, 1]. Remove the middle third ( 13 ,

2
3 ) to obtain C1 = [0, 1

3 ] ∪ [ 23 , 1].
Removing the middle third of each segment again to obtain

C2 =

[
0,

1

9

]
∪
[
2

9
,
3

9

]
∪
[
6

9
,
7

9

]
∪
[
8

9
, 1

]
.

Continue iteratively by removing the middle third of each part. Define

C =

∞⋂
n=0

Cn ,

which is the Cantor set. Since each Cn consists 2n disjoint intervals of length 1/3n, the total
length of the segments of Cn is ( 23 )

n → 0. So we can cover C by arbitrarily small union of
intervals. Hence the Cantor set has measure zero.

Theorem 2.7 (Lebesgue’s theorem on the Riemann integral). Let f : [a, b] → R be a
bounded function, and let Df be the set of points of discontinuities of f . Then f is Riemann
integrable if and only if Df has measure zero.

10
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3 Metric Spaces

3.1 Metric Spaces

In R and C, we measure the ‘closeness’ between two points using |x− y|. It has an important property:
triangle inequality

|x− z| ≤ |x− y|+ |y − z| .

The triangle inequality acts more or less as saying closeness is a transitive property.

We can abstract away naturally from the absolute value into a more general measure of distance
with this property.

Definition 3.1. Let M be a set. A metric on M is a function d : M ×M → R≥0 with the following
properties:

1. Positivity. ∀x, y ∈ M , d(x, y) ≥ 0, with equality if and only if x = y.

2. Symmetry. ∀x, y ∈ M , d(x, y) = d(y, x).

3. Triangle inequality. ∀x, y, z ∈ M , d(x, z) ≤ d(x, y) + d(y, z).

The pair (M,d) is called a metric space.

Examples.

(i) Let M be R or C, then d(x, y) = |x− y| is the usual metric on those sets.

(ii) The Euclidean metric is the usual metric in Rn, defined in component form as

d(v, w) = |v − w| =

√√√√ n∑
i=1

(vi − wi)2 .

(iii) Let M be any set, then

d(x, y) =

{
0 if x = y

1 if x 6= y

defines the discrete metric, and (M,d) is a discrete metric space.

(iv) Let G be a group generated by S ⊂ G, where e /∈ S and x ∈ S =⇒ x−1 ∈ S. Then

d(x, y) = min{n ≥ 0 | ∃s1, . . . , sn ∈ S such that y = xs1 . . . sn}

defines the word metric.

(v) Let p be a prime. Then

d(x, y) =

{
0 if x = y

p−n otherwise,

where n is the greatest power of p in the prime factorisation of |x− y|, defines a metric on Z
known as the p-adic metric.

(vi) Let M = R2, then

d(x, y) =

{
|x− y| if x = ky

|x|+ |y| otherwise,

defines a metric on M , where | · | is the Euclidean metric on R2. This is known as the British
railway metric.

11
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To explain the name of this metric, think of Britain with London as the origin. Since the railway
system is far from optimal, all trains go through London. For example, if you want to go from
Oxford to Cambridge (definitely not the other way around), you first go from Oxford to London,
then London to Cambridge. So the distance traveled is the distance from London to Oxford
plus the distance from London to Cambridge. The exception is when the two destinations lie
along the same line with London, in which case, you can directly take the train from one to the
other without going through London, and hence the if x = ky clause.

3.2 Norms and Inner Products

There are several notions on vector spaces that are closely related to metrics. We will look at norms
and inner products of vector spaces, and show that they all naturally induce a metric on the space.

First of all, we define the norm. This can be thought of as the length of a vector in the vector
space.

Definition 3.2. Let V be a real vector space. A norm on V is a function ‖ · ‖ : V → R such that

1. Positive definite. ‖v‖ ≥ 0 for all v ∈ V , with ‖v‖ = 0 iff v = 0.

2. Scaling. For λ ∈ R and v ∈ V , ‖λv‖ = |λ|‖v‖.

3. Triangle inequality. For v, w ∈ V , ‖v + w‖ ≤ ‖v‖+ ‖w‖.

A norm naturally induces a metric on V .

Lemma 3.3. If ‖ · ‖ is a norm on V , then

d(v, w) = ‖v − w‖

defines a metric on V .
Proof.

(i) d(v, w) = ‖v − w‖ ≥ 0 by definition.
d(v, w) = 0 ⇐⇒ ‖v − w‖ = 0 ⇐⇒ v − w = 0 ⇐⇒ v = w.

(ii) d(w, v) = ‖w − v‖ = ‖(−1)(v − w)‖ = |−1|‖v − w‖ = d(v, w).

(iii) d(u, v) + d(v, w) = ‖u− v‖+ ‖v − w‖ ≥ ‖u− w‖ = d(u,w).

So d is indeed a metric. □
Examples.

(i) In Rn or Cn, we have the Euclidean norm

‖x‖2 =

√√√√ n∑
k=1

|xk|2 .

This induces our familiar Euclidean metric

d(x, y) = ‖x− y‖2 =

√√√√ n∑
k=1

|xk − yk|2 ,

This is the standard metric on Rn or Cn. The metric space (M,d) is called the n-dimensional
real (or complex) Euclidean space, denoted ℓn2 . The Euclidean norm is denoted as the ℓ2-norm,
and the Euclidean metric is the ℓ2-metric.

12



3 Metric Spaces IB Analysis and Topology

(ii) Again, in Rn or Cn, we can have the ℓp-norm for p ∈ [1,∞) defined by

‖x‖p =

(
n∑

k=1

|xk|p
)1/p

.

This induces the ℓp-metric

d(x, y) =

(
n∑

k=1

|xk − yk|p
)1/p

.

We can extend this to define the ℓ∞-norm and the ℓ∞-metric

‖x‖∞ = max
1≤k≤n

|xk| ,

d(x, y) = max
1≤k≤n

|xk − yk| .

(iii) Let S be a set and let L∞(S) be the set of all bounded scalar functions on S. We then define
the L∞-norm of f ∈ L∞(S) by

‖f‖∞ = sup
x∈S

|f(x)| .

This is known as the sup norm or the uniform norm. Then d(f, g) = ‖f − g‖∞ defines a metric
on L∞(S) known as the uniform metric.

(iv) Consider C[a, b], the set of continuous functions on [a, b], then for p ∈ [1,∞), we define the
Lp-norm and the Lp-metric as

‖f‖p =

(ˆ b

a

|f(x)|p
)1/p

,

d(f, g) = ‖f − g‖p .

We will now define the inner product of a real vector space. This is a generalisation of the notion
of the dot product.

Definition 3.4. Let V be a real vector space. An inner product is a function 〈 · | · 〉 : V × V → R
that satisfies

1. Positive definite. 〈v|v〉 ≥ 0 for all v ∈ V , with 〈v|v〉 = 0 iff v = 0.

2. Symmetry. 〈v|w〉 = 〈w|v〉.

3. Linearity. ∀λ ∈ R, 〈u+ λv|w〉 = 〈u|w〉+ λ 〈v|w〉.

Theorem 3.5 (Cauchy–Schwarz inequality). If 〈 · | · 〉 is an inner product, then

〈v|w〉2 ≤ 〈v|v〉 〈w|w〉 .

Proof. For any x, we have

〈v + xw|v + xw〉 = 〈v|v〉+ 2x 〈v|w〉+ x2 〈w|w〉 ≥ 0 .

This can be seen as a quadratic in x that is always non-negative. It can have at most one real root,
so

(2 〈v|w〉)2 − 4 〈v|v〉 〈w|w〉 ≤ 0 .

□
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Lemma 3.6. If 〈·|·〉 is an inner product on V , then

‖v‖ =
√

〈v|v〉

is a norm.
Proof.

(i) ‖v‖ =
√
〈v|v〉 ≥ 0.

‖v‖ = 0 ⇐⇒ 〈v|v〉 = 0 ⇐⇒ v = 0.

(ii) ‖λv‖ =
√
〈λv|λv〉 =

√
λ2 〈v|v〉 = |λ|‖v‖.

(iii) By Cauchy–Schwarz,

(‖v‖+ ‖w‖)2 = ‖v‖2 + 2‖v‖‖w‖+ ‖w‖2

≥ 〈v|v〉+ 2 〈v|w〉+ 〈w|w〉

= ‖v + w‖2 .

□
Examples.

(i) Let V = Rn. Then

〈v|w〉 =
n∑

i=1

viwi

is an inner product. This is our familiar dot product, which induces the Euclidean norm and
Euclidean metric.

(ii) Let V = C[a, b]. Then

〈f |g〉 =
ˆ b

a

f(x)g(x) dx

is an inner product. This induces the L2-norm and the L2-metric.

3.3 Subspaces and Product Spaces

Definition 3.7. Let (M,d) be a metric space and let N ⊂ M . Then d is a metric on N and (N, d)
is called a subspace of M .

Example. Since every continuous function on a closed, bounded interval is bounded, so C[a, b] ⊂
L∞([a, b]). Therefore, C[a, b] with the uniform metric is a subspace of L∞([a, b]).

Given two metric spaces, there is a number of natural ways to construct another metric space
which has those two metric spaces as subspaces.
Definition 3.8. Let (M,d) and (N, d′) be two metric spaces. We can define the metric product space
by taking the set M ×N and the metric

dp((m1, n1), (m2, n2)) = (d(m1,m2)
p + d′(n1, n2)

p)1/p

for some p ∈ [1,∞), or

d∞((m1, n1), (m2, n2)) = max{d(m1,m2), d
′(n1, n2)} .

We denote the resulting product space (M ×N, dp) by M ⊕p N .
Remark. There are no canonical choices on the value of p, but p = 1, 2 and ∞ are the most common.
It is also straightforward to show that

d∞ ≤ d2 ≤ d1 ≤ 2d∞ .
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3.4 Convergence and Continuity

Metric spaces give us a measure of closeness. We can therefore extend our notion of convergence from
R and C into general metric spaces.

Definition 3.9. Let (M,d) be a metric space. A sequence an ∈ M is said to converge to a limit
a ∈ M if given any ϵ > 0, ∃N ∈ N such that ∀n > N , we have d(an, a) < ϵ. We write an → a as
n → ∞.

Now we need to go back and check the theorems about convergence that we proved earlier to see
whether they still hold for a general metric space.

Lemma 3.10 (Uniqueness of Limits). If an → a and an → b in a metric space (M,d), then a = b.

Proof. Assume that a 6= b. Given any ϵ > 0, we can find integers N1 and N2 such that

∀n ≥ N1, d(an, a) ≤ ϵ ,

∀n ≥ N2, d(an, b) ≤ ϵ .

Then letting ϵ = d(a, b)/3 and taking N = max{N1, N2}, we have, by the triangle inequality,

d(a, b) ≤ d(a, an) + d(an, b) ≤ 2ϵ =
2

3
d(a, b)

for all n ≥ N . Then we must have d(a, b) = 0 and a = b, a contradiction. □

Definition 3.11. Let f : M → M ′ be a function between metric spaces (M,d) and (M ′, d′). We
say f is continuous at a ∈ M if ∀ϵ > 0, ∃δ > 0 such that ∀b ∈ M and d(a, b) < δ, we have
d′(f(a), f(b)) < ϵ.

If f is continuous at every a ∈ N ⊆ M , then we say f is continuous on N .

Proposition 3.12 (Sequence definition of continuity). Let f : M → M ′ be a function between
metric spaces, and let a ∈ M . Then f is continuous at a if and only if for any sequence xn → a, we
have f(xn) → f(a).

Proof.

(⇒) If f is continuous at a, then ∀ϵ > 0, ∃δ > 0 such that

d(a, b) < δ =⇒ d′(f(a), f(b)) < ϵ .

Now, find any xn → a. We can find N ∈ N such that ∀n > N , d(a, xn) < δ. Therefore, for the
same number of N , we have ∀n > N , d(f(a), f(xn)) < ϵ. So f(xn) → f(a).

(⇐) If xn → a =⇒ f(xn) → f(a) but f is not continuous at a, then we can find ϵ > 0 such that
∀δ > 0, there exists some x ∈ M such that d(x, a) < δ but d′(f(x), f(a)) > ϵ. Set δn = 1

n and
obtain the corresponding xn. Now xn → a but f(xn) 6→ f(a). This is a contradiction. □

We then have the following two obvious corollaries.

Corollary. Let f, g : M → M ′ be continuous scalar functions, then f + g, f × g and f/g (providing
that ∀x ∈ M, g(x) 6= 0) are all continuous.

Corollary. If f : M → M ′ and g : M ′ → M ′′ are continuous, then g ◦ f is continuous.

Definition 3.13. A function f : (M,d) → (M,d′) is uniformly continuous if ∀ϵ > 0, ∃δ > 0 such
that ∀x, y ∈ M with d(x, y) < δ, we have d′(f(x), f(y)) < ϵ.
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Definition 3.14. A function f : (M,d) → (M ′, d′) is Lipschitz continuous if there is some constant
C ≥ 0 such that ∀x, y ∈ M ,

d′(f(x), f(y)) ≤ Cd(x, y) .

We sometimes say f is C-Lipschitz.

Definition 3.15. A map f : (N, d) → (N ′, d′) is isometric if ∀x, y ∈ N ,

d′(f(x), f(y)) = d(x, y) .

Remark. Trivially, an isometric function is 1-Lipschitz and injective. If f is also surjective, then we
call it an isometry. If there exists an isometry between two metric spaces, then we say that they are
isometric.

Proposition 3.16. A Lipschitz function is uniformly continuous.

Proof. Trivial. □

3.5 Topology of a Metric Space

While we will discuss topology and topological spaces in general later, it’s worth looking at a few of
the core ideas in the context of metric spaces.

It seems that there are some concepts in metric spaces that don’t really rely on the metric, just
about the closeness of points. The point of this section is looking to see exactly what type of relations
are these, so that we can generalise them to a setting where we don’t use a metric.

Definition 3.17. Let (M,d) be a metric space. An open ball in M of center x ∈ M and radius r > 0
is given by

Dr(x) := {y ∈ M | d(x, y) < r} .

Then, we can say xn → x in M if and only if for all ϵ > 0, there is some integer N such that
n ≥ N implies that xn ∈ Dϵ(x).

Similarly, for a function f : M → M ′, we say that f is continuous at x ∈ M if and only if for all
ϵ > 0, there exists some δ > 0 such that f(Dδ(x)) ⊂ Dϵ(f(x)).

Definition 3.18. Let (M,d) be a metric space. A closed ball in M of a center x ∈ M and radius
r > 0 is given by

Br(x) = {y ∈ M | d(x, y) ≤ r} .

Examples.

(i) When M = R, an open ball is an open interval and a closed ball is a closed interval.

(ii) In R2, a unit closed ball B1(0) has different appearance in different metrics.

d1-metric d2-metric d∞-metric
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(iii) If (M,d) is discrete, then D1(x) = {x}, B1(x) = M .

Note that Bs(x) ⊂ Dr(x) ⊂ Br(x) for any s < r.

Definition 3.19. A subset U ⊂ M with x ∈ U is called a neighbourhood of x if there exists some
r > 0 such that Dr(x) ⊂ U .

Definition 3.20. Let U ⊂ M . We say U is open in M if for all x ∈ U , there exists some r > 0 such
that Dr(x) ⊂ U , i.e. U is a neighbourhood of all of its points.

Example. Consider the upper half complex plane: H = {z ∈ C | Im z ≥ 0}. Then let w ∈ H and
δ = Imw. If δ > 0, then Dδ(w) ⊂ H. If δ = 0, then for all r > 0, Dr(w) 6⊂ H. Thus H is not open.

Lemma 3.21. Open balls are open.

Proof. Consider an open ball Dr(x) ⊂ M . Let y ∈ Dr(x) and let δ = r − d(x, y). Then δ > 0, and if
z ∈ Dδ(y) then

d(z, x) ≤ d(z, y) + d(y, x) < δ + d(x, y) = r ,

so z ∈ Dr(x). This shows that Dδ(y) ⊂ Dr(x). □

Corollary. Let M be a metric space, U ⊂ M and x ∈ M . Then U is a neighbourhood of x if and
only if there exists an open subset V of M such that x ∈ V ⊂ U .

3.5.1 Continuity and Convergence using Topology

Proposition 3.22 (Convergence using open sets). In a metric space M , the following are
equivalent:

(i) xn → x;

(ii) for all neighbourhoods U of x in M , there exists some N ∈ N such that ∀n ≥ N , xn ∈ U .

(iii) for all open subsets U of M with x ∈ U , there exists some N ∈ N such that ∀n ≥ N , xn ∈ U .

Proof.

• (i) ⇒ (ii). Let U be a neighbourhood of x in M . Then by definition, ∃ϵ > 0 such that Dϵ(x) ∈ U .
Then since xn → x, there is an N ∈ N such that n ≥ N implies d(xn, x) < ϵ, and so xn ∈ Dϵ(x).

• (ii) ⇒ (iii). Trivial by the previous lemma.

• (iii) ⇒ (i). Given some ϵ > 0, U = Dϵ(x) is open and x ∈ U . Then by (iii) there is an N ∈ N
such that n ≥ N implies xn ∈ U , that is, d(xn, x) < ϵ. □

Proposition 3.23 (Local continuity using open sets). Let f : M → M ′ be a function between
metric spaces, and let x ∈ M . The following are equivalent:

(i) f is continuous at x;

(ii) for all neighbourhood V of f(x) ∈ M ′, there exists a neighbourhood U of x in M such that
f(U) ⊂ V ;

(iii) for all neighbourhoods V of f(x) in M ′, f−1(V ) is a neighbourhood of x in M .

Proof.

• (i) ⇒ (ii). Let V be a neighbourhood of f(x) in M ′. Then by definition there exists some
ϵ > 0 such that Dϵ(f(x)) ⊂ V . Since f is continuous at x, there exists δ > 0 such that
f(Dδ(x)) ⊂ Dϵ(f(x)). Then U = Dδ(x) is a neighbourhood of x in M and f(U) ⊂ V .
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• (ii) ⇒ (iii). Let V be a neighbourhood of f(x) in M ′. Then by (ii) there is a neighbourhood U
of x in M such that f(U) ⊂ V . Then U ⊂ f−1(V ), and since U is a neighbourhood of x in M ,
there is some r > 0 with Dr(x) ⊂ U ⊂ f−1(V ). Thus f−1(V ) is a neighbourhood of x in M .

• (iii) ⇒ (i). Given ϵ > 0, V = Dϵ(f(x)) is a neighbourhood of f(x) in M . By (iii), f−1(V ) is a
neighbourhood of x in M . So there exists δ > 0 with Dδ(x) ⊂ f−1(V ). Then f(Dδ(x)) ⊂ V =
Dϵ(f(x)). □

Proposition 3.24 (Global continuity using open sets). Let f : M → M ′ be a function between
metric spaces. Then

f is continuous ⇐⇒ f−1(V ) is open in M for all open subsets V of M ′ .

Proof.

(⇒) Let V be open in M ′. Let x ∈ f−1(V ). Then f(x) ∈ V . Since V is open, there is some ϵ > 0 such
that Dϵ(f(x)) ⊂ V . Since f is continuous at x, there is a δ > 0 such that f(Dδ(x)) ⊂ Dϵ(f(x)).
Therefore Dδ(x) ⊂ f−1(Dϵ(f(x))) ⊂ f−1(V ). Thus f−1(V ) is open in M .

(⇐) Let x ∈ M and let ϵ > 0. Then V = Dϵ(f(x)) is open in M ′. By (ii), f−1(V ) is open in M ,
also x ∈ f−1(V ) and f(x) ∈ V . Then by definition there is a δ > 0 such that Dδ(x) ⊂ f−1(V ),
so f(Dδ(x)) ⊂ V = Dϵ(f(x)). □

3.5.2 Topology of a Metric space

We can now write down what the topology of a metric space is. We can use some properties that
occur here to inform how we define things more generally afterwards.

Definition 3.25. The topology of a metric space (M,d) is the family of all open subsets of M .

Proposition 3.26 (Topology of metric spaces). The topology of a metric space satisfies the
following properties:

(i) ∅ and M are open;

(ii) if Ui are open in M for i ∈ I (the index set I may be countable or uncountable), then
⋃

i∈I Ui

is open in M ;

(iii) if U , V are open then U ∩ V is open.

Proof.

(i) This is clear.

(ii) Given x ∈
⋃

i∈I Ui, then there is some i0 ∈ I with x ∈ Ui0 . Then Ui0 is open, so by definition
there is an r > 0 such that Dr(x) ⊂ Ui0 ⊂

⋃
i∈I Ui.

(iii) Given x ∈ U ∩ V , since U is open and x ∈ U , there is an r > 0 with Dr ⊂ U , and since V is
open and x ∈ V , there is an s > 0 with Ds(x) ⊂ V . Set t = min{r, s}, we then have t > 0 and
Dt(x) = Dr(x) ∩Ds(x) ⊂ U ∩ V . □

Definition 3.27. A subset A of a metric space (M,d) is closed in M if for every sequence xn ∈ A
that is convergent in M , we have limn→∞ xn ∈ A.

Lemma 3.28. Closed balls are closed.

Proof. Consider Br(x) = {y ∈ M | d(x, y) ≤ r} ⊂ M , and a sequence xn ∈ Br(x) such that xn → z.
We need to show that z ∈ Br(x). We have

d(z, x) ≤ d(z, xn) + d(xn, x)

≤ d(z, xn) + r → r

as n → ∞. Thus d(z, x) ≤ r and hence z ∈ Br(x). □
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Examples.

(i) The set [0, 1] = B1/2(1/2) is closed in R. It is not open as Dr(0) 6⊆ [0, 1] for any r > 0.

(ii) The set (0, 1) = D1/2(1/2) is open in R, and it is not closed. Take an = 1/(n + 1) ∈ (0, 1) for
all n ∈ N, but an → 0 6∈ (0, 1).

(iii) R and ∅ are open and closed in R.

(iv) The set (0, 1] in R is neither open nor closed.

(v) If (M,d) is discrete, then every subset of M is both open and closed.

Lemma 3.29. Let A ⊆ M . Then A is closed in M if and only if M \A is open in M .

Proof. Assume A is closed and M \A is not open. Then there exists x ∈ M \A such that for all r > 0
we have Dr(x) 6⊂ M \ A. Hence for all n, there exists xn ∈ D1/n(x) ∩ A. Then d(xn, x) < 1/n → 0,
so xn → x 6∈ A, but xn ∈ A for all n, which contradicts that A is closed.

Suppose M \ A is open but A is not closed. Then there exists some sequence xn ∈ A such that
xn → x ∈ M but x 6∈ A. Since x ∈ M \A and M \A is open, there exists ϵ > 0 with Dϵ(x) ⊂ M \A.
Then since xn → x, there is some N ∈ N such that for all n ≥ N , we have xn ∈ Dϵ(x), and hence
xn ∈ M \A, which is a contradiction. □

We previously met isometries, which were maps between metric spaces that preserved the distance
function. Now that we are trying to look slightly away from metrics and more towards open sets and
neighbourhoods, it’s natural to think of a new definition of a function between metric spaces that
preserves open sets.

Definition 3.30. A map f : M → M ′ between metric spaces is a homeomorphism if f is a bijection
and f and f−1 are both continuous.

Equivalently, f is a homeomorphism if for all open sets V ⊂ M ′, f−1(V ) is open in M , and for
all open sets U ⊂ M , f(U) is open in M ′.

If there is a homeomorphism between M and M ′, we say that M and M ′ are homeomorphic.

Example. The metric spaces (0,∞) and (0, 1) are homeomorphic with the homeomorphism x 7→
1/(x+ 1) and inverse x 7→ 1/x− 1.

Remark. It is true that every isometry is a homeomorphism, but the converse is clearly false.

Definition 3.31. Let d and d′ be metrics on a set M . We say that d and d′ are equivalent, denoted
d ∼ d′ if they define the same topology on M , i.e. for U ⊂ M , U is open in (M,d) if and only if U is
open in (M,d′).

Remark. d ∼ d′ if and only if id : (M,d) → (M,d′) is a homeomorphism.

Also note that if d ∼ d′, then (M,d) and (M,d′) have the same convergent sequences and the
same continuous maps.

Definition 3.32. Let d and d′ be metrics on a set M . We say that d and d′ are uniformly equivalent
if id : (M,d) → (M,d′) and id′ : (M,d′) → (M,d) are uniformly continuous, written d ∼u d′.

We say d and d′ are Lipschitz equivalent if these functions are Lipschitz, written d ∼Lip d′.

Remarks.

(i) d ∼Lip d′ if and only if there exists a > 0 and b > 0 such that

ad(x, y) ≤ d′(x, y) ≤ bd(x, y) .
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(ii)
d ∼Lip d′ =⇒ d ∼u d′ =⇒ d ∼ d′ .

Examples.

(i) Given a metric space (M,d), d′(x, y) = min{1, d(x, y)} defines a metric on M , and d′ ∼u d.

(ii) On a product space M ×M ′, the metrics d1, d2 and d∞ are pairwise Lipschitz equivalent.

(iii) On C[0, 1], the L1-metric and the uniform metric are not equivalent.

3.6 Completeness

In R and C, every Cauchy sequence is convergent. We wish to generalise this notion to an arbitrary
metric space.
Definition 3.33. A sequence xn in a metric space (M,d) is Cauchy if ∀ϵ > 0, ∃N ∈ N such that
∀m,n ≥ N , we have d(xm, xn) < ϵ.

Definition 3.34. A sequence xn in a metric space (M,d) is bounded if ∃z ∈ M and r > 0 such that
∀n ∈ N, we have xn ∈ Br(z).

Lemma 3.35. In a metric space (M,d), every convergent sequence is Cauchy, and every Cauchy
sequence is bounded.

Proof. Let xn ∈ M be convergent, and let x = limn→∞ xn. Given ϵ > 0, there is some positive integer
N such that d(xn, x) ≤ ϵ/2 for all n ≥ N . Then for all m,n ≥ N , d(xm, xn) ≤ d(xm, x)+d(x, xn) < ϵ.
Thus a convergent sequence is Cauchy.

Now assume xn is Cauchy in M . Then there is a positive integer N such that for all m,n ≥
N , we have d(xm, xn) < 1. So in particular, we have d(xn, xN ) < 1 for all n ≥ N . Let r =
max{d(x1, xn), . . . , d(xN−1, xN ), 1}. Then xn ∈ Br(xN ) for all n ∈ N , and so xn is bounded. □

In general, a bounded sequence is not Cauchy. An example is the oscillating sequence 0, 1, 0, 1 . . .
in R.

A more subtle observation is that a Cauchy sequence is not necessarily convergent in general
metric space. For example, xn = 1/n is clearly Cauchy, but it does not converge in (0,∞) equipped
with the usual metric.

It seems that this example works because there is something ‘missing’ from the metric space.
Definition 3.36. A metric space (M,d) is complete if every Cauchy sequence in M converges in M .

Trivial examples of complete metric spaces would be R and C.
Proposition 3.37 (Product of complete spaces is complete). If metric spaces (M,d) and
(M ′, d′) are complete, then so is M ⊕p M

′.

Proof. Let an be a Cauchy sequence in the product space M ⊕p M ′. We will write an = (xn, x
′
n),

where xn and x′
n are sequences in M and M ′ respectively. As an is Cauchy, ∀ϵ > 0, ∃N ∈ N such

that ∀m,n ≥ N , we have dp(am, an) < ϵ. Then, ∀m,n ≥ N ,

d(xm, xn) ≤ max{d(xm, xn), d
′(x′

m, x′
n)} ≤ dp(am, an) < ϵ .

Hence, xn is Cauchy in M , and similarly x′
n is Cauchy in M ′. Since M and M ′ are complete, xn and

x′
n converges to x ∈ M and x′ ∈ M ′ respectively. Let a = (x, x′), then

dp(an, a) ≤ d1(an, a) = d(xn, x) + d(x′
n, x

′) → 0 ,

so the product space is complete. □
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Corollary. Rn and Cn are complete in ℓp-metric.

Theorem 3.38 (Completeness of function spaces). Let S be any non-empty set. Then L∞(S),
the set of all bounded scalar functions on S, is complete in the uniform metric D.

Proof. Let fn be a Cauchy sequence in L∞(S). Then given ϵ > 0, ∃N ∈ N such that ∀n,m ≥ N we
have

D(fm, fn) = sup
x∈S

|fm(x)− fn(x)| < ϵ .

So fn is uniformly Cauchy. By the general principle of uniform convergence, fn converges uniformly
to some function f on S. We know that f is bounded, so f ∈ L∞(S). Now it remains to show
that fn → f in the uniform metric. We have that ∀ϵ > 0, ∃N ∈ N such that ∀n > N and x ∈ S,
|fn(x)− f(x)| < ϵ. This translates directly to

sup
x∈S

|fn(x)− f(x)| = D(fn, f) ≤ ϵ

for all n ≥ N , which is convergence in the uniform metric as required. □

Proposition 3.39 (Completeness of a subspace). Let N be a subspace of a metric space M .
Then

(i) if N is complete, N is closed in M .

(ii) If M is complete and N is closed in M , then N is complete.

Hence in a complete metric space, a subspace is complete if and only if it is closed.

Proof.

(i) Trivial. Any convergent sequence xn ∈ N is Cauchy in N , and so converges to some point
x ∈ N by completeness. It is therefore closed.

(ii) Let xn be a Cauchy sequence in N . Then xn is Cauchy in M , so xn → x ∈ M by the
completeness if M . Since N is closed in M , we must have x ∈ N , so xn → x in N . □

Theorem 3.40. Let (M,d) be a metric space, and let

Cb(M) = {f ∈ L∞(M) | f is continuous} .

This is a subspace of L∞(M) in the uniform metric D.

Cb(M) is complete in the uniform metric.

Proof. By the previous proposition, it suffices to show that Cb(M) is closed in L∞(M). Let fn ∈
Cb(M) be a sequence, and assume that fn → f in L∞(M). We need to show that f is continuous.

Given some a ∈ M and ϵ > 0, we can fix an n ∈ N such that D(fn, f) < ϵ/3. Since fn is continuous
at a, there is a δ > 0 such that for all x ∈ M , d(x, a) < δ, we have |fn(x)− fn(a)| < ϵ. Hence for all
x ∈ M , if d(x, a) < δ then

|f(x)− f(a)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(a)|+ |fn(a)− f(a)|
≤ 2D(fn, f) + |fn(x)− fn(a)|
≤ ϵ .

□

Corollary. C[a, b] is complete in the uniform metric.

Proof. C[a, b] = Cb[a, b]. □

21



3 Metric Spaces IB Analysis and Topology

Definition 3.41. Let S be a non-empty set and (N, d′) be a metric space. Define the space of
functions

L∞(S,N) := {f : S → N | f is bounded} .

For f, g ∈ L∞(S,N), as they are bounded, we have

f(x) ∈ Br(y) , g(x) ∈ Bs(z)

for all x ∈ S and some y, z ∈ N . Then ∀x ∈ S, we have

d′(f(x), g(x)) ≤ d′(f(x), y) + d′(y, z) + d′(z, g(x)) ≤ r + s+ d′(y, z) .

This is a uniform bound for all x, so we may take the supremum.
Definition 3.42. The uniform metric on L∞(S,N), where S is a non-empty set and (N, d′) is a
metric space, is defined as

D(f, g) := sup
x∈S

d′(f(x), g(x))

for f, g ∈ L∞(S,N).

Definition 3.43. Let (M,d) and (N, d′) be metric spaces. Define

Cb(M,N) = {f : M → N | f continuous and bounded} .

Remark. Cb(M,N) is a subspace of L∞(M,N) with the uniform metric.

Theorem 3.44. Let S be a set, let (M,d) be a metric space and let (N, d′) be a complete metric
space. Then

(i) L∞(S,N) is complete in the uniform metric D;

(ii) Cb(M,N) is complete in the uniform metric D.
Proof.

(i) Let fn ∈ L∞(S,N) be a Cauchy sequence. We first show that fn is pointwise Cauchy. Let x ∈ S.
Then ∀ϵ > 0, ∃K ∈ N such that ∀m,n ≥ K, D(fm, fn) < ϵ. In particular, d′(fm(x), fn(x)) ≤
D(fm, fn) < ϵ. Therefore, the sequence fk(x) is Cauchy in N ∀x ∈ S.
Since N is complete, fk(x) converges in N for all x ∈ S. Hence, we can define the pointwise
limit of fn(x) as f : S → N , f(x) = limn→∞ fk(x).
Now we have to show that f is bounded. Since fk is Cauchy in the uniform metric D, there exists
K ∈ N such that ∀m,n ≥ K, D(fi, fj) < 1. Then in particular, for all n > K, D(fn, fK) < 1.
Then since fK is bounded, ∃y ∈ N , r > 0 such that ∀x ∈ S, fK(x) ∈ Br(y). Then by the
triangle inequality, d′(fn(x), fK(x)) ≤ 1. Hence

d′(f(x), y) ≤ d′(f(x), fK(x)) + d′(fK(x), y) ≤ 1 + r

for all x. This is a uniform bound, so f ∈ L∞(S,N) and hence L∞(S,N) is complete.
In addition, we can show that fk → f uniformly in D. We have ∀ϵ > 0, ∃K ∈ N such that
∀m,n ≥ K, D(fm, fn) < ϵ. Choose n ≥ K and x ∈ S. Then for all m ≥ K, d′(fm(x), fn(x)) ≤
D(fm, fn) < ϵ. As m → ∞, d′(f(x), fn(x)) ≤ ϵ because the metrics are continuous. Since
x is arbitrary and the uniform distance D(f, fn) < ϵ holds for all n ≥ K, we have uniform
convergence.

(ii) By (i), it is enough to show that Cb(M,N) is closed in L∞(M,N). Let fk ∈ Cb(M,N) and
fk → f ∈ L∞(M,N). We need to show that f is continuous. This is exactly the proof
that the uniform limit of continuous functions is continuous. Let a ∈ M , ϵ > 0. Then as
fk → f ∈ L∞(M,N), we can fix k ∈ N such that D(fk, f) < ϵ. Since fk is continuous, ∃δ > 0
such that ∀x ∈ M , d(x, a) < δ, we have d′(fk(x), fk(a)) < ϵ, so

d′(f(x), f(a)) ≤ d′(f(x), fk(x)) + d′(fk(x), fk(a)) + d′(fk(a), f(a))

< 3ϵ .

□
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3.7 Contraction Mapping Theorem

3.7.1 Contraction Mapping Theorem

Definition 3.45. A function f : M → M ′ is called a contraction mapping if ∃λ ∈ [0, 1) such that
∀x, y ∈ M ,

d′(f(x), f(y)) ≤ λd(x, y) ,

so that f is λ-Lipschitz.

We have the contraction mapping theorem, also known as the Banach’s fixed point theorem.

Theorem 3.46 (Contraction mapping theorem). Let M be a non-empty complete metric space.
Let f : M → M be a contraction mapping. Then f has a unique fixed point:

∃!z ∈ M , f(z) = z .

Proof. First we can show the uniqueness easily. Suppose there are two fixed points f(z) = z, f(w) =
w. Then d(z, w) = d(f(z), f(w)) ≤ λd(z, w) < d(z, w). Hence d(z, w) = 0 so z = w.

Now we show the existence. Fix a starting point x0 ∈ M . Let xn = f(xn−1) for all n ∈ N, so
xn = fn(x0). First, observe that for all n ∈ N,

d(xn, xn+1) = d(f(xn−1), f(xn)) ≤ λd(xn−1, xn) ≤ · · · ≤ λnd(x0, x1) .

For m ≥ n, we have

d(xn, xm) ≤
m−1∑
k=n

d(xk, xk+1) ≤
m−1∑
k=1

λkd(x0, x1) ≤
λn

1− λ
d(x0, x1) .

Since λn/(1− λ)d(x0, x1) → 0, ∀ϵ > 0, ∃N ∈ N such that ∀n ≥ N ,

λn

1− λ
d(x0, x1) < ϵ .

Hence, ∀m ≥ n ≥ N , d(xn, xm) ≤ ϵ, so the sequence xn is Cauchy. Since M is complete, xn is
convergent to some point z ∈ M . f is continuous since it is λ-Lipschitz, so as f(xn) → z, f(z) = z.
The fixed point exists. □

Remark. Let m → ∞ in the inequality for d(xn, xm), get

d(xn, z) ≤
λn

1− λ
d(x0, x1) .

So x0 → z exponentially fast.

Non-examples.

(i) Consider

f : R \ {0} → R \ {0} ,

x 7→ x

2
.

This is a contraction, but there is no fixed point as R \ {0} is not complete.
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(ii) Consider

f : [1,∞) → [1,∞) ,

x 7→ x+
1

x
.

Certainly |f(x)− f(y)| < |x− y|, and [1,∞) is closed in R so it is complete. However, this is not
a contraction: even though |f(x)− f(y)| < |x− y|, there is no upper bound λ (the supremum
is exactly 1). There is no fixed point.

Example. Let y0 ∈ R. Then the initial value problem{
f ′(t) = f(t2)

f(0) = y0

has a unique solution on C
[
0, 1

2

]
.

Assume that there is a solution, then immediately f is continuously differentiable. By the
fundamental theorem of calculus,

f(t) = f(0) +

ˆ t

0

f(x2) dx .

Let M = C
[
0, 1

2

]
with the uniform metric, which is non-empty and complete. Consider the mapping

T : M → M defined by

(Tg)(t) = y0 +

ˆ t

0

g(s2) ds .

Note that Tg is well-defined since g(s2) is continuous. Moreover, by the fundamental theorem of
calculus, Tg is differentiable and (Tg)′(t) = g(t2). Thus f is a solution to the initial value problem if
and only if f ∈ M and Tf = f . Now, if T is a contraction, then we can assert that there is a unique
solution.

For g, h ∈ M , t ∈
[
0, 1

2

]
, consider

|(Tg)(t)− (Th)(t)| =
∣∣∣∣ˆ t

0

g(s2)− h(s2) ds

∣∣∣∣ ≤ ˆ t

0

∣∣g(s2)− h(s2)
∣∣ ds ≤ 1

2
D(g, h) .

Taking the supremum over t gives D(Tg, Th) ≤ 1
2D(g, h), and so there is exactly one fixed point.

Remark. The above example shows that for any δ ∈ (0, 1), there is a unique solution to the initial
value problem on [0, δ] called fδ, since δ < 1 is required for the map to be a contraction. For
0 < δ < µ < 1, fµ|[0,δ] = fδ by uniqueness. So we can combine the solution together to yield a unique
solution on [0, 1).

3.7.2 Lindelöf–Picard Theorem

Theorem 3.47 (Lindelöf–Picard theorem). Let n ∈ N, y0 ∈ Rn and a, b, R ∈ R such that a < b
and R > 0. Let ϕ : [a, b]× BR(y0) → Rn be a continuous function. Given that there exists K > 0
such that ∀t ∈ [a, b] and x, y ∈ BR(y0),

‖ϕ(t, x)− ϕ(t, y)‖ ≤ K‖x− y‖ .

Then ∃ϵ > 0 such that ∀t, t0 ∈ [a, b], the initial value problem{
f ′(t) = ϕ(t, f(t))

f(t0) = y0

has a unique solution on [c, d] = [t0 − ϵ, t0 + ϵ] ∩ [a, b].
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Remark. Note that if f : [c, d] → Rn, we let fk : [c, d] → R to be the k-th component of f . We define
f ′(t) := (f ′

1(t), . . . , f
′
n(t)) and

ˆ d

c

f(t) dt :=

(ˆ d

c

f1(t) dt , . . . ,

ˆ d

c

fn(t) dt

)
.

Note that we can use the Cauchy–Schwarz inequality to give∥∥∥∥∥
ˆ d

c

f(t) dt

∥∥∥∥∥ ≤
ˆ d

c

‖f(t)‖ dt ≤ (d− c) sup
t∈[c,d]

‖f(t)‖ .

Proof. Since ϕ is a continuous function on [a, b] × BR(y0), which is closed and bounded, ‖ϕ‖ is
bounded above by some C > 0. Let ϵ = min{R

C , 1
2K }. Let t0 ∈ [a, b] and [c, d] = [t0 − ϵ, t0 + ϵ]∩ [a, b].

We need to show that there exists a unique differentiable function f : [c, d] → Rn such that f(t0) = y0
and f ′(t) = ϕ(t, f(t)) for all t ∈ [c, d].

Since BR(y0) is closed in the complete space Rn, it is also complete. Then M = C([c, d], BR(y0))
is non-empty and complete in the uniform metric D. A natural thought is then to reduce this IVP
to a fixed-point problem. By applying the fundamental theorem of calculus coordinate-wise, f is a
solution to the initial value problem if f ∈ M and

f(t) = y0 +

ˆ t

t0

ϕ(s, f(s)) ds .

Consider the mapping T : M → M given by

(Tg)(t) = y0 +

ˆ t

t0

ϕ(x, g(x)) dx .

We must first show that T is well-defined. Note that the integral is well defined: s → ϕ(s, g(s))
is continuous so integrable. By the fundamental theorem of calculus, Tg is differentiable and the
derivative is (Tg)′(t) = ϕ(t, g(t)). In particular, Tg : [c, d] → Rn is continuous. Finally, for t ∈ [c, d],

‖(Tg)(t)− y0‖ =

∥∥∥∥ˆ t

t0

ϕ(s, g(s)) ds

∥∥∥∥ ≤ |t− t0| sup
s∈[c,d]

‖ϕ(s, g(s))‖ ≤ ϵC ≤ R ,

so Tg ∈ M .

Recall that f is a solution to the IVP if and only if f ∈ M and Tf = f . We will show that T is a
contraction mapping so it has a unique fixed point. Let t ∈ [c, d] and g, h ∈ M .

‖(Tg)(t)− (Th)(t)‖ =

∥∥∥∥ˆ t

t0

ϕ(s, g(s))− ϕ(s, h(s)) ds

∥∥∥∥ .
Note that ‖ϕ(s, g(s))− ϕ(s, h(s))‖ ≤ K‖g(s)− h(s)‖ ≤ KD(g, h), so

‖(Tg)(t)− (Th)(t)‖ ≤ |t− t0|KD(g, h) ≤ ϵKD(g, h) .

Taking the supremum over t ∈ (c, d),

D(Tg, Th) ≤ ϵKD(g, h) ≤ 1

2
D(g, h) ,

so T is a contraction. Done by contraction mapping theorem. □

Remark. In general, we cannot extend the solution guaranteed above to a global solution. However,
we can apply the theorem to ODE of any order.
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4 Topological Spaces

4.1 Topological Spaces

Definition 4.1. Let X be a set. A topology on X is a collection τ of subsets of X such that the
following axioms hold:

1. ∅, X ∈ τ ;

2. if Ui ∈ τ for all i ∈ I, where I is some index set, then
⋃

i∈I Ui ∈ τ ;

3. if U, V ∈ τ , then U ∩ V ∈ τ .

A topological space is a pair (X, τ), where τ is a topology on a set X. Elements in τ are called the
open sets.

Remark. If Ui ∈ τ for i = 1, . . . , n, then
n⋂

i=1

Ui ∈ τ .

Definition 4.2. Let (M,d) be a metric space. Then the topology induced by d is the set of all open
sets of M under d.

Remark. For a set open specifically in the topological sense, we say that it is τ -open. For a metric
space (M,d), a set U ⊂ M is open in metric sense if ∀x ∈ U , ∃r > 0 such that Dr(x) ⊂ U . We may
say that U is d-open. We have proven that the collection of d-open sets in a metric space (M,d) is a
topology τ on M .

Definition 4.3. Let (X, τ) be a topological space. We say that X is metrizable if there exists a
metric d on X such that τ is the metric topology on X induced by d.

Remark. If d′ ∼ d, then d′ and d induce the same topology on X.

Example. It is easy to show that d1 ∼ d2 ∼ d∞. All dp metrics induce the same topology on Rn.

Definition 4.4. Let τ1, τ2 be topologies on X. We say that τ1 is coarser than τ2, or τ2 is finer than
τ1, if τ1 ⊂ τ2.

Examples.

(i) The indiscrete topology on a set X is the topology τ = {∅, X}. It is the coarsest topology on
X.
If |X| ≥ 2, then this is not metrizable. Let d be a metric on X, x 6= y ∈ X, r = d(x, y) and
U = Dr(x). We know that U is d-open. But since x ∈ U , y /∈ U , U /∈ τ .

(ii) The discrete topology on a set X is τ = P(X), the power set of X. This is the finest topology
on X. It is metrizable by the discrete metric.

Definition 4.5. A topological space is Hausdorff if ∀x 6= y ∈ X, there exists open sets U, V ⊂ X
such that x ∈ U , y ∈ V and U ∩ V = ∅.

Informally, x, y are separated by open sets.

Proposition 4.6. Metric spaces are Hausdorff.

Proof. Let x 6= y be points in a metric space (M,d). Let r > 0 such that 2r < d(x, y). Then let
U = Dr(x) and V = Dr(y). U and V are certainly open, and they have no intersection by the triangle
inequality, so the metric space is Hausdorff. □
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Example. The cofinite topology on a set X is

τ = {∅} ∪ {U ⊂ X | U is cofinite in X} ,

where U is cofinite in X if X \ U is finite.

When X is finite, this topology is simply the discrete topology τ = P(X). When X is infinite,
τ is not metrizable. Let x 6= y ∈ X, and let x ∈ U , y ∈ V , where U, V are open in X. Then U , V
are cofinite, and hence U ∩ V 6= ∅. So this topology on an infinite set is not Hausdorff and hence not
metrizable.

Definition 4.7. A subset A of a topological space (X, τ) is closed in X if X \A is open in X.

Remark. In a metric space, this agrees with the earlier definition of a closed subset, as proven above.

Proposition 4.8. The collection of closed sets in a topological space X satisfies:

(i) ∅, X are closed;

(ii) if Ai are closed in X for i ∈ I, where I is some non-empty index set, then
⋂

i∈I Ai is closed;

(iii) if A1, A2 are closed in X, then A1 ∪A2 is closed.

Examples.

(i) In a discrete topological space, every set is closed.

(ii) In the cofinite topology, a subset is closed if and only if it is finite or the full set.

4.2 Neighbourhoods and Convergence

Definition 4.9. Let (X, τ) be a topological space, and let U ⊂ X and x ∈ X. We say that U is a
neighbourhood of x in X if there exists an open set V ∈ τ such that x ∈ V ⊂ U .

Remark. Again, this agrees with our definition in a metric space.

Proposition 4.10. Let (X, τ) be a topological space and U ⊂ X. Then U is open if and only if U
is a neighbourhood of x for every x ∈ U .

Proof. If U is open and x ∈ U , then let V = U , so that V is open and x ∈ V ⊂ U .

Conversely, if U is a neighbourhood of x, there exists Vx ⊂ X such that x ∈ Vx ⊂ U . Then
U =

⋃
x∈U Vx is open, since each Vx is open. □

Definition 4.11. Let xn ∈ X be a sequence in a topological space (X, τ). Let x ∈ X. We say that
xn converge to x if for all neighbourhoods U of x, there exists N ∈ N such that ∀n ≥ N , xn ∈ U .

Equivalently, xn converge to x if for all open sets U containing x, ∃N ∈ N such that ∀n ≥ N , xn ∈ U .

Remark. Again, the definition in a metric space agrees with this definition.

Examples.

(i) Eventually constant sequences converge.
If ∃z ∈ X, ∃N ∈ N such that ∀n ≥ N , xn = z, then xn → z.

(ii) In an indiscrete topological space, every sequence converges to every point.
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(iii) In the cofinite topology on a set X, suppose that xn → x ∈ X. Then if y 6= x, X \ {y} is a
neighbourhood of x. Then Ny = {n ∈ N | xn = y} is finite.
Conversely, suppose xn is a sequence such that for some x ∈ X and all y 6= x, Ny is finite, then
xn → x.
In particular, if Ny is finite for all y ∈ X, the sequence converges to every point.

Proposition 4.12 (Convergence in a Hausdorff space). If xn → x and xn → y in a Hausdorff
space, then x = y.

Proof. Suppose x 6= y, then we can choose open sets U and V such that x ∈ U, y ∈ V with U ∩V = ∅.
Since xn → x, there exists N1 ∈ N such that ∀n ≥ N1, xn ∈ U . Similarly, there is a N2 ∈ N such
that ∀n ≥ N2, xn ∈ V . Hence ∀n ≥ max{N1, N2}, xn ∈ U and xn ∈ V . But U ∩ V = ∅, so this is a
contradiction. □

Remark. In a metric space, a subset A is closed if and only if whenever xn ∈ A and xn → x implies
x ∈ A. In a general topological space, any closed set is closed under limits, but not every subset that
is closed under limits is closed.

4.3 Interior and Closure

Definition 4.13. Let (X, τ) be a topological space, and A ⊂ X. We define the interior of A, denoted
A◦ or int(A), by

A◦ :=
⋃

U⊂A,U open
U .

The closure of A, denoted Ā or cl(A), is defined as

Ā :=
⋂

A⊂F, F closed
F .

Remark. We have A◦ ⊂ A ⊂ Ā. A◦ is the largest open subset of A and Ā is the smallest closed
superset of A. A◦ = A if and only if A is open, and Ā = A if and only if A is closed.

The definition of closure and interior make the above facts very clear. However, while this clever
definition makes it easy to prove the above properties, it is rather difficult to directly use it to compute
the closure.

To facilitate this, we can define the limit points.

Definition 4.14. Let X be a topological space, A ⊂ X and x ∈ X. x is called a limit point
(accumulation point/cluster point) of A if for any neighbourhood U of x, (A \ {x}) ∩ U 6= ∅.

The derived set of A is the set of all limit points of A, denoted A′.

Example. In R under the topology induced by the usual metric, suppose A = [0, 1) ∪ {2}, then
A′ = [0, 1]. We also have Q′ = R and Z′ = ∅.

Proposition 4.15. Let (X, τ) be a topological space and A ⊂ X. Then A is closed if and only if
A′ ⊂ A.

Proof. If A is closed, then U = X \A is open, so for any x ∈ X \A, U is a neighbourhood of x. But
then U ∩A = ∅. Therefore, every limit point of A is inside of A, A′ ⊂ A.

Conversely, given any x ∈ X \ A, we must have x 6∈ A′, so there is a neighbourhood U of x with
U ∩A = ∅. Hence x ∈ U ⊂ X \A, so X \A is open, and A is closed. □

Proposition 4.16. Let X be a topological space and A ⊂ X.
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(i)
A◦ = {x ∈ X | A is a neighbourhood of x} ;

(ii)

Ā = {x ∈ X | ∀U ⊂ X such that U is a neighbourhood of x, U ∩A 6= ∅}
= A ∪A′ .

Proof.

(i) If A is a neighbourhood of x, then by definition there exists an open set U such that x ∈ U ⊂ A,
which is true if and only if x ∈ A◦.

(ii) Suppose x 6∈ Ā, then there exists a closed set F ⊃ A such that x 6∈ F . Let U = X \F . Then U
is open and x ∈ U , so U is a neighbourhood of x and U ∩A = ∅.
Conversely, suppose there exists a neighbourhood U of x such that U ∩ A = ∅. Then there
exists an open set V such that x ∈ V ⊂ U . Since V ⊂ U , V ∩ A = ∅. Let F = X \ V . Then F
is closed, and A ⊂ F . Hence Ā ⊂ F , so x /∈ Ā.

□

Example. In R, let A = [0, 1) ∪ {2}. Then A◦ = (0, 1) and Ā = [0, 1] ∪ {2}. Further, Q◦ = ∅, Q̄ = R
and Z◦ = ∅, Z̄ = Z.

Remark. In a metric space, for a subset A we have that x ∈ Ā if and only if there exists a sequence
xn in A such that xn → x. In a general topological space, the existence of a sequence implies x ∈ Ā,
but the converse is not true.

Definition 4.17. A subset A of a topological space X is said to be dense in X if Ā = X. X is
separable if there exists a countable subset A ⊂ X such that A is dense in X.

Example. R is separable as Q is dense in R. Rn is separable as Qn is dense in Rn.

Example. An uncountable discrete topological space is not separable, since the closure of any set is
itself.

Definition 4.18. Let (X, τ) be a topological space. Let Y ⊂ X. Then the subspace topology, or
relative topology on Y induced by τ is the topology

{Y ∩ V | V ∈ τ} ,

the intersection of Y with all open sets in X. This is denoted by τ |Y .

For U ⊂ Y , U is open in Y if and only if there exists an open set V ⊂ X such that U = V ∩ Y .

Example. Let X = R, Y = [0, 2] and U = (1, 2]. Then U ⊂ Y ⊂ X. U is open in Y , since V = (1, 3)
is open in X and U = V ∩Y . However, U is not open in X, since no neighbourhood around 2 can be
constructed in X that is contained within U .

Remark. On a subset of a topological space, the subset topology is considered as the standard
topology. Suppose that (X, τ) is a topological space, and Z ⊂ Y ⊂ X. There are two natural
topologies on Z: τ |Z and τ |Y |Z . It can be easily shown that these two are equal.

Let (M,d) be a metric space and N ⊂ M . Again, there are two natural topologies on N : τ(d)|N
and τ(d|N ). These two constructions coincide. For any x ∈ N , r > 0,

{y ∈ N | d(x, y) < r} = {y ∈ M | d(x, y) < r} ∩N .
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Proposition 4.19. Let X be a topological space, and let A ⊂ Y ⊂ X. A is closed in Y if and only
if there is a closed subset B ⊂ X such that A = B ∩ Y . Further,

clY (A) = clX(A) ∩ Y .

Proof. The first part is true by taking complements. Let A be closed in Y , then Y \A is open in Y .
Then Y \A = V ∩Y for some open V in X. So B = X \V is closed in X and A = B∩Y . Conversely,
if A = B ∩Y , where B is closed in X, then X \B is open in X, so Y \A = (X \B)∩Y is open in Y .

For the second part, we know clX(A) is closed in X, so by the first part, clX(A) ∩ Y is closed in
Y . Then A ⊂ clX(A) ∩ Y . So clY (A) ⊂ clX(A) ∩ Y . Similarly, since clY (A) is closed in Y , we can
write clY (A) = B ∩ Y for some closed set B in X. But A ⊂ B, and B is closed in X, so clX(A) ⊂ B
and hence clY (A) = B ∩ Y ⊃ clX(A) ∩ Y .

Remark. This is not true for the interior of a subset in general. For instance, consider X = R,
A = Y = {0}. Then intY (A) = A and intX(A) = ∅.

Remark. If U ⊂ Y ⊂ X, and Y is open in X, then U is open in Y if and only if U is open in X.

4.4 Continuity

4.4.1 Base

Definition 4.20. A base for a topological space (X, τ) is a family B ⊂ τ such that ∀U ∈ τ , ∃C ⊂ B
such that

U =
⋃

B∈C

B .

In other words, the topology τ consists of the arbitrary unions of some family of open sets which is
a subset of B. So a base determines the topology.
Examples.

(i) The set of all open intervals is a base of the usual topology on R.

(ii) In general, the collection of all open balls in a metric space is a base for the metric topology on
it.

However, what we want to do is not to construct B from τ , but the other way around.

Lemma 4.21. Let X be a set and B ⊂ P(X). Assume that

(i) X =
⋃

B∈B B;

(ii) ∀B1, B2 ∈ B, ∀x ∈ B1 ∩B2, ∃B ∈ B, x ∈ B ⊂ B1 ∩B2.

Then there is a unique topology on X that is generated by the base B.

Proof. We must have the topology

τ =

{ ⋃
B∈C

B

∣∣∣∣∣ C ⊂ B

}
.

It is clear that τ is a topology on X. Indeed, ∅, X ∈ τ and it is closed under arbitrary union. For
intersection, consider

U1 =
⋃

B∈C1

B , U2 =
⋃

B∈C2

B .
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Given that x ∈ U1∩U2, then ∃B1 ∈ C1, B2 ∈ C2 and Bx ∈ B such that x ∈ Bx ⊂ B1∩B2 ⊂ U1∩U2,
thus

U1 ∩ U2 =
⋃

x∈U1∩U2

Bx .

Definition 4.22. A topological space is called second-countable if it has a countable base.

Example. The set of all open balls of rational radii and centres is a countable base for Rn, so Rn is
second-countable.

4.4.2 Continuity

Definition 4.23. A function f : X → Y between topological spaces is continuous if for all open sets
V in Y , the preimage f−1(V ) is open in X.

Remark. We have already proven that this agrees with the definition of continuity of functions between
metric spaces.

Examples.

(i) Constant functions are always continuous.
Consider f : X → Y defined by f(x) = y0 for a fixed y0 ∈ Y . For any V ⊂ Y , f−1(V ) = ∅ if
y0 6∈ V , and f−1(V ) = X if y0 ∈ V . So f is continuous.

(ii) The identity map is always continuous.
If f : X → X is defined by x 7→ x, f−1(V ) = V so if V is open, then f−1(V ) is trivially open.

(iii) Let Y ⊂ X. Let ı : Y → X be the inclusion map. Then for an open set V in X, ı−1(V ) = V ∩Y
which by definition is open in Y .

Proposition 4.24. Let f : X → Y be a function between topological spaces. Then

(i) f is continuous if for all closed sets B in Y , f−1(B) is closed in X;

(ii) if B is a base for Y , then f is continuous if and only if for all B ∈ B, f−1(B) is open in X.

(iii) if f is continuous and g : Y → Z is continuous, then g ◦ f is also continuous.

Proof. Trivial. □

Remark. There exists a notion of continuity at a point for topological spaces, but it is not as important.

4.4.3 Homeomorphisms

Definition 4.25. A function f : X → Y between topological spaces is a homeomorphism if f is a
bijection, and both f , f−1 are continuous.

If such an f exists, we say that X and Y are homeomorphic, written X ∼= Y .

Definition 4.26. A function f : X → Y between topological spaces is an open map if for every U
open in X, f(U) is open in Y .

Remark. f : X → Y is a homeomorphism if and only if it is a continuous open bijection.

Lemma 4.27. Homeomorphism is an equivalence relation.

Proof.

(i) The identity map IX : X → X is always a homeomorphism, so X ∼= X.

31



4 Topological Spaces IB Analysis and Topology

(ii) If f : X → Y is a homeomorphism, then so is f−1 : Y → X. So X ∼= Y =⇒ Y ∼= X.

(iii) If f : X → Y and g : Y → Z are homeomorphisms, then g ◦ f : X → Z is a homeomorphism.
So X ∼= Y and Y ∼= Z =⇒ X ∼= Z.

□
Examples.

(i) Under the usual topology, the open intervals (0, 1) ∼= (a, b) for all a, b ∈ R using the
homeomorphism x 7→ a+ (b− a)x.
Similarly, [0, 1] ∼= [a, b].

(ii) (−1, 1) ∼= R by x 7→ tan
(
π
2x
)
.

(iii) R ∼= (0,∞) by x 7→ ex.

(iv) (a,∞) ∼= (b,∞) by x 7→ x+ (b− a).

The fact that homeomorphism is an equivalence relation implies that any two open intervals in R
are homeomorphic.

Remark. It is relatively easy to show that two spaces are homeomorphic. We just have to write down
a homeomorphism. However, it is rather difficult to prove that two spaces are not homeomorphic.

For example, is Rn homeomorphic to Rm for m 6= n? The answer is they are not homeomorphic,
but we are not able to prove it rigorously without using algebraic topology.

So how can we prove that two spaces are not homeomorphic? In group theory, we could prove
that two groups are not isomorphic by, say, showing that they have different orders. Similarly, to
distinguish between topological spaces, we have to define certain topological properties. Then if two
spaces have different topological properties, we can show that they are not homeomorphic.

Definition 4.28. A property P of topological spaces is said to be a topological property or topological
invariant if it is preserved under homeomorphisms.

Example. Metrizability is a topological invariant. Being Hausdorff is a topological invariant. Being
completely metrizable (metrizable into a complete metric space) is a topological invariant. However
completeness is not a topological invariant.

4.5 Product Topology and Quotient Topology

4.5.1 Product Topology

Let X,Y be topological spaces. We want to define the topology on X × Y . If U ⊂ X and V ⊂ Y are
open, then we want U × V to be open in X × Y . Certainly, ∅× ∅ = ∅ and X × Y should be open.
Further, (U × V ) ∩ (U ′ × V ′) = (U ∩ U ′)× (V ∩ V ′), so intersections work.

⋃
i∈I Ui × Vi must be

open for open sets Ui, Vi, but this is not obvious from what we have shown so far, so we must include
this in our definition.

Or equivalently, we can define everything more neatly in terms of bases.

Definition 4.29. Let (X, τ) and (Y, ρ) be topological spaces. The base

B = {U × V | U ∈ τ, V ∈ ρ}

defines a topology on X × Y called the product topology.
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Remark. A set W ⊂ X × Y is open if and only if ∀(x, y) ∈ W , ∃U ∈ τ, V ∈ ρ such that (x, y) ∈
U × V ⊂ W .

Example. Let (M,d), (M ′, d′) be metric spaces. Then the d∞ metric on M ×M ′ is

d∞((x, x′), (y, y′)) = max{d(x, y), d′(x′, y′)} .

All dp metrics induce the same metric topology on M × M ′, but this metric is chosen since it is
easier to work with. Also, M and M ′ are topological spaces with their own metric topologies, which
induce the product topology on the product space M ×M ′. These two constructions create the same
topology. For a point z = (x, x′) ∈ M ×M ′ and r > 0, the ball Dr(z) is exactly

Dr(z) = {(y, y′) ∈ M ×M ′ | d∞((y, y′), (x, x′)) < r}
= {(y, y′) ∈ M ×M ′ | d(x, y) < r, d(x′, y′) < r}
= Dr(x)×Dr(x

′) .

Now let W ⊂ M×M ′. Then W is open in the product topology if and only if for all z = (x, x′) ∈ W ,
there exists open sets U ⊂ M and U ′ ⊂ M ′ such that (x, x′) ∈ U × U ′ ⊂ W . Equivalently, for all
z = (x, x′) ∈ W , there exists r > 0 such that Dr(x)×Dr(x

′) ⊂ W . But Dr(x)×Dr(x
′) = Dr(z), so

W is d∞-open as required.

Therefore, the topology induced by the (p-)product metric is the product topology of metric
topologies. So products of metrizable topologies are metrizable.

For instance, R2 in the usual topology is homeomorphic to R× R in the product topology.

Proposition 4.30. Let X,Y be topological spaces. Let X×Y be given the product topology. Then
the coordinate projections πX : X × Y → X and πY : X × Y → Y satisfy

(i) πX and πY are continuous;

(ii) if Z is any topological space, and f : Z → X×Y is a function, then f is continuous if and only
if πX ◦ f and πY ◦ f are continuous.

Note that f(z) = (πX ◦ f(z), πY ◦ f(z)).

Proof.

(i) Given an open set U ⊂ X, π−1
X (U) = U × Y , which is open in X × Y so πX is continuous.

Similarly, πY is continuous.

(ii) Given such an f , if f is continuous, then both πX ◦ f , πY ◦ f are continuous since composition
of continuous functions is continuous.
Conversely, if both of πX ◦f , πY ◦f are continuous, then it is enough to check that any member
of the base U × V ⊂ X × Y has an open preimage. Indeed,

f−1(U × V ) = f−1(U × Y ) ∩ f−1(X × V )

= f−1(π−1
X (U)) ∩ f−1(π−1

Y (V ))

= (πX ◦ f)−1(U) ∩ (πY ◦ f)−1(V )

is open by assumption. □

Remark. The product topology may be extended to a finite product. Properties of the product
topology hold. For example, if Xi is metrizable with metric di for all i, then the product topology is
metrizable with, for instance, the d∞ metric.

It is also useful to know that (X × Y )× Z ∼= X × (Y × Z), and X × Y ∼= Y ×X.
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4.5.2 Quotient Topology

Definition 4.31. Let (X, τ) be a topological space and let R be an equivalence relation on X. Let
X/R be the set of equivalence classes. Define the quotient map

q : X → X/R

x 7→ [x] ,

where [x] := {y ∈ X | yRx} is the equivalence class containing x. The quotient topology on X/R is
the family

τR = {V ⊂ X/R | q−1(V ) ∈ τ} .

Proposition 4.32. The quotient topology is indeed a topology.

Proof. q−1(X/R) = X ∈ τ , q−1(∅) = ∅ ∈ τ , so ∅, X/R ∈ τR. If ∀i ∈ I, Vi ∈ τR, then

q−1

(⋃
i∈I

Vi

)
=
⋃
i∈I

q−1(Vi) ,

which is open. Also, ∀U, V ∈ τR,

q−1(U ∩ V ) = q−1(U) ∩ q−1(V ) ,

which is also open. □

Remarks.

(i) q is surjective and continuous under τR.

(ii) For x ∈ X, t ∈ X/R, x ∈ t ⇐⇒ q(x) = t. Hence for V ⊂ X/R,

q−1(V ) = {x ∈ X | q(x) ∈ V }
= {x ∈ X | ∃t ∈ V, q(x) = t}

=
⋃
t∈V

t .

Example. Consider R as an abelian group under addition, and its subgroup Z. We can form the
quotient group R/Z, which is the set of equivalence classes where x ∼ y ⇐⇒ x − y ∈ Z. For all
x ∈ R, there exists y ∈ [0, 1] such that x ∼ y, and for all x, y ∈ [0, 1], we have x ∼ y if and only if
x = y or {x, y} = {0, 1}. So we can think of the quotient topology of R/Z as a circle. We can say
that R/Z is homeomorphic to S1 = {(x, y) ∈ R2 | ‖(x, y)‖ = 1}.

Example. Consider Q ≤ R as abelian groups under addition. R/Q gives an equivalence relation. So
we can induce a quotient topology on R/Q. Let V ⊂ R/Q, such that V 6= ∅ and V is open. Then
q−1(V ) is open and non-empty. Therefore, there exists a < b ∈ R such that (a, b) ⊂ q−1(V ). Given
x ∈ R, we can choose a rational number r in the interval (a−x, b−x). Then r+x ∈ (a, b) ⊂ q−1(V ),
so q(x) = q(r + x) ∈ V . So V = R/Q. We can find that this is the indiscrete topology, which is not
metrizable or Hausdorff. So we cannot in general take quotients of metric spaces.

Example. Let Q = [0, 1]× [0, 1] ⊂ R2. We define the equivalence relationship by

(x1, x2) ∼ (y1, y2) ⇐⇒


(x1, x2) = (y1, y2) or
x1 = y1, {x2, y2} = {0, 1} or
x2 = y2, {x1, y1} = {0, 1} or
x1, x2, y1, y2 ∈ {0, 1}

The space Q/R is homeomorphic to R2/Z2. This is a square where the top and bottom edges are
identified the same, and so do the left and right edges. This is homeomorphic to a surface of a torus
with the Euclidean topology embedded in three-dimensional Euclidean space.
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Consider the quotient map q : X → X/R, and a map f : X → Y such that xRy =⇒ f(x) = f(y),
then there is a map f̃ : X/R → Y such that f̃ ◦ q = f . In terms of category theory, the following
diagram commutes.

X
f

Y

q

X/R

f̃

If f is surjective, so is f̃ . Also, if f(x) = f(y) ⇐⇒ xRy, then f̃ is injective.

Proposition 4.33. Let X,Y be topological spaces, R an equivalence relation on X, q : X → X/R
the quotient map, f : X → Y some map with xRy =⇒ f(x) = f(y), and let f̃ be defined as above.
Then

(i) if f is continuous, then so is f̃ ;

(ii) if f is an open map, then so is f̃ .

Proof.

(i) Let V be open in Y , then f−1(V ) is open in X, so q−1(f̃−1(V )) = f−1(V ) is open, so f̃−1(V )

is open, hence f̃ is continuous.

(ii) Given open V ⊂ X/R, U = q−1(V ) is open in X, and V = q(U), so f̃(V ) = f(U) which is
open.

□

Corollary. If f(x) = f(y) ⇐⇒ xRy, f is surjective, continuous and open, then f̃ is a
homeomorphism.

Example. R/Z is homeomorphic to a circle S1 = {z ∈ C | |z| = 1}.

Consider the map f(t) = e2πit, then the induced f̃ is a homeomorphism by the preceding corollary.
If f is not open, then there is some open U ∈ R such that f(U) is not open, and hence S1 \ f(U) is
not closed. Then ∃zn ∈ S1 \ f(U) and z ∈ f(U) such that zn → z. Due to the surjectivity, we know
that there is some x ∈ U such that f(x) = z and xn ∈ [x − 1/2, x + 1/2] such that f(xn) = zn. We
know that xn 6∈ U , but xn have a convergent subsequence xkn

→ y ∈ R \U which is closed, so due to
continuity, we must have f(x) = f(y) =⇒ x− y ∈ Z =⇒ x = y 6∈ U , which is a contradiction.

Proposition 4.34. Let X be a topological space, and R an equivalence relation on X. Then

(i) if X/R is Hausdorff, then R is closed in X ×X;

(ii) if R is closed in X × X and the quotient map q : X → X/R is an open map, then X/R is
Hausdorff.

Proof.

(i) Let W = X×X \R. We want to show W is open, so is a neighbourhood of all its points. Given
(x, y) ∈ W , we have x 6∼ y, so q(x) 6= q(y). Since the quotient is Hausdorff, there exists open
sets S, T in X/R such that S ∩ T = ∅ and q(x) ∈ S, q(y) ∈ T . Let U = q−1(S), V = q−1(T )
which are open in X, and x ∈ U , y ∈ V . For all (a, b) ∈ U × V , we have q(a) ∈ S, q(b) ∈ T , so
a 6∼ b. So (x, y) ∈ U × V ⊂ W . Hence R is closed.
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(ii) Let z 6= w ∈ X/R, and we want to separate these points by open sets. Let x, y ∈ X such that
q(x) = z, q(y) = w. Then (x, y) ∈ W , which is open. Hence there exists open sets U, V in X
such that (x, y) ∈ U × V ⊂ W . Since q is an open map, q(U) and q(V ) are open in X/R, and
z = q(x) ∈ q(U), w = q(y) ∈ q(V ). Now it suffices to show q(U) ∩ q(V ) = ∅, which is obvious
as for all (a, b) ∈ U × V ⊂ W , (a, b) 6∈ R, so q(a) 6= q(b). □
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5 Connectedness

5.1 Connectedness

An interval I in R has the defining property that ∀x, y, z ∈ R, x < y < z, we have x, z ∈ I =⇒ y ∈ I.
We know that a real continuous function maps intervals to intervals due to the intermediate value
theorem. But it may not work if the (restricted) domain is not an interval.

Definition 5.1. A topological space is disconnected if there are open U, V ⊂ X such that U 6= ∅ and
V 6= ∅ partition X, i.e. U ∩ V = ∅ and U ∪ V = X. We then say U and V disconnect X.

A topological space X is connected if it is not disconnected.

Remark. Note that being connected is a property of a space, not a subset. When we say A is a
connected subset of X, it means A is connected with the subspace topology inherited from X.

Being (dis)connected is a topological property, i.e. if X is (dis)connected, and X ∼= Y , then Y is
(dis)connected. To show this, let f : X → Y be the homeomorphism. By definition, A is open in X
iff f(A) is open in Y . So A and B disconnect X iff f(A) and f(B) disconnect Y .

Examples.

(i) If X has the indiscrete topology, it is connected.

(ii) If |X| ≥ 2 and X has the discrete topology, then it is disconnected.

(iii) Let X ⊂ R. If there is some α ∈ R \X such that there is some a, b ∈ X with a < α < b, then
X is disconnected. In particular, X ∩ (−∞, α) and X ∩ (α,∞) disconnect X.

Proposition 5.2. X is disconnected ⇐⇒ there is a continuous surjective f : X → {0, 1} with the
discrete topology.

Corollary. X is connected ⇐⇒ any continuous map f : X → {0, 1} is a constant.

Proof.

(⇒) Let A and B disconnect X, and define

f(x) =

{
0 x ∈ A

1 x ∈ B .

f−1(∅) = ∅, f−1({0, 1}) = X, f−1({0}) = A and f−1({1}) = B are all open, so f is continuous.

(⇐) Given such f surjective and continuous, define A = f−1({0}), B = f−1({1}). Then A and B
disconnect X. □

Theorem 5.3. [0, 1] is connected.

Note that Q ∩ [0, 1] is disconnected. The key property of R is the least upper bound property.

Proof. Suppose A and B disconnect [0, 1]. Wlog, assume 1 ∈ B. Since A is non-empty, α = supA
exists. Then either

• α ∈ A. Then α < 1, since 1 ∈ B. Since A is open, ∃ϵ > 0 with Bϵ(α) ⊂ A. So α + ϵ
2 ∈ A,

contradicting the supremality of α; or

• α 6∈ A. Then α ∈ B. Since B is open, ∃ϵ > 0 such that Bϵ(α) ⊂ B. Then a ≤ α − ϵ for all
a ∈ A. This contradicts α being the least upper bound of A.
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So such A and B cannot exist and [0, 1] is connected.
Corollary. Let X ⊂ R. X is connected if and only if it is an interval.

Lemma 5.4. If f : X → Y is continuous and X is connected. Then im f is also connected.

Proof. Let f : X → Y be continuous. Then if we alternatively consider f as f : X → im f , it is also
continuous. Then if U, V disconnect im f , f−1(U), f−1(V ) disconnect X.

Corollary. The following are equivalent:

(i) X is connected;

(ii) if f : X → R is continuous, then f(X) is an interval;

(iii) if f : X → Z is continuous, then f is constant.

Theorem 5.5 (Intermediate value theorem). Suppose f : X → R is continuous and X is
connected. If ∃x0, x1 ∈ X such that f(x0) < 0 < f(x1), then ∃x ∈ X with f(x) = 0.

Proof. Suppose no such x exists. Then 0 6∈ im f while 0 > f(x0) ∈ im f , 0 < f(x1) ∈ im f . Then
im f is disconnected, contradicting X being connected. □

The converse of the intermediate value theorem is also true. If X is disconnected, we can always
find a function g that does not satisfy the intermediate value property. Just let f : X → {0, 1} be
continuous and define g(x) = f(x)− 1

2 .
Lemma 5.6. Let Y be a subspace of a topological space X. Then Y is disconnected if and only if
there exists open subsets U, V ⊂ X such that U ∩ V ∩ Y = ∅, U ∪ V ⊃ Y , U ∩ Y 6= ∅ and V ∩ Y 6= ∅.

Proof. Suppose Y is disconnected. Then there exists open subsets U ′, V ′ ⊂ Y that disconnect Y .
Then there exists open sets U, V ⊂ X such that U ′ = U ∩ Y and V ′ = V ∩ Y . Then U, V satisfy the
requirements.

Conversely, suppose U, V are as given. Then let U ′ = U ∩ Y and V ′ = V ∩ Y . They disconnect
Y . □
Proposition 5.7. Let Y be a subspace of a topological space X. If Y is connected, then so is Ȳ .

Proof. Suppose Ȳ is disconnected. Then ∃U, V ⊂ X open which disconnect Ȳ . Then U ∩ V ∩ Y ⊂
U ∩ V ∩ Ȳ = ∅. Hence U ∩ V ∩ Y = ∅. Also, U ∪ V ⊃ Ȳ ⊃ Y . So by the previous lemma, U, V
will disconnect Y unless U ∩ Y = ∅ or V ∩ Y = ∅. Since Y is connected, let us assume V ∩ Y = ∅
wlog. Then Y ⊂ X \ V , which is closed, so we also have Ȳ ⊂ X \ V . Hence V ∩ Ȳ = ∅. This is a
contradiction since U, V disconnect Ȳ .

Proposition 5.8. Let X be connected and R an equivalence relation on X. Then the quotient space
X/R is connected.

Proof. The quotient map is continuous and surjective. □
Example. Let

Y =

{(
x, sin

1

x

) ∣∣∣∣ x > 0

}
⊂ R2 .

1
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This space is connected since it is the image of a continuous function

f : (0,∞) → R2

x 7→
(
x, sin

1

x

)
on a connected space. Hence Ȳ is connected. We claim that

Z := Y ∪ {(0, y) | y ∈ [−1, 1]}

is exactly Ȳ . Indeed, given y ∈ [−1, 1], for all n ∈ N we have that (0, 1/n) is mapped to (n,∞) by
x 7→ 1/x, so by the intermediate value theorem there exists xn ∈ (0, 1/n) such that sin 1/xn = y.
Hence, (

xn, sin
1

xn

)
= (xn, y) → (0, y) ∈ Ȳ ,

so Y ⊂ Z ⊂ Ȳ . As Z is closed, it is exactly Ȳ .

Lemma 5.9. Let A be a family of connected subsets of a topological space X such that ∀A,B ∈ A ,
A ∩B 6= ∅. Then ⋃

A∈A

A

is connected.

Proof. Let Y =
⋃

A∈A A and let f : Y → Z be continuous. For all A ∈ A , f |A : A → Z is continuous
and hence constant. For all A,B ∈ A , A∩B 6= ∅ hence f |A and f |B are both constant and have the
same value. So f must be constant, and hence Y is connected. □

Proposition 5.10. Let X and Y be connected topological spaces. Then X × Y is connected.

Proof. Let x0 ∈ X. Then {x0} × Y ∼= Y is connected. Similarly, for all y ∈ Y , X × {y} ∼= X is
connected. {x0}×Y ∩X×{y} = {(x0, y)} 6= ∅. Hence, Ay = {x0}×Y ∪X×{y} is connected by the
previous lemma. For all y, z ∈ Y , Ay ∩ Az ⊃ {x0}× Y , so Ay ∩ Az 6= ∅. Hence,

⋃
y∈Y Ay = X × Y

is connected. □

Example. Rn is connected.

5.2 Path-connectedness

The other notion of connectedness is path-connectedness. A space is path-connected if we can join
any two points with a path.

Definition 5.11. Let X be a topological space, and x0, x1 ∈ X. Then a path from x0 to x1 is a
continuous function γ : [0, 1] → X such that γ(0) = x0 and γ(1) = x1.

Definition 5.12. A topological space is path-connected if for all points x0, x1 ∈ X, there is a path
from x0 to x1.

Examples.

(i) (a, b), (a, b], [a, b) and R are all path-connected.

(ii) Rn is path-connected (e.g. using γ(t) = tx1 + (1− t)x0).

(iii) Rn \ {0} is path-connected for n > 1. (Paths are either line segments or bent line segments to
get around the hole).

Path-connectedness is a stronger condition than connectedness.
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Proposition 5.13. If X is path-connected, then X is connected.

Proof. Let X be path-connected, and let f : X → {0, 1} be a continuous function. We will show that
f is constant.

Let x, y ∈ X. By path-connectedness, there is a map γ : [0, 1] → X such that γ(0) = x and
γ(1) = y. Composing with f gives a map f ◦ γ : [0, 1] → {0, 1}. Since [0, 1] is connected, the map
must be a constant. In particular, f(γ(0)) = f(γ(1)), i.e. f(x) = f(y). Since x, y were arbitrary, f
is constant.

The converse is not true.

Example. Take the topologist’s sine wave,

X =

{(
x, sin

1

x

) ∣∣∣∣ x > 0

}
∪ {(0, y) | y ∈ [−1, 1]} .

We have shown that it is connected, but it is not path-connected.

To show this, pick points (0, 0), (1, sin(1)) ∈ X. Assume that γ : [0, 1] → X is continuous and
γ(0) = (0, 0) = x, γ(1) = (1, sin 1) = y. Let γ = (γ1, γ2), so γ1 and γ2 are continuous. For
t ∈ [0, 1] such that γ1(t) > 0, [0, γ1(t)] ⊂ γ1([0, t]) by the intermediate value theorem, so ∃n ∈ N such
that (2πn)−1, (2πn+ π/2)−1 ∈ (0, γ1(t)) ⊂ γ1([0, t]). So there is some a, b < t with γ1(a) = (2πn)−1,
γ1(b) = (2πn+π/2)−1, hence γ2(a) = 0, γ2(b) = 1, so we can thus find a sequence 1 > t1 > t2 > · · · > 0
with

γ2(tn) =

{
1 if n is even
0 otherwise

So tn converges but γ2(tn) does not. This is a contradiction.

We can use connectivity to distinguish spaces. Apart from the obvious “X is connected while Y
is not”, we can also try to remove points and see what happens.

Lemma 5.14. Suppose f : X → Y is a homeomorphism and A ⊂ X, then f |A : A → f(A) is a
homeomorphism.

Proof. Since f is a bijection, f |A is a bijection. If U ⊂ f(A) is open, then U = f(A) ∩ U ′ for some
U ′ open in Y . So f |−1

A (U) = f−1(U) ∩A is open in A. So f |A is continuous. Similarly, we can show
that f |−1

A is continuous so f |A is a homeomorphism. □

Example. [0, 1] 6∼= (0, 1).

Suppose it were. Let f : [0, 1] → (0, 1) be a homeomorphism. Let A = (0, 1]. Then f |A : (0, 1] →
(0, 1) \ {f(0)} is a homeomorphism. But (0, 1] is connected while (0, 1) \ {f(0)} is disconnected.
Contradiction.

Similarly, [0, 1) 6∼= [0, 1] and [0, 1) 6∼= (0, 1). Also, Rn 6∼= R for n > 1, and S1 is not homeomorphic
to any subset of R.

Higher Connectivity*

We were able to use path-connectedness to determine that R is not homeomorphic to Rn for n > 1. If
we want to distinguish general Rn and Rm, we will need to generalise the idea of path-connectedness
to higher connectivity.

We have to formulate path-connectedness in a different way. Recall S0 = {−1, 1} ∼= {0, 1} ⊂ R
and D1 = [−1, 1] ∼= [0, 1] ⊂ R. Then we can formulate path-connectedness as: X is path-connected
if any continuous f : S0 → X extends to a continuous γ : D1 → X with γ|S0 = f .
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Definition 5.15. X is n-connected if for any k ≤ n, any continuous Sk → X extends to a continuous
F : Dk+1 → X such that F |Sk = f .

For any point p ∈ Rn, Rn \ {p} is m-connected if and only if m ≤ n− 2. So Rn \ {p} 6∼= Rm \ {q}
unless n = m. So Rn 6∼= Rm.

5.3 Components

If a space is disconnected, we could divide the space into different components, each of which is
(maximally) connected. We would have a different notion of components for each type of connectivity.

5.3.1 Path Components

Lemma 5.16 (Gluing lemma). Let f : X → Y be a function between topological spaces. If
X = A ∪B where A,B are closed and f |A, f |B are continuous, then f is continuous.

Proof. Given V closed in Y ,

f−1(V ) = (f−1(V ) ∩A) ∪ (f−1(V ) ∩B) = f |−1
A (V ) ∪ f |−1

B (V )

is closed since A,B are closed. Hence f is continuous. □

Lemma 5.17. Define x ∼ y if there is a path from x to y in X. ∼ is an equivalence relation.

Proof.

(i) For any x ∈ X, x ∼ x using the constant path.

(ii) If γ : [0, 1] → X is a path from x to y, then γ̄ : [0, 1] → X by t → γ(1− t) is a path from y to
x. So x ∼ y =⇒ y ∼ x.

(iii) If γ1 is a path from x to y and γ2 is a path from y → z. Then γ2 ∗ γ1 defined by

t 7→

{
γ1(2t) t ∈ [0, 1/2]

γ2(2t− 1) t ∈ [1/2, 1]

is a path from x to z. So x ∼ y, y ∼ z =⇒ x ∼ z.

□

We can then immediately define the path components.

Definition 5.18. Equivalence classes of the relation “x ∼ y if there is a path from x to y” are path
components of X.

5.3.2 Connected Components

Definition 5.19. For x ∈ X, define

C(x) = {A ⊂ X | x ∈ A and A is connected} .

Then Cx =
⋃

A∈C(x) A is the connected component of x.
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Cx is the largest connected subset of X containing x. As {x} ∈ C(x), x ∈ Cx. Note that
{x} ∈

⋂
A∈C(x) A, so it is non-empty. As each A ∈ C(x) is connected, Cx is connected by a lemma

above.

Lemma 5.20. If y ∈ Cx, then Cy = Cx.

Proof. Since y ∈ Cx and Cx is connected, Cx ⊂ Cy. So x ∈ Cy. Then Cy ⊂ Cx. Hence Cx = Cy. □

It follows that x ∼ y if x ∈ Cy defines an equivalence relation and the connected components of
X are the equivalence classes.

Examples.

(i) Let X = (−∞, 0)∪ (0,∞) ⊂ R. Then the connected components are (−∞, 0) and (0,∞), which
are also the path components.

(ii) Let X = Q ⊂ R. Then Cx = {x} for all x ∈ X. In this case, we say X is totally disconnected.

It is also important to note that path components need not be equal to the connected components,
as illustrated by the following example. However, since path-connected spaces are connected, the path
component containing x must be a subset of Cx.

The topologist’s sine function would be an example. The whole function is connected, but it
divides into two path-connected components.

Finally, recall that we showed that path-connected subsets are connected. While the converse is
not true in general, there are special cases where it is true.

Proposition 5.21. If U ⊂ Rn is open and connected, then it is path-connected.

Proof. Let A be a path component of U . We first show that A is open.

Let a ∈ A. Since U is open, ∃ϵ > 0 such that Dϵ(a) ⊂ U . We know that Dϵ(a) is path-connected.
Since A is a path component and a ∈ A, we must have Dϵ(a) ⊂ A. So A is an open subset of U .

Next suppose b ∈ U \ A. Then since U is open, ∃ϵ > 0 such that Dϵ(b) ⊂ U . Since Dϵ(b) is
path-connected, so if Dϵ(b)∩A 6= ∅, then Dϵ(b) ⊂ A. But this implies b ∈ A, which is a contradiction.
So Dϵ(b) ∩A = ∅. So Dϵ(b) ⊂ U \A. Then U \A is open.

So A, U \ A are open subsets of U . Since U is connected, we must have U \ A empty, so U = A
is path-connected. □
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6 Compactness

Compactness is an important concept in topology. It can be viewed as a generalisation of being closed
and bounded in R. Alternatively, it can also be viewed as a generalisation of being finite. However,
there are no corresponding definitions in general metric spaces or vector spaces.

Compact sets tend to have a lot of really nice properties.
Examples.

(i) If X is finite, then any function X → R is bounded.

(ii) For a f : X → R, if there exists n ∈ N and A1, . . . An ⊂ X such that X =
⋃

i Ai and f is
bounded on each Ai, then f is bounded on X.

(iii) Continuous functions are ‘locally bounded’. If f : X → R is continuous, then for all x ∈ X, we
have Ux = f−1((f(x)−1, f(x)+1)) an open set containing x, and f is bounded on Ux. So each
point has an open neighbourhood on which f is bounded. Further, X =

⋃
x∈X Ux. If there

exists a finite subset F ⊂ X such that
⋃

x∈F Ux = X, then f is bounded on X.
This is exactly what we will use to define compactness.

6.1 Compactness

Definition 6.1. Let (X, τ) be a topological space. An open cover of X is a subset U ⊂ τ such that⋃
U∈U

U = X .

We say U covers X.

If V ⊂ U and V covers X, then we say that V is a subcover of U .

Definition 6.2. A topological space X is compact if every open cover U of X has a finite subcover
V = {V1, . . . , Vn} ⊂ U .

Examples.

(i) Let X be a finite set. Then any cover U ⊂ τ ⊂ P(X) is finite. So X is compact.

(ii) Let X = R and U = {(−R,R) | R ∈ R, R > 0}. This is an open cover with no finite subcover.
So R is not compact. Hence all open intervals are not compact since they are homeomorphic to
R.

(iii) Let X = [0, 1] ∩Q. Let
Un = X \ (α− 1/n, α+ 1/n)

for some irrational number α ∈ (0, 1). Then
⋃

n>0 Un = X since α is irrational. Then U =
{Un | n ∈ Z, n > 0} is an open cover of X. Since it has no finite subcover, X is not compact.

Theorem 6.3. [0, 1] is compact.

Again, this is not true for [0, 1] ∩Q so we must use some special properties of the reals.

Proof. Suppose U is an open cover of [0, 1]. Let

A = {a ∈ [0, 1] | [0, a] has a finite subcover of U } .

First we can show that A is non-empty. Since U covers [0, 1], there must be some U0 ∈ U that
contains 0. So {0} has a finite subcover U0 = {U0}. So 0 ∈ A.
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Next we note that by definition, if 0 ≤ b ≤ a and a ∈ A, then b ∈ A. Now, let α = supA. Then
α ∈ [0, 1].

Since U covers X = [0, 1], let α ∈ Uα ∈ U . Since Uα is open, there is some ϵ such that
Dϵ(α) ⊂ Uα. By the definition of α, we must have α− ϵ/2 ∈ A, so [0, α− ϵ/2] has a finite subcover.
Add Uα to that subcover to get a finite subcover of [0, η], where η = min{α + ϵ/2, 1}. This is a
contradiction unless α = supA = 1.

Also, ∃U1 ∈ U such that 1 ∈ U1 and ϵ > 0 such that (1− ϵ, 1] ⊂ U1. Since 1− ϵ ∈ A, there exists
a finite V ⊂ U that covers [0, 1− ϵ/2]. Then W = V ∪ {U1} ⊂ U is a finite subcover. □

We mentioned that compactness is a generalisation of “closed and bounded”. We will now show
that compactness is indeed in some ways related to closedness.

Proposition 6.4. If X is compact and C is a closed subset of X, then C is also compact.

Proof. Suppose U is an open cover of C. Let U = {Uα | α ∈ T}. For each α, since Uα is open in C,
Uα = C ∩ U ′

α for some U ′
α open in X. Also, since

⋃
α∈T Uα = C, we have

⋃
α∈T U ′

α ⊃ C.

Since C is closed, U = X \ C is open in X, so V = {U ′
α | α ∈ T} ∪ {U} is an open cover of X.

Since X is compact, V has a finite subcover V ′ = {U ′
α1
, . . . , U ′

αn
, U} (U may or may not be there,

but it does not matter). Since U ∩ C = ∅, U ′ = {Uα1
, . . . , Uαn

} ⊂ U is a finite subcover of C. □

The converse is not always true, but holds for Hausdorff spaces.

Proposition 6.5. Let X be a Hausdorff space. If C ⊂ X is compact, then C is closed in X.

Proof. Let U = X \ C. We will show that U is open. For any x ∈ U , we will find a Ux such that
x ∈ Ux ⊂ U . Then U =

⋃
x∈U Ux will be open since it is a union of open sets.

To construct Ux, fix x ∈ U . Since X is Hausdorff, for each y ∈ C, ∃Uxy, Vxy as open
neighbourhoods of x and y respectively with Uxy ∩ Vxy = ∅.

Vxy UxyC

xy

Then U = {Vxy ∩C | y ∈ C} is an open cover of C. Since C is compact, there exists a finite subcover
V = {Vxy1

∩ C, . . . , Vxyn
∩ C}.

Vx UxC

x

Let Ux =
⋂n

i=1 Uxyi . Then Ux is open since it is a finite intersection of open sets. To show Ux ⊂ U ,
note that Vx =

⋃n
i=1 Vxyi ⊃ C since V = {Vxyi ∩C} is an open cover. We also have Vx ∩ Ux = ∅. So

Ux ⊂ U . So done. □
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After relating compactness to closedness, we will relate it to boundedness. First we need to define
boundedness for general metric spaces.

Definition 6.6. A metric space (M,d) is bounded if there exists L ∈ R such that d(x, y) ≤ L for all
x, y ∈ M .

Example. A ⊂ R is bounded iff A ⊂ [−N,N ] for some N ∈ R.

Remark. Note that being bounded is not a topological property. For example, (0, 1) ∼= R but (0, 1)
is bounded while R is not. It depends on the metric d, not just the topology it induces.

Proposition 6.7. A compact metric space is bounded.

Proof. Pick x ∈ X. Then U = {Dr(x) | r ∈ R+} is an open cover of X. Since X is compact, it has a
finite subcover {Dr1(x), . . . , Drn(x)}. Let R = max{r1, . . . , rn}. Then d(x, y) < R for all y ∈ X. So
for all y, z ∈ X,

d(y, z) ≤ d(x, y) + d(x, z) < 2R ,

so X is bounded.

Theorem 6.8 (Heine–Borel theorem). C ⊂ R is compact if and only if C is closed and bounded.

Proof. Since R is a metric space, it is Hausdorff and C is also a metric space.

If C is compact, then C is closed in R and is bounded by the previous two propositions.

Conversely, if C is closed and bounded, then C ⊂ [−N,N ] for some N ∈ R. Since [−N,N ] ∼= [0, 1]
is compact, and C is closed in [−N,N ], C is compact. □

Corollary. If A ⊂ R is compact, ∃α ∈ A such that α ≥ a for all a ∈ A.

Proof. Since A is compact, it is bounded. Let α = supA. Then by definition, α ≥ a for all a ∈ A.
So it is enough to show that α ∈ A.

Suppose α 6∈ A. Then α ∈ R\A. Since A is compact, it is closed in R, so R\A is open. So ∃ϵ > 0
such that Dϵ(α) ⊂ R \A, which implies that a ≤ α− ϵ for all a ∈ A. This contradicts the assumption
that α = supA. So we can conclude α ∈ A. □

We call α = maxA the maximum element of A.

We have previously proved that if X is connected and f : X → Y is continuous, then im f ⊂ Y is
connected. The same statement is true for compactness.

Proposition 6.9. If f : X → Y is continuous and X is compact, then im f ⊂ Y is also compact.

Proof. Suppose U = {Uα | α ∈ T} is an open cover of im f . Since Uα is open in im f , we have
Vα = f−1(Uα) open in X. If x ∈ X then f(x) is in Uα for some α, so x ∈ Vα. Thus V = {Vα | α ∈ T}
is an open cover of X.

Since X is compact, there is a finite subcover V ′ = {Vα1
, . . . , Vαn

} of V . Since Uα ⊂ im f ,
f(Vα) = f(f−1(Uα)) ⊆ Uα. So

U ′ = {Uα1 , . . . , Uαn}

is a finite subcover of U . □

Theorem 6.10 (Maximum value theorem). If f : X → R is continuous and X is compact, then
∃x ∈ X such that f(x) ≥ f(y) for all y ∈ X.

Proof. Since X is compact, im f is compact. Let α = max{im f}. Then α ∈ im f . So ∃x ∈ X with
f(x) = α. Then by definition f(x) ≥ f(y) for all y ∈ X. □

Remark. A function on a compact domain is bounded and attains its bound.
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6.2 Products and Quotients

6.2.1 Products

Recall the product topology on X×Y : U ⊂ X×Y is open if it is a union of sets of the form V ×W
such that V ⊂ X, W ⊂ Y are open.

The major takeaway of this section is the following theorem.

Theorem 6.11. If X and Y are compact, then so is X × Y .

Proof. First consider the special type of open cover U of X×Y such that every U ∈ U has the form
U = V ×W , where V ⊂ X and W ⊂ Y are open. For every (x, y) ∈ X × Y , there is Uxy ∈ U with
(x, y) ∈ Uxy. Write

Uxy = Vxy ×Wxy ,

where Vxy ⊂ X, Wxy ⊂ Y are open, x ∈ Vxy, y ∈ Wxy.

Fix x ∈ X. Then Wx = {Wxy | y ∈ Y } is an open cover of Y . Since Y is compact, there is a finite
subcover {Wxy1

, . . . ,Wxyn
}. Then Vx =

⋂n
i=1 Vxyi

is a finite intersection of open sets. So Vx is open
in X. Moreover, Ux = {Uxy1

, . . . , Uxyn
} covers Vx × Y .

X

Y

x

Uxyi

Vx × Y

Now V = {Vx | x ∈ X} is an open cover of X. Since X is compact, there is a finite subcover
V ′ = {Vx1 , . . . , Vxm}. Then U ′ =

⋃m
i=1 Uxi is a finite subset of U , which covers all of X × Y .

In the general case, suppose U is an open cover of X×Y , For each (x, y) ∈ X×Y , ∃Uxy ∈ U with
(x, y) ∈ Uxy. Since Uxy is open, ∃Vxy ⊂ X, Wxy ⊂ Y with Vxy ×Wxy ⊂ Uxy and x ∈ Vxy, y ∈ Wxy.

Then Q = {Vxy×Wxy | (x, y) ∈ X×Y } is an open cover of X×Y of the type we already considered
above. So it has a finite subcover {Vx1y1 ×Wx1y1 , . . . Vxmyn ×Wxmyn}. Now Vxiyi ×Wxiyi ⊂ Uxiyi .
So {Uxiyi , . . . , Uxmyn} is a finite subcover of U . □

Example. The unit cube [0, 1]n = [0, 1]× . . .× [0, 1] is compact.

Corollary (Heine–Borel theorem in Rn). C ⊂ Rn is compact iff C is closed and bounded.

Proof. If C is bounded, C ⊂ [−N,N ]n for some N ∈ R, which is compact. The rest of the proof is
the same as for n = 1. □

Corollary (Tychonoff’s theorem (finite product case)). Finite products of compact spaces are
compact.

Remark. This also works for arbitrary products, but the proof is much harder.
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6.2.2 Quotients

Proposition 6.12. If X is compact and R is an equivalence relation on X, then X/R is compact.

Proof. The quotient map is continuous and surjective, so its image is compact. □

Theorem 6.13 (Topological inverse function theorem). Suppose f : X → Y is a continuous
bijection. If X is compact and Y is Hausdorff, then f is a homeomorphism.

Proof. We show that f−1 is continuous. To do this, it suffices to show (f−1)−1(C) is closed in Y
whenever C is closed in X. By hypothesis, f is a bijection, so (f−1)−1(C) = f(C). Suppose C is
closed in X. Since X is compact, C is compact. Since f is continuous, f(C) = im f |C is compact.
Since Y is Hausdorff and f(C) ⊂ Y is compact, f(C) is closed as required. □

We will apply this to quotients.

Recall that if R is an equivalence relation on X, q : X → X/R is continuous if and only if
f : X → Y is continuous, where f ≡ f̃ ◦ q is defined such that xRy =⇒ f(x) = f(y).

Corollary. Suppose f̃ : X/R → Y is a bijection, X is compact, Y is Hausdorff, and f̃◦q is continuous,
then f̃ is a homeomorphism.

Proof. Since X is compact and q : X → X/R is continuous, im q ⊂ X/R is compact. Since f̃ ◦ q is
continuous, f̃ is continuous, so we can apply the above proposition.

Example. Let X = D2 and A = S1 ⊂ X. Then

f̃ : X/A → S2

(r, θ) 7→ (1, πr, θ)

in spherical coordinates is a homeomorphism.

We can check that f̃ is a continuous bijection and D2 is compact. So D2/S1 ∼= S2.

6.3 Sequential Compactness

The other definition of compactness is sequential compactness. We will not do much with it, but only
prove that it is the same as compactness for metric spaces.

Definition 6.14. A topological space X is sequentially compact if every sequence xn ∈ X has a
convergent subsequence.

Example. Any closed and bounded subset of Rn is sequentially compact by Bolzano–Weierstrass
theorem.

Lemma 6.15. Let xn be a sequence in a metric space (M,d) and x ∈ M . Then xn has a subsequence
converging to x if and only if for every ϵ > 0, xn ∈ Dϵ(x) for infinitely many n.

Proof.

(⇒) If xni
→ x, then for every ϵ > 0, we can find I ∈ N such that i > I implies xni

∈ Dϵ(x).

(⇐) Now suppose for every ϵ > 0, there are infinitely many xn ∈ Dϵ(x). We will construct a
sequence xni

inductively. Take n0 = 0. Suppose we have defined xn0
, . . . , xni−1

. By hypothesis
xn ∈ D1/i(x) for infinitely many n. Take ni to the smallest such n with ni > ni−1. Then
d(xni , x) < 1/i implies that xni → x. □
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Definition 6.16. Let (M,d) be a metric space. For ϵ > 0 and F ⊂ M . We say F is an ϵ-net for M
if ∀x ∈ M , ∃y ∈ F such that d(x, y) ≤ ϵ. That is,

M =
⋃
y∈F

Bϵ(y) .

We say M is totally bounded if for any ϵ > 0, there is a finite ϵ-net for M .

Example. For ϵ > 0, take n such that 1/n < ϵ. Then{
1

n
,
2

n
, . . . ,

n− 1

n

}
is an ϵ-net for (0, 1).

Note that any compact space is totally bounded, but the converse is not true. The (0, 1) above is
an example. The only thing missing here is completeness.

Definition 6.17. For a non-empty set A ⊂ M , the diameter of A is

diamA := sup
x,y∈A

d(x, y) .

Clearly, the diameter of a set is finite if and only if it is bounded.

Theorem 6.18. For a metric space, the following are equivalent:

(i) M is compact.

(ii) M is sequentially compact.

(iii) M is totally bounded and complete.

Proof.

• (i) ⇒ (ii). Let xn be a sequence in M , so for n ∈ N, let An = {xk | k > N}. Note that the
limit of any convergent subsequence, if it exists, is in the intersection

⋂
n∈N Ān. We first show

that it is non-empty. Assume it is empty, then⋃
n∈N

M \ Ān = M .

Each M \ Ān is open, so it is an open cover of M . By the compactness of M , it has a finite
subcover, so there is some N ∈ N such that

⋃
n≤N M \ Ān = M . But {An} is decreasing, so

necessarily M \ ĀN = M , then ĀN = ∅. Contradiction.
Now let x ∈

⋂
n∈N Ān, and we want to show the existence of a subsequence converging to x.

First, x ∈ Ā1, so D1(x)∩A1 6= ∅. Hence there exists k1 > 1 such that d(xk1
, x) < 1. Now since

x ∈ Āk1
, D1/2(x)∩Ak1

6= ∅, there exists k2 > k1 such that d(xk2
, x) < 1/2. Inductively, we can

find k1 < k2 < . . . such that d(xkn
, x) < 1

n for all n ∈ N. Hence xkn
→ x.

• (ii) ⇒ (iii). M is complete since a Cauchy sequence with a convergent subsequence is convergent.
To see it is totally bounded, assume it is not, then there is some ϵ > 0 such that every ϵ-net
is infinite. Pick any x1 ∈ M , and once we have already picked x1, . . . , xn, we pick xn+1 6∈⋃n

k=1 Bϵ(xk). This is always valid since otherwise M would have a finite ϵ-net. But then the
sequence xn cannot have any Cauchy subsequence, so it has no converging subsequence.
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• (iii) ⇒ (i). Assume such an M is not compact, so there is an open cover U without any finite
subcover. We say A ⊂ M is “bad” if there is no finite subcover of A in U . So, for example,
M ⊂ M is bad while ∅ ⊂ M is not. Note if A = ∪n

i=1Bi is bad, then there is some i such that
Bi is bad.
Next, we want to show that if A is bad and ϵ > 0, then ∃B ⊂ A such that B is bad and
diamB < ϵ. Indeed, since M is totally bounded, we have a finite ϵ/2-net F . Then M =⋃

x∈F Bϵ/2(x), and hence A =
⋃

x∈F (Bϵ/2(x) ∩ A). Since A is bad, there is some x ∈ F such
that Bϵ/2(x)∩A is bad, which has a diameter less than ϵ. From this we can construct a sequence
M ⊃ A1 ⊃ A2 ⊃ . . . such that An is bad for any n and diamAn < 1/n. Picking xn ∈ An gives
a Cauchy sequence xn which converges to x ∈ M by completeness. There must be some U ⊂ U
open that contains x, and it necessarily covers An when n is large enough. Then An is not bad.
Contradiction. □

Remarks.

(i) This is a new proof of Bolzano–Weierstrass theorem. This also proves the Tychonoff’s theorem.

(ii) Sadly, the equivalence of sequential compactness and compactness fails in both directions for a
general topological space.
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7 Differentiation

7.1 Differentiation

Recall that a function f : R → R is differentiable at a if

lim
h→0

f(a+ h)− f(a)

h

exists. So let
ϵ(h) =

f(a+ h)− f(a)

h
− f ′(a) ,

then f(a + h) = f(a) + f ′(a)h + ϵ(h)h and ϵ → 0 as h → 0. We can think of this as ϵ(0) = 0 and
ϵ is continuous at 0. We want to use this to define differentiation in higher dimensions. Consider
functions from Rm to Rn, where m,n ∈ N.

Definition 7.1. L(Rm,Rn) denotes the set of linear maps from Rm to Rn.

Definition 7.2. Given m,n ∈ N and an open set U ⊂ Rm, a function f : U → Rn and a ∈ U . We
say f is differentiable at a if there is a linear map T : Rm → Rn and a function ϵ : {h ∈ Rm | a+ h ∈
U} → Rn such that

f(a+ h) = f(a) + T (h) + ϵ(h)‖h‖ ,

where ϵ → 0 as h → 0 (or equivalently ϵ(0) = 0 and ϵ is continuous at 0).

Remark.

ϵ(h) =


0 if h = 0 ,

f(a+ h)− f(a)− T (h)

‖h‖
if h 6= 0, a+ h ∈ U .

Since U is open, ∃r > 0 such that Dr(a) ⊂ U , so Dr(a) ⊂ Dom ϵ. Note that our condition on ϵ is
equivalent to saying ϵ(h)‖h‖ = o(‖h‖) as h → 0.

Alternatively, we may write

lim
h→0

f(a+ h)− f(a)− T (h)

‖h‖
= 0 .

Next, we observe that such T , if it exists, is unique. If both T, S satisfy our condition, then
(S(h)− T (h))/‖h‖ → 0 as h → 0, so by choosing h = x/n for n ∈ N we have S = T .

Definition 7.3. This unique T is called the derivative of f at a, usually denoted by f ′(a), Df(a) or
Df |a, such that

f(a+ h) = f(a) + f ′(a)h+ o(‖h‖) .

Definition 7.4. We say f is differentiable on U if it is differentiable at a for every a ∈ U . The
derivative of f on U is the map

f ′ : U → L(Rm,Rn)

x 7→ f ′(x)

Examples.

(i) Constant functions are differentiable. We can take f ′(a) = 0 ∈ L(Rm,Rn).

(ii) Every linear map f is differentiable. Let f(x) = T (x) for some T ∈ L(Rm,Rn). Then

f(a+ h) = f(a) + f(h) + 0

so f is differentiable at a with a derivative T .
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(iii) Take f : Rn → R by f(x) = ‖x‖2. Then

f(a+ h) = ‖a+ h‖2

= ‖a‖2 + 2 〈a|h〉+ ‖h‖2

= f(a) + 2 〈a|h〉+ o(‖h‖) ,

so f ′(a)(h) = 2 〈a|h〉.

Proposition 7.5 (Differentiable functions are continuous). Let U ⊂ Rm and a ∈ U . If f :
U → Rn is differentiable at a, then f is continuous at a.

Proof. If f is differentiable, then as h → 0, we have

f(a+ h)− f(a)− f ′(a)(h) → 0 .

Since f ′(a)(h) → 0 as well, we must have f(a+ h) → f(a). □

7.2 Operator Norm

So far, we have only looked at derivatives at a single point. We haven’t yet discussed much about
the derivative at a neighbourhood or the whole space. We might also want to ask if the derivative is
continuous or bounded. This is not a straightforward question as we need to define these notions for
functions whose values are linear maps. In particular, we want to understand the map Df : Br(a) →
L(Rm,Rn). To do so, we need a metric on the space L(Rm,Rn). We will do this by defining a norm.

L(Rm,Rn) is a vector space over R with addition and scalar multiplication defined pointwise. In
fact, it is a subspace of C(Rm,Rn). To prove this, we will need to show that all linear maps are
continuous.

Lemma 7.6. Linear maps in L(Rm,Rn) are Lipschitz and hence continuous.

Proof. Let {ei} be the standard basis for Rm and x =
∑

i xiei. By Cauchy–Schwarz,

‖Tx‖ ≤
m∑
i=1

|xi|‖Tei‖

≤

√√√√ m∑
i=1

|xi|2
√√√√ m∑

i=1

‖Tei‖2

= ‖x‖

√√√√ m∑
i=1

‖Tei‖2 .

□

We can use this fact to define the norm of linear maps. L(Rm,Rn) is isomorphic to Rmn, both
algebraically and topologically, since it is isomorphic to Mn×m, the space of n×m real matrices. It
does not really matter which norm we pick as they are all Lipschitz equivalent. We will introduce
two of them.

7.2.1 Sup Norm

Definition 7.7. The sup norm on L(Rm,Rn) is defined by

‖A‖ = sup
x∈Rm,∥x∥=1

‖Ax‖ .
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Thus, L(Rm,Rn) becomes a metric space with the metric d(S, T ) = ‖S − T‖.
Proposition 7.8.

(i) ‖A‖ is finite.

(ii) ‖ · ‖ is indeed a norm on L(Rm,Rn).

(iii)

‖A‖ = sup
x∈Rm\{0}

‖Ax‖
‖x‖

.

(iv) ‖Ax‖ ≤ ‖A‖‖x‖ for all x ∈ Rm.

(v) Let A ∈ L(Rm,Rn), B ∈ L(Rn,Rp). Then BA = B ◦A ∈ L(Rm,Rp) and

‖BA‖ ≤ ‖B‖‖A‖ .

Proof.

(i) This is true because A is continuous and {x ∈ Rm | ‖x‖ = 1} is compact.

(ii) The only non-trivial part is the triangle inequality. We have

‖A+B‖ = sup
∥x∥=1

‖Ax+Bx‖

≤ sup
∥x∥=1

(‖Ax‖+ ‖Bx‖)

≤ sup
∥x∥=1

‖Ax‖+ sup
∥x∥=1

‖Bx‖

= ‖A‖+ ‖B‖ .

(iii) This follows from the linearity of A, and the fact that for any x ∈ Rm, we have∥∥∥∥ x

‖x‖

∥∥∥∥ = 1 .

(iv) Immediate from above.

(v)

‖BA‖ = sup
x∈Rm\{0}

‖BAx‖
‖x‖

≤ sup
x∈Rm\{0}

‖B‖‖Ax‖
‖x‖

= ‖B‖‖A‖ .

□

For certain easy cases, we have a straightforward expression for the operator norm.
Proposition 7.9.

(i) If A ∈ L(R,Rn), then A can be written as Ax = xa for some a ∈ Rn. Moreover, ‖A‖ = ‖a‖,
where the second norm is the Euclidean norm in Rn.

(ii) If A ∈ L(Rm,R), then Ax = x · a for some fixed a ∈ Rm. Also, ‖A‖ = ‖a‖.

Proof.

(i) Set A(1) = a. Then by linearity, we get Ax = xA(1) = xa. Then we have

‖Ax‖ = |x|‖a‖ .

(ii) Let {ei} be the standard basis of Rm. Let ai = Aei and a =
∑

i aiei. The rest follows by
linearity. □
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7.2.2 Euclidean Norm

Let {ei}mi=1 be the standard basis of Rm and let {e′j}nj=1 be the standard basis of Rn. Then T ∈
L(Rm,Rn) is identified with a n×m matrix T, where Tji =

〈
Tei
∣∣e′j〉. We can therefore view L(Rm,Rn)

as the mn-dimensional vector space Rmn, which can be equipped with an Euclidean norm.

Definition 7.10. The Euclidean norm on L(Rm,Rn) is defined by

‖T‖ =

√√√√ m∑
i=1

n∑
j=1

T 2
ji =

√√√√ m∑
i=1

‖Tei‖2 ,

where Tei is the i-th column of T.

Again, we have the metric d(S, T ) = ‖S − T‖ on L(Rm,Rn).
Lemma 7.11.

(i) Given a linear map T , for every x ∈ Rm, we have ‖Tx‖ ≤ ‖T‖‖x‖.

(ii) For S ∈ L(Rm,Rn), T ∈ L(Rn,Rp), ‖TS‖ ≤ ‖T‖‖S‖.

Proof.

(i) Let x =
∑

i xiei, then

‖Tx‖ ≤

√√√√ m∑
i=1

|xi|2
√√√√ m∑

i=1

‖Tei‖2 = ‖x‖‖T‖

by Cauchy–Schwarz, as shown before.

(ii)

‖TS‖ =

√√√√ m∑
i=1

‖TSei‖2 ≤

√√√√ m∑
i=1

‖T‖2‖Sei‖2 = ‖T‖‖S‖ .

□

As these two definitions of the norm on L(Rm,Rn) are equivalent, we will not distinguish them
in the future. The notation ‖T‖ may refer to either of them.

Example. Any bilinear map f : Rm × Rn → Rp is differentiable. We have

f((a, b) + (h, k)) = f((a+ h, b+ k)) = f(a, b) + f(a, k) + f(h, b) + f(h, k) .

Note that f(a, k) + f(h, b) is linear in (h, k), therefore it remains to check f(h, k) = o(‖(h, k)‖).
Indeed,

‖f(h, k)‖ =

∥∥∥∥∥∥f
 m∑

i=1

hiei,

n∑
j=1

kjej

∥∥∥∥∥∥
≤
∑
i,j

|hi||kj |‖f(ei, ej)‖

≤ ‖(h, k)‖2
∑
i,j

‖f(ei, ej)‖

= O(‖(h, k)‖2) = o(‖(h, k)‖) .

Therefore,
f ′(a, b)(h, k) = f(a, k) + f(h, b) .
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Let Mn = L(Rn,Rn) be the collection of all n × n real matrices. Consider f : Mn → Mn, A 7→ A2.
It has

f(A+H) = A2 +AH +HA+H2 = f(A) +AH +HA+ o(‖H‖) .

So f ′(A)(H) = AH +HA.

Proposition 7.12 (Chain rule). Consider open sets U ⊂ Rm, V ⊂ Rn and functions f : U → Rn,
g : V → Rp such that f(U) ⊂ V . If f is differentiable at a and g is differentiable at f(a), then g ◦ f
is differentiable at a and

(g ◦ f)′(a) = g′(f(a))f ′(a) .

Proof. Let A = f ′(a) and B = g′(f(a)). By the differentiability of f , we know{
f(a+ h) = f(a) +Ah+ o(‖h‖)
g(f(a) + k) = g(f(a)) +Bk + o(‖k‖) .

Now we have

g ◦ f(a+ h) = g(f(a) +Ah+ o(‖h‖)︸ ︷︷ ︸
k

)

= g(f(a)) +B(Ah+ o(‖h‖)) + o(Ah+ o(‖h‖))
= g ◦ f(a) +BAh+B(o(‖h‖)) + o(Ah+ o(‖h‖)) .

We only have to show that the last two terms are o(‖h‖). This is true since

B(o(‖h‖)) ≤ ‖B‖‖o(‖h‖)‖ = o(‖h‖) ,

and for sufficiently small h,

‖Ah+ o(‖h‖)‖ ≤ ‖A‖‖h‖+ ‖o(‖h‖)‖ ≤ (‖A‖+ 1)‖h‖ ,

so o(Ah+ o(‖h‖)) is o(‖h‖) as well. Hence

g ◦ f(a+ h) = g ◦ f(a) +BAh+ o(‖h‖) .

□

Proposition 7.13. Let U ⊂ Rm be open. f : U → Rn is differentiable at a ∈ U if and only if each
component fj = πj ◦ f is differentiable at a. Also,

f ′(a)(h) =

n∑
j=1

f ′
j(a)(h)e

′
j .

Proof.

(⇒) πj(x) =
〈
x
∣∣e′j〉 is linear hence differentiable. Trivial by chain rule.

(⇐)

f(a+ h) =

n∑
j=1

fj(a+ h)e′j

=

n∑
j=1

(fj(a) + f ′
j(a)(h) + ϵj(h)‖h‖)e′j

= f(a) +

 n∑
j=1

f ′
j(a)(h)e

′
j

+

 n∑
j=1

ϵj(h)e
′
j

‖h‖ ,

where the last term is o(‖h‖). □
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Proposition 7.14 (Linearity and product rule). Let f, g : U → Rn, ϕ : U → R, where U ⊂ Rm

is open. If f, g, ϕ are differentiable at a ∈ U , then so are f + g and ϕf , and

(f + g)′(a) = f ′(a) + g′(a) ,

(ϕf)′(a)(h) = ϕ′(a)(h)f(a) + ϕ(a)f ′(a)(h) .

Proof. Have
f(a+ h) = f(a) + f ′(a)(h) + o(‖h‖) ,

g(a+ h) = g(a) + g′(a)(h) + o(‖h‖) ,

ϕ(a+ h) = ϕ(a) + ϕ′(a)(h) + o(‖h‖) .

Hence
(f + g)(a+ h) = (f + g)(a) + (f ′(a) + g′(a))(h) + o(‖h‖) .

We can do the same thing to derive the product rule, but here we will provide an alternative
proof. Let F : U → R × Rn = Rn+1 by x 7→ (ϕ(x), f(x)), and G : R × Rn → Rn by (a, x) 7→ ax.
F is differentiable by the previous proposition, and G is differentiable since it is bilinear. Hence
ϕf = G ◦ F is differentiable and we can obtain the form of the derivative by chain rule. □

7.3 Directional and Partial Derivatives

While the definition of the derivative is good, it is purely existential. This is unlike the definition of
differentiability of real functions, where we are asked to compute an explicit limit if the limit exists,
that’s the derivative. If not, it is not differentiable. In the higher-dimensional world, this is not the
case. We have completely no idea where to find the derivative, even if we know it exists. So we would
like an explicit formula for it.

The idea is to look at specific directions instead of finding the general derivative. As always,
let f : U → Rn be differentiable at a ∈ U . Fix some non-zero u ∈ Rm, take h = tu with t ∈ R.
Differentiability tells

lim
t→0

f(a+ tu)− f(a)− f ′(a)(tu)

‖tu‖
= 0

⇐⇒ lim
t→0

f(a+ tu)− f(a)− tf ′(a)(u)

t
= 0

⇐⇒ f ′(a)(u) = lim
t→0

f(a+ tu)− f(a)

t
.

We derived this assuming u 6= 0, but this is trivially true for u = 0. So this is valid for all u ∈ Rm.

This is of the same form as the usual derivative, and it is usually not too difficult to compute
this limit. Note, however, that this says if the derivative exists, then the limit above is related to
the derivative as above. However, even if the limit exists for all u, we still cannot conclude that the
derivative exists. Regardless, even if the derivative does not exist, this limit is still often a useful
notion.

Definition 7.15. Let f : U → Rn, where U ⊂ Rm is open. For u ∈ Rm and a ∈ U , the directional
derivative of f at a in the direction of u is the limit

Duf(a) := lim
t→0

f(a+ tu)− f(a)

t
.

By definition, we have
Duf(a) =

d

dt

∣∣∣∣
t=0

f(a+ tu) .
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Often, it is convenient to focus on the special cases where u = ei, a member of the standard
basis for Rm. This is known as the partial derivative. By convention, this is defined for real-valued
functions only, but the same definition works for any Rn-valued function.

Definition 7.16. The j-th partial derivative of f : U → R at a ∈ U ⊂ Rm is

Dejf(a) = lim
t→0

f(a+ tej)− f(a)

t

if the limit exists. This is often written

Dejf(a) = Djf(a) =
∂f

∂xj
.

Note that these definitions do not require differentiability of f at a. We will see some examples
shortly. Before that, we first establish some elementary properties of differentiable functions.

Proposition 7.17. Let U ⊂ Rm be open and a ∈ U .

(i) If f : U → Rn is differentiable at a, then the directional derivative Duf(a) exists for any
u ∈ Rm, and

Duf(a) = Df(a)u .

(ii) If f = (f1, . . . , fn) : U → Rn is differentiable at a, then all partial derivatives Djfi(a) exist for
all i = 1, . . . , n, j = 1, . . . ,m, and are given by

Djfi(a) = Dfi(a)ej .

(iii) If A is the matrix representing Df(a) with respect to the basis for Rm and Rn, i.e. for any
h ∈ Rm,

Df(a)h = Ah .

Then A is given by
Aij = 〈Df(a)ej |bi〉 = Djfi(a) ,

where {e1, . . . , em} and {b1, . . . , bn} are the standard basis of Rm and Rn respectively.

Remark. This is often expressed in the form

f ′(a)(h) =

m∑
i=1

hiDif(a) .

Proof.

(i) Obvious from above discussion.

(ii) Obvious from above discussion.

(iii) This follows from the general result for linear maps: for any linear map represented by a m×n
matrix (Aij), we have

Aij = 〈Aej |b〉 .

Apply this with A = Df(a) and note that for any h ∈ Rn,

Df(a)(h) = (Df1(a)h, . . . ,Dfm(a)h) .

So done. □

Definition 7.18. Let f be differentiable at a. The Jacobian matrix of f at a, denoted Jf (a) is the
matrix of f ′(a) with respect to the standard bases

(Jf (a))ji =
〈
Dif(a)

∣∣e′j〉 = πj(Dif(a)) = Difj(a) =
∂fj
∂xi

.
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The above says differentiability at a point implies the existence of all directional derivatives, which in
turn implies the existence of all partial derivatives. The converse implication does not hold in either
of these.

Example. Define

f : R2 → R

(x, y) 7→

{
0 xy = 0

1 xy 6= 0 .

Then the partial derivatives at (0, 0) are

∂f

∂x
=

∂f

∂y
= 0 .

In other directions, say u = (1, 1), we have

Duf(0, 0) = lim
t→0

f((0, 0) + tu)− f(0, 0)

t
= lim

t→0

1

t

which diverges. So the directional derivative does not exist.

Example. Define

f : R2 → R

(x, y) 7→


x3

y
y 6= 0

0 y = 0 .

Then for u = (u1, u2) 6= 0 and t 6= 0, we can compute

f((0, 0) + tu)− f(0, 0)

t
=


tu3

1

u2
u2 6= 0

0 u2 = 0 .

So
Duf(0, 0) = lim

t→0

f((0, 0) + tu)− f(0, 0)

t
= 0 ,

and the directional derivatives exist in all directions. However, the function is not differentiable at
(0, 0), since it is even not continuous there.

Example. Define

f : R2 → R

(x, y) 7→


x3

x2 + y2
(x, y) 6= (0, 0)

0 (x, y) = (0, 0) .

It is clear that f is continuous at points other than (0, 0). f is also continuous at (0, 0) since
|f(x, y)| ≤ |x|. We can compute the partial derivatives as

∂f

∂x
= 1 ,

∂f

∂y
= 0 .

In fact, we can compute the difference quotient in the direction u = (u1, u2) 6= (0, 0) to be

f((0, 0) + tu)− f(0, 0)

t
=

u3
1

u2
1 + u2

2

.

57



7 Differentiation IB Analysis and Topology

So we have
Duf(0, 0) =

u3
1

u2
1 + u2

2

.

We can now immediately conclude that f is not differentiable at (0, 0), since if it were, then we would
have

Duf(0, 0) = Df(0, 0)u ,

which should be linear in u, but this is not.

Alternatively, if f were differentiable, then we have

Df(0, 0)h =
(
1 0

)(h1

h2

)
= h1 .

However, we have
f((0, 0) + h)− f(0, 0)−Df(0, 0)h

‖h‖
= − h1h

2
2√

h2
1 + h2

2

3 ,

which does not tend to 0 as h → (0, 0). For example, if h = (t, t), this quotient is −2−3/2 for t 6= 0.

To decide if a function is differentiable, the first step would be to compute the partial derivatives.
If they do not exist, then we can immediately know the function is not differentiable. However, if
they do, we then have a candidate for the derivative, and we can plug it into the definition to check
that if it is actually the derivative.

This is a cumbersome thing to do. It turns out that while the existence of partial derivatives does
not imply differentiability in general, we can get differentiability if we add some slight conditions.

Theorem 7.19. Let U ⊂ Rm be open, f : U → Rn. Let a ∈ U . Suppose there is some open ball
Dr(a) ⊂ U such that

(i) Djfi(x) exists for every x ∈ Dr(a), 1 ≤ i ≤ n, 1 ≤ j ≤ m;

(ii) Djfi are continuous at a for all 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Then f is differentiable at a.

Proof. We only need to prove for the n = 1 case, as for n > 1, we can break f into components. For
each h = (h1, . . . , hm) ∈ Rm, we have

f(a+ h)− f(a) =

m∑
j=1

f(a+ h1e1 + · · ·+ hjej)− f(a+ h1e1 + · · ·+ hj−1ej−1) .

For convenience, write

h(j) = h1e1 + · · ·+ hjej = (h1, . . . , hj , 0, . . . , 0) .

Then we have

f(a+ h)− f(a) =

m∑
j=1

f(a+ h(j))− f(a+ h(j−1))

=

m∑
j=1

f(a+ h(j−1) + hjej)− f(a+ h(j−1)) .

Note that in each term, we are just moving along the coordinate axes. Since the partial derivatives
exist, the mean value theorem of single-variable calculus applies to

g(t) = f(a+ h(j−1) + thjej)
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on the interval t ∈ [0, 1] allows us to write this as

f(a+ h)− f(a) =

m∑
j=1

hjDjf(a+ h(j−1) + θjhjej)

=

m∑
j=1

hjDjf(a) +

m∑
j=1

hj

(
Djf(a+ h(j−1) + θjhjej)−Djf(a)

)
for some θj ∈ (0, 1).

Note that Djf(a + h(j−1) + θjhjej) − Djf(a) → 0 as h → 0 since the partial derivatives are
continuous at a. So the second term is o(‖h‖), so f is differentiable at a with

Df(a)h =

m∑
j=1

Djf(a)hj .

□

Example. As a random example,

f : R3 → R2

(x, y, z) 7→ (3x2 + 4 sin y + e6z, xyze14x)

is differentiable everywhere since it has continuous partial derivatives.

7.4 Mean Value Inequalities

So far, we have just looked at cases where we assume the function is differentiable at a point. We are
now going to assume the function is differentiable in a region, and see what happens to the derivative.

Recall the mean value theorem for single-variable calculus: if f : [a, b] → R is continuous on [a, b]
and differentiable on (a, b), then

f(b)− f(a) = f ′(c)(b− a)

for some c ∈ (a, b). Here we have an exact equality. However, in general, for vector-valued functions,
this is no longer true. Instead, we only have an inequality.

We will first prove the case when the domain is a subset of R.

Theorem 7.20. Let f : [a, b] → Rn be continuous on [a, b] and differentiable on (a, b). Suppose there
is some M such that for all t ∈ (a, b), we have ‖Df(t)‖ ≤ M , then

‖f(b)− f(a)‖ ≤ M(b− a) .

Proof. Let v = f(b)− f(a). Define

g(t) = v · f(t) =
n∑

i=1

vifi(t) .

Since each fi is differentiable, g is continuous on [a, b] and differentiable on (a, b) with

g′(t) =
∑

vif
′
i(t) .

Hence, we know

|g′(t)| ≤

∣∣∣∣∣
n∑

i=1

vif
′
i(t)

∣∣∣∣∣ ≤ ‖v‖

(
n∑

i=1

f ′2
i (t)

)1/2

= ‖v‖‖Df(t)‖ ≤ M‖v‖ .
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We now apply the mean value theorem to g to get

g(b)− g(a) = g′(t)(b− a)

for some t ∈ (a, b). By definition of g, we get

v · (f(b)− f(a)) = g′(t)(b− a) .

By the definition of v, we have

‖f(b)− f(a)‖2 = |g′(t)(b− a)| ≤ (b− a)M‖f(b)− f(a)‖ .

If f(b) = f(a), then there is nothing to prove. Otherwise, divide by ‖f(b)− f(a)‖ and done. □

We can now apply this to prove the general version.

Theorem 7.21 (Mean value inequality). Let a ∈ Rm and f : Dr(a) → Rn be differentiable on
Dr(a) with ‖Df(x)‖ ≤ M for all x ∈ Dr(a). Then

‖f(b1)− f(b2)‖ ≤ M‖b1 − b2‖

for any b1, b2 ∈ Dr(a).

Proof. We will reduce it to the previous m = 1 case.

Fix b1, b2 ∈ Dr(a). Note that
tb1 + (1− t)b2 ∈ Dr(a)

for all t ∈ [0, 1]. Now consider

g : [0, 1] → Rn

t 7→ f(tb1 + (1− t)b2) .

By the chain rule, g is differentiable and

g′(t) = Dg(t) = (Df(tb1 + (1− t)b2))(b1 − b2) .

Therefore,
‖Dg(t)‖ ≤ ‖Df(tb1 + (1− t)b2)‖‖b1 − b2‖ ≤ M‖b1 − b2‖ .

Now we can apply the previous theorem and get

‖f(b1)− f(b2)‖ = ‖g(1)− g(0)‖ ≤ M‖b1 − b2‖ .

□

Note that here we worked in a ball. In general, we could have worked in any convex set, since all
we need is for tb1 + (1− t)b2 to be inside the domain.

But with this, we have the following easy corollary.

Corollary. Let f : Dr(a) ⊂ Rm → Rn have Df(x) = 0 for all x ∈ Dr(a). Then f is constant.

Proof. Trivial. □

We would like to extend this corollary. Does this corollary extend to differentiable maps f with
Df = 0 defined on any open set U ⊂ Rm?

The answer is clearly no, even for f : R → R. Consider f defined on disjoint intervals [1, 2]∪ [3, 4],
where we define f(t) to be 1 on [1, 2] and 2 on [3, 4]. Then Df = 0 but f is clearly not a constant.
It is just locally constant on each interval.

The problem is that the sets are disconnected. We cannot connect points in [1, 2] and points in
[3, 4] with a line. Recall the notion of path-connectedness.
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Theorem 7.22. Let U ⊂ Rm be open and path-connected. Then for any differentiable f : U → Rn,
if Df(x) = 0 for all x ∈ U , then f is constant on U .

A naive attempt would be to replace tb1+(1− t)b2 in the proof of the mean value theorem with a
path γ : [0, 1] → Rn. However, this is not a correct proof, since this has to assume γ is differentiable.
So this does not work in general. We have to think some more.

Proof. We are going to use the fact that f is locally constant. Wlog, let n = 1. Given any a, b ∈ U ,
we need to show that f(a) = f(b). Let γ : [0, 1] → U be a continuous path from a to b. For any
s ∈ (0, 1), there exists some ϵ such that Dϵ(γ(s)) ⊂ U since U is open. By continuity of γ, there is a
δ such that (s− δ, s+ δ) ⊂ [0, 1] with γ((s− δ, s+ δ)) ⊂ Dϵ(γ(s)) ⊂ U .

Since f is constant on Dϵ(γ(s)) by the previous corollary, we know that g(t) = f ◦γ(t) is constant
on (s− δ, s+ δ). In particular, g is differentiable at s with derivative 0. This is true for all s. So the
map g : [0, 1] → R has zero derivative on (0, 1) and is continuous on (0, 1). So g is a constant. Then
g(0) = g(1), i.e. f(a) = f(b). □

If γ were differentiable, then this is much easier, since we can show g′ = 0 by the chain rule:

g′(t) = Df(γ(t))γ′(t) .

7.5 Inverse Function Theorem

Definition 7.23. Let U ⊂ Rm be open. We say f : U → Rn is C1 on U if f is differentiable at each
x ∈ U and

Df : U → L(Rm,Rn)

is continuous.

We write C1(U) or C1(U ;Rn) for the set of all C1 maps from U to Rn.

First, we get a convenient alternative characterisation of C1.

Proposition 7.24. Let U ⊂ Rm be open. Then f = (f1, . . . , fn) : U → Rn is C1 on U if and only
if the partial derivatives Djfi(x) exist for all x ∈ U , 1 ≤ i ≤ n, 1 ≤ j ≤ m and Djfi : U → R are
continuous.

Proof. (⇒) Differentiability of f at x implies Djfi(x) exists and are given by

Djfi(x) = 〈Df(x)ej |bi〉 ,

where {e1, . . . , em} and {b1, . . . , bn} are the standard bases for Rm and Rn. So we know

|Djfi(x)−Djfi(y)| = |〈(Df(x)−Df(y))ej |bi〉| ≤ ‖Df(x)−Df(y)‖

since ej and bi are unit vectors. Hence if Df is continuous, so is Djfi.

(⇐) Since the partials exist and are continuous, by the previous theorem, we know that the derivative
Df exists. To show Df : U → L(Rm,Rn) is continuous, recall

‖A‖ =
√∑∑

A2
ij .

Apply this to A = Df(x)−Df(y), get

‖Df(x)−Df(y)‖ =
√∑∑

(Djfi(x)−Djfi(y))2 .

So if all Djfi are continuous, then so is Df . □
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Finally, we can go to the inverse function theorem.

Theorem 7.25 (Inverse function theorem). Let U ⊂ Rn be open, and f : U → Rn be a C1

map. Let a ∈ U and suppose that Df(a) is invertible as a linear map Rn → Rn. Then there exists
open sets V,W ⊂ Rn with a ∈ V , f(a) ∈ W , V ⊂ U such that

f |V : V → W

is a bijection. Moreover, the inverse map f |−1
V : W → V is also C1.

We have a name for these functions.

Definition 7.26. Let U,U ′ ⊂ Rn be open. A map g : U → U ′ is a diffeomorphism if it is C1 with a
C1 inverse.

Then the inverse function theorem states that if f is C1 and Df(a) is invertible, then f is a local
diffeomorphism at a.

Before proving this, let us first look at the simple case where n = 1. Suppose that f ′(a) 6= 0, then
there exists a δ such that f ′(t) > 0 or f ′(t) < 0 in t ∈ (a− δ, a+ δ). So f |(a−δ,a+δ) is monotone and
hence is invertible. This is trivial. However, this is not trivial for n ≥ 2.

Proof. By replacing f with (Df(a))−1f (or by rotating our heads and stretching it a little bit), we
can assume Df(a) = I, the identity map. By the continuity of Df , there exists some r > 0 such that
for all x ∈ Br(a),

‖Df(x)− I‖ <
1

2
.

By shrinking r sufficiently, we can assume Br(a) ⊂ U . Let W = Dr/2(f(a)), and let V = f−1(W ) ∩
Dr(a).

This is our setup. We need three steps to prove this theorem.

Claim 1. V is open, and f |V : V → W is a bijection.

Since f is continuous, f−1(W ) is open. So V is open. To show f |V : V → W is a bijection, we have
to show that for each y ∈ W , there is a unique x ∈ V such that f(x) = y. We are going to use the
contraction mapping theorem to prove this. This statement is equivalent to proving that for each
y ∈ W , the map T (x) = x− f(x) + y has a unique fixed point x ∈ V .

Let h(x) = x− f(x). Then note that

Dh(x) = I −Df(x) .

So by our choice of r, for every x ∈ Br(a), we must have

‖Dh(x)‖ ≤ 1

2
.

Then for any x1, x2 ∈ Br(a), we can use the mean value inequality to estimate

‖h(x1)− h(x2)‖ ≤ 1

2
‖x1 − x2‖ .

Hence we know
‖T (x1)− T (x2)‖ = ‖h(x1)− h(x2)‖ ≤ 1

2
‖x1 − x2‖ .
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Finally, to apply the contraction mapping theorem, we need to pick the right domain for T , namely
Br(a). For any x ∈ Br(a), we have

‖T (x)− a‖ = ‖x− f(x) + y − a‖
= ‖x− f(x)− (a− f(a)) + y − f(a)‖
≤ ‖h(x)− h(a)‖+ ‖y − f(a)‖

≤ 1

2
‖x− a‖+ ‖y − f(a)‖

<
r

2
+

r

2
= r .

So T : Br(a) → Dr(a) ⊂ Br(a). Since Br(a) is complete, T has a unique fixed point x ∈ Br(a), i.e.
T (x) = x. Finally, we need to show x ∈ Dr(a), since this is where we want to find our fixed point.
This is true since T (x) ∈ Dr(a) by above, so we must have x ∈ Dr(a). Also, since f(x) = y, we know
x ∈ f−1(W ) so x ∈ V . This finishes the proof of our first claim.

It remains to show that f |V is invertible with a C1 inverse.

Claim 2. The inverse map g = f |−1
V : W → V is Lipschitz and hence continuous. In fact, we have

‖g(y1)− g(y2)‖ ≤ 2‖y1 − y2‖ .

For any x1, x2 ∈ V , by the triangle inequality, we have

‖x1 − x2‖ − ‖f(x1)− f(x2)‖ ≤ ‖(x1 − f(x1))− (x2 − f(x2))‖
= ‖h(x1)− h(x2)‖

≤ 1

2
‖x1 − x2‖ .

Hence, we get
‖x1 − x2‖ ≤ 2‖f(x1)− f(x2)‖ .

Apply this to x1 = g(y1) and x2 = g(y2), and note that f(g(yi)) = yi to get the claimed result.

Claim 3. g is C1, and for all y ∈ W ,

Dg(y) = Df(g(y))−1 . (†)

Note that if g were differentiable, then its derivative must be given by (†), since by definition, we
know

f(g(y)) = y ,

and hence the chain rule gives
Df(g(y)) ·Dg(y) = I .

Also, we immediately know Dg is continuous, since it is the composition of continuous functions (the
inverse of a matrix is given by a polynomial expression of its components). So it suffices to check
that Df(g(y))−1 satisfies the definition of the derivative.

First we check that Df(x) is indeed invertible for every x ∈ Br(a). We use the fact that

‖Df(x)− I‖ ≤ 1

2
.

If Df(x)v = 0, then we have

‖v‖ = ‖Df(x)v − v‖ ≤ ‖Df(x)− I‖‖v‖ ≤ 1

2
‖v‖ ,

so we must have ‖v‖ = 0 =⇒ v = 0. So kerDf(x) = {0}. So Df(g(y))−1 exists.
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Let x ∈ V be fixed, and y = f(x). Let k be small and

h = g(y + k)− g(y) ,

or in other words,
f(x+ h)− f(x) = k .

Since g is invertible, whenever k 6= 0, we have h 6= 0. Since g is continuous, as k → 0, h → 0 as well.
We have

g(y + k)− g(y)−Df(g(y))−1k

‖k‖

=
h−Df(g(y))−1k

‖k‖

=
Df(x)−1(Df(x)h− k)

‖k‖

=
−Df(x)−1(f(x+ h)− f(x)−Df(x)h)

‖k‖

= −Df(x)−1

(
f(x+ h)− f(x)−Df(x)h

‖h‖
‖h‖
‖k‖

)
= −Df(x)−1

(
f(x+ h)− f(x)−Df(x)h

‖h‖
‖g(y + k)− g(y)‖
‖(y + k)− y‖

)
.

As k → 0, h → 0. The first factor −Df(x)−1 is fixed; the second factor tends to 0 as h → 0; the
third factor is bounded by 2. The whole thing tends to 0, so done. □

Remark. Note that in the case where n = 1, if f : (a, b) → R is C1 with f ′(x) 6= 0 for every x,
then f is monotone on the whole domain (a, b), and hence f : (a, b) → f((a, b)) is a bijection. In
higher dimensions, this is not true. Even if we know that Df(x) is invertible for all x ∈ U , we cannot
guarantee that f |U is a bijection. We only know that there is a local inverse.

Example. Let U = R2 and f : R2 → R2 be given by

f(x, y) = (ex cos y, ex sin y) .

Then we can directly compute

Df(x, y) =

(
ex cos y −ex sin y
ex sin y ex cos y

)
.

Then we have
det(Df(x, y)) = e2x 6= 0

for all (x, y) ∈ R2. However, by periodicity, we have

f(x, y + 2nπ) = f(x, y)

for all n ∈ Z. So f is not injective on R2.

One major application of the inverse function theorem is to prove the implicit function theorem,
the statement of which is as follows.

Theorem 7.27 (Implicit function theorem). Let f : Rn+m → Rm ∈ C1, and let Rn+m have
coordinates (x, y). Fix a point (a, b) = (a1, . . . , an, b1, . . . , bm) with f(a, b) = 0. If the Jacobian
matrix with respect to y

Jf,y(a, b) =

(
∂fi
∂yj

)
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is invertible, then there exists an open set U ⊂ Rn containing a such that there exists a unique
function g : U → Rm such that g(a) = b and f(x, g(x)) = 0 for all x ∈ U . Moreover, g ∈ C1 and
denoting the Jacobian with respect to x as

Jf,x(a, b) =

(
∂fi
∂xj

)
,

the Jacobian matrix of partial derivatives of g in U is given by the matrix product(
∂gi
∂xj

)
m×n

= −(Jf,y(x, g(x)))
−1
m×m(Jf,x(x, g(x)))m×n .

The proof is really intricate so we will not do anything further.

7.6 Second Order Derivative

For real functions, we can immediately obtain the notion of higher derivatives, since the derivative
is just a normal function again. Here, things are slightly more complicated, since the derivative is a
linear operator. However, this is not too much of a problem since the space of linear operators are
just yet another vector space. We can use essentially the same definition.

Definition 7.28. Let U ⊂ Rm be open, f : U → Rn be differentiable, with derivative Df : U →
L(Rm,Rn). We say Df is differentiable at a ∈ U if there exists A ∈ L(Rm, L(Rm,Rn)) such that

lim
h→0

1

‖h‖
(Df(a+ h)−Df(a)−Ah) = 0 .

For this to make sense, we need a norm on L(Rm,Rn) (e.g. the sup norm), but such an A, if
exists, is independent of the choice of the norm as all norms are equivalent for a finite-dimensional
space.

This is in fact the same definition as our usual differentiability, since L(Rm,Rn) is a finite-
dimensional vector space isomorphic to Rmn. So Df is differentiable if and only if Df : U → Rmn

is differentiable with A ∈ L(Rm,Rmn). This allows us to use our previous definitions and theorems
about differentiability.

Proposition 7.29. Let U ⊂ Rm open and f : U → Rn be differentiable. Df is differentiable at
a ∈ U if and only if the partial derivatives Di(Djfk) exist in a neighbourhood of a and are continuous
at a for all i, j = 1, . . . ,m and k = 1, . . . , n.

Proof. Trivial. □

Definition 7.30. We denote the second-order partial derivatives

Dijf(a) = Di(Djf)(a) =
∂2

∂xi∂xj
f(a) .

Let us now go back to the initial definition and try to interpret it. By linear algebra, in general,
a linear map ϕ : Rl → L(Rm,Rn) induces a bilinear map Φ : Rl × Rm → Rn by

Φ(u, v) = ϕ(u)(v) ∈ Rn .

In particular, we know

Φ(au+ bv, w) = aΦ(u,w) + bΦ(v, w)

Φ(u, av + bw) = aΦ(u, v) + bΦ(u,w) .
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Conversely, if Φ : Rl × Rm → Rn is bilinear, then ϕ : Rl → L(Rm,Rn) defined by

ϕ(u) = (v 7→ Φ(u, v))

is linear. These are clearly inverse operations to each other. So there is a one-to-one correspondence
between bilinear maps Φ : Rl × Rm → Rn and linear maps ϕ : Rl → L(Rm,Rn).

Instead of treating our second derivative as a weird linear map in L(Rm, L(Rm,Rn)), we can view
it as a bilinear map Rm × Rm → Rn.

Definition 7.31. For f : U → Rn twice differentiable, we define the second derivative at a ∈ U as
the bilinear map

D2f(a) : Rm × Rm → Rn

(u, v) 7→ D(Df)(a)(u)(v) .

In coordinates, if we define

u =

m∑
i=1

uiei , v =

m∑
j=1

viei ,

where {e1, . . . , em} is the standard basis for Rm, then using the bilinearity, we have

D2f(a)(u, v) =

m∑
i=1

m∑
j=1

D2f(a)(ei, ej)uivj .

This is very similar to the case of first derivatives, where the derivative can be completely specified
by the values it takes on the basis vectors.

In the definition of the second derivative, we can again take h = tei. Then

lim
t→0

Df(a+ tei)−Df(a)− tD(Df)(a)(ei)

t
= 0 .

Note that the whole thing at the top is a linear map in L(Rm,Rn). We can then act the whole thing
on ej and obtain

lim
t→0

Df(a+ tei)(ej)−Df(a)(ej)− tD(Df)(a)(ei)(ej)

t
= 0

for all i, j = 1, . . . , n. By rearranging, we have

D2f(a)(ei, ej) = lim
t→0

Df(a+ tei)(ej)−Df(a)(ej)

t

= lim
t→0

Djf(a+ tei)−Djf(a)

t

= DiDjf(a) .

Hence, we have

D2f(a)(ei, ej) =

n∑
k=1

Dijfk(a)bk ,

where {b1, . . . , bn} is the standard basis for Rn. So

D2f(a)(u, v) =

m∑
i,j=1

n∑
k=1

Dijfk(a)uivjbk .

So far, we have been very careful about keeping the right order of the partial derivatives. However,
in most cases we care about, this does not really matter.
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Theorem 7.32 (Symmetry of mixed partials). Let U ⊂ Rm be open, f : U → Rn, a ∈ U and
ρ > 0 such that Dρ(a) ⊂ U . Let i, j ∈ {1, . . . ,m} and suppose that DiDjf(x) and DjDif(x) exist
for all x ∈ Dρ(a) and are continuous at a. Then

DiDjf(a) = DjDif(a) .

Proof. Wlog, may assume n = 1. If i = j, then trivial. Let i 6= j, and define

gij(t) = f(a+ tei + tej)− f(a+ tei)− f(a+ tej) + f(a) .

Then for each fixed t, define ϕ : [0, 1] → R by

ϕ(s) = f(a+ stei + tej)− f(a+ stei) .

Then we get
gij(t) = ϕ(1)− ϕ(0) .

By the mean value theorem and the chain rule, there is some θ ∈ (0, 1) such that

gij(t) = ϕ′(θ) = t(Dif(a+ θtei + tej)−Dif(a+ θtei)) .

Now apply the mean value theorem to the function

s 7→ Dif(a+ θtei + stej) ,

there is some η ∈ (0, 1) such that

gij(t) = t2DjDif(a+ θtei + ηtej) .

We can do the same for gji and find some θ̃, η̃ ∈ (0, 1) such that

gji(t) = t2DiDjf(a+ θ̃tei + η̃tej) .

Since gij = gji, we get

t2DjDif(a+ θtei + ηtej) = t2DiDjf(a+ θ̃tei + η̃tej) .

Divide by t2 and take the limit t → 0. By the continuity of the partial derivatives, we get

DjDif(a) = DiDjf(a) .

□

Hence, whenever the second derivatives are continuous, the order does not matter. We can
alternatively state this result as follows.

Corollary. If f : U → Rn is differentiable in U such that DiDjf(x) exists in a neighbourhood of
a ∈ U and are continuous at a. Then Df is differentiable at a and

D2f(a)(u, v) =
∑
j

∑
i

DiDjf(a)uivj

is a symmetric bilinear form.

Proof. This follows from the fact that continuity of second partials implies differentiability, and the
symmetry of mixed partials. □

Finally, we conclude with a version of Taylor’s theorem for multivariable functions.
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Theorem 7.33 (Second-order Taylor’s theorem). Let f : U → R be C2, i.e. DiDjf(x) exist
and are continuous for all x ∈ U . Let a ∈ U and Dr(a) ⊂ U . Then

f(a+ h) = f(a) +Df(a)h+
1

2
D2f(a)(h, h) + E(h) ,

where E(h) = o(‖h‖2).

Proof. Consider the function
g(t) = f(a+ th) .

Then the assumptions tell us g is twice differentiable. By the 1D Taylor’s theorem, we know

g(1) = g(0) + g′(0) +
1

2
g′′(s)

for some s ∈ [0, 1]. In other words,

f(a+ h) = f(a) +Df(a)h+
1

2
D2f(a+ sh)(h, h)

= f(a) +Df(a)h+
1

2
D2f(a)(h, h) + E(h) ,

where
E(h) =

1

2
(D2f(a+ sh)(h, h)−D2f(a)(h, h)) .

Then
‖E(h)‖ ≤ 1

2

∥∥D2f(a+ sh)−D2f(a)
∥∥‖h‖2 .

By the continuity of the second derivative, we get∥∥D2f(a+ sh)−D2f(a)
∥∥→ 0

as h → 0. Hence, E(h) = o(‖h‖2). □
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Appendices: IA Analysis

A The Real Number System

Definition A.1. A set F together with two binary operations, say addition and multiplication, is a
field if elements in F satisfy the axioms:

1. Closure. ∀a, b ∈ F, a+ b, ab ∈ F ;

2. Associativity. ∀a, b, c ∈ F, a+ (b+ c) = (a+ b) + c, a(bc) = (ab)c;

3. Commutativity. ∀a, b ∈ F, a+ b = b+ a, ab = ba;

4. Distributivity. ∀a, b, c ∈ F, a(b+ c) = ab+ ac;

5. Additive identity. ∃e ∈ F such that ∀a ∈ F, e+ a = a;

6. Multiplicative identity. ∃u ∈ F, u 6= e such that ∀a ∈ F, ua = a;

7. Additive inverse. ∀a ∈ F, ∃b ∈ F such that a+ b = e;

8. Multiplicative inverse. ∀a ∈ F, a 6= e, ∃b ∈ F such that ab = u.

Definition A.2. A totally ordered set is a set X with a relation < that satisfies

1. Transitivity. if x, y, z ∈ X and x < y, y < z, then x < z;

2. Trichotomy. if x, y ∈ X, exactly one of x < y, x = y and y < x holds.

Definition A.3. An ordered field is a field F with a relation < that makes F into an ordered set such
that

1. if x, y, z ∈ F and x < y, then x+ z < y + z;

2. if x, y, z ∈ F, x < y and z > 0, then xz < yz.

Definition A.4. Let X be an ordered set and let A ⊆ X. An upper bound for A is an element x ∈ X
such that ∀a ∈ A, a ≤ x. If A has an upper bound, then A is bounded above.

An upper bound x for A is the least upper bound or supremum if ∀y < x, ∃a ∈ A such that a > y.
This is denoted as

supA = x .

The greatest lower bound or infimum, denoted inf A is defined similarly.

Example. Let X = Q. The set {x|x2 < 2} is bounded above, but has no supremum as
√
2 /∈ Q.

Definition A.5. An ordered set X has the least upper bound property if every non-empty subset of
X that is bounded above has a supremum.

Definition A.6. The real numbers are an ordered field with the least upper bound property.

B Convergence of Sequences and Series

B.1 Sequence

Definition B.1. A sequence is a function N → R (or C).
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Definition B.2. If an is a sequence of complex numbers, we say an → z as n → ∞ if ∀ϵ > 0, ∃N ∈ N
such that ∀n > N , |an − z| < ϵ, written

lim
n→∞

an = z .

We say that the sequence converges to z. Otherwise, we say an diverges.

Lemma B.3 (Archimedean property). Let F be an ordered field with the least upper bound
property, then

(i) the set {1, 2, 3, . . . } is not bounded above;

(ii) the sequence an = 1/n → 0 as n → ∞.

Definition B.4. A sequence an is bounded if ∃R ∈ R such that ∀n ∈ N,

|an| ≤ R .

A sequence is eventually bounded if ∃R ∈ R and N ∈ N such that ∀n ≥ N ,

|an| ≤ R .

Lemma B.5. An eventually bounded sequence is bounded.

Lemma B.6. Let an and bn be sequences with limits a and b,

(i)
lim
n→∞

(an + bn) = a+ b ;

(ii)
lim

n→∞
(anbn) = ab ;

(iii) if b 6= 0, then
lim
n→∞

an
bn

=
a

b
.

Theorem B.7 (Sandwich rule). Let an and bn be sequences that both converge to x. Suppose
that an ≤ cn ≤ bn for every n. Then cn → x.

B.2 Monotone Sequences Property

Definition B.8. A sequence an is increasing if an ≤ an+1 for all n, and is strictly increasing if
an < an+1.

(Strictly) decreasing sequences are defined analogously. A (strictly) increasing or decreasing
sequence is called (strictly) monotone.

Definition B.9. An ordered field has the monotone sequences property if every increasing sequence
that is bounded above converges.

Lemma B.10. Least upper bound property ⇐⇒ monotone sequences property.

Lemma B.11 (Nested intervals property). Let F be an ordered field with the monotone se-
quences property. Let I1 ⊇ I2 ⊇ . . . be closed bounded non-empty intervals. Then

∞⋂
n=1

In 6= ∅ .
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Definition B.12. Let an be a sequence. A subsequence of an is a sequence of the form an1
, an2

, . . .,
where n1 < n2 < . . ..

Theorem B.13 (Bolzano–Weierstrass theorem). Let F be an ordered field with the monotone
sequences property (in particular F = R). Then every bounded sequence has a convergent
subsequence.

Proof. Let u0 and v0 be a lower and upper bound respectively for a sequence an. By repeated
bisection, we can find a sequence of intervals [u0, v0] ⊇ [u1, v1] ⊇ [u2, v2] ⊇ . . . such that vn − un =
(v0 − u0)/2

n, and such that each [un, vn] contains infinitely many terms of an.

By the nested intervals property,
⋂∞

n=1[un, vn] 6= ∅. Let x belong to the intersection. Pick a
subsequence an1

, an2
, . . . such that ank

∈ [uk, vk]. We will show that ank
→ x.

Let ϵ > 0. By the Archimedean property, we can find K such that vK − uK = (v0 − u0)/2
K ≤ ϵ.

This implies that [uK , vK ] ⊆ (x − ϵ, x + ϵ), since x ∈ [uK , vK ]. Then ∀k ≥ K, ank
∈ [uk, vk] ⊆

[uK , vK ] ⊆ (x− ϵ, x+ ϵ). So |ank
− x| < ϵ.

B.3 Cauchy Sequences

Definition B.14. A sequence an is Cauchy if for all ϵ > 0, there exists some N ∈ N such that
whenever p, q ≥ N , we have |ap − aq| < ϵ.

Example. The sequence {3, 3.1, 3.14, 3.141, . . . } in Q is Cauchy as the terms become arbitrarily close,
but it is not convergent as its limit π /∈ Q.

Lemma B.15. Every convergent sequence is Cauchy.

Theorem B.16 (General principle of convergence). Let F be an ordered field with the mono-
tone sequences property. Then every Cauchy sequence of F converges.

Definition B.17. An ordered field in which every Cauchy sequence converges is called complete.

Hence R is a complete ordered field.
Lemma B.18. An ordered field that is complete and has the Archimedean property satisfies
monotone sequences property.

B.4 Limit Supremum and Infimum

Definition B.19. Let an be a bounded sequence. Its limit supremum is

lim sup
n→∞

an := lim
n→∞

(
sup
m≥n

am

)
,

and its limit infimum is
lim inf
n→∞

an := lim
n→∞

(
inf
m≥n

am

)
.

C Convergence of Series

Definition C.1. Let an be a real sequence. For each N , define the N -th partial sum

SN :=

N∑
n=1

an .
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If the sequence SN converges to some limit s, then we say that the series converges to s, written
∞∑

n=1

an = s .

Lemma C.2. If
∑∞

n=1 an converges, then an → 0.

The converse is not true.

Example (Harmonic series). Let an = 1/n. Then

S2n − S2n−1 =
1

2n−1 + 1
+ · · ·+ 1

2n
≥ 2n−1

2n
=

1

2

and so S2n ≥ S1 + n/2. The series is therefore unbounded despite an → 0.

Example (Geometric series). Let |ρ| < 1, then we have

N∑
n=0

ρn =
1− ρN+1

1− ρ

and so
∞∑

n=0

ρn =
1

1− ρ
.

Lemma C.3 (Comparison test). Let an and bn be non-negative sequences, and suppose that ∃C ∈
R and N ∈ N such that ∀n ≥ N , an ≤ Cbn. Then if

∑
bn converges, then so does

∑
an.

C.1 Absolute Convergence

Definition C.4. A series
∑

an converges absolutely if the series
∑

|an| converges.

Lemma C.5. If
∑

an converges absolutely, then
∑

an converges.

Definition C.6. A series
∑

an converges unconditionally if the series
∑∞

n=1 aπ(n) converges for any
bijection π : N → N, i.e. no matter how we re-order the elements of an, the sum still converges.

Theorem C.7. Absolute convergence ⇐⇒ unconditional convergence. Moreover, if
∑

an converges
absolutely, then for any bijection π : N → N,

∞∑
n=1

an =

∞∑
n=1

aπ(n) .

C.2 Convergence Tests

Lemma C.8 (Alternating series test). Let an be a decreasing sequence of non-negative real
numbers, and an → 0, then

∞∑
n=1

(−1)n+1an

converges.

Lemma C.9 (Ratio test). We have two versions:
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(i) If ∃c < 1 and ∃N such that ∀n ≥ N ,
|an+1|
an

≤ c ,

then
∑

an converges.

(ii) If ∃ρ ∈ (−1, 1) such that
an+1

an
→ ρ ,

then
∑

an converges.

Lemma C.10 (Condensation test). Let an be a decreasing non-negative sequence. Then
∑

an
converges if and only if

∞∑
k=1

2ka2k

converges.

We also have the integral test although we have not yet defined integrals.

Lemma C.11 (Integral test). Let f : [1,∞) → R be a decreasing non-negative function. Then∑∞
n=1 f(n) converges if and only if ˆ ∞

1

f(x) dx < ∞ .

C.3 Complex Series

Most definitions so far carry over unchanged to the complex numbers. Two exceptions are least upper
bound and monotone sequences, because the complex numbers do not have an ordering.

A Cauchy sequence in C is convergent, as its real part and imaginary part converge respectively.
The Bolzano–Weierstrass theorem still holds. The nested-intervals property has a nested-box property
as a complex analogue. The ratio test also works in C.

Lemma C.12 (Abel’s test). Let a1 ≥ a2 ≥ · · · ≥ 0, and suppose that an → 0. Let z ∈ C such
that |z| = 1 and z 6= 1. Then

∞∑
n=1

anz
n

converges.

D Continuous Functions

D.1 Continuous Functions

Definition D.1. Let Ω ⊆ R and f : Ω → R. Then f is continuous at a point a ∈ Ω if ∀ϵ > 0, ∃δ > 0
such that ∀y ∈ Ω, |y − a| < δ, we have |f(y)− f(a)| < ϵ.

f is continuous if it is continuous at every a ∈ Ω.

Lemma D.2. Let Ω ⊆ R and f, g : Ω → R be continuous, then

(i) f + g is continuous;

(ii) fg is continuous;
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(iii) if g 6= 0, f/g is continuous.

Lemma D.3. Let Ω1,Ω2 ⊆ R and f : Ω1 → Ω2, g : Ω2 → R. Then if f and g are continuous,
g ◦ f : Ω1 → R is continuous.

Theorem D.4 (Maximum value theorem). Let [a, b] be a closed interval in R and let f : [a, b] →
R be continuous. Then f is bounded and attains its bounds, i.e. ∃x, y ∈ [a, b] such that f(x) =
sup[a,b] f and f(y) = inf [a,b] f .

Theorem D.5 (Intermediate value theorem). Let a < b ∈ R and let f : [a, b] → R be
continuous. Suppose that f(a) < c < f(b). Then there exists an x ∈ (a, b) such that f(x) = c.

D.2 Continuous Induction

Proposition D.6 (Continuous induction v1). Let a < b and let Ω ⊆ [a, b] have the following
properties:

(i) a ∈ Ω;

(ii) if x ∈ Ω and x 6= b, then ∃y ∈ Ω with y > x;

(iii) if ∀ϵ > 0, ∃y ∈ Ω such that y ∈ (x− ϵ, x], then x ∈ Ω.

Then b ∈ Ω.

It can also be formulated as below.

Proposition D.7 (Continuous induction v2). Let Ω ⊆ [a, b] and suppose

(i) a ∈ Ω;

(ii) if [a, x] ⊆ Ω and x 6= b, then there exists y > x such that [a, y] ⊆ Ω;

(iii) If [a, x) ⊆ Ω, then [a, x] ⊆ Ω.

Then Ω = [a, b].

E Differentiability

E.1 Limits

Definition E.1. Let Ω ⊆ R and let f : Ω → R. Let a ∈ Ω. We say the limit of f at x = a is l,
written

lim
x→a

f(x) = l

if ∀ϵ > 0, ∃δ > 0 such that ∀0 < |x− a| < δ, we have |f(x)− l| < ϵ.

Proposition E.2. Let f(x) → l and g(x) → m as x → a. Then as x → a,

(i) f(x) + g(x) → l +m;

(ii) f(x)g(x) → lm;

(iii) f(x)/g(x) → l/m if m 6= 0.
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Definition E.3. A function f : Ω → R is differentiable at a ∈ Ω with a derivative λ if

lim
x→a

f(x)− f(a)

x− a
= λ

or equivalently
lim
h→0

f(a+ h)− f(a)

h
= λ .

This is denoted
f ′(a) = λ or df

dx

∣∣∣∣
x=a

= λ .

From this, we can recursively define the multiple derivatives of f .

Proposition E.4. f is differentiable ⇐⇒ f(x+ h) = f(x) + hf ′(x) + o(h).

Lemma E.5 (Sum and product rule). Let f, g be differentiable at x, then f + g and fg are
differentiable at x, with

(f + g)′(x) = f ′(x) + g′(x)

(fg)′(x) = f ′(x)g(x) + f(x)g′(x)

Lemma E.6 (Chain rule). If f is differentiable at x and g is differentiable at f(x), then g ◦ f is
differentiable at x with derivative g′(f(x))f ′(x).

Lemma E.7 (Quotient rule). If f and g are differentiable at x and g(x) 6= 0, then f/g is
differentiable at x with derivative(

f

g

)′

(x) =
f ′(x)g(x)− g′(x)f(x)

g(x)2
.

Lemma E.8. If f is differentiable at x, then it is continuous at x.

Theorem E.9. Let f : [a, b] → [c, d] be differentiable on (a, b), continuous on [a, b] and strictly
increasing. Suppose that f ′(x) never vanishes and f(a) = c and f(b) = d. Then f has an inverse and
for each y ∈ (c, d), g is differentiable at y with derivative 1/f ′(g(y)).

E.2 Differentiation Theorems

Theorem E.10 (Rolle’s theorem). Let f be continuous on [a, b] and differentiable on (a, b).
Suppose that f(a) = f(b). Then there exists x ∈ (a, b) such that f ′(x) = 0.

Corollary (Mean value theorem). Let f be continuous on [a, b] and differentiable on (a, b). Then
there exists x ∈ (a, b) such that

f ′(x) =
f(b)− f(a)

b− a
.

Theorem E.11 (Local version of inverse function theorem). Let f be a function with contin-
uous derivative on (a, b). Let x ∈ (a, b) and suppose that f ′(x) 6= 0. Then there is an open interval
(u, v) containing x on which f is invertible. Let g = f−1, then

g′(f(z)) =
1

f ′(z)

for every z ∈ (u, v).

This says that if f has a non-zero derivative, then it has an inverse locally and the derivative of the
inverse is 1/f ′.

75



F Complex Power Series IB Analysis and Topology

Theorem E.12 (High-order Rolle’s theorem). Let f be continuous on [a, b] and n-times differ-
entiable on an open interval containing [a, b]. Suppose that

f(a) = f ′(a) = · · · = f (n−1)(a) = f(b) = 0 ,

then ∃x ∈ (a, b) such that f (n)(x) = 0.
Proof. Induct on n. The n = 1 case is the Rolle’s theorem.

Suppose now we have k < n and xk ∈ (a, b) such that f (k)(xk) = 0. Since f (k)(a) = 0, we can
find xk+1 ∈ (a, xk) such that f (k+1)(xk+1) = 0 by Rolle’s theorem. The result follows by induction.□
Corollary. Suppose f and g are both differentiable on an open interval containing [a, b] and that
f (k)(a) = g(k)(a) for k = 0, 1, . . . , n − 1, and also f(b) = g(b). Then there exists x ∈ (a, b) such that
f (n)(x) = g(n)(x).
Proof. Apply generalised Rolle’s theorem to f − g. □

For any f , we can find a polynomial p of degree at most n that satisfies the conditions for g, i.e. a p
such that p(k)(a) = f (k)(a) for k = 0, 1, . . . , n − 1 and p(b) = f(b). From this, we have the Taylor’s
theorem.
Theorem E.13 (Taylor’s theorem with the Lagrange form of remainder). Let f be contin-
uous on [a, a+ h] and n-times differentiable on (a, a+ h). Then

f(a+ h) = f(a) + hf ′(a) + · · ·+ hn−1

(n− 1)!
f (n−1)(a) +

hn

n!
f (n)(x)

for some x ∈ (a, a+ h). The last term is the error term in Lagrange form.

E.3 Complex Differentiation

Definition E.14. Let f : C → C. Then f is differentiable at z ∈ C with a derivative f ′(z) if

lim
h→0

f(z + h)− f(z)

h

exists and equals f ′(z). Equivalently,
f(z + h) = f(z) + hf ′(z) + o(h) .

F Complex Power Series

Definition F.1. A complex power series is a series of the form
∞∑

n=0

anz
n

where z ∈ C and an ∈ C for all n. It is a function of z when it converges.
Lemma F.2. Suppose

∑
anz

n converges and |w| < |z|, then
∑

anw
n converges absolutely.

From this, we can define the radius of convergence of a complex power series.
Definition F.3. The radius of convergence of a power series

∑
anz

n is

R := sup
{
|z|
∣∣∣∑ anz

n converges
}

.

Lemma F.4. The radius of convergence of
∑

anz
n is

R =
1

lim sup(|an|)1/n
.
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F.1 Exponential and Trigonometric Functions

Definition F.5. The exponential function is

ez :=

∞∑
n=0

zn

n!
,

which converges on all of C.

Definition F.6. Having two sequences an and bn, their convolution is the sequence cn defined by

cn = a0bn + a1bn−1 + · · ·+ anb0 .

The relevance of this is
N∑

n=0

cnz
n =

(
N∑

n=0

anz
n

)(
N∑

n=0

bnz
n

)
.

Theorem F.7. Let
∑

an and
∑

bn be two absolutely convergent series and let cn be the convolution
of sequences an and bn. Then the series

∑
cn converges absolutely and

∞∑
n=0

cn =

( ∞∑
n=0

an

)( ∞∑
n=0

bn

)
.

Definition F.8. We define sine and cosine to be

sin z :=
eiz − e−iz

2i
= z − z3

3!
+

z5

5!
− . . .

cos z :=
eiz + e−iz

2
= 1− z2

2!
+

z4

4!
+ . . .

Proposition F.9.
d

dz
ez = ez

d

dz
sin z = cos z

d

dz
cos z = − sin z

Definition F.10. Let x be the smallest positive real number such that cosx = 0. π := 2x.

From this, we have our familiar induction formulae, sum angle rule etc. for trigonometric functions.
Theorem F.11. Let

∑
anz

n be a power series with radius of convergence R. For |z| < R, let

f(z) =

∞∑
n=0

anz
n and g(z) =

∞∑
n=1

nanz
n−1 .

Then f is differentiable with a derivative g.

F.2 Hyperbolic Trigonometric Functions

Definition F.12. Define hyperbolic sine and cosine to be

cosh z =
ez + e−z

2
= 1 +

z2

2!
+

z4

4!
+ . . .

sinh z =
ez − e−z

2
= z +

z3

3!
+

z5

5!
+ . . .
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Proposition F.13.

d

dz
cosh z = sinh z

d

dz
sinh z = cosh z

G The Riemann Integral

G.1 Riemann Integral

Definition G.1. Let [a, b] be a closed interval. A dissection D of [a, b] is a sequence a = x0 < x1 <
x2 < · · · < xn = b. The mesh of a dissection D is sup(xi+1 − xi).

Definition G.2. Given a dissection D of a interval [a, b] and f : [a, b] → R. The lower sum and
upper sum are defined by

UD(f) :=

n∑
i=1

(xi − xi−1) sup
x∈[xi−1,xi]

f(x) ,

LD(f) :=

n∑
i=1

(xi − xi−1) inf
x∈[xi−1,xi]

f(x) .

We often use the shorthand

Mi = sup
x∈[xi−1,xi]

f(x) , mi = inf
x∈[xi−1,xi]

f(x) .

Lemma G.3. Let D1 and D2 be two dissections of [a, b]. Then

UD1f ≥ LD2f .

Definition G.4. The upper integral is
ˆ b

a

f(x) dx = inf
D

UDf .

The lower integral is ˆ b

a

f(x) dx = sup
D

LDf .

If these are equal, then we call their common value the Riemann integral of f , denoted
ˆ b

a

f(x) dx .

A function is Riemann integrable if its Riemann integral exists.

Proposition G.5 (Riemann integrability criterion). Let f : [a, b] → R. Then f is Riemann
integrable if and only if for any ϵ > 0, there exists a dissection D such that

UD − LD < ϵ .

Lemma G.6 (Linearity of integration). Let f, g : [a, b] → R be Riemann integrable and λ, µ ∈ R.
Then λf + µg is Riemann integrable and

ˆ b

a

λf + µg dx = λ

ˆ b

a

f dx+ µ

ˆ b

a

g dx .
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Proposition G.7 (Additivity). Let f : [a, c] → R be integrable with b ∈ (a, c), then
ˆ c

a

f dx =

ˆ b

a

f dx+

ˆ c

b

f dx .

Proposition G.8. If f, g : [a, b] → R are integrable, then fg is integrable.

Theorem G.9. A continuous function f on a closed bounded interval [a, b] is Riemann integrable.

Theorem G.10. Let f : [a, b] → R be monotone, then f is Riemann integrable.

Proof. Let ϵ > 0. Let D be a dissection of mesh less than ϵ
f(b)−f(a) . Then

UDf − LDf =

n∑
i=1

(xi − xi−1)(f(xi)− f(xi−1))

≤ ϵ

f(b)− f(a)

n∑
i=1

f(xi)− f(xi−1)

= ϵ .

□

Lemma G.11. A function f : [a, b] → R that is bounded and continuous on (a, b) is integrable.

An example is
´ 1
0
sin 1

x dx. It is well-behaved apart from x = 0, so it is integrable.

Corollary. Every piecewise continuous and bounded function on [a, b] is integrable.

Theorem G.12 (The fundamental theorem of calculus).

(i) Let f : [a, b] → R be continuous and for x ∈ [a, b], define

F (x) =

ˆ x

a

f(t) dt .

Then F is differentiable and F ′(x) = f(x).

(ii) Let f : [a, b] → R be a differentiable function, and suppose f ′ is integrable, then
ˆ b

a

f ′(t) dt = f(b)− f(a) .

Proof.

(i)
F (x+ h)− F (x)

h
=

1

h

ˆ x+h

x

f(t) dt .

Let ϵ > 0. Since f is continuous at x, then there exists δ such that |y − x| < δ implies
|f(y)− f(x)| < ϵ. If |h| < δ, then∣∣∣∣∣ 1h

ˆ x+h

x

f(t)− f(x)

∣∣∣∣∣ =
∣∣∣∣∣ 1h
ˆ x+h

x

(f(t)− f(x)) dt

∣∣∣∣∣
≤ 1

|h|

∣∣∣∣∣
ˆ x+h

x

|f(t)− f(x)| dt

∣∣∣∣∣
≤ ϵ|h|

|h|
= ϵ .
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(ii) Let D be a dissection x0 < · · · < xn. write

f(b)− f(a) =

n∑
i=1

f(xi)− f(xi−1) .

For each i, there exists ui ∈ (xi−1, xi) such that f(xi) − f(xi−1) = (xi − xi−1)f
′(ui) by the

mean value theorem. So

f(b)− f(a) =

n∑
i=1

(xi − xi−1)f
′(ui) .

We know that f ′(ui) is between sup
x∈[xi−1,xi]

f ′(x) and inf
x∈[xi−1,xi]

f ′(x), so

LDf
′ ≤ f(b)− f(a) ≤ UDf

′ .

As f ′ is integrable and D is arbitrary, the upper and lower sums can get arbitrarily close to the
integral, so

f(b)− f(a) =

ˆ b

a

f ′(t) dt .

□

Theorem G.13 (Integration by parts). Let f, g : [a, b] → R be differential with f ′, g′ integrable.
Then ˆ b

a

f(x)g′(x) dx = [f(x)g(x)]
b
a −
ˆ b

a

f ′(x)g(x) dx .

Theorem G.14 (Taylor’s theorem with the integral form of remainder). Let f be (n + 1)
times differentiable on [a, b] with f (n+1) continuous. Then

f(b) = f(a) + (b− a)f ′(a) + · · ·+ (b− a)n

n!
f (n)(a) +

ˆ b

a

(b− t)n

n!
f (n+1)(t) dt .

G.2 Improper integral

Definition G.15. Suppose there is a function f : [a, b] → R such that ∀ϵ > 0, f is integrable on
[a+ ϵ, b]. We define the improper integral

ˆ b

a

f(x) dx = lim
ϵ→0

ˆ b

a+ϵ

f(x) dx

if the limit exists, even if the integral does not exist.

Similarly, we may define ˆ ∞

a

f(x) dx = lim
b→∞

ˆ b

a

f(x) dx

if it exists.
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