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1 Introduction IB Complex Analysis

1 Introduction

The goal of this course: study the theory of complex-valued differentiable functions in one complex
variable.

(i) Polynomial
p(z) = adz

d + · · ·+ a1z
1 + a0 ,

coefficients in Z, Q, R and C. ⇒ algebraic geometry

(ii) Series
∞∑
n=1

1

ns

C is the right place to study. ⇒ number theory

(iii) Harmonic functions

u(x, y) : R2 → R
uxx + uyy = 0

⇒ PDE

(iv) Real integrals via complex integrals.

Notations. For z ∈ C, z = x+ iy, where x, y ∈ R.

• x = Re z is the real part, y = Im z is the imaginary part.

• z̄ = x− iy is the complex conjugate.

• |z| =
√
x2 + y2 is the modulus and arg(z) is the argument. If we choose θ ∈ (−π, π), then this

is the principal argument Arg(z).

• C∗ := C \ {0}, C∞ := C ∪ {∞}.

• D(a, r) := {z ∈ C | |z − a| < r} is an open disk of radius r centred at a. D := D(0, 1) is the
unit disk at the origin.

Definition 1.1.

(i) U ⊆ C is open if ∀u ∈ U , ∃ε > 0 such that

D(u, ε) = {z ∈ C | |z − u| < ε} ⊆ U .

(ii) A path in U ⊂ C is a continuous map γ : [a, b] → U . We say γ ∈ C1 if γ′ exists and is continuous
(one-sided at end-points).

(iii) A path γ is simple if γ is injective.

(iv) U ⊆ C is path-connected if ∀z, w ∈ U , ∃ path in U connecting z to w.

Remark. If U is open and z, w are connected by a path γ in U , then ∃ a path P in U consisting of
finitely many horizontal and vertical segments.
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2 Complex Differentiation IB Complex Analysis

2 Complex Differentiation

Definition 2.1. A domain in C is an open, path-connected, non-empty subset of C.

Definition 2.2.

(i) f : U → C on a domain U is differentiable at u ∈ U if

f ′(u) = lim
z→u

f(z)− f(u)

z − u

exists.

(ii) f : U → C is holomorphic at u ∈ U if ∃ε > 0 such that ∀z ∈ D(u, ε), f is differentiable at z.

(iii) f : C → C is entire if it is holomorphic on C.

We may identify C with R2 via the bijection

x+ iy ↔ (x, y) .

Then what is the connection with R2 differentiability?

Remark. All computational differentiation rules still hold for holomorphic functions: sum, product,
quotient, chain, inverse…

If we have complex-valued function f : U → C, then we can write

f(z) = f(x, y) = u(x, y) + iv(x, y)

where u is the real part and v is the imaginary part. From Analysis and Topology, u : U → R is
differentiable at (c, d) ∈ R2 with Du|(c,d) = (λ, µ) if

u(x, y)− u(c, d)− [λ(x− c) + µ(y − d)]√
(x− c)2 + (y − d)2

→ 0

as (x, y) → (c, d).

Proposition 2.3 (Cauchy–Riemann Equations). Let f : U → C on an open set U ⊆ C, then f
is differentiable at w = c+ id ∈ U with f ′(w) = p+ iq if and only if, writing f = u+ iv, we have u, v
are real differentiable at (c, d) and {

ux = vy

−uy = vx ,

known as the Cauchy–Riemann equations.

Proof. f is differentiable at w = c+ id with f ′(w) = p+ iq

⇐⇒ lim
z→w

f(z)− f(w)− (z − w)(p+ iq)

z − w
= 0

⇐⇒ lim
z→w

f(z)− f(w)− (z − w)(p+ iq)

|z − w|
= 0 .

Writing f = u+ iv and evaluating the real and imaginary parts, this holds

⇐⇒


lim

(x,y)→(c,d)

u(x, y)− u(c, d)− [p(x− c)− q(y − d)]√
(x− c)2 + (y − d)2

= 0

lim
(x,y)→(c,d)

v(x, y)− v(c, d)− [q(x− c) + p(y − d)]√
(x− c)2 + (y − d)2

= 0 .

These hold iff u, v are real differentiable and ux = p = vy, uy = −q = −vx. �
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2 Complex Differentiation IB Complex Analysis

Remark. If u, v have continuous partials ux, uy, vx, vy on U , then u and v are differentiable on U . So
for complex differentiability of f = u+ iv, it suffices to check u, v have continuous partials on U and
the Cauchy–Riemann equations hold.

Examples.

(i) f(z) = z2 = (x+ iy)2 = x2 − y2︸ ︷︷ ︸
u

+ 2xy︸︷︷︸
v

i.

ux = vy = 2x , uy = −vx = −2y ,

so f is entire and f ′(z) = 2x+ 2iy = 2z.

(ii) f(z) = z̄.
u(x, y) = x , v(x, y) = −y ,

so f is not holomorphic anywhere.

(iii) Any polynomial is entire, and any rational map

f(z) =
p(z)

q(z)
,

where p and q are polynomials, is holomorphic on {z ∈ C | q(z) 6= 0}.

Caution. Satisfying Cauchy–Riemann equations is not sufficient alone for complex differentiability.

Remark. If f : U → C holomorphic on a domain U , and f ′(z) = 0 on U , then f is constant on U .

Sketch of proof: take a z0 ∈ U and connect for z ∈ U by a vertical/horizontal path and use the
partials.

Consequences. Holomorphic functions are very “well-behaved”.

(i) [Structural] Example (proved later). If f : C → C is entire and bounded, i.e. ∃M ≥ 0 such that
|f(z)| ≤M ∀z ∈ C, then f is constant.
In contrast with real differentiable functions (x, y) 7→ (cosx, sin y).

(ii) [Analyticity] We will see if f is holomorphic, then all derivatives of f (and of u, v, where
f = u+ iv) exist.
Differentiating Cauchy–Riemann equations, we obtain

uxx = vyx = vxy = −uyy ,

so
uxx + uyy = 0 ,

and similarly vxx + vyy = 0, The real and imaginary parts of a holomorphic function are
harmonic.

2.1 The Geometry of Harmonic Functions

Proposition 2.4. U is a domain, w ∈ U and f : U → C holomorphic with f ′(w) 6= 0. Then f is
conformal (angle preserving) at w.
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2 Complex Differentiation IB Complex Analysis

U

γ2

γ1 w
θ

θ: the angle between the tangents
to γ1 and γ2 at w.

f

f(U)

f(γ2)

f(γ1)

f(w)

θ

The angle is preserved.

Proof. Let γ1 and γ2 be C1 paths through w ∈ U with γ1, γ2 defined on [−1, 1] with γ1(0) = γ2(0) = w.
Write γj(t) = w + rj(t)e

iθj(t). We have

θ = Arg(γ′2(0))−Arg(γ′1(0)) = θ2(0)− θ1(0) .

Since f ′(w) 6= 0,

Arg((f ◦ γj)′(0)) = Arg(γ′j(0)f
′(γj(0)))

= Arg(γ′j(0)) + Arg(f ′(w)) + 2nπ , n ∈ Z .

So the angle between the image f ◦ γ paths at w is

Arg(γ′2(0)) + Arg(f ′(w)) + 2n2π −Arg(γ′1(0))−Arg(f ′(w))− 2n1π ,

so the angle is preserved. �

Definition 2.5. U , V are domains in C. A map f : U → V is a conformal equivalence if f is a
bijective holomorphic map with f ′(z) 6= 0 ∀z ∈ U . We say U and V are conformally equivalent if
such map exists.

Remarks.

(i) One can show that if f : U → V is a holomorphic bijection of domains with f ′(z) 6= 0 ∀z ∈ U ,
then the inverse of f is holomorphic.

(ii) We will see that if f is an injection and is holomorphic in U , then f ′ 6= 0 on U .

Examples.

(i) Change of coordinates:

On C, f(z) = az + b, a 6= 0 is a conformal equivalence C → C. More generally, the Möbius
transformation

f(z) =
az + b

cz + d
, ad 6= cb

is a conformal equivalence C∞
∼−→ C∞ the Riemann sphere to itself.

• Conformality/holomorphicity at infinity: use pre/post composition by Möbius maps to
move away from ∞ then test conformality/holomorphicity.

Remark. Differentiability is independent of the choice of coordinates, but the values of
derivatives are not.
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2 Complex Differentiation IB Complex Analysis

• Features of Möbius maps:
(a) Determined by 3 distinct points.

z1 7→ 0

z2 7→ ∞
z3 7→ 1

=⇒ µ(z) =
z − z1
z − z2

· z3 − z2
z3 − z1

.

(b) it maps lines/circles to lines/circles.

(ii) f(z) = zn, n ∈ N on a sector {z ∈ C∗ | 0 < Arg(z) < π
n}.

f

(iii) Upper half plane H and D(0, 1) are conformally equivalent.

g−1(w) = −i
w + 1

w − 1
.

g

(iv) A half circle and a half plane are conformally equivalent.

g−1
z 7→ z2

(v) The possible images of a sector under a Möbius map.

A sector is defined by lines intersecting at 0 and ∞.

In general, {z ∈ C | arg( z−αz−β ) ∈ (µ1, µ2)} gives a region bound by circles and lines.

5



2 Complex Differentiation IB Complex Analysis

argument in (µ1, µ2)

0 7→ ∞ or ∞ fixed

another sector

0,∞ 7→ finite values

OR

These are all examples of the Riemann mapping theorem.

Theorem 2.6 (Riemann mapping theorem). Let U ( C be a simply connected domain, then U
is conformally equivalent to D(0, 1).

Definition 2.7. A subset U ⊆ C is simply connected if any simple closed (endpoints coincide) curve
(loop) in U can be continuously contracted to a constant path (a point) in U , i.e. U is path connected
and for any γ : S1 → U , there exists an extended continuous map γ̂ : D2 → U such that γ̂|S1

= γ.
Here, S1 and D2 denote the unit circle and closed unit disk respectively.

γ

simply connected not simply connected

2.2 Power Series

Recall.

(i) A sequence {fn} of functions converges uniformly to a function f on some set S if ∀ε > 0,
∃M ∈ N such that ∀x ∈ S, |fn(x)− f(x)| < ε ∀n ≥ N .

(ii) The uniform limit of continuous functions is continuous.

(iii) Weierstrass M-test. If (Mn)n≥0 ∈ R≥0 and 0 ≤ |fn(z)| ≤ Mn ∀z ∈ S and all n ∈ N sufficiently
large, then

∞∑
n=0

Mn <∞ =⇒
∞∑
n=1

fn(z) converges uniformly on S .

6
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Let (cn)n∈N∪{0} ⊂ C and fix a ∈ C. Then for the series

z 7→
∞∑
n=0

cn(z − a)n ,

there is a unique R ∈ [0,∞] such that the series converges absolutely, on |z − a| < R, and if 0 < r < R,
the series converges uniformly on |z − a| ≤ r < R. R is the radius of convergence of the series.

R =
1

λ
, where λ = lim sup

n→∞
|cn|1/n .

Theorem 2.8. Let f(z) =
∑∞
n=0 cn(z − a)n be a complex power series with radius of convergence

R. Then

(i) f is holomorphic on D(a,R).

(ii) f ′(z) =
∑∞
n=1 ncn(z − a)n−1 with radius of convergence R.

(iii) f has derivatives of all orders. f (n)(a) = n!cn.

Proof. Consider the function z 7→
∑∞
n=1 ncn(z − a)n−1. WLOG, can set a = 0. Since |ncn| ≥ |cn|,

this series has radius of convergence R′ ≤ R. If 0 < R1 < R, then for |z| < R1, we have

∣∣ncnzn−1
∣∣ ≤ n |cn|Rn−1

1

|z|n−1

Rn−1
1

.

Since n · |z|
n−1

Rn−1
1

→ 0 as n→ ∞, for n suitably large, |cn|Rn−1
1 provides an upper bound for

∣∣ncnzn−1
∣∣.

By Weierstrass M-test (compare to f), we see that
∑∞
n=1 ncn(z − a)n−1 converges absolutely and

uniformly on 0 < |z − a| < R1, so the radius of convergence of the series is R.

Consider

f(z)− f(w)

z − w
=

∞∑
n=0

cn
zn − wn

z − w

= lim
N→∞

N∑
n=0

cn

n−1∑
j=0

zjw
n−1−j

 . (∗)

For |z| , |w| < r < R, we have ∣∣∣∣∣∣cn
n−1∑
j=0

zjw
n−1−j

∣∣∣∣∣∣ < |cn| · n · rn−1 ,

so (∗) converges uniformly on |z| , |w| < r. So the series has a continuous limit. Call it g(z, w). When
z = w, g(z, z) =

∑∞
n=0 ncnz

n−1. Therefore, f is differentiable with this derivative. This proves (i)
and (ii), and (iii) is induction. �

Corollary. If f(z) =
∑
cn(z− a)n with radius of convergence R and ∃0 < ε < R such that f(z) = 0

on D(a, ε), then f(z) = 0 on D(a,R).

Proof. f = 0 on a neighbour of a =⇒ f (n)(a) = 0 ∀n ∈ N. We have cn = 0 ∀n, and so f = 0 on
D(a,R). �
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2.3 The Exponential and Logarithm

Definition 2.9. The exponential function is defined as

ez ≡ exp(z) :=

∞∑
n=0

zn

n!
.

Remarks.

(i) The radius of convergence of exp(z) is ∞: ez is entire and d
dz e

z = ez.

(ii) For all z, w ∈ C, ez+w = ez · ew.

Proof. Fix w ∈ C, and consider the function ez+w · e−z. This function has derivative ez+we−z−
ez+we−z = 0, so constant. At z = 0, this function takes the value ew, so ez+w = ezew ∀z ∈ C.�

Notice that ez · e−z = e0 = 1. Exponential never takes the value 0.

(iii) z = x+ iy, x, y ∈ R, then ez = exeiy, eiy = cos y + i sin y, so∣∣eiy∣∣2 = cos2 y + sin2 y = 1 .

ez = ex(cos y + i sin y) and |ez| = ex = eRe(z). We see that ei·2πk = 1 ∀k ∈ Z. More generally,
ez+2πki = ez ∀k ∈ Z.

x = ax = b

z

z + 2πi

z − 2πi

z − 4πi

z 7→ ez

eb ea

w = ez

Definition 2.10. Let U ⊂ C∗ be open. We say a function λ : U → C which is continuous, is a
branch of logarithm if ∀z ∈ U , exp(λ(z)) = z.

Example. U = C \ R≤0. Define

Log(z) = ln |z|+ iθ , where θ = Arg(z) , θ ∈ (−π, π) .

We call Log the principal branch of the logarithm.

z 7→ Log(z)

πi

−πi

8
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Proposition 2.11. Log(z) is holomorphic on U , with d
dz Log(z) =

1
z . If |z| < 1, then

Log(1 + z) =
∞∑
n=1

(−1)n−1zn

n
.

Proof. A continuous inverse of exp is holomorphic, so Log is holomorphic on U , and by computation
of the inverse’s derivative, d

dz Log z =
1
z . We have that

d

dz
Log(1 + z) =

1

z + 1
= 1− z + z2 − z3 + . . .

This power series is the derivative of
∑∞
n=1

(−1)n+1zn

n , so

Log(1 + z) =

∞∑
n=1

(−1)n+1zn

n
+ const.

Evaluating at z = 0, we have const. = 0. �

Definition 2.12. For z, α ∈ C, the multivalued function

zα := exp(α log z) , where log z = ln |z|+ i arg(z) .

The single-valued function is

zα := exp(αLog z) , where z ∈ C \ R≤0 .

Note that the multivalued function is single-valued if α ∈ Z, and is finitely multivalued if α ∈ Q. Let
α = a

b ∈ Q, then the values of zα differ by a bth root of unity.

Example. α = 1
2 . z1/2 takes two opposite values for a given non-zero z, which are negative of each

other.

Caution. It need not hold for single-valued zα such that (zw)α = zαwα. E.g. α = 1
2 .

log z

πi

−πi

z 7→ 1
2z

π
2 i

−π
2 i

−π
2 < Im z < π

2 maps under exp to the right half plane

but two numbers in right half plane need not have their product in the right half plane.

9



2 Complex Differentiation IB Complex Analysis

Following log z around a loop about 0: log z = ln |z| + i arg z. arg z increases by 2π as we travel
the loop, so there is no continuous branch of log on any loop about 0, or any neighbourhood of 0.

Example. Consider f(z) =
√
z(z − 1) defined on C \ [0, 1].

As we travel around the loop, arg(z(z − 1)) increases by 4π as we travel around the loop, so
exp( 12 log(z(z − 1))) is independent of the choice of argument for z(z − 1).

1

10



3 Contour Integration IB Complex Analysis

3 Contour Integration

Definition 3.1. If f : [a, b] → C is continuous (so Re f , Im f are integrable), we define
ˆ b

a

f(t) dt =

ˆ b

a

Re f(t) dt+ i

ˆ b

a

Im f(t) dt .

Proposition 3.2. If f : [a, b] → C is continuous, then∣∣∣∣∣
ˆ b

a

f(t) dt

∣∣∣∣∣ ≤ (b− a) sup
a≤t≤b

|f(t)| .

Proof. Let θ = arg(
´ b
a
f(t) dt).∣∣∣∣∣
ˆ b

a

f(t) dt

∣∣∣∣∣ = e−iθ

ˆ b

a

f(t) dt

=

ˆ b

a

e−iθf(t)︸ ︷︷ ︸
complex function with real integral

dt

=

ˆ b

a

Re[e−iθf(t)] dt (by definition)

≤
ˆ b

a

∣∣e−iθf(t)
∣∣ dt = ˆ b

a

|f(t)| dt (†1)

≤ sup
t∈[a,b]

|f(t)| · (b− a) . (†2)

�

Note we have
∣∣∣´ ba f(t) dt∣∣∣ = supt∈[a,b] |f(t)| · (b− a)

⇐⇒ both (†1) and (†2) are equality.

By continuity of f , (†2) an equality ⇐⇒ |f(t)| ≡ supt∈[a,b] |f(t)|, and (†1) an equality ⇐⇒
arg f(t) ≡ θ, so f is a constant.

Definition 3.3. Let γ be a C1-smooth curve γ : [a, b] → C. Then define the arc length of γ to be

length(γ) :=

ˆ b

a

|γ′(t)| dt .

If f : U → C is continuous, and γ : [a, b] → U is C1 smooth, then the integral of f along γ is
ˆ
γ

f(z) dz :=

ˆ b

a

f(γ(t))γ′(t) dt .

Properties.

(i) Linearity.
´
γ
c1f1 + c2f2 = c1

´
γ
f1 + c2

´
γ
f2.

(ii) If a < a′ < b, then ˆ
γ|[a,b]

f =

ˆ
γ|[a,a′]

f +

ˆ
γ|[a′,b]

f .

(iii) If (−γ)(t) = γ(−t) : [−b,−a] → U , then
ˆ
−γ

f(z) dz = −
ˆ
γ

f(z) dz .

11



3 Contour Integration IB Complex Analysis

(iv) Independence of parameterisation: if φ : [a′, b′] → [a, b] is C1-smooth, φ(a′) = a and φ(b′) = b,
then δ = γ ◦ φ : [a′, b′] → U satisfies

ˆ
δ

f(z) dz =

ˆ
γ

f(z) dz .

So we will often assume [a, b] = [0, 1].

We can allow piecewise-C1-smooth paths, i.e. a = a0 < a1 < · · · < an = b such that γi = γ|[ai−1,ai]

is C1-smooth, and γ is continuous. Then we define
ˆ
γ

f =

n∑
i=1

ˆ
γi

f .

This is well-defined by the additivity of paths and independence of parameterisation.

Remark. Any piecewise-C1-smooth curve can be reparameterised to be C1-smooth. For such a γ,
replace γ1 by γi ◦ hi where hi is a monotonic C1-smooth bijection with endpoint derivatives 0. An
example is

γ(t) =

{
1 + i sin(πt) t ∈ [0, 12 ]

sin(πt) + i t ∈ [ 12 , 1]

is C1-smooth.

1 + i

Terminology. A curve is a piecewise-C1-smooth path, and a contour is a simple (injective except at
end points), closed (γ(a) = γ(b)), piecewise-C1-smooth path.

Proposition 3.4. For any continuous f : U → C, U open, and for any curve γ : [a, b] → U ,
ˆ
γ

f ≤ length(γ) · sup
z∈γ

|f(z)| .

Proof. ∣∣∣∣ˆ
γ

f

∣∣∣∣ =
∣∣∣∣∣
ˆ b

a

f(γ(t))γ′(t) dt

∣∣∣∣∣
=

ˆ b

a

|f(γ(t))| |γ′(t)| dt (rotational trick)

≤ sup
t∈[a,b]

|f(γ(t))|
ˆ b

a

|γ′(t)| dt

= sup
z∈γ

|f(z)| · length(γ) .

�

Corollary. If fn : U → C continuous on open U for n ∈ N, and f : U → C continuous with fn → f
uniformly on a curve γ in U , then

ˆ
γ

fn(z) dz →
ˆ
γ

f(z) dz as n→ ∞ .

12
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Proof. ∣∣∣∣ˆ
γ

fn −
ˆ
γ

f

∣∣∣∣ = ∣∣∣∣ˆ
γ

fn − f

∣∣∣∣
= length(γ) · sup

z∈γ
|fn(z)− f(z)|

→ 0 as n→ ∞ by uniform convergence.

�

Key example. f(z) = zn where n ∈ Z. Let U = C∗ and γ(t) : [0, 2π] → U be γ(t) = eit. Then
ˆ
γ

f(z) dz =

ˆ 2π

0

enitieit dt

= i

ˆ 2π

0

e(n+1)it dt

= i

ˆ 2π

0

cos((n+ 1)t) + i sin((n+ 1)t) dt .

This integral vanishes unless n = −1, in which case we have i
´ 2π
0

dt = 2πi. So

ˆ
unit circle

zn dz =

{
2πi if n = −1

0 if n 6= −1 .

3.1 Fundamental Theorem of Calculus

Theorem 3.5 (Fundamental theorem of calculus). If f : U → C is continuous on an open
U ⊂ C, and f = F ′ on U ; that is, F is an antiderivative for f on U . Then for any curve γ : [a, b] → U ,

ˆ
γ

f(z) dz = F (γ(b))− F (γ(a)) ,

and so
´
γ
f(z) dz = 0 if γ is closed.

Proof. We have
ˆ
γ

f(z) dz =

ˆ b

a

f(γ(t))γ′(t) dt

=

ˆ b

a

F (γ(t))′ dt

= F (γ(b))− F (γ(a))

by the real fundamental theorem of calculus. �

Putting these together, with computation of
´

unit circle
1
z dz 6= 0, we see that 1

z has no holomorphic
antiderivative on any neighbourhood of any circle centred at 0.

Theorem 3.6 (Converse of FTC). If f : U → C is continuous on a domain U , and
´
γ
f = 0 ∀

closed curve γ ∈ U , then ∃ holomorphic F : U → C with F ′ = f .

Proof. Choose a0 ∈ U . For each w ∈ U , choose a path γw from a0 to w, and define

F (w) =

ˆ
γw

f(z) dz .

13
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Notice that if γ′w were another such path, then
ˆ
γw

f −
ˆ
γ′
w

f =

ˆ
γw−γ′

w

f = 0

by hypothesis. So F is independent of the path choice so it is well defined. Given w ∈ U , find rw > 0
such that D(w, rw) ⊆ U . For |h| < rw, define δh : [0, 1] → U to be the line segment from w to w+ h.

a0

w

w + h

δh

γw

γw+h

We have
F (w + h) =

ˆ
γw+h

f =

ˆ
γw

f +

ˆ
δh

f

by hypothesis, so

F (w + h) = F (w) +

ˆ
δh

f(z) dz

= F (w) + hf(w) +

ˆ
δh

f(z)− f(w) dz .

Noting
´
δh
f(w) dz = hf(w), so∣∣∣∣F (w + h)− F (w)

h
− f(w)

∣∣∣∣ = ∣∣∣∣ 1h
ˆ
δh

f(z)− f(w) dz

∣∣∣∣
=

length(δh)

|h|
sup
z∈δh

|f(z)− f(w)|

= sup
z∈D(w,rw)

|f(z)− f(w)| → 0 as rw → 0 .

Therefore, F ′(w) = f(w). �

3.2 Cauchy’s Theorem

Definition 3.7. An open subset U ⊂ C is convex if ∀a, b ∈ U , the segment from a to b is in U . We
say U is starlike if ∃a0 ∈ U such that ∀a ∈ U , the segment from a0 → a is in U .

{disks} ( {convex domains} ( {starlike domains} ( {simply connected domains} ( {domains} .

Lemma 3.8. Suppose U is a starlike domain, and f : U → C is continuous, and for all triangles T
in U ,

´
∂T
f = 0, then f has an antiderivative in U .

Proof. Same as previous, using segments from the base a0 ∈ U to define the antiderivative. �
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T3 T2
T4

T1

Theorem 3.9. f : U → C holomorphic on an open U ⊆ C, and T is a triangle in U , then
´
∂T
f = 0.

Proof. Call I =
∣∣´
∂T
f
∣∣ and L = length(∂T ). Subdivide T by bisecting sides to obtain T1, T2, T3, T4.

We have ∂T − ∂T4 = ∂T1 + ∂T2 + ∂T3, so

ˆ
∂T

f =

4∑
i=1

ˆ
∂Ti

f .

By the triangle inequality, ∃i ∈ {1, 2, 3, 4} such that∣∣∣∣ˆ
∂Ti

f

∣∣∣∣ ≥ 1

4
I .

Call it T (1) and note that its length is length(T (1)) = L
2 . Proceeding in this way, we obtain a sequence

of triangles
T ⊇ T (1) ⊇ T (2) ⊇ . . .

with length(T (n)) = L
2n and ∣∣∣∣ˆ

∂T (n)

f

∣∣∣∣ ≥ 1

4n
I .

We have
∞⋂
n=1

T (n) = {w}

for some w ∈ T ⊂ U . Note that functions g(z) = z, h(z) = const. have holomorphic antiderivative
everywhere, so they integrate to 0 on any closed curve by FTC. So for w ∈ U ,

ˆ
∂T (n)

f(z) dz =

ˆ
∂T (n)

f(z)− f(w)− (z − w)f ′(w) dz .

f is differentiable at w, i.e. ∀ε > 0, ∃δ > 0 such that |z − w| < δ,

|f(z)− f(w)− (z − w)f ′(w)| < ε |z − w| .

So given ε > 0, ∃N ∈ N such that ∀n ≥ N , T (n) ⊆ D(w, δ), so∣∣∣∣ˆ
∂T (n)

f(z) dz

∣∣∣∣ = ∣∣∣∣ˆ
∂T (n)

f(z)− f(w)− (z − w)f ′(w) dz

∣∣∣∣
≤ length(T (n)) sup

z∈∂T (n)

ε |z − w|

=
L

2n
ε sup
z∈∂T (n)

|z − w| ≤ L2

22n
ε .

Therefore, I ≤ L2ε→ 0 as ε→ 0, so I → 0. �

Theorem 3.10. Let S ⊂ U be a finite subset of a domain U , and f : U → C continuous on U and
holomorphic on U \ S. Then for any triangle T ⊂ U ,

´
∂T
f = 0.

15
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T

T ′a

Proof. Using triangle subdivision, it suffices to assume at S = {a}, a ∈ T . If T has a ∈ T ′ ⊂ T for
another triangle T ′, we can subdivide T into triangles, one of which is T ′.

Since f is holomorphic on a neighbourhood of these triangles, except possibly T ′, the previous
theorem implies that the integral vanish on their boundaries, soˆ

∂T

f =

ˆ
∂T ′

f .

Using basic estimation ∣∣∣∣ˆ
∂T

f

∣∣∣∣ = ∣∣∣∣ˆ
∂T ′

f

∣∣∣∣ ≤ length(∂T ′) · sup
z∈∂T ′

|f(z)| ,

where the sup is finite because f is continuous on U . Let length(∂T ′) → 0, we have
´
∂T
f → 0. �

Theorem 3.11 (Cauchy’s theorem on a disk/starlike domain). Let D be a disk or any star-
like domain, and f : D → C continuous, holomorphic except at finitely many points. Then

´
γ
f = 0

for any closed curve in D.

Proof. By previous theorem,
´
∂T
f = 0 for all triangles T in D, so by the converse of FTC for starlike

domains, ∃ antiderivatives F ′ = f in D. By FTC,
´
γ
f = 0 for all closed curves γ. �

Theorem 3.12 (Cauchy’s integral formula). Let U ⊆ C be a domain, f : U → C holomorphic
and D(a, r) ⊆ U . Then ∀z ∈ D(a, r),

f(z) =
1

2πi

ˆ
∂D(a,r)

f(w)

w − z
dw .

Proof. Define

g(w) =

{
f(w)−f(z)

w−z − f ′(z) for w 6= z

0 for w = z .

Then g is continuous at z, holomorphic on D(a, r) except possibly at z. Find r1 > 0 such that
D(a, r) ⊆ D(a, r1) ⊆ U . Apply Cauchy’s theorem to g and γ = ∂D(a, r), we have

´
∂D(a,r)

g(w) dw =
0, so ˆ

∂D(a,r)

f(w)

w − z
dw =

ˆ
∂D(a,r)

f(z)

w − z
dw = f(z)

ˆ
∂D(a,r)

dw

w − z
.

We need to show that the last integral is 2πi. On the contour, we have |w − a| = r > |z − a|, so

1

w − z
=

1

(w − a)(1− z−a
w−a )

=

∞∑
n=0

(z − a)n

(w − a)n+1

by geometric expansion. So
ˆ
∂D(a,r)

1

w − z
dw =

∞∑
n=0

[
(z − a)n

ˆ
∂D(a,r)

1

(w − a)n+1
dw

]
.

We have shown that only the n = 0 term in non-vanishing, in which case the result is 2πi. Therefore,
we have

´
∂D(a,r)

dw
w−z = 2πi, so

f(z) =
1

2πi

ˆ
∂D(a,r)

f(w)

w − z
dw

as claimed. �
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a

z

D(a, r)

The value of f on ∂D(a, r) =⇒ value of f in D(a, r).

3.3 Applications of CIF

Corollary (Mean-value property). If f : U → C is holomorphic on a domain U , and a disk
D(a, r) ⊆ U , then

f(a) =

ˆ 1

0

f(a+ re2πit) dt ,

i.e. f takes the average value on the disk boundary at the centre.

Proof. Use CIF with t 7→ re2πit. �

Corollary (Local maximum principle). Let f : D(a, r) → C be holomorphic. If |f(z)| ≤ |f(a)|
∀z ∈ D(a, r), then f is constant.

Proof. By mean-value property, ∀0 < ρ < r we have

|f(a)| =
∣∣∣∣ˆ 1

0

f(a+ ρe2πit) dt

∣∣∣∣
≤ sup

|z−a|=ρ
|f(z)| ≤ |f(a)|

by hypothesis. So the inequalities are equalities if the hypothesis hold, and f is constant on |z − a| = ρ.
So f is constant on D(a, r)× =⇒ f is constant. �

Theorem 3.13 (Liouville’s theorem). Every bounded entire function is constant.

Proof. Consider the value

|f(z)− f(0)| = 1

2π

∣∣∣∣∣
ˆ
∂D(0,R)

f(w)

[
1

w − z
− 1

w

]
dw

∣∣∣∣∣
for any R > |z| by CIF. Let’s choose R > 2 |z|, then∣∣∣∣ 1

w − z

∣∣∣∣ < 2

R
and

∣∣∣∣ 1w
∣∣∣∣ = 1

R

for all w ∈ ∂D(0, R), so

|f(z)− f(0)| = 1

2π

∣∣∣∣∣
ˆ
∂D(0,R)

f(w) · z

(w − z)w
dw

∣∣∣∣∣
≤ 1

2π
· 2πR · sup

w∈∂D(0,R)

|f(w)| · |z| · 2

R
· 1

R

≤ sup
w∈C

|f(w)| · 2

R
· |z| → 0

as R→ ∞. So f(z) = f(0). Since z is arbitrary, f is constant. �
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Corollary (The fundamental theorem of algebra). Every non-constant polynomial p(z) ∈ C[z]
has a root in C.

Proof. Suppose p 6= 0 ∀z ∈ C, then f(z) = 1
p(z) is entire. p is non-constant =⇒ p(z) = adz

d +

· · · + a1z
1 + a0, d ≥ 1, ad 6= 0, so |p(z)| → ∞ as |z| → ∞. So |f(z)| → 0 as |z| → ∞, and so |f | is

bounded since |f | is bounded on any closed disk. Then by Liouville’s theorem, f(z) is constant, so p
is constant. Contradiction. �

Theorem 3.14 (Higher order CIF). f : D(a, r) → C holomorphic, then f is represented by a
convergent power series on D(a, r)

f(z) =

∞∑
n=0

cn(z − a)n ,

cn =
f (n)(a)

n!
=

1

2πi

ˆ
∂D(a,ρ)

f(w)

(w − a)n+1
dw

for any 0 < ρ < r.

Proof. Let |z − a| < ρ < r. CIF gives

f(z) =
1

2πi

ˆ
∂D(a,ρ)

f(w)

w − z
dw

=
1

2πi

ˆ
∂D(a,ρ)

f(w)

∞∑
n=0

(z − a)n

(w − a)n+1
dw

=
1

2πi

∞∑
n=0

[ˆ
∂D(a,ρ)

f(w)

(w − a)n+1
dw

]
(z − a)n ,

so cn = 1
2πi

´
∂D(a,ρ)

f(w)
(w−a)n+1 dw, and we have the claimed representation of f . �

Remarks.

(i) For a domain U and a point a ∈ U , ∃r > 0 such that D(a, r) ⊆ U , so if f is holomorphic on U ,
then for any a ∈ U , ∃ disk D(a, r) ⊆ U on which f expands as a power series about a. This is
called a Taylor series expansion about a. But the expansion at any point need not be valid on
the whole domain U .

(ii) A function is analytic if it has a power series expansion about any point, so holomorphic =⇒
analytic.

(iii) Corollary of infinite differentiability: holomorphic functions have all derivatives, all of which
are holomorphic, i.e. holomorphic =⇒ smooth.

Corollary (Morera’s theorem). Let D be a disk and f : D → C continuous so that
´
γ
f = 0 for

all closed curve in D, then f is holomorphic.

Proof. By converse of FTC, f has a holomorphic antiderivative in D, call it F . Since F is holomorphic,
it is analytic, so F ′ = f is holomorphic as well. �

Corollary. Let fn : U → C be a sequence of holomorphic functions on a domain U , and fn → f
uniformly on compact subsets of U . Then f is holomorphic on U , and f ′(z) = limn→∞ f ′n(z) on U .

Proof. Since U is union of open disks and conclusion is local, we will prove it for any disk D(z, ε) ⊆ U .
Given any closed curve γ in D(z, ε), we have

´
γ
fn →

´
γ
f , and since fn are holomorphic,

´
γ
fn = 0,

so
´
γ
f = 0. f is continuous so by Morera’s theorem, f is holomorphic on D(z, ε).
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By higher order CIF, for 0 < ρ < ε,

f ′(z) =
1

2πi

ˆ
∂D(z,ρ)

f(w)

(w − z)2
dw ,

and similar for fn(z).

|f ′(z)− f ′n(z)| =
1

2π

∣∣∣∣∣
ˆ
∂D(z,ρ)

f(w)

(w − z)2
− fn(w)

(w − z)2
dw

∣∣∣∣∣
≤ 1

2π
· 2πρ · 1

ρ2
· sup
w∈∂D(z,ρ)

|f(w)− fn(w)| → 0

as n→ ∞ since fn → f uniformly. So limn→∞(z) = f ′(z) ∀z ∈ U . �

Remark. f can be constant even if fn are not. For example, fn = zn on any D(0, r) for 0 < r < 1.
Then f → 0 uniformly.

Corollary. If f : U → C is continuous and holomorphic away from a finite set S ⊂ U , then f is
holomorphic on U .

Proof. If a ∈ S, find a disk D(a, r) ⊂ U such that D(a, r) ∩ S = {a}. Cauchy’s theorem on a disk
=⇒

´
γ
f = 0 for any closed curve γ in D(a, r). Morera’s theorem =⇒ f is holomorphic on D(a, r).

�
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4 Zeros and Singularities

4.1 Zeros of Holomorphic Maps

Let f : D(a, r) → C be holomorphic on a disk D(a, r), and write

f(z) =

∞∑
n=0

cn(z − a)n

on D(a, r). If f 6≡ 0, then some minimum n is non-zero. Let m = min{n ∈ N ∪ {0} | cn 6= 0}.

Definition 4.1. If m > 0, m is the order or order of vanishing of f at a. We say that f has a zero
of order m at a.

Note that we can write f(z) = (z − a)mg(z), where g(z) is holomorphic on D(a, r) and g(a) 6= 0.

Theorem 4.2 (Principle of isolated zeros). If f : D(a, r) → C is holomorphic, f 6≡ 0, then
∃0 < ρ ≤ r such that f 6= 0 on D(a, ρ)× = {z ∈ D(a, ρ) | z 6= a}.

Proof. If f(a) 6= 0, by continuity, f(z) 6= 0 on some disk D(a, ρ).

If f has a zero of order m at a, f(z) = (z− a)mg(z) with g(a) 6= 0. g is continuous =⇒ ∃D(a, ρ)
such that g(z) 6= 0 ∀z ∈ D(a, ρ), so f(z) 6= 0 on D(a, ρ)× as claimed. �

Remarks.

(i) Rephrasing. The zeros of a non-identically zero holomorphic function on a domain cannot have
an accumulation point in the domain.
Accumulation point: w is an accumulation point of S if ∀ε > 0, D(w, ε)× ∩ S 6= ∅.

(ii) It is possible for zeros to accumulate on the boundary of the domain. Note: sin(z) = eiz−e−iz

2i =
0 ⇐⇒ eiz = e−iz ⇐⇒ e2iz = 1 ⇐⇒ z = nπ , n ∈ Z. So sin( 1z ) has zeros at z = 1

nπ for all
n ∈ Z \ {0}, which accumulates at the boundary point 0 of its domain C× = C \ {0}.

(iii) Identities holding on R also hold on C.
For example, sin2 z + cos2 z = 1 ∀z ∈ R, so sin2 z + cos2 z − 1 is a zero on R. By PIZ, it is 0 on
any D(0, R). Since R is arbitrary, sin2 z + cos2 z = 1 ∀z ∈ C.

Theorem 4.3 (Identity theorem for holomorphic functions). Let f, g : U → C be holomor-
phic on a domain U . Let S = {z ∈ U | f(z) = g(z)}. If S has an accumulation point in U , i.e.
∃w ∈ S such that ∀ε > 0, D(w, ε) \ {w} ∩ S 6= ∅, then f(z) ≡ g(z) on U .

Proof. Define h(z) = f(z)−g(z), which is holomorphic on U , and S has an accumulation point w ∈ U
iff w is a non-isolated zero of h.

Let z ∈ U , γ : [0, 1] → U a path with γ(0) = w, γ(1) = z. Consider the set T = {t ∈ [0, 1] |
h(n)(γ(t)) = 0 ∀n ≥ 0}. T is an intersection of closed sets, so closed. h ≡ 0 on some disk D(w, ε) for
some ε > 0 by the principle of isolated zeros. So T is non-empty, since γ−1(D(w, ε)) ⊆ T . Define
t0 = sup{t ∈ T}. We have t0 ∈ T as T is closed. Since h(n)(γ(t0)) = 0 ∀n ≥ 0, h ≡ 0 on a
neighbourhood of t0 by the power series expansion at t0. This contradicts the maximality of t0,
unless t0 = 1. So [0, 1] = T , and we conclude h(z) = 0. Since z is arbitrary, f(z) = g(z) on U . �

4.2 Analytic Continuation

Definition 4.4. U ⊆ V ⊆ C domains. f : U → C and g : V → C holomorphic. g is an analytic
continuation of f if g|U = f .
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Examples.

(i) We see that
∑
n≥1

(−1)n+1

n zn, which converges on D(0, 1), has an analytic continuation on
C \ (−∞,−1].

(ii)
∑
n≥0 z

n has radius of convergence 1 about z = 0, with analytic continuation 1
1−z to C \ {1}.

×
1

∑
zn

z0

different
expansion
about z0

(iii) Considering f(z) =
∑
n≥0 z

2n , one can show that f converges on D(0, 1) and cannot be
analytically continued to any domain in U with D(0, 1) ( U . We say ∂D(0, 1) is the natural
boundary for f .

Corollary (Global maximum principle). If U ⊆ C is a bounded domain and U is its closure.
(U =

⋂
K⊇U , K closed K). If f : U → C is continuous and f is holomorphic on U , then |f | achieves its

maximum on U \ U .

Proof. U is closed and bounded =⇒ |f | achieves a maximum on U . Call it m. If |f(z0)| = m for
some z0 ∈ U , then local maximum principle =⇒ f(z) ≡ f(z0) for z ∈ D(z0, ε), ε > 0. Then by
identity theorem, f(z) ≡ f(z0) ∀z ∈ U . f continuous on U =⇒ f(z) = f(z0) ∀z ∈ U , so corollary
holds. �

4.3 Generalised Cauchy Integral Formula

Our goal is to generalise CIF to curves other than a circle.

We have an issue, even without changing the image set of a curve, the integral might change.
These satisfy

´
γ1
f = 2

´
γ
f .

γ(t) = reit

t ∈ (0, 2π]
γ1(t) = re2it

t ∈ (0, 2π]

We need to understand how a curve can ‘wind around’ a point w where the integrand may not be
holomorphic.

Theorem 4.5. Let γ : [a, b] → C\{w} be a continuous curve. Then ∃ continuous function θ : [a, b] →
R such that γ(t) = w + r(t)eiθ(t) with r(t) = |γ(t)− w|.

Proof. WLOG, can assume w = 0. Since Arg(γ(t)) = Arg( γ(t)|γ(t)| ), replace γ with γ
|γ| to assume that

|γ(t)| = 1 ∀t ∈ [a, b].
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If γ ⊂ C \ R≤0, we can use Arg to define θ. More generally, if there is any point u ∈ S1 with
γ(t) 6= u ∀t ∈ [a, b], then γ([a, b]) lies in a slit plane C \ {z ∈ C | z

eiα ∈ R≥0} for some α. Then
θ(t) = α+Arg( z

eiα ) will do.

We subdivide γ so this holds on the pieces: γ uniformly continuous on [a, b] =⇒ ∃ε > 0 such
that ∀ |s− t| < ε, |γ(s)− γ(t)| < 2, i.e. γ(z) lies within a half plane for z ∈ [s, t]. Subdividing
a = a0 < a1 < · · · < an = b such that aj+1 − aj < 2ε for all j, then we have

∣∣∣γ(t)− γ(
aj+1−aj

2 )
∣∣∣ < 2

∀t ∈ [aj , aj+1]. So γ([aj , aj+1]) lies on a slit plane ∀j = 0, 1, . . . n − 1, and we can define continuous
θj on [aj , aj+1] for each j. For each aj , we then have

γ(aj) = eiθj(aj) = eiθj−1(aj) ,

and so θj(aj) = θj−1(aj) + 2πnj for some nj ∈ Z.

Proceeding as j varies from 1 to n−1, we modify θj by multiples of 2π, so that θj and θj−1 agrees
at aj , obtaining a continuous θ : [a, b] → R as claimed. �

Remark. Such θ is not unique: θ(t) + 2nπ, n ∈ Z would also work. However, if θ1 and θ2 are two
such functions, then θ1 − θ2 is continuous and takes values in discrete 2πZ, so is constant.

Definition 4.6. Let γ : [a, b] → C be a closed curve, w /∈ γ. The winding number or index of γ
about w is

I(γ;w) :=
θ(b)− θ(a)

2π
∈ Z ,

where θ is chosen such that γ(t) = w + r(t)eiθ(t) with θ continuous.

By the above remark, this is well defined.

Lemma 4.7. Let γ : [a, b] → C be a closed curve, w /∈ γ([a, b]). Then

I(γ;w) =
1

2πi

ˆ
γ

dz

z − w
.

Proof. γ is piecewise C1 so r(t) and θ(t) are continuous as well, where γ(t) = w + r(t)eiθ(t). We
compute

ˆ
γ

dz

z − w
=

ˆ b

a

γ′(t)

γ(t)− w
dt =

ˆ b

a

r′(t)

r(t)
+ iθ′(t) dt

= [ln r(t) + iθ(t)]ba

Have ra = rb and θ(b)− θ(a) = 2πI(γ;w). �

Proposition 4.8. Let γ : [0, 1] → D(a,R) be a closed curve. Then ∀w /∈ D(a,R), I(γ;w) = 0.

Proof. Consider the Möbius map µ : z 7→ z−w
a−w . µ(w) = 0, µ(a) = 1, and since∣∣∣∣z − w

a− w
− 1

∣∣∣∣ = ∣∣∣∣ z − a

a− w

∣∣∣∣ ,
we see that D(a, |a− w|) 7→ D(1, 1). So µ(D(a,R)) ⊆ D(1, 1).

OnD(1, 1), we have a continuous definition of the argument, and so it follows that (sinceD(a,R) ⊂
C \ {z ∈ C | z−wa−w ∈ R≤0}) we have a continuous definition of arg(z − w) on γ. Therefore,

I(γ;w) =
arg(γ(1)− w)− arg(γ(0)− w)

2π
= 0

since the curve is closed. �
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a

γ

D(a,R)

D(a, |a− w|)

w

µ

µ(w) µ(a)

Definition 4.9. Let U ⊆ C be open. We say that a closed curve γ in U is homologous to zero if
∀w /∈ U , I(γ;w) = 0.

If γ is homologous to zero in U for all closed curve γ in U , then U is simply connected.
Remarks.

(i) If U ⊆ C is open then our two definitions of simply connected are equivalent.

(ii) If U ⊂ C is connected, it is path connected.

By the previous proposition, open disks are simply connected. On the other hand, any punctured
disk D(a,R)× = D(a,R) \ {a} is not simply connected, since curves can wind around the puncture.

Theorem 4.10 (Generalised Cauchy Integral Formula). Let f : U → C be holomorphic. U is
a domain and let γ be a closed curve in U which is homologous to zero in U . Then ∀w ∈ U \ γ,

I(γ;w)f(w) =
1

2πi

ˆ
γ

f(z)

z − w
dz ,

and
´
γ
f(z) dz = 0.

Proof. Notice that apply the first equality to g(z) = f(z)(z−w), we have 1
2πi

´
γ
f(z) = g(w)I(γ;w) =

0, so it suffices to prove the first statement. The previous lemma gives LHS

I(γ;w) =
1

2πi

ˆ
γ

f(w)

z − w
,

so we want to show that ˆ
γ

f(z)− f(w)

z − w
dz = 0

∀w ∈ U \ γ. Consider the function

g(z, w) =

{
f(z)−f(w)

z−w z 6= w

f ′(w) z = w

which is continuous on U × U . Want to show thatˆ
γ

g(z, w) dz = 0

∀w ∈ U \ γ. Define the auxiliary function

h(w) =

{´
γ
g(ζ, w) dζ for w ∈ U´

γ
f(ζ)
ζ−w dζ for w ∈ V = {w ∈ C \ γ | I(γ;w) = 0} .

If w ∈ U ∩ V , then ˆ
γ

g(ζ, w) dζ =

ˆ
γ

f(ζ)− f(w)

ζ − w
dζ =

ˆ
γ

f(ζ)

ζ − w
dζ ,

so h is well defined.
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• Claim 1. Claim |h(w)| → 0 as |w| → ∞.

Proof. Choose any R� 1 so that γ ⊂ D(0, R), so we have that I(γ;w) = 0 ∀w /∈ D(0, R)
by the previous proposition. In fact, γ is homologous to zero in U , I(γ;w) = 0 ∀w /∈ U ,
and so U ∪ V = C. ∀w /∈ D(0, R), we have

|h(w)| =
∣∣∣∣ˆ
γ

f(ζ)

ζ − w
dζ

∣∣∣∣
≤

length(γ) · supζ∈γ |f(ζ)|
|w| −R

→ 0 as |w| → ∞ .

�

• Claim 2. h is holomorphic on U ∪ V , i.e. entire.

Proof. We need two lemmas.

– Lemma 1 (Fubini’s theorem). Let f : [a, b]× [c, d] be continuous, then

ˆ b

a

(ˆ d

c

f(x, y) dy

)
dx =

ˆ d

c

(ˆ b

a

f(x, y) dx

)
dy .

Proof. Obviously hold if f is const., so also hold when f is a step function.
Since [a, b]× [c, d] is bounded and compact, f is uniformly continuous. So f
is uniformly approximated by step functions. So we can exchange limit and
integral on the uniform approximation, and so the equality holds for f as
well. �

– Lemma 2. Let U ⊂ C be open, and φ : U × [a, b] → C continuous with
z 7→ φ(z, s) holomorphic on U for all s ∈ [a, b], then g(z) =

´ b
a
φ(z, s) ds is

holomorphic on U .

Proof. We will use Morera’s theorem. Holomorphicity is local, so WLOG, U
is a unit disk. Let γ : [0, 1] → U be a closed curve, then by Fubini’s theorem

ˆ
γ

g(z) dz =

ˆ 1

0

[ˆ b

a

φ(γ(t), s) ds

]
γ′(t) dt

=

ˆ b

a

[ˆ 1

0

φ(γ(t), s)γ′(t) dt

]
ds

=

ˆ b

a

[ˆ
γ

φ(z, s) dz

]
ds .

φ(z, s) is holomorphic for fixed s, so by Cauchy’s theorem on a disk,
ˆ
γ

φ(z, s) = 0 ,

and by Morera, g is holomorphic. �

Applying this lemma with h(w) =
´
γ
g(ζ, w) dζ for w ∈ U (think of ζ as the input to γ),

we conclude that h is holomorphic as claimed. �
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Now since h is entire, it is continuous, and since |h| → 0 as |w| → ∞, we have h bounded. By
Liouville’s theorem, h is constant, so h is 0. Then by the definition of h and g, for all w ∈ U \ γ,

h(w) =

ˆ
γ

f(z)− f(w)

z − w
dz = 0 ,

which is exactly what we would like to show. �

Corollary (Cauchy’s theorem on simply connected domain). Let U be simply connected, f :
U → C holomorphic, then for any closed curve γ ⊂ U ,

´
γ
f = 0.

Lemma 4.11. Winding number is locally constant. If γ is a closed curve and w /∈ γ, then ∃D(w, ρ)
such that ∀w′ ∈ D(w, ρ), I(γ;w) = I(γ;w′).

Proof. Choose r > 0 small with D(w, r) ⊂ C \ γ. Take w < 1 and consider w′ ∈ D(w, r3). We have

|I(γ;w)− I(γ;w′)| = 1

2π

∣∣∣∣ˆ
γ

1

z − w
− 1

z − w′ dz

∣∣∣∣
=

1

2π

∣∣∣∣ˆ
γ

w − w′

(z − w)(z − w′)
dz

∣∣∣∣
≤ 1

2π
length(γ) · r3

r(r − r3)
→ 0 as r → 0 .

In particular, this is < 1 for r � 1 and so I(γ;w) = I(γ;w′), since both of them are integers. �

4.4 Singularities and Laurent Expansions

Theorem 4.12 (Laurent expansion). Let f be holomorphic on an annulus A = {z ∈ C | r <
|z − a| < R}, where 0 < r < R ≤ ∞. Then

(i) f has a unique convergent expansion on A

f(z) =

∞∑
n=−∞

cn(z − a)n

called Laurent expansion.

(ii) If r < ρ′ ≤ ρ < R, then the Laurent series converges uniformly on {z ∈ C | ρ′ ≤ |z − a| ≤ ρ}.

(iii) For any r < ρ < R, we have

cn =
1

2πi

ˆ
∂D(a,ρ)

f(z)

(z − a)n+1
dz .

Proof. Fix w ∈ A, and choose r < ρ1 < |w − a| < ρ2 < R. Define contours γ1, γ2 as shown.

a

r

R

γ1γ2

w

ρ1

ρ2

25



4 Zeros and Singularities IB Complex Analysis

We have I(γ1;w) = 1, I(γ2;w) = 0. By generalised CIF, we have

f(w) =
1

2πi

ˆ
γ1

f(z)

z − w
dz

=
1

2πi

ˆ
γ1+γ2

f(z)

z − w
dz

=
1

2πi

ˆ
|z−a|=ρ2

f(z)

z − w
dz︸ ︷︷ ︸

I2

− 1

2πi

ˆ
|z−a|=ρ1

f(z)

z − w
dz︸ ︷︷ ︸

I1

.

To compute I2, note that

1

z − w
=

1

(z − a)− (w − a)
=

1

z − a

1

1− w−a
z−a

,

so

I2 =
1

2πi

ˆ
|z−a|=ρ2

f(z)

z − a

∞∑
n=0

(
w − a

z − a

)n
dz

=

∞∑
n=0

(
1

2πi

ˆ
|z−a|=ρ2

f(z)

(z − a)n+1
dz

)
(w − a)n .

Notice this expression of I2 converges uniformly on D(a, ρ′) for any ρ′ < R.

To compute I1, we have

− 1

z − w
=

1/(w − a)

1− (z − a)/(w − a)
=

∞∑
m=1

(z − a)m−1

(w − a)m
,

which gives

I1 =

∞∑
m=1

(
1

2πi

ˆ
|z−a|=ρ1

f(z)

(z − a)−m+1
dz

)
(w − a)−m .

Re-indexing with n = −m, we obtain the negative power parts of Laurent expansion, proving (i) and
(ii).

To show (iii), suppose f(z) =
∑∞
n=−∞ cn(z− a)n on A and let r < ρ < R. The non-negative part

of the Laurent expansion converges uniformly on D(a, ρ). Similarly, let u = 1
z−a , then the negative

part of the Laurent expansion has radius of convergence ≥ 1
r , i.e. converges uniformly on C \D(a, ρ).

We have uniform convergence on |z − a| = ρ so

1

2πi

ˆ
∂D(a,ρ)

f(z)

(z − a)m+1
dz =

1

2πi

∞∑
n=−∞

cn

ˆ
∂D(a,ρ)

(z − a)n−m−1 dz .

This integral is zero unless n−m− 1 = −1, i.e. n = m, in which case it is 2πi, so

1

2πi

ˆ
∂D(a,ρ)

f(z)

(z − a)m+1
dz =

1

2πi
cm · 2πi = cm

as claimed. �

Definition 4.13. A point a ∈ U is an isolated singularity of f : U → C holomorphic if ∃r > 0 such
that D(a, r)× ⊆ U , i.e. f is holomorphic on a punctured neighbourhood of a.
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Examples.

(i) a = 0, f(z) = sin z
z . By the identity theorem, sin z = z − z3

3! + z5

5! + . . . about 0 converging
on C =⇒ f(z) = 1 − z2

3! +
z4

5! + . . . about 0. Therefore f is the restriction of a holomorphic
function on C, which takes the value 1 at 0.

(ii) a = 0, g(z) = 1
zn for b ∈ N holomorphic on C× and g(z) → ∞ as |z| → 0, so g cannot extend

to a function holomorphic at 0.

(iii) a = 0, h(z) = e1/z on C×. Recall ew = wRew · ei Imw.

y = y0

y = y0 + 2π

w 7→ ew

onto ×

C×

The map z 7→ 1
z maps D(0, ε)× 7→ {z ∈ C | |z| > 1

ε }, which contains of horizontal strip of height
2π, so h(D(0, ε)×) = C× no matter how small ε is. Note

e1/z =

∞∑
n=0

(1/z)n

n!
=

0∑
n=−∞

1

(−n)!
zn .

Let f have an isolated singularity at a, with a Laurent expansion about a

f(z) =

∞∑
n=−∞

cn(z − a)n .

(i) If cn = 0 ∀n < 0, then f is the restriction of a holomorphic function at a, and we say that a is
a removable singularity of f . Example: f(z) = sin z/z has a removable singularity at 0.

(ii) If ∃k > 0 such that c−k 6= 0 but c−n = 0 ∀n > k. Then (z − a)kf(z) extends to a holomorphic
function non-zero at k. We then say that f has a pole of order k at a. Example: g = z−n,
n ∈ Z has a pole of order n at z = 0.

(iii) If c−n 6= 0 for infinitely many n > 0, we say that f has an essential singularity at a. Example:
h = e1/z has an essential singularity at 0.

Proposition 4.14. An isolated singularity a of f is removable

⇐⇒ lim
z→a

(z − a)f(z) = 0 .

Proof.

(⇒) Trivial.

(⇐) Consider the function

g(z) =

{
(z − a)2f(z) z 6= a

0 z = a .

g(z)− g(a)

z − a
=

(z − a)2f(z)

z − a
= (z − a)f(z) → 0

as z → a, so g(z) is holomorphic at a with g(a) = g′(a) = 0. Therefore can write g(z) =∑∞
n=2 bn(z − a)n, and we have f(z) =

∑∞
n=0 bn+2(z − a)n, so the singularity is removable. �

27



4 Zeros and Singularities IB Complex Analysis

Proposition 4.15. An isolated singularity is a pole ⇐⇒ |f(z)| → ∞ as z → a. Moreover, the
following are equivalent:

(i) f has a pole of order k at z = a.

(ii) f(z) = (z − a)−kg(z) for some g holomorphic and non-zero at a.

(iii) f(z) = 1
h(z) , where h is holomorphic at a with a zero of order k at a.

Proof. (i)⇔(ii) by considering the Laurent expansion.

(ii)⇔(iii) since g is holomorphic and non-zero at a ⇐⇒ 1
g is holomorphic and non-zero at a.

If f has a pole of order k at a, then f(z) = (z−a)−kg(z), where g(z) is holomorphic and non-zero
at a, so |f(z)| =

∣∣∣ g(z)
(z−a)k

∣∣∣→ ∞ as z → a.

Now suppose |f(z)| → ∞ as z → a at an isolated singularity a. Then ∃ε > 0 such that f is
non-zero on D(a, ε)×, so 1

f is holomorphic on D(a, ε)×. We have 1
f(z) → 0 as z → a, so by the

previous proposition, the singularity of 1
f at z = a is removable. Therefore, h = 1/f is holomorphic

at a, and h has a zero of order k > 0 at a. Write h(z) = (z − a)kl(z), where l(z) is holomorphic and
non-zero at a, then

f(z) =
1

(z − a)kl(z)
=

g(z)

(z − a)k

for some g holomorphic and non-zero at a. Therefore f has a pole of order k at a. �

Theorem 4.16 (Casorati–Weierstrass theorem). If f : D(a, r)× → C has an essential singular-
ity at a, then f has a dense image in C at any punctured neighbourhood of a, i.e. ∀w ∈ C, ε > 0 and
∀δ > 0, ∃z ∈ D(a, δ)× with f(z) ∈ D(w, ε).

Proof. If this does not hold and we have some D(a, δ)× and some D(w, ε) with f(z) /∈ D(w, ε)
∀z ∈ D(a, δ)×, then

g(z) =
1

f(z)− w

must be holomorphic on D(a, δ)×, with zeros at the poles of f , and bounded by 1/ε. Therefore the
singularity of g(z) at a is removable. Hence we can re-express f as

f(z) =
1

g(z)
+ b .

If limz→a g(z) = 0, then f(z) has a pole at a. If limz→a g(z) is some finite, non-zero value, then f(z)
has a removable singularity at a. Both contradicts the hypothesis. �

There is a stronger result that is much harder to prove.

Theorem 4.17 (Great Picard theorem). If f has an essential singularity at a, then ∃b ∈ C such
that ∀ε > 0 with D(a, ε)× ⊆ domain of f , we have

C \ {b} ⊆ f(D(a, ε)×) .

Example: f = e1/z, b = 0.

Remark. If f : D(a, r)× → C has a pole at z = a, then f extends to a continuous function {D(a, r) →
C∪{∞}}, the Riemann sphere. f is then “holomorphic in C∞ sense”, since if we change coordinates
on the image near a, e.g. consider 1/f near a, this is holomorphic.
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5 Residues

5.1 Residue Theorem

Definition 5.1. Let U be a domain. A function f is meromorphic on U if f : D \ S → C is
holomorphic where S is a set of isolated singularities for f that are non-essential.

Definition 5.2. Let f : D(a, r)× → C be holomorphic with Laurent expansion f(z) =∑∞
n=−∞ cn(z − a)n. The residue of f at z = a is

Res
z=a

f := c−1 .

The principal part of f at z = a is
∑−1
n=−∞ cn(z − a)n.

Proposition 5.3. Let γ be a closed curve in D(a, r)×, thenˆ
γ

f(z) dz = 2πiI(γ; a)Res
z=a

f(z) .

Proof. Since the Laurent expansion f(z) =
∑
n cn(z − a)n converges uniformly on γ, we have

ˆ
γ

f(z) dz =

∞∑
n=−∞

cn

[ˆ
γ

(z − a)n dz

]
.

Have ˆ
γ

(z − a)n dz =

{
0 n 6= −1

2πiI(γ; a) n = −1

proving the proposition. �

If f is meromorphic on a domain D and z = a is a pole of f , then we have the principal part
c−k

(z − a)k
+ · · ·+ c−1

z − a

of f at a is holomorphic on C\{a}. More generally, if {a1, . . . , am} ⊆ {poles of f in D}, denote pi(z)
the principal part of f at ai, then

g(z) := f(z)−
m∑
i=1

pi(z)

has removable singularities at ai for each i, and is also meromorphic on D.

Theorem 5.4 (Residue theorem). Let f be meromorphic on a domain D and γ is a closed curve
which is homologous to 0 in D. Assume no poles of f lie in γ, and only finitely many poles of f have
I(γ; ai) 6= 0, call them {a1, . . . , am}, then

ˆ
γ

f(z) dz = 2πi

m∑
i=1

I(γ; ai) Res
z=ai

f(z) .

Proof. Let pi(z) denote the principal part of f at z = ai, and g(z) = f(z) −
∑∞
i=1 pi(z). Let

D′ = D \ {poles a of f with I(γ; a) = 0}. Note γ is homologous to zero in D′, then g is holomorphic
in D′, so by Cauchy’s theorem, ˆ

γ

g(z) dz = 0 ,

so
´
γ
f(z) dz =

∑m
i=1

´
γ
pi(z) dz. By the previous proposition, we have

´
γ
pi(z) dz to be

2πiI(γ; ai) Res
z=ai

f(z) .

�
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Remarks.

(i) We’ve shown that {z ∈ C \ γ | I(γ; z) = 0} is open in C, so its complement {z ∈ C | I(γ; z) 6=
0}∪ γ is closed. This set is also bounded, so by Bolzano–Weierstrass, any infinite subset has an
accumulation point. Since we assume that the poles of f are isolated, there can only be finitely
many of them.

(ii) If f is holomorphic on D, then residue theorem =⇒ Cauchy’s theorem.

(iii) Taking f(z) = g(z)
z−a , where g is holomorphic in D, then Resz=a f(z) = g(a), so residue theorem

=⇒ CIF.

(iv) We say a closed curve γ bounds a domain U if

I(γ, z) =

{
1 if z ∈ U

0 if z /∈ U .

If γ is a closed curve in D bounding a domain U , and if f is holomorphic in D, thenˆ
γ

f = 0 and ∀w ∈ U \ γ , 1

2πi

ˆ
γ

f(z)

z − w
dz = f(w) .

If f is meromorphic on D with no poles on γ, thenˆ
γ

f dz = 2πi
∑

w poles in U

Res
z=w

f(z) .

(v) (Jordan Curve Theorem) Every simply connected (continuous) curve in the plane separates
C into two connected components — one bounded and one unbounded.
Note that this theorem is not as trivial as it seems to be. A proof of this needs techniques from
algebraic topology.

5.2 Computing Residues

Computing Residues:

(i) If f has a simple pole at z = a, then

f(z) =
c−1

z − a
+ c0 + c1(z − a) + . . . ,

so
Res
z=a

f(z) = lim
z→a

(z − a)f(z) .

Example. f(z) = 1
1+z2 at z = i:

(z − i)f(z) =
1

z + i
→ 1

2i
as z → i .

(ii) As a special case, if f(z) = g(z)
h(z) , where g(z) holomorphic and h(z) holomorphic with a simple

zero at z = a, Then

(z − a)f(z) = (z − a)
g(z)

h(z)
= (z − a)

g(z)

(z − a)h̃(z)
,

where h̃(z)(z − a) = h(z). h̃ holomorphic and non-zero at z = a, so

Res
z=a

f(z) = lim
z→a

g(z)

h̃(z)
=

g(a)

h′(a)
.
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Example. f(z) = ez

1+z2 at z = i. Resz=i f(z) =
ei

2i .

(iii) If f(z) = g(z)
(z−a)k , g holomorphic and non-zero at z = a, then

Res
z=a

f(z) = coeff. of (z − a)k−1 in expansion of g about a

=
g(k−1)(a)

(k − 1)!
.

5.3 Real Integrals via Contour Integrals

Example. Evaluate
´∞
0

1
1+x4 dx.

Notice that ˆ ∞

0

1

1 + x4
dx =

1

2
lim
R→∞

ˆ R

0

1

1 + x4
dx

and that
∣∣∣ 1
1+x4

∣∣∣ is small for large |x|. Define contour as shown in the figure.

××

××

C′
R

γR = [−R,R]

f(z) = 1
1+z4 is meromorphic on C with 4 simple poles at z = eπi/4, e3πi/4, e5πi/4, e7πi/4. The closed

contour γR ∪C ′
R winds around the first two poles (if R is large enough), and not around the last two.

The residues are
Res

z=eπi/4

1

1 + z4
=

1

4e3πi/4
, Res
z=e3πi/4

1

1 + z4
=

1

4eπi/4
,

so the integral around the contour is

lim
R→∞

ˆ
γR∪C′

R

1

1 + z4
dz = 2πi

(
1

4e3πi/4
+

1

4eπi

)
=

π√
2
.

This integral can be separated into two parts
ˆ
γR∪C′

R

1

1 + z4
dz =

ˆ
C′

R

1

1 + z4
dz︸ ︷︷ ︸

I1

+

ˆ R

−R

1

1 + z4
dz︸ ︷︷ ︸

I2

.

I1 can be parameterised as Reiθ, θ ∈ [0, π], so

I1 =

ˆ π

0

1

1 +R4e4iθ
· iReiθ dθ

|I1| ≤
1

R4 − 1
· πR→ 0 as R→ ∞ .
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Hence, in the R→ ∞ limit, I1 vanishes, so
ˆ ∞

0

1

1 + x4
dx =

1

2
lim
R→∞

ˆ
γR∪C′

R

1

1 + z4
dz

=
π

2
√
2
.

Lemma 5.5 (Jordan’s lemma). Suppose f is holomorphic for |z| > r and assume that zf(z) is
bounded, then ∀α > 0, we have

ˆ
C′

R

f(z)eiαz dz → 0 as R→ ∞ .

Here C ′
R is [0, π] → C, C ′

R(t) = Reit.

Comment: eiαz = eiα(x+iy) = eiαx−αy is small if αy � 1.

Proof. For z = Reit, we have ∣∣eiαz∣∣ = e−αR sin t

and so using the estimate sin t
t ≥ 2

π on [0, π2 ], we have

∣∣eiαz∣∣ ≤ {e−αR· 2
π t for t ∈ [0, π2 ]

e−αR· 2
π t

′ for t′ = π − t, with t ∈ [0, π2 ] .

We have some M such that |zf(z)| ≤M on C ′
R, so on the first half of C ′

R (call it C ′
R), we have∣∣∣∣∣

ˆ
C′

R

f(z)eiαz dz

∣∣∣∣∣ ≤
ˆ π/2

0

MeαR
2
π t dt

=M ·
(
− 1

αR · 2
π

)[
e−αR· 2

π t
]π/2
t=0

=M ·
(

1

αR · 2
π

− 1

αR · 2
π

e−αR
)

→ 0 as R→ ∞ .

Similar for the second half of the curve. �

Example.
´∞
−∞

cos(mx)
x2+1 dx, where m ∈ R.

×

×

C′
R

γR = [−R,R]
γ = C′

R ∪ γR

cos(z) = eiz+e−iz

2 , so is large on the imaginary axis. So instead we use

cos(mx) = Re(exp(imx)) ,

then the integral we are interested in is

Re

(ˆ ∞

−∞

eimx

x2 + 1
dx .

)
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If m > 0, Jordan’s lemma applies, so let us the the contour shown in the figure.

For m > 0, by Jordan’s lemma,
ˆ
C′

R

eimz

1 + z2
dz → 0 as R→ ∞ .

eimz

1+z2 has simple poles at z = i and z = −i. The first pole has winding number 1 and the second has
winding number 0. Have Resz=i

eimz

1+z2 = e−m

2i , so
ˆ ∞

−∞

cos(mz)

z2 + 1
dz = Re

[
lim
R→∞

ˆ
γ

eimz

1 + z2

]
= Re

[
2πi

e−m

2i

]
=

π

em
.

If m < 0, cos(mx) = cos(−mx), and so
ˆ ∞

−∞

cos(mx)

x2 + 1
dx =

π

e|m| .

If m = 0,
´∞
−∞

1
x2+1 dx. Using the same contour, we have∣∣∣∣∣

ˆ
C′

R

1

z2 + 1
dz

∣∣∣∣∣ ≤ πR

R2 + 1
→ 0 as R→ ∞ ,

and so
´∞
−∞

1
z2+1 dz = 2πi Resz=i

1
z2+1 = π.

Therefore, for m ∈ R, ˆ ∞

−∞

cos(mx)

x2 + 1
dx =

π

e|m| .

Example. Evaluate
´ 2π
0

1
5+4 cos θ dθ.

cos θ = 1
2 (e

iθ + e−iθ), so consider z = eiθ on the unit circle. Then we have cos θ = 1
2 (z + z−1) and

dz = ieiθ dθ = iz dθ.

ˆ 2π

0

1

5 + 4 cos θ
dθ =

ˆ
|z|=1

1

5 + 2(z + z−1)

dz

iz

= −i

ˆ
|z|=1

1

2z2 + 5z + 2
dθ

= 2π Res
z=− 1

2

(
1

2(z + 1
2 )(z + 2)

)
=

2π

3
.

Example. Evaluate
´∞
−∞

sin x
x dx.

Consider

1

2i

ˆ ∞

0

eix − e−ix

x
dx =

1

2i

ˆ ∞

0

eix

x
dx+

1

2i

ˆ 0

−∞

eix

x
dx

=
1

2i

ˆ ∞

−∞

eix

x
dx .
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C′
R

−C′
ε

ε−ε R−R

Call the closed contour shown in the figure γR,ε′ . Then by Cauchy’s theorem
ˆ
γR,ε

eiz

z
dz = 0 .

By Jordan’s lemma,
´
C′

R

eiz

z dz → 0 as R→ ∞. On C ′
ε, write z = εeiθ, θ ∈ [0, π], dz = iεeiθ.

ˆ
C′

ε

eiz

z
dz =

ˆ π

0

eiεe
iθ

z
· iz dθ =

ˆ π

0

eiεe
iθ

dθ → i

ˆ π

0

dθ = πi as ε→ 0 .

So
−πi +

ˆ ∞

−∞

eiz

z
dz = 0

=⇒
ˆ ∞

0

sinx

x
=

1

2i

ˆ ∞

−∞

eiz

z
dz =

π

2
.

Example. Evaluate
´∞
0

xα

1+x2 dx for α ∈ (0, 1).

We would like to use the contour below.

C′
R

−C′
ε

ε−ε R−R

×

We have
zα = exp(α log z) = exp(α ln |z|+ αi arg(z)) ,

We choose arg z ∈ (−π
2 ,

3π
2 ) to define log z on C \ {negative imaginary axis}, so our contour is in a

domain where log is holomorphic.

The integral along the whole closed contour is
ˆ
γR,ε

zα

1 + x2
= 2πi Res

z=i

exp(α log z)

(z + i)(z − i)

= 2πi
exp(α log i)

2i
= π exp

(π
2
αi
)
.

Simple estimation shows that
´
C′

R
→ 0 as R→ ∞ and

´
C′

ε
→ 0 as ε→ 0.
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Now we need to evaluate (−x)α for x > 0 to calculate the integral on the negative real axis.

(−x)α = exp(α log(−x))
= exp(α ln |−x|+ αi arg(−x))
= exp(α lnx+ αiπ) = xα exp(αiπ)

Therefore, (−x)α
1+x2 = eαiπ xα

1+x2 , and so
ˆ −ε

−R

zα

1 + z2
dz = exp(αiπ)

ˆ R

ε

zα

1 + z2
.

So we can conclude that
(1 + exp(αiπ))

ˆ ∞

0

xα

1 + x2
= π exp

(π
2
αi
)

ˆ ∞

0

xα

1 + x2
=

π exp(απ2 i)

exp(απi) + 1
.

Example. Evaluate
´∞
0

x1/3

(x+2)2 dx.

L1

L2−C2

C1

arg = δ

arg = 2π − δ
×

First, elementary estimates yields that the integrals on C1 and C2 → 0 as ε→ 0 and R→ ∞.

We choose arg ∈ (0, 2π). On L1, z = teiδ for t ∈ (ε, R), dz = eiδ dt, so
ˆ
L1

z1/3

(z + 2)2
dz =

ˆ R

ε

(teiδ)1/3

(teiδ + 2)2
eiδ dt .

(teiδ)1/3 = exp

(
1

3
log(teiδ)

)
= exp

(
1

3
log |t|+ 1

3
iδ

)
→ |t|1/3 as δ → 0 ,

so
´
L1

→
´ R
ε

t1/3

(t+2)2 dt. While
ˆ
L2

z1/3

(z + 2)2
dz =

ˆ R

ε

(tei(2π−δ))

(tei(2π−δ) + 2)2
ei(2π−δ) dt .

(tei(2π−δ))1/3 = exp

(
1

3
ln |t|+ 1

3
i(2π − δ)

)
→ |t|1/3 e2πi/3 ,

so
´
L2

→ e2πi/3
´ R
ε

t1/3

(t+2)2 dt as δ → 0.

Putting all these together,

(1− e2πi/3)

ˆ ∞

0

t1/3

(t+ 2)2
dt =

ˆ
γ

z1/3

(z + 2)2
dz

= 2πi Res
z=−2

z1/3

(z + 2)2
.
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By the residue computation method (iii), the residue is

d

dz

∣∣∣∣
z=−2

z1/3 =
d

dz

∣∣∣∣
z=−2

exp

(
1

3
log z

)
=

1

3z
exp

(
1

3
log z

)∣∣∣∣
z=−2

,

so
Res
z=−2

z1/3

(z + 2)2
= −1

6
3
√
2eπi/3

and ˆ ∞

0

x1/3

(x+ 2)2
dx =

π 3
√
2

3
√
3
.

5.4 Rouché’s Theorem

Proposition 5.6. Let f be meromorphic with a zero (or a pole) of order k at z = a. Then f ′(z)
f(z) has

a simple pole at z = a, with residue k (or −k for a pole).

Proof. If f has a zero of order k at z = a, then

f = (z − a)kg(z) ,

where g is holomorphic and g(a) 6= 0. So

f ′ = k(z − a)k−1g(z) + (z − a)kg′(z) ,

and so
f ′(z)

f(z)
=

k

z − a
+
g′(z)

g(z)
.

Since g(a) 6= 0,

Res
z=a

f ′

f
= Res

z=a

k

z − a
= k

(respectively −k if a is a pole of order k). �

This quantity f ′/f is the “logarithm derivative” of f . From example sheet 2, we know that if
f : U → C with f(U) ⊆ V is simply connected and omits 0, then we have a holomorphic branch of
log f(z) on U , with

d

dz
log f(z) =

f ′(z)

f(z)
.

Theorem 5.7 (Argument principle). Let γ be a closed curve which bounds a domain D. Let f
be a function holomorphic on an open neighbourhood of D ∪ γ. If f has no zeros or poles on γ, then

I(f ◦ γ; 0) = 1

2πi

ˆ
γ

f ′

f
dz =

(
# of zeros of

f in D

)
−
(
# of poles of

f in D

)
,

where zeros and poles are counted with their multiplicity.

Proof. We have

I(f ◦ γ; 0) = 1

2πi

ˆ
f◦γ

dw

w
=

1

2πi

f ′(z)

f(z)
dz
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by letting w = f(z). By residue theorem,

I(f ◦ γ; 0) =
∑

α poles of f ′/f in D

Res
z=α

f ′

f
.

By previous proposition, this equals to (# of zeros of f in D) − (# of poles of f in D), counting
multiplicities. �

Remarks.

(i) The argument principle says that

2π[(# zeros of f in D)− (# poles of f in D)]

is tracking the change of arg f(z) as z travels along γ.

(ii) If interested in solving f(z) = c for some c ∈ C. Let g(z) = f(z)− c, then

I(f ◦ γ, c) = 1

2πi

ˆ
f◦γ

dw

w − c
=

1

2πi

ˆ
γ

g′(z)

g(z)
dz

= (# zeros of g in D)− (# poles of g in D)

= (# preimages of c in D for f)− (# poles of f in D) .

Definition 5.8. If f is holomorphic and non-constant near z = a, then the local degree (multiplicity)
of f at a is

Deg
z=a

f(z) := the order of the zero of f(z)− f(a) at z = a .

Here we have
f(z)− f(a) = (z − a)kg(z) ,

where g(z) is holomorphic and non-zero at a. z = a is an isolated zero of f(z)− f(a), so ∃ε > 0 such
that D(a, ε)× does not contain any preimage of f(a). So for sufficiently small ε > 0, the circle γ of
radius ε about a gives

I(f ◦ γ; f(a)) = (# zeros in D(a, ε) of f(z)− f(a))

− (# poles in D(a, ε) of f(z)− f(a)) .

What if we move slightly away from f(a)?

Consider the local behaviour of f(z) = zk at z = 0, k > 0, we have Degz=0 f(z) = k.

ε

z 7→ zk

εk

For all w ∈ D(0, εk)∗, we have exactly k simple preimages of w in D(0, ε)×.

Theorem 5.9 (Local degree theorem). Let f : D(a,R) → C be holomorphic and non-constant
with local degree k > 0 at z = a. Then for r sufficiently small, ∃ε > 0 such that 0 < |w − f(a)| <
ε =⇒ w = f(z) has k simple solutions in D(a, r).
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a

γ

f f(γ)

f(a)
D(f(a), ε)

Proof. Find r > 0 such that f(z)− f(a) is non-zero and f ′(z) 6= 0 on D(a, r) \ {a}. Then f ◦ γ does
not contain f(a), so ∃ε > 0 such that D(f(a), ε)∩ (f ◦ γ) = ∅, where γ is the circle of radius r about
a.

Then for w ∈ D(f(a), ε),
I(f ◦ γ;w) = I(f ◦ γ; f(a)) .

We have

I(f ◦ γ;w) = (# zeros of f(z)− w of D(a, r)) ,

I(f ◦ γ; f(a)) = (# zeros of f(z)− f(a) of D(a, r))

= Deg
z=a

f(z) = k ,

so w has k pre-images under f in D(a, r), all of which are simple since f ′(z) 6= 0 in D(a, r) \ {a}. �

Corollary (Open mapping theorem). Holomorphic functions are open maps that sends open sets
to open sets.

Proof. It suffices to prove that if f : U → C, then ∀a ∈ U and r > 0 sufficiently small, we can find
ε > 0 such that D(f(a), ε) ⊂ f(D(a, r)). This is immediately true by the local degree theorem, since
∀w ∈ D(f(a), ε), we are guaranteed to have Degz=a f(z) > 0 preimages of w in D(a, r). �

Theorem 5.10 (Rouché’s theorem). Let γ bound a domain D, f, g holomorphic on a neighbour-
hood of D ∪ γ. If |f(z)| > |g(z)| ∀z ∈ γ, then f and f + g have the same number of zeros in
D.

Proof. Define h(z) = f(z)+g(z)
f(z) = 1 + g(z)

f(z) . Then h is meromorphic on a neighbourhood of D ∪ γ.
Since |f(z)| > |g(z)| on γ, neither f nor f + g is 0 on γ, so h has no zeros or poles on γ. By argument
principle, # zeros of f + g on D−# zeros of f in D = I(h ◦ γ; 0). By hypothesis, h ◦ γ ⊂ D(1, 1), so
I(h ◦ γ; 0) = 0. �

Remark. This is also known as the dog-walking theorem. If a person were to walk a dog on a leash
around and around a tree, such that the distance between the person and the tree is always greater
than the length of the leash, then the person and the dog go around the tree the same number of
times.

Example. Rouché’s theorem =⇒ open mapping theorem.

Suppose f : D → C holomorphic and non-constant on a domain D. For a ∈ D, choose r > 0
such that D(a, r)× has no zeros of f(z) − f(a). If γ is in the boundary |z − a| = r, then have
0 < ε < minz∈γ |f(z)− f(a)|. Then for w ∈ D(f(a), ε),

f(z)− w = f(a)− w + f(z)− f(a) ,

so we have
|f(z)− w| < ε+ |f(z)− f(a)|

for all z ∈ γ. By Rouché’s theorem, f(z)− w and f(z)− f(a) have the same number of zeros inside
γ. Since we now that we have one zero or order k of f(z) − f(a) inside γ at z = a, we also have k
zeros of f(z)−w, i.e. w has a preimage under f in D(a, r). So D(f(a), ε) ⊆ f(a) and so f is an open
map.
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6 Non-examinable Fun

6.1 Homotopy

Definition 6.1. Given a pair of piecewise-C1-smooth closed paths φ, ψ : [0, 1] → U , we say ψ is an
elementary deformation of φ if there exists convex open sets C1, . . . , Cn ⊆ U and a division of the
interval 0 = x0 < x1 < · · · < xn = 1 such that on [xi−1, xi], both φ(t) and ψ(t) belong to Ci.

U

φ

ψ

φ(xi−1)

ψ(xi−1)ψ(xi)

φ(xi)

This allows us to deform a curve in a domain. If f is holomorphic on U , then the integral along the
red closed curve is zero. Therefore we haveˆ

φ

f(z) dz =

ˆ
ψ

f(z) dz .

However, this is a rather unnatural definition, since we have to make reference to this arbitrarily
constructed dissection of [a, b] and convex sets Ci. Moreover, this definition fails to be transitive (e.g.
on R \ {0}, rotating a circle about the center by, say, π/10 is elementary, but rotating by π is not).
Yet, this definition was cooked up just so that it immediately follows that elementary deformations
preserve integrals of holomorphic functions around the loop.

The idea now is to define a more general and natural notion of deforming a curve.

Definition 6.2. Let U ⊆ C be a domain, and let φ, ψ : [a, b] → U be piecewise-C1-smooth closed
contours. A homotopy from φ to ψ is a continuous map F : [0, 1]× [a, b] → U such that

F (0, t) = φ(t) , F (1, t) = ψ(t) ,

and moreover, for all s ∈ [0, 1], the map t 7→ F (s, t) viewed as a map [a, b] → U is closed and
piecewise-C1-smooth.

We can imagine this as a process of continuously deforming the path φ to ψ, with a path F (s, · ) at
each point in time s ∈ [0, 1].

Proposition 6.3. Let φ, ψ : [a, b] → U be homotopic contours in a domain U . Then there exists
some φ = φ0, φ1, . . . , φN = ψ such that each φj is piecewise-C1 contour and φi+1 is obtained from φi
by elementary deformation.

Proof. Let F : [0, 1] × [a, b] → U be a homotopy from φ to ψ. Since the image of F is compact and
U is open, there exists some ε > 0 such that D(F (s, t), ε) ⊆ U for all (s, t) ∈ [0, 1]× [a, b]. Since F is
uniformly continuous, there is some δ such that ‖(s, t)− (s′, t′)‖ < δ =⇒ |F (s, t)− F (s′, t′)| < ε.
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Now we pick n ∈ N such that 1+(b−a)
n < δ and let

xj = a+ (b− a)
j

n

φi(t) = F

(
i

n
, t

)
Cij = D

(
F

(
i

n
, xj

)
, ε

)
.

Then Cij is clearly convex. These definitions are cooked up precisely so that if s ∈ ( i−1
n , in ) and

t ∈ [xj−1, xj ], then F (s, t) ∈ Cij . So the result follows. �

Corollary. Let U be a domain, f : U → C be holomorphic, and γ1, γ2 be homotopic contours in U ,
then ˆ

γ1

f(z) dz =

ˆ
γ2

f(z) dz .

This means the integral around any path depends only on the homotopy class of the path, and
not the actual path itself.

We can now use this to upgrade our Cauchy’s theorem to allow arbitrary simply connected
domains. The theorem will become immediate if we adopt the following alternative definition of
a simply connected domain.
Definition 6.4. A domain U is simply connected if every contour is homotopic to a constant path.

This is in fact equivalent to our earlier definition that every continuous map S1 → U can be extended
to a continuous map D2 → U . This is almost immediately obvious, except that our old definition only
required the map to be continuous, while the new definition only works with piecewise-C1-paths. We
will need something that allows us to approximate any continuous curve with a piecewise-C1-smooth
one, but we shall not do that here. Instead, we will just forget about the old definition and stick to
the new one.

Then we immediately have the following corollary
Corollary (Cauchy’s theorem for simply connected domains). Let U be a simply connected
domain, and let f : U → C be holomorphic. For any contour γ in U ,ˆ

γ

f(z) dz = 0 .

Proof. By definition of simply-connected, γ is homotopic to the constant path, and it is easy to see
the integral along a constant path is zero. �

We arrived at this result in a much simpler way.

6.2 Uniform Limits of Holomorphic Functions

Definition 6.5. Let U ⊆ C be open, and fn : U → C a sequence of functions. We say fn → f locally
uniformly on U if ∀a ∈ U , ∃D(a, r) ⊆ U such that fn → f uniformly on D(a, r).

Example. fn(z) = zn on D(0, 1). We have fn → 0 pointwise, and the convergence is locally uniform.
For any |a| < 1, consider D(0, |a|+ 1−|a|

2 ). We have uniform convergence on D(0, |a|+ 1−|a|
2 ) and so

in particular on D(a, 1−|a|
2 ). Note however for any ε > 0, we have

|fn(z)| ≥ ε ⇐⇒ |zn| ≥ ε ⇐⇒ |z| ≥ ε1/n ,

so we cannot have uniform convergence on D(0, 1).
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Proposition 6.6. {fn} : U → C locally uniformly convergent on U ⇐⇒ on any compact subset K
of U , fn|K converges uniformly.

Recall from Analysis and Topology: K ⊆ C compact ⇐⇒ K is closed and bounded ⇐⇒ every
open cover of K has a finite subcover.

Proof. (⇒) If fn → f locally uniformly on U and suppose K is compact. For each a ∈ K, ∃ra > 0
such that fn → f uniformly on D(a, ra).

⋃
a∈K D(a, ra) is an open cover of K, so exists a

finite subcover: K ⊆
⋃l
i=1D(ai, rai). ∀ε > 0 and i = 1, 2, . . . , l, ∃Ni such that n > Ni =⇒

|fn(z)− f(z)| < ε for all z ∈ D(ai, rai), so N = max1≤i≤lNi gives |fn(z)− f(z)| < ε for all
z ∈ K and n > N , so fn → f uniformly on K.

(⇐) If fn → f uniformly on any compact subset, then for a ∈ U , find D(a, r) ⊆ U , then D(a, r2 ) ⊆ U

so fn → f uniformly on D(a, r2 ) and so on D(a, r2 ). �

Theorem 6.7. Let {fn} be a sequence of holomorphic functions on a domain U , converging locally
uniformly to f in U , then f is holomorphic and f ′n → f ′ locally uniformly.

Proof. Fix a ∈ U and D(a, r) ⊂ U , and so fn → f uniformly on D(a, r). We have

|f(z)− f(w)| = |f(z)− fn(z) + fn(z)− fn(w) + fn(w)− f(w)|

for z, w ∈ D(a, r), so f is continuous on D(a, r). Given any closed curve γ in D(a, r), we have
ˆ
γ

f = lim
n→∞

ˆ
γ

fn = 0

by Cauchy’s theorem, so by Morera’s theorem, f is holomorphic on D(a, r). So f is holomorphic on
U .

By CIF, we have

|f ′(w)− f ′n(w)| =
1

2π

∣∣∣∣∣
ˆ
|z−a|=r

f(z)− fn(z)

(z − w)2
dz

∣∣∣∣∣ .
If |w − a| ≤ r

2 , then we have

|f ′(w)− f ′n(w)| ≤
1

2π
· 2πr · 1

(r/2)2
· sup
|z−a|=r

|f(z)− fn(z)| → 0 as n→ ∞

by uniform convergence, so f ′n → f ′ as n→ ∞. �

Remark. There do exist counterexamples if we do not assume locally uniform convergence, using
Runge’s theorem (see Topics in Analysis).

Proposition 6.8. Let {fn} be a sequence of holomorphic functions on a domain U , fn → f locally
uniformly on U . If each fn is injective on U , then f is either injective on U or constant.

Proof. Suppose f is non-constant on U but ∃z1 6= z2 ∈ U such that f(z1) = f(z2) = a. U is a domain
so ∃ path from z1 to z2. We can find open neighbourhood of that path which is still contained in
U . Construct a curve γ that winds one around z1 and once around z2. Claim I can choose γ so that
f(z) 6= a ∀z ∈ γ. This holds since f is non constant so takes the value a at only finitely many points
inside γ and the domain it bounds. By uniform convergence, the same is true for fn, n � 1. So by
argument principle,

1 ≥ 1

2πi

ˆ
γ

f ′n(z)

fn(z)− a
dz → 1

2πi

f(z)

f(z)− a
dz ≥ 2 .

Contradiction. �
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6.3 Montel’s Theorem

Definition 6.9. A family F = {fi}i∈I of holomorphic functions on a domain U is normal if every
sequence {f(n)}n∈N ⊆ F has some locally uniformly convergent subsequence.

Note that we interpret “within ε of ∞” as “outside of D(0, 1ε )”.

Example. F = {zn | n ∈ N} is a normal family on D and on C∞ \D, with convergence to ≡ 0 on D,
and to ≡ ∞ on C∞ \ D.

Theorem 6.10 (Montel’s theorem). If ∃a, b, c ∈ C∞ distinct with ∀f ∈ F , f(U) ∩ {a, b, c} = ∅,
then F is a normal family.

Application 1. (Riemann mapping theorem) Suppose Ω ( C is a simply connected proper
subdomain of C, z0 ∈ Ω, then ∃ conformal isomorphism f : Ω → D such that f(z0) = 0 and
f ′(z0) > 0.

Proof. Consider
F = {f : Ω → D holomorphic, injective, f(z0) 6= 0} .

Proof outline:

1. F 6= ∅.

2. ∃f ∈ F which maximises |f ′(z0)| for functions in F .

3. This f is surjective.

1. Consider simply connected domain Ω ( C, then ∃a ∈ C\Ω. By example sheet 2, ∃ holomorphic
branch of log(z−a) on Ω. Call it g(z). Since eg(z) = z−a, g has a well defined inverse on g(Ω),
so it is injective. Consider g(w) = g(z0)+2πi, then w− z0 = eg(w)− eg(z0) = 0. A contradiction
for g being injective no point in g can be mapped to g(z0)+2πi. Therefore by the open mapping
theorem, ∃r > 0 such that D(g(z0), r) ⊂ g(Ω) while D(g(z0) + 2πi, r)∩ g(Ω) = ∅. Let µ be the
Möbius map sending C∞ \D(g(z0) + 2πi, γ) to D and g(z0) to 0. Then µ ◦ g ∈ F so F 6= ∅.

2. By Cauchy integral formula, for any f ∈ F , we have

f ′(z0) =
1

2πi

ˆ
C(z0,ε)

f(ζ)

(ζ − z0)2
dζ ,

where ε is chosen such that D(z0, ε) ⊆ Ω. So

|f ′(z0)| ≤
1

2π
· 2πε · 1 · 1

ε2
=

1

ε ,

so m = supf∈F |f ′(z0)| is finite and positive. Take a sequence {fn} ⊆ F such that |f ′n(z0)| → m.
Since f(Ω) ⊆ D ∀f ∈ F , F is a normal family by Montel’s theorem, so ∃ subsequence {fnk

}
which converges locally uniformly to some holomorphic f on Ω. We have |f ′(z0)| = m > 0
so f is non-constant, so it must be injective with f(Ω) ⊆ D. By open mapping theorem,
f(Ω) ⊆ int(D) = D, so f ∈ F .

3. Claim that such f with maximum |f ′(z0)| is surjective. If not, then ∃α ∈ D \ f(Ω). Consider
the Möbius map

σα(z) =
z − α

αz − 1
.

It is easy to check that it maps 0 to α, α to zero and D to D itself. Hence σα ◦ f(Ω) is a
simply connected subset of D×. Therefore ∃ a holomorphic branch of log on σα ◦ f(Ω), and in
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a

Ω

z0

ε g

2πi

g(Ω)

D(g(z0), r)

D(g(z0) + 2πi, r)

µf ∈ F

σασα(α) = 0

D = σα(D)

α = σα(0)

σα(f(Ω))

f(z0) = 0

D = µ(C∞ \D(g(z) + 2πi, r))

µ(g(Ω)) = f(Ω)

α

√
σαz 7→ z1/2

σ√α

F ∈ F

σ√
α(

√
α) = 0

σ√
α(0) =

√
α

σ√
α(
√
σα(f(Ω)))

√
σα(α) = 0

D =
√

σα(D)

√
α =

√
σα(0)

√
σα(f(Ω))

particular, there ∃ a holomorphic branch of z 7→ z1/2. Call this square root map s. Then the
map

s ◦ σα ≡
√
σα

maps α to 0, 0 to
√
α and D to D. Now consider σ√α. It will take 0 to

√
α,

√
α to zero and D

to D itself again. Then we define

F = σs(α) ◦ s ◦ σαf ,

which, from our discussion above, is clearly holomorphic, injective and F (z0) = 0. Therefore we
have found another F ∈ F . We want to show that it has larger derivative at z0 than f which
contradicts our assumption. Denote h the squaring map and

Φ = σ−1
α ◦ h ◦ σ−1

s(α) : D → D

holomorphic, then f = ΦF . Since Φ is not injective, it is not a rotation, and so |Φ′(0)| < 1 by
Schwarz’s lemma. Then by chain rule,

|f ′(z0)| = |Φ′(0)| |F ′(z0)| < |F ′(z0)|

so contradiction.

�

43



6 Non-examinable Fun IB Complex Analysis

Remark. This can be further generalised to give the uniformisation theorem, which states that every
simply connected Riemann surface is conformally equivalent to one of three Riemann surfaces: the
open unit disk, the complex plane, or the Riemann sphere.

Application 2. (Newton’s method in complex dynamics)

Recall the iterative root-finding algorithm that takes a polynomial p(z) and an initial guess z0 for
a root of p and compute

zn = zn−1 −
p(zn−1)

p′(zn−1)
,

and hope that zn → a root of p. Hence, finding the roots of p is equivalent to finding the fixed point
of

f(z) = z − p(z)

p′(z)
.

For example, if we want to find the roots of p(z) = z3 − 1, we can turn to determine the fixed
points of

f(z) = z − z3 − 1

3z2
=

2z3 + 1

3z2
.

We can define the family F = {f◦n = f ◦ · · · ◦ f︸ ︷︷ ︸
n times

| n ∈ N} of meromorphic functions, and we want

to know if their values approach a limit at z0.

Definition 6.11. The Fatou set of a meromorphic f : C∞ → C∞ is

F (f) := {z ∈ C∞ | ∃ neighbourhood U of z0 on which {f◦n} forms a normal family} .

The Julia set is the complement of the Fatou set

J(f) := C∞ \ F (f) .

Example. The Fatou set for f(z) = zk, k > 1 is F (f) = D∪ (C∞ \D). Since f◦n(z) = zk
n , if z ∈ ∂D,

and U is a neighbourhood of z with f◦n(z) → f(z) as a holomorphic limit, then f |U∩D ≡ 0 but
f |U∩(C∞\D) ≡ ∞. Contradiction.
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z1 = 1

z2 = ω

z3 = ω2

points
converging

to z1

points
converging

to z2

points
converging

to z3

Figure 1: Newton method for p(z) = z3−1, f(z) = 2z3+1
3z2 , Fatou sets F (f) in colours. The brightness

of the colour shows the speed of convergence.
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