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lens focal
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Figure 1.1: A magnified image of the diffraction grating is formed using a convex lens to focus the
diffraction pattern.

1 Diffraction

It might be familiar from physics that if you shine a beam of light on a diffraction grating, then a
diffraction pattern will emerge. If you put a lens after the diffracted beam, they may be brought to
a focus, and a magnified image of the diffraction grating will be seen, as shown in the figure.

Atoms in a crystal are, in some sense, very fine gratings. Can we use a similar method to image
the atoms in a crystal directly? However, to form a diffraction pattern, we need the wavelength of
the light to be in roughly the same length scale as the pattern we are trying to image. The atoms
are on the order of Angstroms (10−10 m), therefore, we need to use X-rays for diffraction at atomic
length scales. However, there is no practical conventional lens for X-rays, because lenses are made of
atoms too, so the imaging process does not work. What we have to do is to measure the intensity of
the diffracted beams at different directions, and infer the atomic structure mathematically.

This is, however, a hard thing to do. We will spend the vast majority of our lectures on how to
translate the diffracted beam intensities into atomic structure.

1.1 Addition of Electromagnetic Waves

X-rays are electromagnetic waves, so they are described by Maxwell’s equations, from which we
can infer that the electromagnetic fields are essentially just oscillating electric and magnetic fields,
travelling in some direction along the wavevector k (the magnitude of k also encodes the wavelength
via ‖k‖ = 2π/λ) with the speed of light c.1 We label the coordinate x along the propagation direction

1In free space, ρ = 0 and J = 0, so by Maxwell’s equations

∇× (∇×E) = −∇×
∂B

∂t
= −

∂

∂t
(∇×B) = −

∂

∂t

(
µ0ε0

∂E

∂t

)
= −µ0ε0

∂2E

∂t2
. (1.1)

By vector calculus identities, we also have

∇× (∇×E) = ∇(∇ ·E)−∇2E = −∇2E , (1.2)

and hence
∇2E = µ0ε0

∂2E

∂t2
. (1.3)

This is the wave equation, with wave speed c = 1/
√
µ0ε0, with general complex solution

E = E0e
i(k·r−ωt) (1.4)

for E ∈ C and k2c2 = ω2. By Maxwell’s equations, we also have

∂B

∂t
= −∇×E = −ik×E , (1.5)

1
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Figure 1.2: Electromagnetic wave propagating in space.

k, and consider the wave at some fixed time t. Then the electric (or equivalently the magnetic) field
strength is given by

ψ(x) = A sin

(
2πx

λ
+ φ

)
, (1.7)

where the real number A is the amplitude and φ is the phase offset. However, it turns out that when
considering oscillations, it is always easier to use complex numbers, so we will alternatively see the
electric field as the real part of the complex wave

ψ(x) = A exp

(
2πix

λ

)
, (1.8)

where A = |A| eiφ is now complex and includes both the amplitude |A| and the initial phase offset φ.

x1 x2 x3 x

Now what happens if we have multiple sources, each sending off electromagnetic waves of the
same frequencies but with different amplitudes and phases? Let’s consider the simple 1D case, where
n sources are located at xj . We will let all n sources have a zero initial phase2, so that the resulting
wave at point x due to source j is given by

ψj(x) = Aj exp

(
2πi(x− xj)

λ

)
, (1.9)

where Aj is real because we have a zero initial phase. We will denote the phase of the wave due to
source j at x as

φj =
2π(x− xj)

λ
. (1.10)

Then to work out the total wave, we only need to sum up the contributions from each source to get

Ψres(x) =
∑
j

Aj exp (iφj) . (1.11)

It is easy to see that the phase angle of the resultant amplitude is

Φres = tan−1

[∑
j Aj sinφj∑
j Aj cosφj

]
. (1.12)

and so
B =

k

ω
×E . (1.6)

Therefore, E and B are both transverse waves that are in the same phase but perpendicular to each other.
2It is a trivial generalisation for the sources to have different non-zero initial phases. We make such assumption

because this is the only situation we will need for later discussion, and it makes my diagram cleaner. It is actually also
trivial to generalise it to 3D by replacing x− xj with ‖x− xj‖ in all the expressions below.

2
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Now what if we move the measuring point x by an amount of δx? This will increase the phases
of the wave from all the sources by

δφ =
2πδx

λ
. (1.13)

The net result is that the resultant magnitude of the combined wave does not change, but the phase
changes by δφ, as

Ψ′
res(x) =

∑
j

Aj exp(i(φj + δφ)) = eiδφ
∑
j

Aj exp(iφj) . (1.14)

ReΨ

ImΨ

A1

A2

A3

|Ψres|

φ1

φ2

φ3

δφ

δφ

δφ

Figure 1.3: Movement of the measuring point results in a change of measured phase only.

What if we change the position of one of the sources xk? This will in general lead to a change in
the phase φk. Now both the phase and the amplitude of the resulting wave is different.

ReΨ

ImΨ

A1

A2

A3

|Ψres|

φ1

φ2

φ3

Figure 1.4: A change in the position of one of the sources leads to a change in both the magnitude
and the phase measured.
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Figure 1.5: Path difference for diffractions in a general object.

1.2 Diffraction of an Object

We would now like to consider the diffraction of an extended object. Suppose we have parallel incident
beams from the direction ŝ0 illuminating the whole object, and we are measuring the diffracted beam
at some distant point Q. The dimension of this object is small compared to its distance to the
measuring point Q so we can sensibly say that Q is at direction ŝ for all points in the object.3
Moreover, we assume that the effect of diffraction is weak, so the diffraction only happens once — an
already diffracted beam cannot be diffracted again. This is known as the kinematic approximation.4

To produce the diffraction pattern, we need to sum up the radiation scattered from all the points
in the object. To do this, we first pick an arbitrary origin O in the object, and we need to figure out
the intensity and phase difference between the beams diffracted in direction ŝ from O and from any
other point P with position vector r.

From figure 1.5, it is easy to see that the beam diffracted from P and O has a path difference

∆x = r · ŝ0 − r · ŝ . (1.15)

In particular, a positive path difference means that the beam from P falls behind the beam from O,
leading to a negative phase difference, so

∆φ = −2π∆x

λ
=

2πr · (ŝ− ŝ0)

λ
. (1.16)

The amplitude of the beam diffracted from O and P may also be different, since the object may be
inhomogeneous. Let A(r) be a real function representing the diffraction amplitude, then by integrating
over all points, the wave measured at point Q is

Ψ(ŝ) =

∫
d3rA(r) exp

(
2πir · (ŝ− ŝ0)

λ

)
. (1.17)

The integral is over the object volume.

We can define the scattering vector S by

S :=
ŝ− ŝ0
λ

. (1.18)

It is a vector bisecting the external angle between the incident and diffracted beam, as shown in the
figure below. If we define the angle of deflection to be 2θ, then the length of the scattering vector is

‖S‖ = 2 sin θ

λ
. (1.19)

3This type of diffraction is known as Fraunhofer diffraction. If you are observing near the diffracting object, then
the diffraction is Fresnel diffraction.

4If this assumption is false (as it will be for electron diffractions), we need to consider a more complicated dynamic
scattering.

4
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The scattering vector has dimension [L]−1, so it exists in the reciprocal space, which might be familiar
from Part IB Chemistry A.5

ŝ0

ŝ
λS

2θ

Figure 1.6: Construction of the scattering vector.

This allows us to simplify our expression of the measured wave as

Ψ(S) =

∫
d3rA(r) exp (2πir ·S) . (1.21)

1.3 Diffraction of X-rays from Electrons

We will now consider how X-rays interacts with matter. The interaction generally fall into two
categories.

• Elastic scattering. This is our main focus. In an elastic scattering, or Thomson scattering, there
is no net transfer of energy from the photon to the material. It can be thought of as some kind
of resonance of the atomic electrons. When X-rays pass through the material, the oscillating
electric field causes the atomic electrons to oscillate, which in turn emit X-rays in all directions.
The incoming and outgoing rays retain a non-random phase relationship and are said to be
coherent.

• Inelastic processes. Inelastic processes involve energy transfer from the incoming X-rays to
electrons in atoms. The simplest example is photoelectron emission, where an X-ray photon
providing energy for an atom to eject a core-shell electron. The photons are then re-emitted
with lower energy in an incoherent fashion. This incoherence means that they cannot interfere
with each other to produce diffraction patterns. Other processes of this type may result from
interaction with valence shell electrons or vibrations, all being incoherent. We are therefore not
interested in inelastic processes at this stage — we will return to this later.

The quantitative description of Thomson scattering strictly only applies to free electrons, but the
results are found to be generally applicable to crystals under normal scattering conditions. Crucially,
the amplitude of X-rays diffracted from some point is proportional to the local electron density ρ(r).
Therefore,

Ψ(S) =

∫
d3rσρ(r) exp(2πir ·S) , (1.22)

where σ is the scattering power of a single electron. We can divide through this constant of
proportionality to obtain the structure factor F (S) given by

F (S) =

∫
d3r ρ(r) exp (2πir ·S) . (1.23)

The limits of the two integrals above are both throughout the whole 3D space. Mathematically, F (S)
is the Fourier transform of the electron density ρ(r).

5In some derivation, one uses momentum transfer vector Q defined by

Q =
2π(ŝ− ŝ0)

λ
. (1.20)

instead of S.

5
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Definition 1.1. Let f : Rn → C be a function. The Fourier transform of f is F [f ] ≡ f̃ : Rn → C
given by6

f̃(k) :=

∫
dnx f(x)e2πik ·x . (1.25)

Theorem 1.2. Let f̃(k) be the Fourier transform of f(x). The inverse Fourier transform that
converts f̃ back to f is given by

f(x) = F−1[f̃(k)] :=

∫
d3k f̃(k)e−2πik ·x . (1.26)

Proof.

F−1[f̃ ](x) =

∫
dnk e−2πik ·x

∫
d3s e2πik · sf(s)

=

∫
dns f(s)

∫
dnk e2πik · (s−x)

=

∫
dns f(s)δ(s− x)

= f(x) . (1.27)

�

Hence to convert the F (S) back to ρ(r), one simply needs to perform the inverse Fourier transform

ρ(r) =

∫
d3SF (S) exp(−2πir ·S) . (1.28)

Again, the integral is throughout the whole 3D space, and it is omitted.

This means that if we can determine the F (S), then we can easily reconstruct the electron density
in a material, no matter how complex the structure is. (1) Measure the phases and the amplitudes
of the diffracted beams. (2) Divide by single-electron scattering power σ to get F (S). (3) Do the
inverse Fourier transform to obtain ρ(r). Simple as that! Three steps to solve any chemical structure
in the world!

This should be the happy ending of our story on X-ray diffraction.

6You might be more familiar with the Fourier transform defined as

f̃ =
1

√
2π

∫
dx f(x)e−ikx , (1.24)

where the normalisation factor of 1/
√
2π may or may not be there. It is just a matter of convention. However, this

difference in convention is annoying since it results in slight tweaks in a lot of formulae.

6
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2 The Phase Problem and the Patterson Function

2.1 The Phase Problem

If the problem is really that simple, then this would be a one-lecture course instead of a 12-lecture
one. There is a huge issue. We cannot measure the phase of an X-ray.

To measure the magnitude and the phase of an electromagnetic wave, we would use an antenna.
However, this requires the antenna to have its dimensions comparable to the radiation wavelength.
The X-rays we used for diffraction are at atomic length scale — that’s why we can see the diffraction,
but it is impossible to make an antenna at atomic length scale since antennas should be made from
atoms! All we can measure in a diffraction experiment is the number of X-ray photons encountered
in a given time, which is the diffracted intensity. This is proportional to I = |F (S)|2. The phase
information is completely lost. This is referred to as the phase problem in diffraction.

Now the question is: is getting the correct phase important? If using a wrong phase of the
diffracted beam has little impact on the electron density calculated, then this would not be a huge
problem. We can calculate the modulus of F (S) by taking the square root of the intensity, and just
plug in some random phases to calculate ρ(r). However, it turns out that getting the correct phase
is extremely important — it even plays a more important role than the magnitude to some extent.
This can be illustrated by the following little experiment.

Instead of doing Fourier transform of a electron density function, we do a Fourier transform on a
picture. A black and white picture is also a function of the pixels, where the values of the function
is the gray scale. We can transform it into the frequency domain, and then transform it back, and
we get the original image. However, if we use some randomly generated phase values to replace
the correct phase values in the Fourier transform of the image, and we transform it back, we see a
complete mess. This is what will happen if we use random phase values for the structure factor —
we will get no valuable information. In fact, if we use some random value for the magnitudes of the
Fourier transform, with the correct phase values, we can still vaguely see the shape of a cat.

(a) Correct magnitudes + cor-
rect phases

(b) Random magnitudes + cor-
rect phases

(c) Correct magnitudes + ran-
dom phases

Figure 2.1: The effect of using the wrong phases and magnitudes in an inverse Fourier transform.

Just for fun, we can extend this experiment further. We have two images: one is a benzene
molecule and the other is a cat. What will happen if we use the magnitude value of one figure
with the phase value of the other? The result is shown in (2.2), and you can see it is the phase
that determines what we will see. In general, we don’t want to see a cat if we are investigating the
structure of benzene using diffraction, so it’s not a good idea just to use a random set of phases when
doing inverse Fourier transform.

7
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(a) Magnitudes of cat + phases of benzene (b) Magnitudes of benzene + phases of cat

Figure 2.2: Phases govern what we see in an inverse Fourier transform. If you use the phases of a
benzene, you see a benzene. If you use the phases of a cat, you see a cat.

Moral: phases are important, but we can’t measure them. The main task of structure
determination using X-ray diffraction is to deduce the phases of the structure factor. This is what
we will spend the remaining 11 lectures on.

2.2 Patterson Function

Since all what we can get from measuring a diffraction pattern is the intensity I(S) = |F (S)|2, let’s
see what its inverse Fourier transform gives us anyway.

Before doing that, let’s first introduce convolution and correlation.

Definition 2.1. For two functions f, g : Rn → C, their convolution is

(f ∗ g)(x) :=
∫

dns f(s)g(x− s) , (2.1)

and their correlation is
(f ⊗ g)(x) :=

∫
dns f(s)∗g(x+ s) . (2.2)

Theorem 2.2 (Convolution theorem). The Fourier transform of a convolution is the product of
Fourier transforms.

F [f ∗ g] = F [f ]F [g] . (2.3)

Proof.

F [f ∗ g](k) =
∫

dnx e2πik ·x
∫

dns f(s)g(x− s)

=

∫
dns f(s)

∫
dnx e2πik ·xg(x− s)

=

∫
dns f(s)

∫
dnu e2πik · (u+s)g(u) define u = x− s

=

∫
dns e2πik · sf(s)

∫
dnu e2πik ·ug(u)

= f̃(k)g̃(k) . (2.4)

�
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f g

f ∗ g f ⊗ g

Figure 2.3: Graphic explanation of convolution and correlation.

Theorem 2.3. Conversely, the Fourier transform of a product fg is the convolution of their Fourier
transforms

F [fg] = F [f ] ∗ F [g] . (2.5)

Proof.

F [fg](k) =
∫

dnx e2πik ·xf(x)g(x)

=

∫
dnx e2πik ·xf(x)

∫
dn` e−2πi` ·xg̃(`)

=

∫
dn` g̃(`)

∫
dnx e2πix · (k−`)f(x)

=

∫
dn` g̃(`)f̃(k− `)

= f̃ ∗ g̃(k) . (2.6)

�

We see a beautiful duality here. Product in the real domain is the convolution in the Fourier domain,
and vice versa.
Theorem 2.4 (Wiener–Khinchin theorem). The Fourier transform of the autocorrelation of a
function is its power spectral intensity.

F [f ⊗ f ] =
∣∣∣f̃ ∣∣∣2 . (2.7)

Proof.

F [f ⊗ f ](k) =
∫

dnx e2πik ·x
∫

dns f∗(s)f(x+ s)

=

∫
dns f∗(s)

∫
dnx e2πik ·xf(x+ s)

=

∫
dns f∗(s)

∫
dnu e2πik · (u−s)f(u) define u = x+ s

=

∫
dns e−2πik · sf∗(s)

∫
dnu e2πik ·uf(u)

= f̃∗(k)f̃(k) =
∣∣∣f̃(k)∣∣∣2 . (2.8)

�

9
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Finally, if we apply both sides on the Wiener–Khinchin theorem, we get

F−1
[
|f̃ |2

]
= f ⊗ f . (2.9)

We can apply this to our diffraction intensity! We previously identified the structure factor to be
the Fourier transform of the electron density, F (S) = F [ρ(x)], and the diffraction intensity is exactly
I(S) = |F (S)|2. Therefore, the inverse Fourier transform of the diffraction intensity is exactly the
autocorrelation of the electron density!

F−1[I(S)] = ρ⊗ ρ(r) . (2.10)

We often call this the Patterson function, denoted P (r).

2.3 Illustrating the Patterson Function

The above derivation is a bit abstract. Let’s do a simple 1D example of an electron density function
with three peaks, modelling three atoms in a line, and see how its Patterson function look like.

x

1

2

3

−1 0 1.5

We put the three peaks at positions x = −1, x = 0 and x = 1.5 with weights 2, 3 and 1 respectively.
From the definition of the Patterson function, which is the correlation of the electron density with
itself

P (u) =

∫
dx ρ(x)ρ(x+ u) , (2.11)

we need to take another copy of electron density function, shift it by some distance u, and evaluate
the integral of their product, which is roughly governed by how well do the peaks of the two functions
overlap. Let’s set u to a range of different values and see what happens.

• u = −3: First, when u is very negative, the two function has almost no overlap, so at this value
of u, P (u) ≈ 0.

x

−1 0 1.5

• u = −2.5: At this value of u, peak 1 and peak 3 just overlaps. Without the actual functional
form of the peak, we can’t evaluate this integral of their product, but since peak 1 has weight 2
and peak 3 has weight 1, we can roughly assign a relative weight of 2× 1 = 2 to the Patterson
function here.

10
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x

−1 0 1.5

• u = −1.5: Now at this value of u, peak 3 and peak 2 overlaps, giving a peak in the Patterson
function with relative weight 3× 1 = 3.

x

−1 0 1.5

• u = −1: Peak 1 and peak 2 overlap, giving a peak in the Patterson function with relative weight
2× 3 = 6.

x

−1 0 1.5

• u = 0: At this special value of u, the second function is not moved at all, so all the three peaks
are perfectly aligned. This leads to a very large peak in the Patterson function with weight
22 + 32 + 12 = 14.

x

−1 0 1.5

You can go further to check other values of u, but we should have done enough to discover a pattern.
The Patterson function will have peaks at the values when there are two peaks in the electron density
function align, which are exactly the “inter-peak” distances in the electron density. The relative
weight of the peak in the Patterson function is the product of the weight of the peaks in the electron
density.

11
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x

u = ±1
u = ±2.5

u = ±1.5

−1 0 1.5

u

−2.5 −1.5−1 0 1 1.5 2.5

Figure 2.4: Peaks in the Patterson function correspond to the inter-peak vectors in the electron
density function.

To conclude, let’s summarise some features of the Patterson function:

1. The Patterson function is defined in the same space as ρ(r) (as opposed to the structure factor
defined in the reciprocal space), and it spans a range twice that spanned by ρ(r).

2. The Patterson function is always centrosymmetric, even if ρ(r) is not.

3. The maximum of the Patterson function occurs at u = 0, and its value is

P (0) =

∫
d3r ρ2(r) . (2.12)

4. Local maxima in P (u) occur when peaks in ρ(r) overlaps with those in ρ(u+r). This happens if
the offset vector u is some peak↔peak vector in ρ(r). If we take an atomic picture of the electron
density, in which electron densities are concentrated on the atomic sites (we will formalise this
latter), then peaks in P (u) occur when u is an interatomic vector.

5. If there are N peaks in ρ(r), there are N2 interatomic vectors. Of these, N will occur at u = 0,
corresponding to vectors of an atom pointing itself. Consequently, there will in general be
N2 −N non-origin peaks in P (u) (some of them may overlap as well).

6. For a function ρ(r) consists of resolved peaks, the total weight (area) of the peak produced in
P (u) is proportional to the product of the weights of the peaks in ρ(r) and ρ(r+ u) producing
it. If atoms in ρ(r) and ρ(r+u) have atomic numbers Z1 and Z2, then the weight of the peaks
in P (u) will be proportional to Z1Z2. Consequently, Patterson peaks involving heavy atoms
(where Z1 and/or Z2 is large) will show up most clearly.

7. Peaks in P (u) will be broader than in ρ(r), and peaks corresponding to vectors from light atoms
may merge into a poorly-defined background.

Hence, as we will see later, the Patterson function will be helpful in locating heavy atoms in a
structure.

12
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2.4 Patterson Function of a Molecule

Now consider a SO3 molecule. For simplicity, we will make this problem 2 dimensional. The atomic
number of S and O are 16 and 8 respectively, so the electron density function has one peak of weight
16, which we set at the origin, and three peaks of weight 8 at the same distance from the origin,
separated by 120◦.

O1O2

O3

16

88

8

Figure 2.5: The electron density of a SO3 molecule.

S→ O1S→ O2

S→ O3

S→ S

256

128128

128

O1→ O1O1→ O2

O1→ O3

O1→ S

128

6464

64

O2→ O1O2→ O2

O2→ O3

O2→ S

128

6464

64

O3→ O1

O3→ O3

O3→ O2

O3→ S

128

6464

64

Figure 2.6: Interatomic vectors of SO3.

To evaluate the Patterson function, we need to find all the interatomic vectors. Let’s first consider
vectors from the central S atom. There will be a self-vector (S→ S) at the origin, with weight
16 × 16 = 256, and there will be three S→ O vectors arranged symmetrically around origin, with
weight 16×8 = 128 each. Their distance to the origin is the same as the S−O bond length, which we
will denote as r1. Note that this looks like the molecule itself, with the S atom sitting at the origin.
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Then consider the vectors from the atom O1. There will be a self vector (O1→ O1) at the origin,
with weight 8 × 8 = 64. There are two other O→ O vectors, O1→ O2 and O1→ O2, at 60◦ to
each other, with weight 64 and length

√
3r1. Bisecting these two is a S→ O1 vector with weight 128

and length r1. Note this again look like the molecule itself, but now with O1 sitting at the origin.
Similarly, we can consider vectors from atoms O2 and O3 as well.

Then to construct the Patterson function, we only need to add these contributions up. The result
is shown in the figure below.

448

128

64

128

64

128

64

128

64

128

64

128

64

Figure 2.7: The Patterson function of a SO3 molecule.

Some remarks:

• The weight of the origin is the sum of the squares the atomic numbers of all atoms.

• The Patterson function includes vectors between all atoms, not just between the chemically
bonded ones.

• P (u) must have a centre of symmetry at the origin, even though SO3 does not have one. The
point group of the SO3 molecule is D3h, and the centre of symmetry have upgraded the point
group of the Patterson function to D6h.

One can use the same principle to construct the Patterson of a 3D molecule. Below an example of
the Patterson function of SO2−

4 ion, with Td symmetry. The Patterson function has an extra inversion
centre, so its point group is Oh.

2.5 The Patterson Function of Ideal Gas

We now move on to a more realistic case where there is a whole collection of molecules, and we will
consider two extremes — an ideal gas and a crystalline solid.

First, let’s consider an ideal gas. There are no intermolecular forces, negligible molecular volumes,
and we will assume that all molecules are perfectly rigid and geometrically identical. The Patterson
peaks will have contribution from all molecules: both intermolecular vectors and intramolecular
vectors. For the vectors pointing within a molecule, the interatomic vectors should be identical to
that for a single molecule, multiplied by the total number of molecules that are present. But as we
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Figure 2.8: The electron density and the Patterson function of SO2−
4 .

are in the gas phase, we have another complexity. Due to the random molecular orientation, the
Patterson function of an ideal gas appears as a spherically averaged version of the 3D Patterson that
we constructed for one molecule. Thus, only the length of the interatomic vector is important, and
we will plot the resulting Patterson function as a radial vector map. For example, for the SO2−

4 ideal
gas (which apparently will not be ideal in reality), the radial Patterson function is shown in the figure
below.7

u

P (u)

d(S−O) d(O · · ·O)

Figure 2.9: Intramolecular contribution to the radial Patterson function of SO2−
4 .

We then need to consider the intermolecular vectors. If the gas is indeed ideal with no
intermolecular forces, then the positions and orientations of all molecules should be completely random
at any time. Hence, all distances between molecules are equally possible, and so the intermolecular
vectors will sum over time to form a constant background. If we are going to inject a little bit of
reality into this crude model, we can say that the molecules cannot be too close from each other, so
this background is zero at small u.

As a result, in an ideal gas, the radial Patterson function has discernible peaks corresponding
solely to the spherically averaged Patterson function of one molecule, superimposed on a featureless
background. Non-ideal gases, liquid and non-crystalline solid will show similar radial Patterson
function due their disorderedness. However, they may show local coordination peaks.

7As for the atomic wavefunction, you can choose to plot a radial Patterson function or a radial distribution function
— we are being rather loose here since we are doing everything schematically. Anyway, the true weight of a peak is
the integral of the 3D Patterson function.
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u

P (u)

d(S−O)

d(O · · ·O)

background due to intermolecular vectors

Figure 2.10: Radial Patterson function of SO2−
4 with both intermolecular and intramolecular

contributions.

3 Diffraction from a Single Crystal

In the remainder of the course, we will focus almost exclusively on single crystals, since as we will
see, we can develop robust methods to interpret single-crystal diffraction patterns.

3.1 Diffracted Intensity for a Single Crystal

We will first infer how the Patterson function of a crystal would look like — this shouldn’t be too
difficult due to the order in a crystal, and then we will perform the Fourier transform to try to figure
out the form of its diffracted intensity.

We will consider a single crystal with unit cell vectors a,b, c, with N = Na ×Nb ×Nc unit cells
in total, where Na, Nb, Nc are the number of cells along each direction.

Suppose the Patterson function of a single unit cell is Pcell(u), then its Fourier transform will give
the diffracted intensity from one unit cell, which we will call |Fcell(S)|2.

|Fcell|2 =

∫
d3u e2πiu ·SPcell(u) . (3.1)

Then for our single crystal, there will be N such contributions to the diffracted intensities, so we get
the intra-cell contribution N |Fcell(S)|2.

Next consider the contribution to the Patterson function by inter-cell vectors pointing from each
cell to the cell next to it along the +a direction. For each intra-cell vector u, there must be such
a inter-cell vector u + a, so the contribution to the Patterson function from this type of inter-cell
vectors is Pcell(u+ a). This contributes∫

d3uPcell(u+ a)e2πiu ·S (3.2)

to the diffraction intensity. We can simplify this a bit further. By the change of variable v = u+ a,
we have ∫

d3uPcell(u+ a)e2πiu ·S =

∫
d3vPcell(v)e

2πiv ·Se−2πia ·S

= |Fcell|2 e−2πia ·S . (3.3)

However, there are only (Na−1)NbNc cells have such a neighbouring cell one unit along +a direction,
so its contribution to the diffraction intensity is

(Na − 1)NbNc |Fcell|2 e−2πia ·S . (3.4)
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Similarly, there are also contributions from inter-cell vectors pointing from a cell to the neighbouring
cell along −a direction, which is

(Na − 1)NbNc |Fcell|2 e+2πia ·S . (3.5)

The rest of the process is similar, there will be inter-cell vectors pointing from one cell to the cell
naa+ nbb+ ncc away for any −Na < na < Na, −Nb < nb < Nb, −Nc < nc < Nc, contributing

(Na − |na|)(Nb − |nb|)(Nc − |nc|) |Fcell|2 e−2πi(naa+nbb+ncc) ·S (3.6)

to the total diffraction intensity. We need to sum all of these up, and we get a total diffraction
intensity

I(S) = |Fcell|2
Na∑

na=−Na

Nb∑
nb=−Nb

Nc∑
nc=−Nc

(Na − |na|)(Nb − |nb|)(Nc − |nc|)e−2πi(naa+nbb+ncc) ·S

= |Fcell|2
∏

j∈{a,b,c}

Nj−1∑
nj=−Nj+1

(Nj − |nj |)e−2πinjj ·S . (3.7)

The latter form is rather more compact, but less intuitive.8

A more Mathematical View

Consider the convolution of some function f(r) with a Dirac delta δ(r− a) with its peak at r = a.

f(r) ∗ δ(r− a) =

∫ ∞

−∞
d3u f(u)δ(u− (r− a)) = f(r− a) . (3.8)

We see that its effect is to shift f(r) by a — or in other words, it put a copy of f(r) at position a. A
crystal is essentially a copy of ρcell at each lattice point9. This allows us to view the electron density
of a crystal as the convolution of the lattice of Dirac delta functions with the electron density of a
single unit cell:

ρ(r) = ρcell(r) ∗ ρlattice(r) , (3.9)

where

ρlattice(r) =

Na−1∑
na=0

Nb−1∑
nb=0

Nc−1∑
nc=0

δ(r− naa− nbb− ncc) (3.10)

is the lattice of delta functions (It is obviously not a electron density, but we will denote it as ρ
anyway). A rather useful properties is the Patterson function of a convolution is the convolution of
the Patterson functions,10 and so

P (u) = Pcell(u) ∗ Plattice(u) . (3.12)
8You might have noticed that the limits of the sum should be ±(Nj −1) instead of Nj . We have included nj = ±Nj

into our sum since they contribute nothing and can make our formula slightly more compact.
9This is not quite accurate as a unit cell may contain more than one lattice point in non-primitive cell. This is not

a crystallographic course so we will be rather loose here.
10This is perhaps not too obvious to prove using the integral definitions of these quantities. However, an important

fact of electron density is that it is a real function, so P (r) = ρ(r)⊗ ρ(r) = ρ(r) ∗ ρ(−r). Then

P (r) = ρ(r) ∗ ρ(−r)

= [ρcell(r) ∗ ρlattice(r)] ∗ [ρcell(−r) ∗ ρlattice(−r)]

= [ρcell(r) ∗ ρcell(−r)] ∗ [ρlattice(r) ∗ ρlattice(−r)]

= Pcell(r) ∗ Plattice(r) (3.11)

by the commutativity and associativity of convolution (which are not that difficult to prove).
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The Patterson function (autocorrelation) of the lattice of delta functions is

Plattice(u) =

Na∑
na=−Na

Nb∑
nb=−Nb

Nc∑
nc=−Nc

(Na − |na|)(Nb − |nb|)(Nc − |nc|)δ(u− naa− nbb− ncc) . (3.13)

Then by the convolution theorem, the diffracted intensity, which is the Fourier transform of the
Patterson function, must be the product of the diffracted intensity of a unit cell |Fcell(r)|2 with the
Fourier transform of this Patterson function of the lattice, which is given by

I(S) = |Fcell|2
Na∑

na=−Na

Nb∑
nb=−Nb

Nc∑
nc=−Nc

(Na − |na|)(Nb − |nb|)(Nc − |nc|)e−2πi(naa+nbb+ncc) ·S . (3.14)

We have arrived at the same result.

3.2 The Reciprocal Lattice

Although we can’t measure the structure factor, we can still work it out assuming we know ρ(r) to
see how it looks like for a single crystal. Using the above expression of the electron density as a
convolution (3.9), we can directly take its Fourier transform and get the structure factor

F (S) = Fcell(S)F

[
Na−1∑
na=0

Nb−1∑
nb=0

Nc−1∑
nc=0

δ(r− naa− nbb− ncc)

]

= Fcell(S)

[
Na−1∑
na=0

Nb−1∑
nb=0

Nc−1∑
nc=0

e−2πi(naa+nbb+ncc) ·S

]

= Fcell(S)
∏

j∈{a,b,c}

Nj−1∑
nj=0

e−2πinjj ·S . (3.15)

We see a cute geometric series here! This allows to simplify it further

F (S) = Fcell(S)
∏

j∈{a,b,c}

1− exp[−2πiNjj ·S]
1− exp[−2πij ·S]

= Fcell(S)
∏

j∈{a,b,c}

exp[−πiNjj ·S]
exp[−πij ·S]

exp[πiNjj ·S]− exp[−πiNjj ·S]
exp[πij ·S]− exp[−πij ·S]

= Fcell(S)
∏

j∈{a,b,c}

exp[−πi(Nj − 1)j ·S] sin(πNjj ·S)
sin(πj ·S) (3.16)

Having the structure factor in this form, we can work out another expression of the diffraction intensity
of single crystal

I(S) = F (S)F ∗(S)

= |Fcell(S)|2
∏

j∈{a,b,c}

sin2(πNjj ·S)
sin2(πj ·S)

= |Fcell(S)|2
sin2(πNaa ·S)
sin2(πa ·S)

sin2(πNbb ·S)
sin2(πb ·S)

sin2(πNcc ·S)
sin2(πc ·S)

. (3.17)

This is somewhat easier to plot. To make the plotting easier, we will consider a 1D crystal of N units
cell, so

I(S)

|Fcell(S)|2
=

sin2(πNaS)

sin2(πaS)
. (3.18)
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Let’s plot this function at different values of N and see how they look like.

We see that the functions have principal maxima at S = k/a for integer values of k, and there are
N − 2 subsidiary maxima between the principal maxima. As we increase N , the principal maxima
becomes too strong that we can no longer see the subsidiary maxima. We can see this by taking the
limit

lim
S→k/a

sin2(πNaS)

sin2(πaS)
= lim

u→k

(
sinNuπ

sinuπ

)2

= lim
u→k

(
Nπ cosNuπ

π cosuπ

)2

= N2 , (3.19)

so the height of the principal maxima is N2. Hence, in the limit of large N (in real-life crystals,
N ∼ 1023), we can well-approximate the diffraction pattern of single crystals as discrete beams,
separated by 1/a.

Similarly, in a 3D crystals, the diffraction intensity will only be observable at discrete values of
S separated by 1/ ‖a‖, 1/ ‖b‖ and 1/ ‖c‖. This forms what is called a reciprocal lattice, with lattice
vectors a∗, b∗ and c∗ given by

a∗ =
b× c

V
b∗ =

c× a

V
c∗ =

a× b

V
, (3.20)

where V = a · (b× c) is the volume of the unit cell. We will only observe diffracted beams with

S = ha∗ + kb∗ + lc∗ , (3.21)

i.e. on the reciprocal lattice points. We will show later that this corresponds to the same h, k, l as in
the Miller planes in Bragg’s description of diffraction which you might have seen if you take Part IA
Material Sciences.

It is called the reciprocal lattice because it lives in the reciprocal space (Fourier domain). In fact,
the reciprocal lattice is the Fourier transform of the real lattice. The unit of the reciprocal lattice
vectors are length−1, and their magnitudes are given by

‖a∗‖ = ‖b‖ ‖c‖ sinα
V

‖b∗‖ = ‖c‖ ‖a‖ sinβ
V

‖c∗‖ = ‖a‖ ‖b‖ sin γ
V

, (3.22)

where α is the angle between b and c, etc. This means that we can view the reciprocal lattice as
“the lattice of periodicities in a crystal”. To see this, let’s consider all the possible set of repeated
parallel planes that are compatible with the periodicity of the crystal. By being compatible with the
periodicity, we require it to look identical in different unit cells, which requires the planes to intersect
each edge of the lattice an integer number of times. This allows us to define the Miller indices for
repeated planes in crystals by specifying how many times the plane intersect with the edge of the cell
in each direction. If we put the first plane at the origin and the second plane intersects the axes at
1/h, 1/k and 1/l for h, k, l ∈ Z, then we would label these planes as (hkl). Then this set of planes
will intersect a axis h times, b axis k times and c axis l times.
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c

1/h
1/k

1/l

Figure 3.1: A (hkl) plane in a unit cell. There will be another max(h, k, l) planes parallel to this in
this cell, intersecting a axis at 1/h, 2/h, . . . , 1, b axis at 1/k, 2/k, . . . , 1 and c axis at 1/l, 2/l, . . . , 1.
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Figure 3.2: Constructing the reciprocal lattice using planes.

We can use these planes to construct the reciprocal lattice. Consider viewing the lattice along
the b direction, and constructing planes of (h0l) types. For each set of plane, if we draw a vector
perpendicular to these planes and magnitude inversely proportional to the interplanar spacing, then
the end of these vectors will form the (h0l) section of the reciprocal lattice.

By the definition of the reciprocal lattice vectors, it is easy to see that

i · j∗ = δij , (3.23)

i, j ∈ {a, b, c}. Hence, by expanding r = xa+ yb+ zc and S = ha∗ + kb∗ + lc∗, we can see that

r ·S = xha ·a∗ + xk���a ·b∗ + xl���a · c∗

yh���b ·a∗ + ykb ·b∗ + yl���b · c∗

zh���c ·a∗ + zk���c ·b∗ + zlc · c∗

= xh+ yk + zl . (3.24)

Therefore for a single crystal, the structure factor can be rewritten as

F (h, k, l) =

∫
dxdy dz ρ(x, y, z)e2πi(hx+ky+lz) . (3.25)

3.3 Bragg’s Law

Here we present an alternative view of diffraction in a single crystal, which might be familiar from
Part IA Material Sciences. We can think of the diffracted beam as being reflected by the planes
in crystals, which are known as the Bragg’s planes. The scattering vector is bisecting the incoming
and outgoing rays, so it is perpendicular to those imaginary mirror planes. Now for a constructive
interference to occur, we need the path difference of light reflected by consecutive Bragg planes to be
an integer multiple of the wavelength, so

nλ = 2d sin θ , (3.26)

20



3 Diffraction from a Single Crystal C6 Diffraction Methods in Chemistry

normal

d

θ

Figure 3.3: Diffraction using Bragg planes.

where θ is the angle between the planes and the beams, and d is the interplanar spacing. This factor
of n can be omitted since diffraction from with n > 1 from a set of planes (h k l) with spacing d is
equivalent to diffraction with n = 1 from planes with spacing d/n, so we can instead think of them as
being reflected from a high-order plane (nhnk nl). For example, a n = 4 reflection from 100 planes
is equivalent to a n = 1 reflection from 400 planes. Therefore, we have the Bragg’s law

λ = 2d sin θ (3.27)

for diffraction to be observed. We have defined ‖S‖ = 2 sin θ/λ, and so ‖S‖ = 1/d. This again shows
why diffraction is only observed on reciprocal lattice points.

3.4 Practical Measurements of Single-Crystal X-Ray Diffraction

Suppose we are measuring the diffraction from a particular single crystal. Since a crystal has a
defined orientation, a certain scattering vector S = ha∗ + kb∗ + lc∗ will appear in a well-defined
direction relative to the crystal (perpendicular to the hkl planes). We can think the reciprocal lattice
is attached to the crystal, and hence to measure a particular hkl diffraction, we need to arrange the
incident beam to a particular direction relative to the crystal given by the Bragg’s law. This requires
us to be able to flexibly adjust the relative orientation of the incident beam, the detector and the
crystal.

Figure 3.4: A schematic illustration of diffraction in a single crystal.

Practically, it is very difficult to move the X-ray source, so we have to move the crystal and
the detector. If the source and the detector are making an angle 2θ, then this will correspond to a
scattering vector of length 2 sin θ/λ and direction bisecting the line from the crystal to the source
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Figure 3.5: Apparatus for measuring the X-ray diffraction of a single crystal practically.

and to the detector. If this scattering vector happens to hit one of the reciprocal lattice point, then
we will see a non-zero diffracted intensity in the detector. To make that happen, we have to be able
to freely rotate the crystal around all 3 directions, so that we are effectively moving the reciprocal
lattice attached to the crystal. This is achieved using a goniometer.

The outcome of a single-crystal X-ray diffraction measurement can be conceptually divided into
two parts.

1. Geometrical information. From the value of S = ha∗+kb∗+lc∗ we measured non-zero diffraction
intensity, we can infer the reciprocal lattice vectors, and hence the real lattice vectors of the
crystal. This can be done using only a small proportion of all the diffraction data, so only costs
a few minutes.

2. A list of diffracted intensity. Once the geometry of the crystal in known, we can point the
crystal and the detector only to where we know that there will be diffraction occurring. Then
we can get a list of hkl values of measured diffracted beams and the corresponding diffraction
intensities |F (hkl)|2. To calculate the Patterson function (or the electron density if we somehow
figure out the phases of the beams using methods that will be introduced later), we need the
structure factor of the whole reciprocal space. This is not practical to do since there will be
some maximum ‖S‖ value we are able to reach, and the diffraction will be weak for high hkl
values. What we can do is to measure as many diffracted peaks as possible. This generally take
hours, and hence X-ray diffraction is a slow technique, and the resulting structures are usually
time-averaged.

3.5 The Independent Atom Model

Although ρ(r) is a continuous function, we are generally only interested in the positions and types of
atoms. We will see how can we make further progress if we introduce an atomic picture.

We will make the following assumptions.

1. The electron density is not continuous, but instead gathered into isolated, individual atoms at
fixed sites. The atoms are spherical.

2. All electrons are located within atoms. Delocalised electrons or electrons in chemical bonds
that are between atoms are neglected.

This formalism is known as the independent atom model (IAM). The second assumption seems like a
fairly suspicious one. As chemists, we all know that chemical structures are held together by chemical
bonds, and covalent bonds definitely involve the sharing of atoms. However for most elements, the
majority of electrons are core electrons, which are little involved in bonding and are very localised.
An obvious exception is hydrogen — we will discuss more on hydrogen later.
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Now, if we describe the electron density of an atom labelled n as a spherically symmetric function
ρatom,n(r), then the total electron density in the crystal is

ρ(r) =
∑
n

ρatom,n(r) ∗ δ(r− xna− ynb− znc) , (3.28)

where (xn, yn, zn) is the fractional coordinate of atom n and the sum is taken over all atoms in the
crystal. Now from the convolution theorem, the structure factor of the cell is

F (S) = F [ρ(r)]

=
∑
n

F [ρatom,n(r)]F [δ(r− xna− ynb− znc)]

=:
∑
n

fn(S) exp(2πirn ·S)

=
∑
n

fn(S) exp(2πi(hxn + kyn + lzn)) , (3.29)

where the fn is the Fourier transform of ρatom,n(r) called the atomic scattering factor. It can be seen
as the diffraction of a single atom, and has unit of electrons. Since we assume ρatom,n(r) is spherically
symmetric, f(S) is spherically symmetric as well. Although some other more complicated model may
apply (e.g. multipole expansion) to make both ρatom,n(r) and f(S) not spherically symmetric, we
shall not concern with these.

3.5.1 Atomic Scattering Factor

For the special case of S = 0,
F (0) =

∑
fn(0) =

∫
dV ρ(r) . (3.30)

For this to hold, we must have fn(0) equal to the total number of electrons in atom n. As S moves
away from zero, the value of fn must change to reflect the interference occurring between X-rays
scattered from different positions within the atom’s volume. Under the assumption that f(S) is
spherically symmetric, it is only dependent on ‖S‖ = (2 sin θ)/λ, so the scattering factor is usually
fitted to parameterised function of (sin θ)/λ as

f

(
sin θ

λ

)
= c+

4∑
i=1

ai exp

[
−bi

(
sin θ

λ

)2
]

(3.31)

with nine tabulated parameters for each atom. These parameters are known as Cromer–Mann
coefficients.

Some examples of spherically symmetric atomic scattering factors are shown in figure 3.6. We can
see that f(0) is equal to the number of electrons in the atom/ion. Heavier elements generally have
larger atomic scattering factors. For species having the same number of electrons, if the atom/ion is
larger, than the scattering factors drop off more quickly. This is because a bigger atom would induce
a larger path difference in diffraction, and hence leads to lower fn.11

These factors are derived quantum mechanically from atomic wavefunctions, which are effectively
at 0 K. In practice, atoms in crystals are typically slightly displaced from their average position
— this may be dynamic (due to thermal vibration) or static. This effectively makes the atom look

11You can understand this by modelling the electron density in an atom as a Gaussian of width σ. Its Fourier
transform (the scattering factor) will be a Gaussian of width σ−1. Hence, if the atom is larger, then the scattering
factor has smaller width. If we have a “point” atom, whose electron density is a delta function, then its Fourier
transform is a constant, so the scattering factor will not drop off.
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Figure 3.6: Atomic scattering factors of different species.
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Figure 3.7: The atomic scattering factor of C with and without isotropic displacement.

larger, and hence the atomic scattering factor will drop off more quickly. This will put an extra
Debye–Waller factor

exp

(
−
8π2

〈
u2
〉
sin2 θ

λ2

)
(3.32)

onto the atomic scattering factor at 0 K.

To conclude, under the independent atomic model, the structure factor of an atomic single crystal
is

F (h, k, l) =
∑
n

fn exp[2πi(hxn + kyn + lzn)] , (3.33)

where n is taken over all atoms in the crystals. However, we have seen that |Fhkl|2 = N2 |Fcell(hkl)|2,
so the relative intensities of the diffracted beams are proportional to |Fcell(hkl)|2. To solve for this,
we only need to sum over all atoms in a unit cell

Fcell(h, k, l) =
∑
n

fn exp[2πi(hxn + kyn + lzn)] . (3.34)
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From now on we will drop the “cell” subscript, and we will always refer to Fcell. We see that this
has now become a Fourier series. To figure out the electron density, we apply the inverse Fourier
transform and we get

ρ(x, y, z) =
1

Vcell

∑
h

∑
k

∑
l

F (h, k, l) exp[−2πi(hx+ ky + lz)] , (3.35)

where 1/Vcell is volume of the unit cell for normalisation. This is also known as a Fourier synthesis,
because it ‘synthesises’ the electron density by its frequency components using a complex Fourier
series.
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4 Symmetry in Crystals

In the previous chapter, we have already exploited the translation symmetry of crystals, which is their
defining property. Typically, crystals also display other types of symmetries, such as rotations, mirror
planes, and inversions (although they need not). This leads us to something that looks like the point
groups that describe the symmetry of molecules, but in crystals, we have additional translational
symmetry, so they are instead known as space groups. Rather remarkably, there are only 230 possible
3D space groups — the number is finite, unlike for point groups where there can be an infinite number
of them. This is because not all symmetry elements are compatible with the translational symmetry,
leaving us with a limited possible combination of symmetry elements. The most famous example is
probably that a crystal can never have a five-fold rotation axis12.

Figure 4.1: Five-fold rotational symmetry is not compatible with translational symmetry.

Let’s first see how various symmetry operators affect the diffraction patterns.

4.1 Symmetry Operations

4.1.1 Inversion Centre

Suppose there is an inversion centre in the crystal, then by translational symmetry there must be
one in each unit cell. We set it to be the origin of the unit cell, then for each atom at (xn, yn, zn),
there must be the same atom at (−xn,−yn,−zn). Therefore, when calculating the structure factor,
instead of summing over all N atoms in the unit cell, we can sum over the N/2 pairs:

F (hkl) =

N/2∑
n=1

fn [exp[2πi(hxn + kyn + lzn)] + exp[−2πi(hxn + kyn + lzn)]]

=

N/2∑
n=1

2fn cos[2π(hxn + kyn + lzn)] .

=

N∑
n=1

fn cos[2π(hxn + kyn + lzn)] . (4.1)

Two immediate consequences are

• The structure factor is always real (phase is 0 or π).

• F (hkl) = F (h̄k̄l̄).
12Something known as a quasi-crystal can, but it has no translational symmetry.
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Therefore, the structure factor also shows an inversion symmetry, with point group symmetry (at
least) Ci.

However, this is not something we can really exploit. This is because we can only measure
I(hkl) = |F (hkl)|2, or equivalently the modulus of the structure factor.

Theorem 4.1 (Friedel’s law). For any crystal,

|F (hkl)| =
∣∣F (h̄k̄l̄)∣∣ . (4.2)

Proof. This is because

F (h̄k̄l̄) =
∑
n

fn exp[−2πi(hxn + kyn + lzn)]

=

[∑
n

fn exp[2πi(hxn + kyn + lzn)]

]∗
= F (hkl)∗ . (4.3)

They are complex conjugate, so they have the same modulus and diffraction intensity. �

Therefore, the diffraction intensities of all crystals exhibit centres of inversion.

In practice, when describing a diffraction pattern, we often picture a reciprocal lattice with its
lattice points scaled by the intensity of diffraction. This construction is called the intensity-weighted
reciprocal lattice. The intensity-weighted reciprocal lattices of all crystals show a Ci point symmetry.

Aside: Intensity Statistics

However, it is possible to infer the presence of an inversion centre from the diffraction pattern based
on the intensities. If a centre of symmetry is not present, then generally F (hkl) would be a complex
number, while if there is a centre of symmetry present, F (hkl) can only be a real number. A real
F (hkl) has a higher probability to have a modulus close to zero than a complex one, and so we have
a higher chance to observe weak F (hkl) values if an inversion centre is present.

The above argument sounds a bit dubious. We can formalise it a little bit. Suppose the fn values
in a crystal follow some distribution with mean µ and variance σ2, and the phase of each atom φn is
somehow random (uniformly distributed) between 0 and 2π.

If there is a centre of inversion, then

F =
∑
n

fn cosφn . (4.4)

cosφn has a mean 0 and variance 1
2 . By central limit theorem, if N is large, then F is a Gaussian

with expectation value of

E[F ] = NE[fn cosφn] = NE[fn]E[cosφn] = 0 (4.5)

and variance

Var[F ] = N Var[fn cosφn]

= N
[
(Var[fn] + E[fn]2)(Var[cosφn] + E[cosφn]2)− E[fn]2E[cosφn]2

]
=
N

2
(σ2 + µ2) . (4.6)
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Let’s denote this variance σ2
F , then for the centrosymmetric case, the probability distribution function

of |F | is

g(x) =
2

σF
√
2π

exp

[
− x2

2σ2
F

]
, x ≥ 0 . (4.7)

If there is not a symmetry of inversion, however, then

F =
∑
n

fn(cosφn + i sinφn) . (4.8)

The real and imaginary part of F then follows the same Gaussian distribution as the centrosymmetric
case, with mean 0 and variance σ2

F . However, this is a 2D Gaussian. The probability density function
of |F | is then

h(x) =

∫ 2π

0

dθ x
1

2πσ2
F

exp

[
− x2

2σ2
F

]
=

x

σ2
F

exp

[
− x2

2σ2
F

]
. (4.9)

Its probability density at 0 vanishes.

|F |

distribution
centrosymmetric

non-centrosymmetric

4.1.2 Mirror Plane

Consider a mirror plane perpendicular to the b axis passing through the origin. This relates an atom
at (x, y, z) to another at (x,−y, z). The structure factor can be simplified to

F (hkl) =

N/2∑
n=1

fn[exp[2πi(hxn + kyn + lzn)] + exp[2πi(hxn − kyn + lzn)]]

=

N∑
n=1

fn cos(2πkyn) exp[2πi(hxn + lzn)] . (4.10)

Cosine is an even function, so
F (hkl) = F (hk̄l) , (4.11)

and |F (hkl)|2 =
∣∣F (hk̄l)∣∣2. Therefore intensity-weighted reciprocal lattice will also have a mirror

plane perpendicular to the b∗ axis. Combined with the i symmetry of Friedel pairs, we have

|F (hkl)|2 =
∣∣F (hk̄l)∣∣2 =

∣∣F (h̄kl̄)∣∣2 =
∣∣F (h̄k̄l̄)∣∣2 , (4.12)

and so the intensity-weighted reciprocal lattice will have a C2h symmetry. Note that i and σh generate
the C2 symmetry.
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a∗

b∗

c∗

Figure 4.2: An intensity-weighted reciprocal lattice with C2h symmetry.

4.1.3 Rotation Axes

Now let’s consider the effect of a rotation axis. A m-fold rotation axis will rotate atoms by 2π/m
radians around the defined axis. For simplicity, we will only consider the 2-fold axis. We set the axis
such that the rotation axis passes through the origin and is parallel to the b axis of the unit cell,
so that for each atom at (xn, yn, zn), there is also a same atom at (−x, y,−z). In this case, we may
simplify the structure factor to

F (hkl) =

N/2∑
n

fn[exp[2πi(hxn + kyn + lzn)] + exp[2πi(−hxn + kyn − lzn)]]

=

N∑
n

fn cos[2π(hxn + lzn)] exp[2πikyn] . (4.13)

Therefore,
F (hkl) = F (h̄kl̄) . (4.14)

The intensity-weighted reciprocal lattice therefore also has a 2-fold rotation axis along b∗. Again,
the Friedel’s law still applies, so

|F (hkl)|2 =
∣∣F (hk̄l)∣∣2 =

∣∣F (h̄kl̄)∣∣2 =
∣∣F (h̄k̄l̄)∣∣2 . (4.15)

Therefore the intensity-weighted reciprocal lattice has a C2h point group symmetry (formally known
as the Laue group), as i and C2 further generates a σh symmetry.

Finally, note that if a crystal structure exhibits a 2-fold rotation axis along one direction, or a
mirror plane perpendicular to some direction, this axis must be perpendicular to two of the lattice
vectors, otherwise the rotated cell will have a different orientation, and the translational symmetry
will be broken. For example, if a 2-fold axis is parallel to b, then b must be perpendicular to both a
and c. This means that the structure is at least monoclinic, meaning that two of the unit-cell angles
must be 90◦. By convention, we usually choose α = γ = 90◦ and β 6= 90◦ (although it could be that
β = 90◦, but then we will classify the crystal to have a higher symmetry e.g. orthorhombic).

4.1.4 Screw Axes

The fact that crystals are infinitely extended through the space leads us to some extra symmetry
elements that are not present in point groups. Specifically, we can combine rotations or reflections
with translations.
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A nm-screw axis stands for a rotation of 2π/n around the axis, and then a translation of m/n
times the length of the lattice vector in that direction. We will only consider the 2-fold screw axis 21,
and we will make the axis coincide with the b vector. This is a rotation of 180◦ along b, and then
translate by b/2, relating (x, y, z) to (−x, 12 + y,−z). The resulting structure factor is

F (hkl) =

N/2∑
n=1

fn exp(2πikyn)[exp[2πi(hxn + lzn)] + (−1)k exp[−2πi(hxn + lzn)]]

=

N∑
n=1

fn exp(2πikyn)×

{
cos[2π(hxn + lzn)] if k is even
i sin[2π(hxn + lzn)] if k is odd.

(4.16)

Consequently,

F (hkl) =

{
F (h̄kl̄) if k is even
−F (h̄kl̄) if k is odd,

(4.17)

but in either case,
|F (hkl)|2 =

∣∣F (h̄kl̄)∣∣2 . (4.18)

Combining with the Friedel pair relationship, we see that the 21 screw axis has exactly the same
effect on the symmetry of the diffracted intensity as the 2-fold rotation axis, both having C2h.

Moreover, if we consider the special case of h = l = 0, then the structure factor for 0k0 reduces to

F (0k0) =

N/2∑
n

fn exp(2πikyn)[1 + (−1)k] =

{∑N
n fn exp(2πikyn) if k is even

0 if k is odd.
(4.19)

The structure factors for all 0k0 beams are zero if k is odd — this result is independent of the atomic
coordinates and is purely originates from symmetry. This is known as a systematic absence. The
pattern of the systematic absence depends on the direction of the screw axis:

• 21 axis parallel to a: (h00) absent for odd h.

• 21 axis parallel to b: (0k0) absent for odd k.

• 21 axis parallel to c: (00l) absent for odd l.

We have a good explanation for this. Consider a 21 axis along b. If we project the 3D crystal
structure into one dimension along b, i.e. we ignore the x and z coordinates, the presence of a 21
screw axis doubles the periodicity along b direction, and hence the periodicity in the reciprocal lattice
will be halved. This is exactly what a 0k0 beam is detecting: as reflections from a (0k0) Bragg’s
plane has contributions from all x and z coordinates for a certain y value, it is only able to tell the
periodicity along y direction, and it finds that things are repeating twice as often.

4.1.5 Glide Planes

A glide plane is a mirror plane reflection followed by a translation one half of the lattice. We will
consider a c-glide perpendicular to b, which is a reflection about a mirror plane perpendicular to b
followed by a translation of 1

2c, relating atoms at (x, y, z) and (x,−y, 12 + z). The structure factor
equation becomes

F (hkl) =

N/2∑
n

fn exp[2πi(hxn + lzn)][exp(2πikyn) + (−1)l exp(−2πikyn)]

=

N∑
fn exp[2πi(hxn + lzn)]×

{
cos(2πkyn) if l is even
i sin(2πkyn) if l is odd.

(4.20)
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This means that

F (hkl) =

{
F (hk̄l) if l is even
−F (hk̄l) if l is odd,

(4.21)

but in either case,
|F (hkl)|2 =

∣∣F (hk̄l)∣∣2 . (4.22)

The glide plane produces a mirror plane in the diffraction pattern, just as a normal mirror plane would
do, and combining with Friedel pair relation, the diffraction pattern again has a C2h symmetry.

Consider k = 0, the structure factor reduces to

F (h0l) =

{∑N
n fn exp[2πi(hxn + lzn)] if l is even

0 if l is odd.
(4.23)

Therefore, a c-glide perpendicular to b produces systematic absences of F (h0l) for odd l. We again
have a good explanation for it: we set k to 0 so the beam is ignorant of us changing the y coordinate
by reflection, and now the translation of 1

2c doubles the periodicity along the c direction, so the
reciprocal lattice is doubled in length in that direction.

To conclude the systematic absence for glide planes:
Glide plane perpendicular to a:

• b-glide: (0kl) absent if k odd.

• c-glide: (0kl) absent if l odd.

• n-glide: (0kl) absent if k+l odd. (n-glide means translation by a half in both y and z directions)

Glide plane perpendicular to b:

• a-glide: (h0l) absent if h odd.

• c-glide: (h0l) absent if l odd.

• n-glide: (h0l) absent if h+ l odd.

Glide plane perpendicular to c:

• a-glide: (hk0) absent if h odd.

• b-glide: (hk0) absent if k odd.

• n-glide: (hk0) absent if h+ k odd.

4.2 Lattice Types

In some cases, it is more preferable to define a unit cell that is not primitive, i.e. containing more
than one lattice point. This is possibly because the non-primitive unit cell has a higher symmetry, or
it allows the symmetry elements to align with the axes of the unit cell.

There are in total four types of 3D unit cells. The first type is primitive, denoted P , where the
lattice points are at the corners of the cells only, so that there is only one lattice point in the unit cell.
It is also possible for a cell to also contain lattice points in the centre of two opposite faces. This is
conventionally chosen to be the ab face, so this type of cell is known as C-centred. Another possibility
is to contain a second lattice point at the centre of the cell, and this is known as body-centred or
I-centred. Finally, we can have lattice points at the centres of all unit-cell faces, which is known as
face-centred or F -centred.
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a∗

c∗

(a) mirror plane perpendicular to b.

a∗

c∗

(b) c-glide perpendicular to b.

Figure 4.3: Schematic (h0l) slices of the intensity-weighted reciprocal lattice. We see that glide planes
create systematic absences, while mirror planes do not.
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Figure 4.4: Types of unit cell centring.
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Since non-primitive unit cells contain more than one lattice points, they also have systematic
absences, which can be worked out using the same way as we did before.

• P : No systematic absences.

• C: (hkl) absent if h+ k = 2n+ 1.

• I: (hkl) absent if h+ k + l = 2n+ 1.

• F : (hkl) absent unless h, k, l are all odd or all even.

Heuristically, the reciprocal lattice of a P and a C lattices are themselves, the reciprocal lattice of an
I lattice is a larger F lattice, and the reciprocal lattice of an F lattice is a larger I lattice.

By using a non-primitive cell, we are choosing to describe the real lattice with longer lattice
vectors, so the reciprocal lattice vectors are correspondingly shorter. We are therefore using smaller
reciprocal unit cells than a primitive reciprocal unit cell. Hence, systematic absences must arise.

4.3 Space Groups and Equivalent Positions

An identification of the lattice type together with a collection of symmetry operators defines a space
group. It describes the symmetry of a crystal, just as a point group describes the symmetry of a
molecule, but we have an extra translational symmetry described by the lattice type.

For example, let’s consider the most common space group P21/c, where its name stands for
primitive lattice, a 21 screw axis ‖ b and a c-glide ⊥ b. These symmetry elements also create a centre
of inversion. By convention, we set the inversion centre to be the origin, so that the 21 axis is at
(0, y, 1/4) and the c-glide is at (x, 1/4, z). This collection of symmetry operators produces a set of
coordinates that are related to each other, known as the general equivalent positions (GEPs). The
GEPs for P21/c are shown in the figure below.

x, y, z −x, 12 + y, 12 − z

−x,−y,−z x, 12 − y,
1
2 + z

21 screw
at (0, y, 1/4)

21 screw
at (0, y, 1/4)

inversion
at (0, 0, 0)

inversion
at (0, 0, 0)

c-glide
at (x, 1/4, z)

Figure 4.5: General equivalent positions in the P21/c space group.

Therefore, there exists a minimal set of atomic coordinates that need to be specified to describe
the whole unit cell (and hence the entire crystal structure), which is known as the asymmetric unit.
The coordinates of the other atoms in the cell can be obtained by applying the symmetry elements
in the space group.

However, notice that there are some special coordinates in the P21/c group that do not produce a
group of four distinct coordinates when the symmetry operators are applied. An example is (0, 0, 0),
for which you will only obtain two distinct coordinates (0, 0, 0) and (0, 1/2, 1/2) when applying the
symmetry elements. Such positions are called the special equivalent positions. They arise because
the coordinates coincide with the point group elements (centre of symmetry in this case), so it is not
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Figure 4.6: View of P21/c space group unit cell along y axis and x axis. Note that extra symmetry
elements arise automatically such that they appear twice as often as the lattice points.

moved by those symmetry elements. Similarly, if a rotation axis or a mirror plane is present in some
space group, there will be a whole line and a whole plane of special equivalent positions, respectively.

4.4 Determining Space Group

Having obtained a diffraction pattern from the experiment, we should be able to easily determine the
space group. First, by observing the reciprocal cell geometry, we should be able to infer the lattice
vectors a, b, c and their angles α, β and γ. Then by observing the general (hkl) systematic absences,
we can infer the lattice type (P , I, F or C). This will give us one of the 14 possible types of 3D
lattice, known as the Bravais lattices.

Having determined the lattice type, we can then identify the symmetry elements in the crystal.
If the intensity-weighted reciprocal lattice exhibits a C2h symmetry, then there will be a C2 axis or a
mirror plane in the structure. If there are other systematic absences, then there will be glide planes
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Table 1: The 14 Bravais lattices.

Crystal system P I F C

Cubic
a = b = c

α = β = γ = 90◦

Tetragonal
a = b 6= c

α = β = γ = 90◦

Orthorhombic
a 6= b 6= c

α = β = γ = 90◦

Hexagonal
a = b 6= c

α = β = 90◦, γ = 120◦

Trigonal
a = b = c

α = β = γ 6= 90◦

Monoclinic
a 6= b 6= c

α = γ = 90◦, β 6= 90◦

Triclinic
a 6= b 6= c

α 6= β 6= γ 6= 90◦

or screw axes. We can identify the presence of inversion centres from intensity statistics.

In practice, this can be easily done using automated programs. However, for a genuine experiment,
there will be measurement errors, or there might be ambiguity on whether a diffraction is too small
or it is really absent. Hence, all of these assessment indicate probable space groups rather than a
concrete assessment.

4.5 Symmetry in Patterson Functions

Symmetry also allows us to identify atomic coordinates directly from Patterson function. Suppose we
have confirmed that a crystal has a space group P21/c from diffraction pattern, we then know that
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the crystal must have the same atom at the following general equivalent positions:

(a) : (x, y, z) (b) : (−x, 12 + y, 12 − z) (c) : (x, 12 − y,
1
2 + z) (d) : (−x,−y,−z) .

This results in 16 interatomic vectors in the Patterson function: four of them are self-vectors at the
origin, and the remaining twelve are non-origin vectors. Since each A→ B vector will be accompanied
by a A← B in reverse, these will comprise six centrosymmetric pairs:

(i) (a)↔ (b): ±(2x,− 1
2 ,−

1
2 + 2z),

(ii) (a)↔ (c): ±(0,− 1
2 + 2y,− 1

2 ),

(iii) (a)↔ (d): ±(2x, 2y, 2z),

(iv) (b)↔ (c): ±(−2x, 2y,−2z),

(v) (b)↔ (d): ±(0, 12 + 2y, 12 ),

(vi) (c)↔ (d): ±(2x, 12 ,
1
2 + 2z).

As the structure is periodic, there will be the same atom 1 unit away along any coordinate, so we
can shift any coordinate by ±1. Consequently, vector (i) is actually identical to (vi), and (ii) is
identical to (v). Therefore, for the space group P21/c, we actually have two pairs of doubly-weighted
peaks at ±(2x, 12 ,

1
2 +2z), ±(0, 12 +2y, 12 ) and two pairs of singly-weighted peaks at ±(2x, 2y, 2z) and

±(−2x, 2y,−2z). Those peaks in the Patterson functions are easy to locate because of their special
forms (0 or 1

2 in some coordinates). By identifying the coordinates of these peaks in the Patterson
function, we can directly work out the coordinates of these atoms.

Note that since the Patterson function only gives distinct peaks for interatomic vectors between
heavy atoms, this usually only allow us to work out the coordinates of the heavy atoms in the structure.
However, this is usually a very important first step for a complete structure determination. Having
known this initial information, we have three complementary methods to determine the coordinates
of the rest of the atoms. They are the heavy atom method, isomorphous replacement and anomalous
scattering.

4.6 The Heavy Atom Method

Suppose of the N atoms in the unit cell, we know the coordinate of the M heavy atoms of them e.g.
from Patterson function. We can split the structure factor into a contribution of heavy atoms and
the contribution of the rest of the atoms.

F (hkl) =

N∑
n=1

fn exp[2πi(hxn + kyn + lzn)]

=
∑

n heavy

fn exp[2πi(hxn + kyn + lzn)] +
∑
n rest

fn exp[2πi(hxn + kyn + lzn)]

= Fheavy(hkl) + Frest(hkl) . (4.24)

From experiment, we can only measure |F (hkl)|, not Φ(hkl). But since we know the coordinate of
the M heavy atoms, we can calculate

Fheavy =

M∑
n=1

fn exp[2πi(hxn + kyn + lzn)] . (4.25)

In particular, we know both the amplitude and the phase of the heavy atom contribution. Since
the diffracting power of an atom fn, is proportional to the number of electrons, which is in turn
proportional to the atomic number, heavy atom contributions tend to dominate in F (hkl).

|Fheavy(hkl)|
?
� |Frest(hkl)| .
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Fheavy

Frest

F

Figure 4.7: We can use Φheavy (blue) to approximate Φ (red).

This allows us to argue that hopefully Φ(hkl) is close to Φheavy(hkl), so we can use it as an estimate
of Φ(hkl). This allows us to combine the measured |F (hkl)| and calculated Fheavy(hkl) to get an
estimate of the structure factor

F (hkl) = |F (hkl)| exp[iΦ(hkl)]
?
≈ |F (hkl)| exp[iΦheavy(hkl)] . (4.26)

Having obtained approximate F (hkl) values, we can perform the inverse Fourier transform to get
an approximated electron density

ρ(x, y, z) = F−1[|F (hkl)| exp[iΦ(hkl)]]
≈ F−1[|F (hkl)| exp[iΦheavy(hkl)]]

=
1

Vcell

∑
h,k,l

|F (hkl)| exp[iΦheavy(hkl)− 2πi(hx+ ky + lz)] . (4.27)

This seems to be very crude so far, probably only slightly better than just guessing random Φ
values. However, we will usually find that we are getting sufficiently close to the true ρ such that we
can identify some peaks other than those due to the heavy atoms. If this is the case, we know some
extra coordinates of some atoms. We can include them in our set of “heavy” atoms when calculating
Φheavy — this will generally mean a better approximation of the true phase. A further inverse
transform will give us a better approximation to the true electron density from which, hopefully,
more atomic positions can be deduced. The iteration process can be repeated until all of the atoms
are found. At this stage Φheavy will be Φ exactly, and we have completely solved the structure.

Fheavy

Frest

F

Figure 4.8: A refined approximation of Φ by including more atoms in the set of known ‘heavy’ atoms.
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5 Phase Determining Methods

There are many occasions in which the heavy atom fails to work, for example because the heavy atoms
are not ‘heavy’ enough to dominate the diffraction. Here, we will introduce two phase determining
methods that can determine the phase of the diffraction beam more rigorously once the positions of
the heavy atoms are known. Both methods achieve this by changing the way that the known heavy
atom interacts with the X-ray, either by changing the identity of the atom or changing the way it
scatters the X-ray.

5.1 Isomorphous Replacement

If we know the identity and positions of some type of atom (labelled a) in the lattice, then we can
write the structure factor as

F1(hkl) = Frest(hkl) +

n∑
i=1

fa exp[2πi(hxi + kyi + lzi)] . (5.1)

Now suppose we can replace these atoms with another type of atom (labelled b) at exactly the same
positions, and suppose such replacement does not change any other part of the cell (the size and
shape of the lattice is not changing as well as the coordinate of other atoms). This is known as an
isomorphous replacement. Then the structure factor after such a replacement is

F2(hkl) = Frest(hkl) +

n∑
i=1

fb exp[2πi(hxi + kyi + lzi)] . (5.2)

The difference of the two structure factors, before and after replacement, is

δF (hkl) = F2(hkl)− F1(hkl) =

n∑
i=1

(fb − fa) exp[2πi(hxi + kyi + lzi)] . (5.3)

This is something we can calculate, for both the magnitude and the phase angle, since we know the
positions of these atoms. Then since we can measure the magnitude of the structure factor before
and after replacement, |F1(hkl)| and |F2(hkl)|, we can calculate the phase of F1 and F2.

However, as you can see in figure 5.1, a set of isomorphous replacement data give two possible
values of phase angles. These two possible phase values are related by a reflection with respect to
an axis of angle Φ(δF ) passing through the origin. To eliminate this ambiguity, we can try to do a
second replacement. However, if we replace the same atoms, say a to c, then the change in structure
factor is given by

δF ′ =
∑
n

(fc − fa)
n∑

i=1

exp[2πi(hxi + kyi + lzi)] . (5.4)

This is parallel to the first change in the structure factor δF — it will just be either shorter or
longer, so it just gives the same set of two possible Φ values. To make progress, we have to perform
isomorphous replacement for a different set of atoms, say d to e. Then the change in the structure
factor is

δF ′ =
∑
n

(fe − fd)
m∑
j=1

exp[2πi(hxj + kyj + lzj)] . (5.5)

This will give a different set of Φ values — the common one is the true phase of the beam.

This of course brings some experimental difficulties. We need to make three different crystals,
and we need to make sure that our replacement does not change anything other than the identity of
the atoms that we are replacing — this is not easy to do in practice.
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δF

δF

F2
F2

F1

F1

Figure 5.1: There are two possible set of phase angles (blue and red) for a set of isomorphous
replacement.

Figure 5.2: An isomorphous replacement of one set of atoms gives two possible set of phase angles
(blue and red), and replacing another set of atoms will give a different set of phase angles (blue and
violet). The common one is the true answer.

Luckily, such difficulty does not exist in centrosymmetric crystals since the phase will either be 0
or π, i.e. they are real numbers. Once we know δF , including its sign, we can directly determine the
sign of F1 and F2 from their magnitudes.

5.2 Anomalous Scattering

A second method to determine the phase is to change the way that the electrons scatter the X-ray.

The discussion up to this point has been based on the assumptions of Thomson scattering, which
assume that electrons in crystals behave like free electrons. But actually, the electrons are bound
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λ

Absorption
absorption

edge

into atoms, which means that the oscillations set up by the incident X-rays are to some extent
restrained. Under most circumstances, the deviation from Thomson behaviour is negligible and the
description we have given so far is adequate. However, significant differences can arise when the
wavelength of the incident X-ray comes close to an absorption edge for a particular atom type, where
the energy corresponds to an electronic transition or ionisation process. Under this circumstance, the
scattering behaviour of the atom will be different from the normal cases. This phenomenon is known
as anomalous scattering or resonant scattering, where ‘anomalous’ here means deviation from normal
(Thomson) behaviour.

To account for anomalous scattering in the structure factor equation, the atomic scattering factors
are modified to

fanom = f + (f ′ + if ′′) , (5.6)

where f is the normal scattering factor, and f ′ + if ′′ is a complex correction, where both f ′ and
f ′′ are real. The values of f ′ and f ′′ depend on the X-ray wavelength but they are independent of
scattering angle, and they are generally small compared to f . f ′ can be either positive or negative,
but f ′′ is always positive.

Since f ′ and f ′′ are small compared to f , it is usually sufficient to approximate all of the effect
solely by adding the imaginary correction, so

fanom ≈ f + i∆f . (5.7)

We can then divide the atoms into the set that scatters normally, and the ones that scatter
anomalously. Then the structure factor under anomalous conditions is

F ′(hkl) =
∑

n norm
fne

2πi(hxn+kyn+lzn) +
∑

m anom
(fm + i∆fm)e2πi(hxm+kym+lzm)

=
∑
n

fne
2πi(hxn+kyn+lzn) + i

∑
anom

∆fme2πi(hxm+kym+lzm)

= F (hkl) + δF (hkl) , (5.8)

where F (hkl) is the structure factor under normal scattering and change in the structure factor due
to anomalous scattering is

δF (hkl) = i
∑

anom
∆fme2πi(hxm+kym+lzm) . (5.9)

Graphically, if an atom originally contribute fneiφ to the structure factor, then the anomalous change
is

i∆fne
iφ = ∆fne

i(φ+π
2 ) , (5.10)

i.e. it is 90◦ counterclockwise to the normal scattering contribution.

An important consequence of anomalous scattering is the breakdown of the Friedel’s law: F (hkl)
and F (h̄k̄l̄) are no longer complex conjugates of each other, and so I(hkl) and I(h̄k̄l̄) are no longer
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Frest

FanomF

δF

F ′

Figure 5.3: Anomalous Scattering.

F (hkl)

δF (hkl)

F ′(hkl)

F (h̄k̄l̄)
δF (h̄k̄l̄)

F ′(h̄k̄l̄)

Figure 5.4: The Friedel’s law is broken when anomalous scattering happens.

necessarily equal. This is because

F ′(hkl) =
∑
n

fne
2πi(hxn+kyn+lzn) + i

∑
anom

∆fme2πi(hxm+kym+lzm) (5.11)

and so
F ′(hkl)∗ =

∑
n

fne
−2πi(hxn+kyn+lzn) − i

∑
anom

∆fme−2πi(hxm+kym+lzm) , (5.12)

while
F ′(h̄k̄l̄) =

∑
n

fne
−2πi(hxn+kyn+lzn) + i

∑
anom

∆fme−2πi(hxm+kym+lzm) . (5.13)

This is illustrated in the figure below.

Note however that we still have I(hkl) = I(h̄k̄l̄) if the structure is centrosymmetric because then
the two triangles will overlap.

The breakdown of Friedel’s law under anomalous scattering is actually extremely useful because it
is now possible to distinguish the absolute structure (handedness) of a non-centrosymmetric crystal.

If the coordinates of all atoms in the non-centrosymmetric crystal is inverted with respect to the
origin (xn, yn, zn) → (−xn,−yn,−zn), then we see that we have obtained its enantiomer. Hence, if
A and B are enantiomers, we must have

FA(hkl) = FB(h̄k̄l̄) , (5.14)

and so IA(hkl) = IB(h̄k̄l̄). But now since IB(h̄k̄l̄) 6= IB(hkl) under anomalous scattering, IA(hkl) 6=
IB(hkl). This allows us to determine the handedness of the crystal — we just need to check which
handedness of the model matches the measured intensities better than the other.
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In practice, we would set our model to one of the handedness, and work out the value of x such
that

Imeasured(hkl) = (1− x)Imodel(hkl) + xImodel(h̄k̄l̄) , (5.15)

and take the average over hkl. x is known as the Flack parameter, and if our current handedness is
correct, x should be 0 within some statistical error, while if x is near 1, the actual handedness of the
crystal should be flipped.

The assignment of absolute structure becomes more confident as the magnitude of the anomalous
signal increases, which is achieved when heavy atoms are present. MoKα radiation (λ = 0.7107Å)
generally requires the crystal to contain Cl atoms or heavier, while CuKα radiation (λ = 1.5418Å)
can be successful with lighter atoms. More detailed statistical analysis of the intensities can often
confidently determine the absolute structure of CHNO compounds with CuKα radiation. This is
incredibly useful for organic chemists.

However, due to the same reason as for isomorphous replacement, a calculated δF and measured
|F (hkl)| and |F ′(hkl)| will give two possible values of phase angle Φ(hkl). The solution is also the same
— we use another X-ray wavelength under which another set of atoms would scatter anomalously,
and this will give another set of two possible phase angles. The common answer is the true answer.
This technique is known as multiple anomalous scattering (MAD). It is particularly easy to apply if
a source of variable wavelength is available, such as a synchrotron, so that several types of atoms can
be made to scatter anomalously in turn.
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6 Direct Methods

All the techniques introduced above rely on the fact that we know the positions of some atoms in
the cell (the heavy atoms) using Patterson function. However, sometimes we can’t even make a start
using Patterson function and so none of the above methods work. We have to find an alternative route
to the structure. Methods to do this are referred to as direct methods because we are attempting
to deduce the phases directly from the observed intensities without going through the Patterson
function.

The development of direct methods, coupled with the simultaneous growth of computing power,
is principally responsible for establishing X-ray diffraction as a ‘standard’ analytical technique in
chemistry. It eliminates the requirement for heavy atoms, and hence enables structure determination
for any compound.

The theory is associated with probabilities, and can be fully described with the associated
mathematical language rigorously. Here, we will only attempt to illustrate the basic concept using
the understanding of Fourier synthesis.

6.1 The Basic Principle

For simplicity, we will consider a 1D crystal. The electron density is given by the Fourier synthesis
(3.35)

ρ(x)Vcell =

∞∑
h=−∞

F (h)e−2πihx

= F (0) + 2

∞∑
h=1

|F (h)| cos[Φ(h)− 2πhx] , (6.1)

where we have used the fact that Φ(−h) = −Φ(h). To simplify things further, we assume that the
structure has a centre of symmetry, so Φ(h) ∈ {0, π}. Then the summation becomes

ρ(x)Vcell = F (0) + 2
∞∑
h=1

S(h) |F (h)| cos(2πhx) , (6.2)

where S(h) = +1 if Φ(h) = 0, while S(h) = −1 if Φ(h) = π. Consequently, the electron density is
the sum of a series of cosine functions with period 1/h, amplitude |F (h)| and sign S(h). In principle,
we could determine ρ(x) by simply trying every possible combinations of S(h) values until we have
found one which gives a reasonable electron density. But for N measured |F (h)| values, there are 2N

combinations, so it is highly impractical to check them one by one.

The fundamental fact we will rely on is that electron density is a positive quantity. There may
be a small negative region in our synthesis of ρ(x) due to the inaccuracies in the measurement of
F (hkl) values (subject to experimental error) and series termination errors (due to the finite number
of structure factors that can actually be measured), but there cannot be any significant negative
regions — this requirement will allow us to rule out certain combination of phases.

6.2 Fixing the Origin

Before determining the phases ab initio, let’s go back to the basics and consider again what does the
“phase” mean. When defining the phase, we set an origin in our structure. This does not mean that
we necessarily need to physically identify a point inside the crystal during a diffraction experiment.
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Rather, we need to specify the values of a few phases, so that we can define all other phases relative
to those.

For example, let’s consider the (h00) beam, where we write

F (h00) =
∑
n

fn exp[2πihxn] . (6.3)

What we actually mean is
F (h00) =

∑
n

fn exp[2πih(xn − xO)] , (6.4)

where xO is the x coordinate of the origin. When we drop −xO, it is understood that xn is a fractional
coordinate defined relative to the origin. Obviously, the value of xn − xO, and therefore the phase of
F (h00), depends on the value of xO. But oppositely, if we choose the phase of one of the h00 beams
to be 0, we effectively define xO. In a 3D structure, we could define the phase of three independent
beams, say h00, 0k0 and 00l for some h, k and l, then we have effectively fixed the origin in the
structure.

Let’s illustrate this using the common space group P21/c. We claimed before that if a space
group is centrosymmetric, as for this one, then the structure factor would always be a real number,
with phase 0 or π. This is actually true if and only if we set the origin to coincide with a centre of
inversion. Of course it doesn’t have to be, but we would always do so for simplicity. In P21/c, there
are 8 centres of inversion within a unit cell, located at

(0, 0, 0) , (0, 0, 12 ) , (0,
1
2 , 0) , (

1
2 , 0, 0) , (

1
2 ,

1
2 , 0) , (

1
2 , 0,

1
2 ) , (0,

1
2 ,

1
2 ) and ( 12 ,

1
2 ,

1
2 ) , (6.5)

where (0, 0, 0) is set to be one of these centres of inversion. Then the structure factor referring to this
origin is

F (hkl)0,0,0 =
∑
n

fn cos[2π(hxn + kyn + lzn)] . (6.6)

Alternatively, if we move the origin to a different one, say the one we currently label as ( 12 ,
1
2 , 0), an

atom that originally had fractional coordinate (xn, yn, zn) would now have coordinate (xn − 1
2 , yn −

1
2 , zn). Hence, relative to this origin, the structure factor becomes

F (hkl) 1
2 ,

1
2 ,0

=
∑
n

fn cos

[
2π

(
(hxn + kyn + lzn)−

h+ k

2

)]
= (−1)h+kF (hkl)0,0,0 . (6.7)

Consequently, the magnitude of each structure factor will have the same magnitude after this change,
but its sign will change according to whether h+ k is odd or even.

Similar expressions can be obtained for all choices of the origin.

F (hkl)0,0, 12 = (−1)lF (hkl)0,0,0 ,

F (hkl)0, 12 ,0 = (−1)kF (hkl)0,0,0 ,

F (hkl) 1
2 ,0,0

= (−1)hF (hkl)0,0,0 ,

F (hkl)0, 12 ,
1
2
= (−1)k+lF (hkl)0,0,0 ,

F (hkl) 1
2 ,0,

1
2
= (−1)h+lF (hkl)0,0,0 ,

F (hkl) 1
2 ,

1
2 ,0

= (−1)h+kF (hkl)0,0,0 ,

F (hkl) 1
2 ,

1
2 ,

1
2
= (−1)h+k+lF (hkl)0,0,0 .

(6.8)

Hence, if we specify the phases of three carefully chosen beams, say 312, 322 and 221 all to have
phase 0, then there will be only one of the eight possible origins to agree with all of these three phase
values (try it!), and hence we have successfully specified the origin.
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Moreover, we can expand the set of known phases by symmetry. By inspection on the general
equivalent positions of the P21/c space group, we get

F (hkl) = F (hk̄l) = F (h̄kl̄) = F (h̄k̄l̄) . (6.9)

Hence, by solely defining the origin, we get 12 phase values already.

6.3 Projected Structures and Unitary Structure Factors

The basic principle of the direct method is the non-negativity of electron density. For a
centrosymmetric crystal,

ρ(x, y, z) =

∞∑
h,k,l=−∞

S(hkl) |F (hkl)| cos[2π(hx+ ky + lz)] , (6.10)

where S(hkl) = ±1. We see that a beam with strong |F (hkl)| has a large influence on the resulting
Fourier summation, so we would expect to be able to establish their phases most confidently. However,
we would expect a very large number of terms in this triple summation, and hence even strong |F (hkl)|
beams will have a small contribution, and we would be less confident with any phase we propose.

This problem will be reduced if there are fewer terms in the series, which can be achieved if we
project the structure onto a line. For example,

ρ(x) = F (000) + 2

∞∑
h=1

S(h00) |F (h00)| cos(2πhx) (6.11)

would describe the electron density projected onto the x axis, and

ρ(d) = F (000) + 2

∞∑
h=1

S(hhh) |F (hhh)| cos(6πhd) (6.12)

would describe the electron density projected onto the body diagonal of the cell, where d is the
coordinate projected to the diagonal. In both cases, the non-negativity principle must still apply, and
the number of terms in the sum has drastically reduced as we hoped to.

However, the projection brings another issue. In the original 3D structure, the electron density
consists of electron-rich atoms separated by regions of very low electron density. However, this
property is likely to be lost if the electron density is projected onto a line. The consequence is that,
in general, it will be harder to generate regions of negative electron density even if some S(hkl) are
incorrect. Therefore the predictive power of the non-negativity principle will decrease.

There is an elegant way to get around this. Since atomic scattering factor looks roughly the same
shape for all atoms, differing mainly only their scale, we can define a unitary scattering factor

nn =
fn∑
m fm

. (6.13)

This represents the fraction of the scattering power of the atom relative to the overall scattering
power of the cell, and since fn has similar shapes, nn will be roughly constant without any decay.
Hence, the unitary scattering factor represents the scattering of a point atom, as the inverse Fourier
transform of a constant function is a delta function.

From the unitary scattering factor, we can define the unitary structure factor

U(hkl) =
∑
n

nn exp[2πi(hxn + kyn + lzn)] =
F (hkl)∑

n fn
. (6.14)
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(a) Scattering factor of carbon.
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(b) Unitary scattering factor of a carbon atom in
a cell with content C24H24O8 .

An extra benefit of doing so is that because of the fall-off in the scattering power with diffraction
angle, some beams which are inherently strong (in that all atoms scatter in phase) will nevertheless
be weak. Unitary structure factors nicely remove this dependence on scattering angle. Finally, an
extra helpful thing to do is to normalise it by the mean-squared unitary structure factor

E(hkl) =
U(hkl)√
〈U(hkl)2〉

. (6.15)

6.4 Pair and Triple Relationships

6.4.1 Pair Relationship

Suppose we have a normalised electron density projected onto the x axis

ρ(x) = 1 + 2
∑
h>0

S(h) |E(h)| cos(2πhx) . (6.16)

Now consider the case when there are two very strong beams, with indices h and 2h, of similar
magnitudes |E(h)| ≈ |E(2h)|, we write

ρ(x) ≈ 1 + 2 |E| [S(h) cos(2πhx) + S(2h) cos(4πhx)] . (6.17)

If the sum of these two contributions have a significantly negative region, it is unlikely that other
terms in the Fourier synthesis will compensate for that, so we wish their minima will not overlap.
Let’s check different combinations of S(h) and S(2h), as shown in figure 6.2.

We see that regardless of S(h) and S(2h), we will have some negative regions. However, if S(2h)
is negative, whatever S(h) is, the minima of the two cosine waves will overlap, resulting in a strongly
negative region. This is unlikely. Hence, we get the pair relationship: if E(h) and E(2h) are both
large, then S(2h) is likely to be +1.

As we can take projection along any axis, this result can be generalised: if E(h) and E(2h) are
large, where h = hkl is the Miller index, then S(2h) = +1.

6.4.2 Triple Relationship

A similar, but more involved analysis can be done for E(h), E(h′) and E(h+h′), assuming all large
and of similar magnitudes.

46



6 Direct Methods C6 Diffraction Methods in Chemistry

Positive E(h)

+

Positive E(2h)

=

Positive E(h)

+

Negative E(2h)

=

Negative E(h)

+

Positive E(2h)

=

Negative E(h)

+

Negative E(2h)

=

Figure 6.2: The minima of the two terms will overlap if E(2h) is negative.
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Figure 6.3: Triple relationship.

Let’s imagine forming a two dimensional space, plotting ± cos(hx) and ± cos(h′y) along the two
axis, where h = ‖h‖ and h′ =

∥∥h′∥∥. This is equivalent to reorient the two Fourier waves ± cos(S · r)
and ± cos(S′ · r) along x and y axes, respectively. As shown in figure 6.3, the minimum of the sum
of these two waves will be at one of the grid points A, B, C or D. The third wave ± cos(hx + h′y),
corresponding to ± cos((S+ S′) · r) with miller index h+ h′, will have its wavefront at the diagonal,
and we hope it to have its maximum aligned with the minimum of the previous two waves combined
in order to compensate for it.

S(h) S(h′)
E(h+ h′) must diminish

minimum at position S(h+ h′) S(h)S(h′)S(h+ h′)

+1 +1 D +1 +1
+1 −1 C −1 +1
−1 +1 A −1 +1
−1 −1 B +1 +1

This can be summarised as the triple relationship

S(h)S(h′)S(h+ h′) = +1 . (6.18)

One can see that this reduces to the pair relationship if we just set h = h′.

The advantage of this method is that it can be automated with trials and errors on a computer,
requiring virtually no user input.

6.4.3 Limitation of Direct Methods

Recall that the way we figure out ρ(x, y, z) is to use a Fourier series, and if we include an infinite
sum of diffracted beams, we should be able to reproduce it exactly. However, we can only measure
diffraction up to a finite maximum scattering angle, and hence we have a finite number of terms in the
Fourier synthesis. This results in the series termination error. This can be particularly problematic
in direct methods.

Let’s consider the example of caesium picrate Cs[C6H2(NO2)3O], projected onto the x axis.
Figure 6.4 shows progressively larger number of E(h) values included in the Fourier synthesis of
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Figure 6.4: Fourier synthesis of electron density in caesium picrate Cs[C6H2(NO2)3O] as number of
terms increases.

electron density. We see with only five terms included in the sum, only Cs atoms at x ≈ 0.1 and
x ≈ 0.9 can be observed, and the C, N and O atoms are not resolved. As more terms are included, the
lighter atoms become visible, and the large Cs peaks also becomes sharper. However, the Cs peaks
are also surrounded by large negative ripples, which arises due to the series termination errors. These
remain strong even when 40 terms are included in the series, only disappearing when the number of
terms exceeds 100. Therefore, we are likely to observe negative electron density regions around heavy
atoms even when our phases are correct. Consequently, any method relying on the non-negativity of
electron density may falsely rule out the correct phases combinations.

The solution is also simple. If heavy atoms are present, then Patterson function plus phase
determining methods based on heavy atoms would be ideal. Direct method and heavy atom based
methods are perfectly complementary.

Moreover, for molecules like proteins when there are no particularly heavy atoms and the unit
cells are large, there might be no particularly strong peaks, and the intensities are measured at low
resolutions. For them, multiple isomorphous replacement, multiple anomalous scattering or (most
commonly) single anomalous scattering would be used.

6.5 Dual-Space Methods

In fact, most chemical structures solved today use neither the Patterson function nor direct methods.
Instead, modern computing power enables application of the following algorithm called the dual-space
method.

1. Produce a random phase Φ(hkl) for each measured F (hkl).

2. Generate ρ(x, y, z) at points on a defined grid within the unit cell by the inverse Fourier
transform using measured |F (hkl)| and current Φ(hkl).

3. For any grid point with negative ρ(x, y, z), multiply the value by −1.

4. Calculate new F (hkl) by the Fourier transform of ρ(x, y, z).
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5. Replace the current phase set with the Φ(hkl) values obtained in step 4, then return to step 2.

The above operation will converge to a ρ(x, y, z) which is necessarily non-negative. We would
repeat the procedure many times from different initial sets and to assess which of the converged
solutions is the most likely to be correct.

The fundamental basis of the dual space method is clearly the non-negativity of electron density,
and the process of flipping negative ρ(x, y, z) is an example of density modification, meaning modifying
the calculated electron density to conform to our expectations. The established principle of atomicity
can also be applied to the structure at some defined frequency during the iteration. This is achieved
by identifying a number of maxima in ρ and replacing them by isolated spherical electron densities
at these positions.

An additional benefit of dual-space method is that it does not require the symmetry of the crystal
structure to be firmly established. They are usually applied to the whole unit cell content.
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7 Structure Refinement and Other Diffraction Methods

The methods described in previous sections generally produce only an approximate model to the
structure under investigation, commonly referred to as a trial structure. Atoms may deviate from
their true positions quite significantly, and some atoms may remain to be found. In order to complete
the model, it is necessary to refine the structure. We will provide a brief outline here.

7.1 Residual Minimisation

As the observed |F (hkl)| are known functions of the atomic coordinates, the latter can be refined
using least-squares methods. The quantity to be minimised is the residual

R =
∑
hkl

whkl[|Fobs(hkl)|2 − |Fcalc(hkl)|2]2 , (7.1)

where whkl is a weighting factor expressing the accuracy of individual |Fobs(hkl)| values derived during
measurements.

However, this is not as simple as it seems. The structure factor equation is not linear, so it is
not possible to apply straightforward least-squares methods. We need to linearise the equation by
considering the atomic shifts δxn = x′n−xn, and compute the best value of shifts for a particular set
of coordinates. We can iterate until the optimal shifts become small. Like any optimisation processes,
we want to converge to the global minimum of the residual, but as ever, we are likely to get stuck at
a local minimum during optimisation. We then need to use our chemical intuition e.g. whether some
bond lengths or coordination environment are suspicious to identify the true structure.

7.2 Locating the Atoms

In accordance with the Independent Atom Model, the image of ρ(x, y, z) must then be interpreted to
obtain coordinates for each atom. Atoms are considered to lie at the centroids of concentrated regions
of electron density. The accuracy of the atomic positions must therefore depend on the quality of
the electron density map. The image of ρ(x, y, z) is influenced by the number of terms included in
the Fourier synthesis, and the derived atomic coordinates are therefore very much dependent on the
resolution of the analysis.

Examples are shown in figure 7.1 for a section of the electron density map through the benzene
ring of the molecule sulfathiazole. At the exceptionally high resolution of 0.46Å, the atoms are very
clearly defined, and their centres can be identified with confidence. However, note that it is not
entirely obvious where the H atoms lie. At 1.20Å resolution, the atoms of the benzene ring merge
effectively into a continuous feature, and it is more difficult to define each atomic centre. For the
four C(H) atoms, the electron density appears to protrude outward in the direction where H atom is
expected. Hence, defining the C atom coordinates at the centroid of these distorted features is likely
to result in a distorted geometry for the benzene ring. A more typical resolution for a molecular
crystal structure is 0.85Å, which can be seen to produce relatively well defined atoms. Nonetheless,
it should be clear that the accuracy of the final atomic coordinates can be limited for lower resolution
crystal structures, and great care should be taken when interpreting derived bond distances and
angles.
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Figure 7.1: Electron density map of sulfathiazole at different resolutions.

7.3 The Difference Density

We can define the difference density as the inverse Fourier transform of the difference between the
observed and calculated |F (hkl)| values

ρD(x, y, z) = F−1 [(|Fobs(hkl)| − |Fcalc(hkl)|) exp[iΦcalc(hkl)]] , (7.2)

where |Fcalc(hkl)| and Φcalc(hkl) are calculated from the current trial structure.

The resulting difference density is interpreted as the difference between the correct structure
and the trial structure. If our trial structure is absolutely correct, the difference density should be
identically zero. Normally, ρD has some definite characteristics:

• Positive peaks: this arises if an atom has been omitted from the trial structure. Towards the
end of a refinement, this is usually the hydrogen atom. It is very difficult to find H atoms in
an image of the actual electron density, ρ(x, y, z), because it is usually submerged in the noise
of series termination error, especially in the presence of other heavy atoms. The H atoms are
usually more clearly seen on the difference density since both |Fobs(hkl)| and |Fcalc(hkl)| are
subjected to termination errors, so the subtraction will cancel them out to some extent.

• Positive and negative peaks adjacent to an atom in the trial structure: this will arise if the atom
is not quite at the right position. It can be rectified by moving the atom in the direction of the
maximum ρD gradient.

• Hollow peaks at an atom position in the trial structure: a negative peak surrounded by a
pronounced positive rim will occur if the trial structure is effectively more ‘dense’ than in the
real structure. This often arises when there is a need to optimise the atomic displacement
parameter. This is mentioned further below.

Since ρ(x, y, z) is always subject to series termination errors, we cannot expect the difference
density ever to be zero. There will always be “Fourier ripples” around particularly heavy atoms,
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which might be quite substantial (say 1eÅ−3). The crucial point is that a completed structure
refinement should not have any remaining features in ρD that are indicative of missing atoms, i.e. a
peak of 1eÅ−3 within 0.5Å of a heavy atom is likely to be just a Fourier ripple, but a peak of 1eÅ−3

at a distance of ca 1Å from an O atom making only one other bond is clearly the H atom of an OH
group. Hence, some chemical understanding is also required to interpret crystallographic results.

7.4 Atomic Displacement Parameters

Atomic displacement parameters, ADPs, were mentioned in the discussion of atomic scattering factors.
The ADPs can be viewed to “modulate” the atomic scattering factors to account for thermal vibration
or static displacement (where an atom might take slightly different positions within different unit
cells).

ADPs should always be positive and serve to decrease an atom’s contribution in the structure
factor equation. They are visualised by representing the atom as a sphere (for an isotropic ADP)
or ellipsoid (for an anisotropic ADP) scaled to the size of the numerical parameters. For a given
crystal structure, it is reasonable to expect, and generally observed, that all atoms have displacement
ellipsoids/spheres of a similar size. Anomalous ADPs are indicative of atoms that may have been
assigned the wrong atom type. During a structure refinement, the atom type is defined by the choice
of atomic scattering factor, which is then fixed during a given refinement run. The ADPs, on the other
hand, are numerical parameters that can be refined during the least-squares process, and can respond
to an incorrect choice of atoms. If an atomic site is assigned an atom type with too many electrons,
the ADPs will become large to diminish the atomic scattering factor. Conversely, if an atomic site
is assigned as an atom site with too few electrons, the ADPs will become small so that they do not
apply any significant modulating effect. In extreme cases, ADPs can refine to negative values (in the
anisotropic case, the displacement tensor becomes “non-positive definite”), which makes no physical
sense and is not acceptable in a crystallographic result.

7.5 H atoms

It has been mentioned that H atoms can be difficult to locate in ρ(x, y, z) because they only have
one electron. An additional point to consider is where the H atom actually is. The one electron of
H will almost always be involved in a covalent bond, so the maximum electron density in a C−H
bond (for example) will be somewhere between the C atom and the proper nuclear position of the
H atom. Since atomic positions are deduced from maxima in ρ(x, y, z), H atoms will be placed too
close to the atom to which they are bonded, i.e. bond lengths to H in X-ray crystal structures are
always systematically too short.

Often we know enough about molecular structure to know where H atoms should be, so we can just
place H atoms in calculated positions. However, we still have to place them in the “wrong” (shortened)
positions because we are still trying to fit an electron density map. True H atom positions can be
estimated by normalising X−H bonds to values obtained from neutron diffraction.
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7.6 Assessing the Quality of the Results

When the refinement has been completed, the final result of the structure determination is commonly
expressed by two different normalised residuals:

wR2 =


∑

hkl whkl

[
|Fobs(hkl)|2 − |Fcalc(hkl)|2

]2
∑

hkl whkl

[
|Fobs(hkl)|2

]2


1/2

(7.3)

R1 =

∑
hkl ||Fobs(hkl)| − |Fcalc(hkl)||∑

hkl |Fobs(hkl)|
. (7.4)

The first of these is a root-mean-squared value derived directly from the refined residual, while the
second is based on absolute differences between the structure factor magnitudes. The wR2 measure is
preferred because it can include all intensity data. R1 will require weak |F | values below a minimum
threshold (typically greater than 3 times the estimated error) to be ignored because of the difficulties
assessing their accuracy.

For a chemical crystal structure, wR2 is typically in the range 0.10 ∼ 0.20. R1 values are always
smaller, typically in the range 0.05 ∼ 0.10. There may be reasons why R-factors could be larger
than these quoted values, for example a very weakly diffracting crystal (producing noisy intensities),
or substantial disorder, where atoms may not correspond to the expectations of perfect long-range
order in a single crystal. Hence, R-factors alone do not always tell the full story. To assess a crystal
structure, it is important also to compare it to expectations based on physical and chemical sense.

7.7 Neutron and Electron Diffraction

This course has focused mainly on X-ray diffraction because X-rays are most commonly used for
chemical characterisation, particularly in “home” laboratories. The same principles apply of course to
other radiation sources. Neutrons have long been used to complement X-ray diffraction analyses, and
electron diffraction is also now emerging as a practical technique to study micro- and nano-crystalline
materials.

7.7.1 Neutron Diffraction

Although they are commonly regarded as particles, neutrons have a wave-like character (as all the
particles) and are also diffracted by matter. Thermal neutrons from a reactor have a kinetic energy
given by:

E =
1

2
mv2 ≈ kBT = 4× 10−21 J (7.5)

at room temperature. This corresponds roughly to a velocity of 2, 200 m s−1, and hence a wavelength
of about 1.8Å, which is eminently suitable for diffraction studies.

Neutron diffraction has some distinct advantages over X-ray diffraction:

1. Neutrons are mainly scattered by atomic nuclei, which are very small. Consequently peaks
in either a Patterson function or a “nuclear density” map produced by the inverse Fourier
transform will be very sharp, making interpretation easier.

2. For X-ray diffraction, the scattering power of an atom is roughly proportional to its atomic
number. This means that light atoms, particularly H, may be difficult to identify and refine.
In neutron diffraction, the scattering power of a nucleus depends on the nuclear energy levels,
which vary in an almost random way, even among isotopes of the same element. Consequently
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some light atoms scatter neutrons more strongly than heavy ones. The most important case
involves the scattering from isotopes of H, which is very strong from 2H (deuterium). Neutron
diffraction is therefore a good way to locate the true positions of H atoms by experiment.
The random variation of neutron scattering powers can be exploited in other ways. For example,
it is difficult using X-ray diffraction to distinguish between atoms with very similar atomic
number because they have almost identical scattering power. A classic example is Si and Al in
a zeolite structure. For neutrons however, their scattering powers are different, and they can
be easily distinguished.

3. Neutrons have spin, and can therefore interact with the local magnetic field produced by an
unpaired electron. If unpaired electrons are present, the atomic scattering factor for neutrons
can be written as:

fneutron = fnuclear + fmagnetic . (7.6)

When we record an experimental set of diffracted intensities using neutrons, we are recording
the effects of both magnetic and nuclear components of the scattering. If the basic structure is
known (usually from a preliminary X-ray measurement), we can calculate a type of “difference
density” using |Fcalc(hkl)| and Φcalc(hkl) values which are deduced from the atomic parameters
using the nuclear scattering factors only. The features which show up in the difference density
then highlight parts of the structure where magnetic electrons are present. This difference
density, which has the form:

ρmagnetic(x, y, z) = F−1 [(|Fobs(hkl)| − |Fcalc(hkl)|) exp[iΦcalc(hkl)]] , (7.7)

is normally referred to as the magnetic scattering density.

Although they have these clear advantages, neutrons also have two important disadvantages which
restrict their use:

1. Thermal neutrons require a nuclear reactor for their generation. Consequently they are
only available in certain specialised central facilities, to which applications for beam time
must be made and where complicated experimental arrangements for “one-off” or speculative
experiments are not generally possible.

2. Neutron scattering is almost two orders of magnitude weaker than X-ray scattering. Conse-
quently, to record acceptable diffracted intensities usually requires a larger sample. In the case
of powder diffraction, this is not too much of a problem, but most ab initio structure solution
requires single crystals, and these are frequently very difficult, if not impossible, to grow in the
sizes required for neutron work. This is particularly true for materials such as proteins.

7.7.2 Electron Diffraction

Accelerated electrons also have significant wave-like character. For a representative accelerating
voltage of 200 keV in an electron microscope, the wavelength is about 0.025Å; considerably shorter
than X-ray wavelengths used in laboratory diffraction instruments but still in the region to permit
diffraction studies.

The main benefit of using electrons is that it allows diffraction data to be collected from nano-
crystalline samples, with volume two or three orders of magnitude smaller than those required for
lab-based X-ray measurements. This is possible due to the strong coulomb interaction between the
electron beam and the sample. However, there are practical drawbacks, namely that measurements are
required to be made in a vacuum, and have generally been implemented with electron microscopes that
limit sample movement and therefore cannot access all areas of reciprocal space. In addition, exposure
to intense electron beams can lead to rapid sample decomposition, especially for organic molecules.
These practical matters have generally limited the application of electron diffraction compared to
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X-ray diffraction. Some of them are now starting to be overcome by dedicated electron diffraction
instruments and cryo-cooling of samples, etc., and the technique is likely to grow significantly in the
coming years.

The particularly strong scattering of electrons leads to challenges in data interpretation. In
particular, recall from the initial discussion that we developed the Fourier transform relationship
under the assumption that the total scattering is small compared to the strength of the incident
beam. For electrons, we cannot assume that the scattering is small compared to the incident beam,
so we have to deal with dynamical scattering theory, which takes into account multiple scattering
effects (i.e. re-scattering of the scattered beams). Practically, it is helpful to minimise multiple
scattering in electron diffraction by using samples that are as thin as possible (with the drawback
that this is likely to accelerate sample decomposition), but it still cannot be ignored during structure
determination and refinement procedures.

For many years, software used for X-ray structure solution and refinement has simply been applied
to electron diffraction data, and it has been accepted that the results will be generally worse than
those obtained using X-rays (an acceptable price to pay for being able to look at very small samples).
In the last few years, however, effective software implementing the full dynamical theory has started
to emerge. The calculations are very much more intensive than for X-rays, so cycles of refinement may
reach hours rather than seconds for X-rays. The computational cost obviously increases with structure
size, and macromolecular refinements are not in reach in the immediate future. However, the methods
have produced promising results for small-molecule structures, including effective identification of H
atoms and absolute structure determination.
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