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1 The Hamiltonian and the Wavefunction B10 Electronic Structure

Part I

Ab Initio Quantum Chemistry

1 The Hamiltonian and the Wavefunction

In these lectures, we shall use atomic units. These are defined as

(i) unit of length is Bohr a0, with dimension L;

(ii) unit of charge is the magnitude of the charge on the electron e, with dimension Q;

(iii) unit of action is reduced Planck’s constant ℏ, with dimension ML2T−1;

(iv) unit of mass is the mass of the electron me, with dimension M.

These definitions imply that 4πϵ0 = 1 because of the relation

a0 =
4πϵ0ℏ2

mee2
. (1.1)

In these units the unit of energy is Hartree Eh. The speed of light in atomic units is 137.036.

In these units the molecular electronic Schrödinger Hamiltonian, ignoring all relativistic terms, is

Ĥ = −1

2

n∑
i=1

∇2
i −

n∑
i=1

N∑
A=1

ZA

‖ri −RA‖
+

n∑
i>j

1

‖ri − rj‖
+

N∑
A>B

ZAZB

‖RA −RB‖
, (1.2)

where i, j label electrons at ri, rj , and A,B label nuclei with charges ZA, ZB at RA,RB . This part
of the course is concerned with the determination of solutions (energies and wavefunctions) of the
Schrödinger equation

ĤΨ = EΨ (1.3)
for fixed positions of the nuclei. This is formally known as the clamped-nucleus approximation.
Eigenvalue E ≡ E({Ri}) as a function of nuclear positions {Ri} is the potential energy surface. This
part of the course is on ab initio quantum chemistry, meaning that we use no (semi-)empirical or
experimental information.

The fundamental expansion functions which we use to find approximate solutions of Schrödinger’s
equation are Slater determinants, which have the form

Ψ =
1√
n!

∣∣∣∣∣∣∣∣∣
ϕ1(1) ϕ1(2) · · · ϕ1(n)
ϕ2(1) ϕ2(2) · · · ϕ2(n)

...
... . . . ...

ϕn(1) ϕn(2) · · · ϕn(n)

∣∣∣∣∣∣∣∣∣ , (1.4)

where i is the shorthand notation for spatial and spin coordinates xi = (ri, ωi).

We can rewrite the Slater determinant into a form that is much easier to handle. But first, we
need some knowledge of permutation groups.

Lemma 1.1. Let X be a set.

(i) The permutations on X, P̂ : X → X form a group under function composition, which is known
as the permutation group of X.

(ii) If X has n elements, then the permutation group on X is denoted Sn. It has n! elements.

1



1 The Hamiltonian and the Wavefunction B10 Electronic Structure

(iii) A k-cycle is a permutation

(a1 a2 . . . ak)(i) =


aj+1 if i = aj for j < k

a1 if i = ak

i if i 6= aj for any j .
(1.5)

A transposition is a 2-cycle.

(iv) A permutation has a unique decomposition into disjoint cycles, and a k-cycle can be decomposed
into k − 1 transpositions. Therefore, all permutations can be decomposed into transpositions.

(v) If a permutation P̂u can be decomposed into an even number of transpositions, then the
permutation is said to have an even parity σu = +1. If it is decomposed into an odd number of
transpositions, then it has an odd parity σu = −1.

We may rewrite the Slater determinant as

Ψ = Â(ϕ1(1)ϕ2(2) . . . ϕn(n)) , (1.6)

where Â is the antisymmetriser defined as

Â :=
1√
n!

n!∑
u∈Sn

σuP̂u , (1.7)

in which P̂u is a permutation operator that permutes the coordinates in the Hartree product Φ :=
ϕ1(1)ϕ2(2) . . . ϕn(n). For example, the permutation P̂(i j) permutes the coordinates of electron i and
electron j, so that

P̂(i j)Φ = P̂(i j)ϕ1(1) . . . ϕi(i) . . . ϕj(j) . . . ϕn(n)

= ϕ1(1) . . . ϕi(j) . . . ϕj(i) . . . ϕn(n) . (1.8)

The antisymmetriser therefore sums over all possible permutations of the electron coordinates,
multiplied by the parity of the permutations so that the result obeys the Pauli’s exclusion principle:
a wavefunction changes sign on the interchange of the coordinates of two electrons. Note that these
determinants are zero if

(i) two spin-orbitals are the same (ϕi = ϕj), or

(ii) the coordinates of two electrons are the same ((ri, ωi) = (rj , ωj))

as desired from Pauli’s principle.
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2 Basis Functions B10 Electronic Structure

(i) nuclear cusp (ii) no cusp

decays too
quickly

Figure 2.1: A comparison of (i) Slater type orbital and (ii) Gaussian function.

2 Basis Functions

Ideally it would be best to use hydrogenic type functions

Rnl(r)Ylm(θ, ϕ) (2.1)

as expansion functions for molecular orbitals. Equivalently, these functions can be written as

rnxpyqzs exp(−Znr) , (2.2)

from which we can see that such a set includes s, p, d, f, . . . hydrogenic atomic orbital wavefunctions.
These functions are usually referred to as Slater functions. However it is impossible to analytically
evaluate the one and two electron integrals which arise in the evaluation of matrix elements if these
functions are used. This means that to use them in computation, we need time-consuming and often
inaccurate numerical integrations.

2.1 Gaussian Type Orbitals

Instead, computational quantum chemistry usually uses Gaussian basis functions. They have the
form

xpyqzs exp(−ar2) , (2.3)

where p, q, s are integers. The angular parts of these functions are the same as the Slater functions,
but the radial part is different. The derivative of an s Gaussian is zero at the origin, unlike the Slater
function. Also the Gaussian dies off with ∼ exp(−ar2) dependence compared to the Slater function’s
∼ exp(−ar) dependence at large r. Thus Gaussian functions have a totally different behaviour from
Slater functions at both small r and large r.

However the key advantage of Gaussians is that all the required integrals are very easy to evaluate.
This follows from the fact that the product of two Gaussians is another Gaussian. This is known as
the Gaussian product theorem.

Theorem 2.1 (Gaussian product theorem). Let E be a Euclidean space with Euclidean norm
‖ · ‖, r, rA, rB ∈ E and α, β ∈ R, α, β > 0. Then

e−α‖r−rA‖2

e−β‖r−rB‖2

= ce−γ‖r−rP ‖2

(2.4)

for some γ ∈ R, rP ∈ E and normalising factor c ∈ R.

A BP

O

rA rP rB

θ

3



2 Basis Functions B10 Electronic Structure

Proof. Let P be a point along AB. The cosine formula gives

r2A = r2P + ‖PA‖2 + 2 ‖PA‖ rP cos θ , (2.5)
r2B = r2P + ‖PB‖2 − 2 ‖PB‖ rP cos θ . (2.6)

If we choose the position P such that ‖PA‖ / ‖PB‖ = β/α, that is

rP =
αrA + βrB
α+ β

, (2.7)

then
αr2A + βr2B = (α+ β)r2P + α ‖PA‖2 + β ‖PB‖2 . (2.8)

Completing the algebra then gives the result

e−αr2Ae−βr2B = e−
αβ

α+β ‖AB‖2

e−(α+β)r2P (2.9)

as required. □

The integrals of Gaussian functions are easily evaluated analytically.

Lemma 2.2 (Gaussian integration lemma). For any constant a, b ∈ R with a > 0,∫ ∞

−∞
du e−a(u+b)2 =

√
π

a
. (2.10)

It is then possible to evaluate the integrals that are needed for electronic structure calculation
analytically. For example, the overlap integrals of two s Gaussians are

〈ηAα|ηBβ〉 :=
∫

d3r e−αr2Ae−βr2B

=

(
π

α+ β

) 3
2

e−
αβ

α+β ‖AB‖2

. (2.11)

The four-centre two-electron integral can also be evaluated:

〈ηAαηCγ |ηBβηDδ〉 ≡ (ηAαηBβ |ηCγηDδ)

:=

∫∫
d3r1 d

3r2
e−αr21Ae−βr21Be−γr22C e−δr22D

r12

= 〈ηAα|ηBβ〉 〈ηCγ |ηDδ〉 erf

([
(α+ β)(γ + δ)

α+ β + γ + δ

] 1
2

‖PQ‖

)
, (2.12)

where
rP =

αrA + βrB
α+ β

, rQ =
γrC + δrD
γ + δ

(2.13)

and
erf(x) :=

2√
π

∫ x

0

dt exp(−t2) (2.14)

is the error function. This is more often quoted in an equivalent form in the literature

〈ηAαηCγ |ηBβηDδ〉 =
2π5/2

pq
√
p+ q

F0(ρ ‖PQ‖2) , (2.15)

where p = α+ β, q = γ + δ, ρ = pq/(p+ q) and

Fn(x) =

∫ 1

0

dt exp(−xt2)t2n (2.16)

is the nth-order Boys function. You don’t need to know any of the formulae above. You only need to
appreciate that they exist, and computers can use them to quickly get the results of the integrals.

4



2 Basis Functions B10 Electronic Structure

2.2 Standard Basis Sets

To overcome the difficulty of the less desirable short and long range behaviour of Gaussians, it
is common today to use fixed combinations of one to six Gaussians as basis functions, with the
combinations chosen such that they look more like Slater functions.

These combinations are established, and there are a variety of different notations, usually referred
to by the primary author who devised and published them. Here we will give a few examples:

• STO-3G (Pople) means the use of a contracted combination of three Gaussians to represent
each Slater function. H requires 1 s basis function made from 3 Gaussian functions. Li−Ne
require 2 s basis functions and one set of three p basis functions, so there are in total 5 of them,
each made up from 3 Gaussian functions.

r

no cusp

Figure 2.2: STO-3G uses 3 Gaussian functions to mimic the Slater type hydrogen 1s orbital.

You can find the parameters of these basis functions on Basis Set Exchange.1 For example, if
you search for the parameters of Li, you will get

#BASIS SET: (6s,3p) -> [2s,1p]
Li S

0.1611957475E+02 0.1543289673E+00
0.2936200663E+01 0.5353281423E+00
0.7946504870E+00 0.4446345422E+00

Li SP
0.6362897469E+00 -0.9996722919E-01 0.1559162750E+00
0.1478600533E+00 0.3995128261E+00 0.6076837186E+00
0.4808867840E-01 0.7001154689E+00 0.3919573931E+00

END

Let’s have a close look at what everything means.

The first section gives the parameters of the 3 Gaussians composing Li 1s orbitals:

ηLi,1s =

3∑
i=1

cie
−air

2

, (2.17)

where

i ai / a
−2
0 ci

1 16.11957475 0.1543289673
2 2.936200663 0.5353281423
3 0.7946504870 0.4446345422

1https://www.basissetexchange.org/

5
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2 Basis Functions B10 Electronic Structure

The second section gives the 3 Gaussians shared by the 2s and 2p orbitals:

ηLi,2s =

3∑
i=1

c
(s)
i e−air

2

, (2.18)

and

ηLi,2pq =

3∑
i=1

qc
(p)
i e−air

2

, (2.19)

where q ∈ {x, y, z} are Cartesian functions and parameters are

i ai / a
−2
0 csi cpi

1 0.6362897469 −0.09996722919 0.1559162750
2 0.1478600533 0.3995128261 0.6076837186
3 0.04808867840 0.7001154689 0.3919573931

Note that the Gaussian functions are the same for 2s and 2p orbitals.

Such a basis set is described as a minimal basis set as it uses one basis function per atomic
orbital.

• 6-31G* (Pople) is a split valence basis set, in which a valence atomic orbital is split into two basis
functions to allow more flexibility. It has 6 Gaussians in the core orbital and 3 and 1 Gaussians
in the two valence orbitals. Moreover, due to the chemical environments, the electron density
in an atom may be distorted. This requires us to bring in some orbitals with higher angular
momentum for polarisation. To distort an s orbital, we need to introduce a p orbital, and to
distort a p orbital, we need to use d orbitals etc. The star means polarisation functions on all
atoms except hydrogen, and ** would also add polarisation to hydrogen.

(i)

H F

(ii)

H F

Figure 2.3: A hydrogen atom (i) without polarisation and (ii) with polarisation. The polarisation
can be achieved by using an extra set of p orbitals.

A hydrogen atom has a 1s valence orbital, so 6-31G* would split it into two basis functions,
composed of 3 and 1 Gaussians respectively. For Li-Ne, the 1s core orbital is made up from 6
Gaussians, while the 2s and 2p valence orbitals are each split into 2 basis functions composed
of 3 and 1 Gaussians respectively. Moreover, polarisation introduces a set of d orbitals. Hence
they are described by 15 basis functions (3s2p1d, and there are 6 d orbitals in 6-31G* — see
later).

• cc-pVTZ (Dunning) is a large basis set for Hartree–Fock and is primarily designed for correlated
methods. It stands for correlation consistent polarised valence triple zeta (e.g. H 3s2p1d (14
functions) Li-Ne 4s3p2d1f (30 functions)). Larger basis sets are available e.g. cc-pVQZ or
cc-pV5Z.

• Augmented functions for diffuse basis sets for the description of anionic systems are e.g. aug-
cc-pVTZ (Dunning) or 6-311++G(3df,3pd) (Pople).

• cc-pCVTZ (Dunning) includes functions for correlating core electrons.

6



2 Basis Functions B10 Electronic Structure

2.2.1 Cartesian vs Spherical

For d functions and beyond, the Cartesian function {xixj} spans a larger space than the spherical
harmonics {2z2 − x2 − y2, x2 − y2, xy, xz, yz}. Care should be taken as to which definition is used
within a basis set. The Pople 6-31G family use Cartesian d-functions, but spherical functions for f
orbitals and beyond. Dunning style cc-pVXZ basis sets use purely spherical harmonics.

2.3 Slater Type Orbitals (Non-examinable)

A normalised Slater basis function is defined by

S(ζ, n, ℓ,m; r, θ, ϕ) =
(2ζ)n+

1
2

[(2n)!]
1
2

rn−1e−ζrZℓm(θ, ϕ) . (2.20)

Thus they are defined through their exponent ζ, principal quantum number n, angular momentum
quantum number ℓ and the magnetic quantum number m. We have n > ℓ and m = −ℓ,−ℓ+1, . . . , ℓ.
Zℓm(θ, ϕ) are the real spherical harmonics given by

Zℓ,m(θ, ϕ) =

(
(2ℓ+ 1)(ℓ− |m|)!

2π(ℓ+ |m|)!

) 1
2


cos(|m|ϕ)P |m|

ℓ (cos θ) ℓ ≥ m > 0
1√
2
P 0
ℓ (cos θ) m = 0

sin(|m|ϕ)P |m|
ℓ (cos θ) −ℓ ≤ m < 0 ,

(2.21)

where Pm
ℓ are the associated Legendre functions.

The formulae for the analytic potential of a STO are given by

V (ζ, n, ℓ,m; r, θ, ϕ) =

∫ ∞

0

dr′
∫ π

0

dθ′
∫ 2π

0

dϕ′
S(ζ, n, ℓ,m; r′, θ′, ϕ′)

‖r− r′‖
r′2 sin θ′ . (2.22)

Using the well-known expansion of ‖r− r′‖ in spherical harmonics, the following result is obtained

V (ζ, n, ℓ,m; r, θ, ϕ) =
4π(2ζ)n+

1
2

[(2n)!]
1
2 (2ℓ+ 1)

Zℓm(θ, ϕ)Inℓ(r) , (2.23)

with
Inℓ(r) = r−ℓ−1

∫ r

0

dr′ (r′)n+ℓ+1e−ζr′ + rℓ
∫ ∞

r

dr′ (r′)n−ℓe−ζr′ . (2.24)

Both of these integrals may be evaluated recursively.

The only other formula that is often used is the Laplacian of an STO

∇2S(ζ, n, ℓ,m; r, θ, ϕ) = [[n(n− 1)− ℓ(ℓ+ 1)]r−2 − 2nζr−1 + ζ2]S(ζ, n, ℓ,m; r, θ, ϕ) . (2.25)

7



3 Matrix Element of Determinants and Energy Expressions B10 Electronic Structure

3 Matrix Element of Determinants and Energy Expressions

We write the Slater determinant of a set of orthonormal spin-orbitals in the form

Ψ =
1√
n!

∣∣∣∣∣∣∣∣∣
ϕ1(1) ϕ1(2) · · · ϕ1(n)
ϕ2(1) ϕ2(2) · · · ϕ2(n)

...
... . . . ...

ϕn(1) ϕn(2) · · · ϕn(n)

∣∣∣∣∣∣∣∣∣
= Â(ϕ1ϕ2 . . . ϕn)

= ÂΦ . (3.1)

We now work out some properties of Â that may help us evaluate the matrix elements.

Lemma 3.1.

(i) Â
2
=

√
n! Â.

(ii) P̂u is unitary, and so Â is Hermitian, i.e.
〈
ÂΦ

∣∣∣Ψ〉 =
〈
Φ
∣∣∣ÂΨ

〉
for any Φ,Ψ.

(iii)
〈
ÂΦ

∣∣∣Ĥ∣∣∣ÂΦ
〉
=

√
n!
〈
Φ
∣∣∣Ĥ∣∣∣ÂΦ

〉
.

Proof.

(i) We have

Â
2
=

1

n!

n!∑
u

σuP̂u

n!∑
v

σvP̂v

=
1

n!

n!∑
u

n!∑
v

(σuσv)(P̂uP̂v) . (3.2)

We need a simple result from group theory known as the rearrangement theorem. It states that
for any element g in a group G, gG = {gh | h ∈ G} = G. So, for each P̂u∑

v∈Sn

σuσvP̂uP̂v =
∑
w∈Sn

σwP̂w . (3.3)

This basically says that doing all possible permutations then do a specific permutation is
equivalent to doing all possible permutations. Therefore,

Â
2
=

1

n!

n!∑
u,w

σwP̂w

=
1

n!
n!
√
n! Â

=
√
n! Â . (3.4)

Note that this is different from a projection operator, for which Q̂2 = Q̂.

(ii) P̂u is unitary because 〈
P̂uΦ

∣∣∣Ψ〉 =
〈
P̂−1
u P̂uΦ

∣∣∣P̂−1
u Ψ

〉
=
〈
Φ
∣∣∣P̂−1

u Ψ
〉

(3.5)

8
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as acting the same permutation on both sides only introduces a relabelling of the integration
variable. Note that P̂u and P̂−1

u have the same parity since parity σ : Sn → C2 is a
homomorphism and σ(P̂−1

u )σ(P̂u) = σ(Ê) = 1. Therefore we have〈∑
u

σuP̂uΦ

∣∣∣∣∣Ψ
〉

=

〈
Φ

∣∣∣∣∣∑
u

σuP̂
−1
u Ψ

〉

=

〈
Φ

∣∣∣∣∣∑
u

σuP̂uΨ

〉
. (3.6)

Hence 〈
ÂΦ

∣∣∣Ψ〉 =
〈
Φ
∣∣∣ÂΨ

〉
. (3.7)

(iii) From (ii), we have 〈
ÂΦ

∣∣∣Ĥ∣∣∣ÂΦ
〉
=
〈
Φ
∣∣∣Â Ĥ ÂΦ

〉
. (3.8)

Ĥ is a symmetric operator that is invariant under the swapping of any pair of labels, so Ĥ
commutes with Â. Thus we have〈

ÂΦ
∣∣∣Ĥ∣∣∣ÂΦ

〉
=
〈
Φ
∣∣∣Ĥ∣∣∣Â2

Φ
〉
=

〈
Φ

∣∣∣∣∣Ĥ
∣∣∣∣∣∑

u

σuP̂uΦ

〉
(3.9)

as claimed. This is a significant simplification as we have reduced a sum of (n!)2 terms to a
sum of n! terms. □

Theorem 3.2. For a general Hamiltonian

Ĥ = C +
∑
i

ĥ(i) +
∑
i>j

1

rij
, (3.10)

the expected value of Ĥ for the Slater determinant Ψ = ÂΦ is given by〈
Ψ
∣∣∣Ĥ∣∣∣Ψ〉 = C +

∑
i

hii +
∑
i>j

[(ii|jj)− (ij|ij)] , (3.11)

where hij is the matrix element
〈
ϕi

∣∣∣ĥ∣∣∣ϕj〉 and〈
ϕi(1)ϕj(2)

∣∣∣∣ 1

r12

∣∣∣∣ϕk(1)ϕl(2)〉 := 〈ij|kl〉 ≡ (ik|jl) . (3.12)

The notation 〈 · | · 〉 is the physicists’ notation and ( · | · ) is the chemists’ notation.

Proof. We consider each term of the operator in turn.

(i) First the constant term C:

〈Ψ|C|Ψ〉 = C

〈
ϕ1(1)ϕ2(2) . . . ϕn(n)

∣∣∣∣∣∑
u

σuP̂uϕ1(1)ϕ2(2) . . . ϕn(n)

〉
. (3.13)

If P̂u = Ê, the identity operation, then the contribution is

C 〈ϕ1|ϕ1〉1 〈ϕ2|ϕ2〉2 . . . 〈ϕn|ϕn〉n = C . (3.14)

If P̂u = P̂12, we obtain the contribution

−C�����:0
〈ϕ1|ϕ2〉1 �����:0

〈ϕ2|ϕ1〉2 . . . 〈ϕn|ϕn〉n = 0 . (3.15)

9
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Similarly, if P̂u is any non-identity permutation, it will permute some i to some j 6= i, then the
contribution is

σuC . . .����:0
〈ϕi|ϕj〉i . . . = 0 . (3.16)

Therefore, only the identity permutation in the sum contributes and so

〈Ψ|C|Ψ〉 = C . (3.17)

Moreover, let C = 1 then 〈Ψ|Ψ〉 = 1 so we can check that the Slater determinantΨ is normalised.

(ii) Next, consider the one-electron Hamiltonian term ĥ(i):

〈
Ψ
∣∣∣ĥ(i)∣∣∣Ψ〉 =

〈
ϕ1(1)ϕ2(2) . . . ϕn(n)

∣∣∣∣∣ĥ(i)
∣∣∣∣∣∑

u

σuP̂uϕ1(1)ϕ2(2) . . . ϕn(n)

〉
. (3.18)

If P̂u = Ê, we obtain the contribution

〈ϕ1|ϕ1〉1 〈ϕ2|ϕ2〉2 . . .
〈
ϕi

∣∣∣ĥ∣∣∣ϕi〉
i
. . . 〈ϕn|ϕn〉n =

〈
ϕi

∣∣∣ĥ∣∣∣ϕi〉 =: hii . (3.19)

If P̂u = P̂ij , we obtain the contribution

−〈ϕ1|ϕ1〉1 . . .
〈
ϕi

∣∣∣ĥ∣∣∣ϕj〉
i
. . .����:0

〈ϕj |ϕi〉i . . . 〈ϕn|ϕn〉n = 0 , (3.20)

and the contribution from other terms vanish similarly. Thus summing over i, we obtain〈
Ψ

∣∣∣∣∣∑
i

ĥ(i)

∣∣∣∣∣Ψ
〉

=
∑
i

hii . (3.21)

(iii) Finally, there is the e− − e− repulsion term 1
rij

:

〈
Ψ

∣∣∣∣ 1rij
∣∣∣∣Ψ〉 =

〈
ϕ1(1)ϕ2(2) . . . ϕn(n)

∣∣∣∣∣ 1rij
∣∣∣∣∣∑

u

σuP̂uϕ1(1)ϕ2(2) . . . ϕn(n)

〉
. (3.22)

If P̂u = Ê, we obtain the contribution

〈ϕ1|ϕ1〉1 〈ϕ2|ϕ2〉2 . . .
〈
ϕi(i)ϕj(j)

∣∣∣∣ 1rij
∣∣∣∣ϕi(i)ϕj(j)〉

ij

. . . 〈ϕn|ϕn〉n = (ii|jj) . (3.23)

If P̂u = P̂ij , we obtain the contribution

−〈ϕ1|ϕ1〉1 . . .
〈
ϕi(i)ϕj(j)

∣∣∣∣ 1rij
∣∣∣∣ϕi(j)ϕj(i)〉

ij

. . . 〈ϕn|ϕn〉n = − (ij|ij) . (3.24)

Any other permutation will involve the overlap of different orbitals and hence give zero
contribution. Thus summing over i > j, we obtain〈

Ψ

∣∣∣∣ 1rij
∣∣∣∣Ψ〉 =

∑
i>j

[(ii|jj)− (ij|ij)] . (3.25)

Hence, the Slater determinant constructed from a Hartree product of normalised spin-orbitals
Ψ = ÂΦ is also normalised and〈

Ψ
∣∣∣Ĥ∣∣∣Ψ〉 = C +

∑
i

hii +
∑
i>j

[(ii|jj)− (ij|ij)] . (3.26)

(ii|jj) is known as the Coulomb integral and (ij|ij) is the exchange integral. □

10
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Proposition 3.3. The expectation value of a Slater determinant for an arbitrary operator Q̂ is
invariant to a unitary rotation of its orbitals.

Proof. Let Ψ = Âϕ1 . . . ϕn, where {ϕi}ni=1 are orthonormal, and let ψ = Uϕ, where U is unitary so
that

U† = U−1 , |detU| = 1 . (3.27)

In component form,

ψi =

n∑
j=1

Uijϕj . (3.28)

Let the Slater determinant of the transformed orbital be

Ψ′ = Âψ1 . . . ψn

= Â
n∑

j1=1

U1j1ϕj1(1)

n∑
j2=1

U2j2ϕj2(2) · · ·
n∑

jn=1

Unjnϕjn(n)

=

n∑
j1=1

n∑
j2=1

· · ·
n∑

jn=1︸ ︷︷ ︸
nn terms

U1j1U2j2 . . . Unjn Âϕj1(1)ϕj2(2) . . . ϕjn(n) . (3.29)

By the property of the antisymmetriser,

Âϕj1(1)ϕj2(2) . . . ϕjn(n) 6= 0 (3.30)

if and only if {1, 2, . . . , n} = {j1, j2, . . . , jn}. Thus, for a term in the sum to be non-zero, we must
have

ϕj1(1)ϕj2(2) . . . ϕjn(n) = P̂j1...jnϕ1(1)ϕ2(2) . . . ϕn(n) . (3.31)

Hence,

Ψ′ =

n!∑
P̂j1...jn

U1j1 . . . Unjn Â P̂j1...jn︸ ︷︷ ︸
Â P̂j1...jn=σj1...jn Â

ϕ1(1) . . . ϕn(n)

=

n!∑
P̂j1...jn

U1j1 . . . Unjnσj1...jn

︸ ︷︷ ︸
detU

Ψ

= detUΨ . (3.32)

Finally, we have 〈
Ψ′
∣∣∣Q̂∣∣∣Ψ′

〉
=
〈
detUΨ

∣∣∣Q̂∣∣∣detUΨ〉
= |detU|2

〈
Ψ
∣∣∣Q̂∣∣∣Ψ〉

=
〈
Ψ
∣∣∣Q̂∣∣∣Ψ〉 . (3.33)

□

Proposition 3.4 (Slater–Condon rule). Let Ψa
i denote the single replacement Slater determinant

defined as
Ψa

i := Âϕ1(1)ϕ2(2) . . . ϕi−1(i− 1)ϕa(i)ϕi+1(i+ 1) . . . ϕn(n) , (3.34)

and let Ψab
ij denote the double replacement Slater determinant

Ψab
ij := Âϕ1ϕ2 . . . ϕi−1ϕaϕi+1 . . . ϕj−1ϕbϕj+1 . . . ϕn , (3.35)

11
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where {ϕ1, . . . , ϕn, ϕa, ϕb} are orthonormal. We have〈
Ψa

i

∣∣∣Ĥ∣∣∣Ψ〉 = hai +

n∑
j=1

[(ai|jj)− (aj|ij)] =: Fai , (3.36)

〈
Ψab

ij

∣∣∣Ĥ∣∣∣Ψ〉 = (ai|bj)− (aj|bi) . (3.37)

Proof. (i) The matrix element is

〈
Ψa

i

∣∣∣Ĥ∣∣∣Ψ〉 =

〈
ϕ1ϕ2 . . . ϕi−1ϕaϕi+1 . . . ϕn

∣∣∣∣∣Ĥ
∣∣∣∣∣∑

u

σuP̂uϕ1 . . . ϕi−1ϕiϕi+1 . . . ϕn

〉
. (3.38)

The constant term in the Hamiltonian contributes nothing to the matrix element as

〈ϕa|ϕj〉 = 0 ∀j ∈ {1, . . . , n} . (3.39)

Contribution from single electron hamiltonian must eliminate the zero overlap 〈ϕa|ϕi〉, so the
only non-zero term comes from ĥ(i) and P̂u = Ê, where the contribution is〈

ϕa(i)
∣∣∣ĥ(i)∣∣∣ϕi(i)〉

i
= hai . (3.40)

For the two-electron term, we still need to sandwich the operator between orbitals whose overlap
is zero. Thus the non-zero terms are from 1

rij
for some j ∈ {1, . . . , n} \ {i} and when P̂u = Ê

or P̂ij . We obtain 〈
ϕa(i)ϕj(j)

∣∣∣∣ 1rij
∣∣∣∣ϕi(i)ϕj(j)〉

ij

= 〈aj|ij〉 = (ai|jj) , (3.41)

−
〈
ϕa(i)ϕj(j)

∣∣∣∣ 1rij
∣∣∣∣ϕj(i)ϕi(j)〉

ij

= −〈aj|ji〉 = − (aj|ij) . (3.42)

Hence the full result is〈
Ψa

i

∣∣∣Ĥ∣∣∣Ψ〉 = hai +

n∑
j=1,j 6=i

[(ai|jj)− (aj|ij)] =: Fai . (3.43)

The j 6= i condition may be omitted as this term vanishes.

(ii) For the double replacement matrix element, notice that there must be no contribution from the
constant term and single-electron terms in the Hamiltonian, since there is no way to eliminate
zero overlaps 〈ϕa|ϕi〉 and 〈ϕb|ϕj〉 at the same time. Thus we must use the term 1

rij
from Ĥ,

and P̂u = Ê or P̂ij . These are〈
ϕa(i)ϕb(j)

∣∣∣∣ 1rij
∣∣∣∣ϕi(i)ϕj(j)〉

ij

〈ϕ1|ϕ1〉1 . . . 〈ϕn|ϕn〉n = 〈ab|ij〉 = (ai|bj) (3.44)

−
〈
ϕa(i)ϕb(j)

∣∣∣∣ 1rij
∣∣∣∣ϕj(i)ϕi(j)〉

ij

〈ϕ1|ϕ1〉1 . . . 〈ϕn|ϕn〉n = −〈ab|ji〉 = − (aj|bi) (3.45)

Hence the full result is 〈
Ψab

ij

∣∣∣Ĥ∣∣∣Ψ〉 = (ai|bj)− (aj|bi) . (3.46)

An application of this arises in Møller–Plesset theory. □

Remark. Since Ĥ contains at most two electron operators, any triple (or higher) replacement must
have 〈

Ψabc
ijk

∣∣∣Ĥ∣∣∣Ψ〉 = 0 . (3.47)

12
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Theorem 3.5.

(i) In general spin-orbitals Ψ = Â(ϕ1ϕ2 . . . ϕn) for an n electron system,

E =
〈
Ψ
∣∣∣Ĥ∣∣∣Ψ〉 =

n∑
i

hii +
1

2

n∑
i,j

[(ii|jj)− (ij|ij)] . (3.48)

(ii) For a closed-shell 2n electron system Ψ = Â(ϕα1ϕ
β
1ϕ

α
2ϕ

β
2 . . . ϕ

α
nϕ

β
n),

E = 2

n∑
i

hii +

n∑
i,j

[2 (ii|jj)− (ij|ij)] . (3.49)

(iii) For the high spin open shell molecule Ψ = Â(ϕα1ϕ
β
1ϕ

α
2ϕ

β
2 . . . ϕ

α
nϕ

β
nϕ

α
n+1 . . . ϕ

α
n+p), denoting i, j, . . .

as doubly occupied orbitals and l,m, . . . as singly occupied orbitals,

E = 2

n∑
i=1

hii +

n+p∑
l=n+1

hll +

n∑
i,j=1

[2 (ii|jj)− (ij|ij)]

+

n∑
i=1

n+p∑
l=n+1

[2 (ll|ii)− (li|li)] + 1

2

n+p∑
l,m=n+1

[(ll|mm)− (lm|lm)] . (3.50)

Proof.

(i) We already have the result

E =

n∑
i

hii +

n∑
i>j

[(ii|jj)− (ij|ij)] (3.51)

from Theorem 3.2. We only need to note that when i = j, the contribution

(ii|ii)− (ii|ii) = 0 (3.52)

vanishes. This is known as self-interaction cancellation. Thus we can rewrite the sum as

E =

n∑
i

hii +
1

2

n∑
i,j=1

[(ii|jj)− (ij|ij)] . (3.53)

(ii) This time the label i, j, . . . is for spatial orbitals instead of spin-orbitals, so each i and j can
have α or β spin. The one-electron Hamiltonian contribution is trivial. Now consider the
two-electron interaction part. For each particular i, j in the sum, we have:

• four contributions to (ii|jj), with spin parts

〈α|α〉i 〈α|α〉j , 〈α|α〉i 〈β|β〉j , 〈β|β〉i 〈α|α〉j and 〈β|β〉i 〈β|β〉j . (3.54)

• two contributions to (ij|ij), with spin parts

〈α|α〉i 〈α|α〉j and 〈β|β〉i 〈β|β〉j . (3.55)

Note that the terms
(
ϕαi ϕ

β
j

∣∣∣ϕαi ϕβj ) and
(
ϕβi ϕ

α
j

∣∣∣ϕβi ϕαj ) vanishes because they have vanishing
spin inner products

〈α|β〉i 〈α|β〉j and 〈β|α〉i 〈β|α〉j . (3.56)

• for the special case where i = j, we get two contributions in total, which are
(
ϕαi ϕ

α
i

∣∣∣ϕβi ϕβi )
and

(
ϕβi ϕ

β
i

∣∣∣ϕαi ϕαi ).
13
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Hence we get the expression

E = 2

n∑
i

hii +

n∑
i,j

[2 (ii|jj)− (ij|ij)] . (3.57)

(iii) The one-electron Hamiltonian part is obviously

2

n∑
i=1

hii +

n+p∑
l=n+1

hll . (3.58)

Now consider the two-electron integral. The contributions from the interactions between closed-
shell electrons are the same as (ii), given by

n∑
i,j=1

[2 (ii|jj)− (ij|ij)] . (3.59)

Next consider the interaction between a closed-shell electron in spatial orbital ϕi with a electron
in open shell orbit ϕαl . The ϕi electron can have either α or β spin, contributing two (ll|ii) term
and only one (li|li) term from ϕαi , as the other (li|li) term〈

ϕβi (i)ϕ
α
l (l)

∣∣∣∣ 1

r12

∣∣∣∣ϕβi (l)ϕαl (i)〉 = (li|li) 〈β|α〉i 〈α|β〉j (3.60)

has a vanishing spin part inner product. Hence, the contribution is

n∑
i=1

n+p∑
l=n+1

[2 (ll|ii)− (li|li)] . (3.61)

Finally, consider the interactions between two open shell electrons that both have spin α. The
contribution is easily determined as

1

2

n+p∑
l,m=n+1

[(ll|mm)− (lm|lm)] . (3.62)

Combining all the contributions, we have

E = 2

n∑
i=1

hii +

n+p∑
l=n+1

hll +

n∑
i,j=1

[2 (ii|jj)− (ij|ij)]

+

n∑
i=1

n+p∑
l=n+1

[2 (ll|ii)− (li|li)] + 1

2

n+p∑
l,m=n+1

[(ll|mm)− (lm|lm)] (3.63)

as claimed. □
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4 Hartree–Fock Theory

4.1 Closed Shell Hartree–Fock

The energy of a closed-shell molecule is

E =
〈
Ψ
∣∣∣Ĥ∣∣∣Ψ〉 = 2

∑
i

hii +
∑
i,j

[2 (ii|jj)− (ij|ij)] (4.1)

with Ψ = Â(ϕ21 . . . ϕ
2
n). Pick a basis set {ηµ}mµ=1 such that each orbital ϕi is expressed in terms of

the basis functions as
ϕi =

m∑
µ=1

ηµcµi . (4.2)

We want to find the orbitals which make the energy stationary with respect to variations of the
molecular orbital coefficients cµi while maintaining the orbital orthonormality.

We may work out explicitly ∂E/∂cµi and set it to zero while keeping 〈ϕi|ϕj〉 = δij . Here we will
use another method.

Suppose we have found these n orbitals {ϕi}ni=1, then since there are m basis functions, there will
be (m − n) other orbitals {ϕa}ma=n+1 (called unoccupied or virtual orbitals) which obey 〈ϕa|ϕi〉 = 0,
1 ≤ i ≤ n, n+1 ≤ a ≤ m. We therefore derive the condition that E is stationary with respect to the
variation

ϕk → ϕk + ϵϕa (k = 1, . . . , n ; a = n+ 1, . . . ,m) . (4.3)
Such variation will automatically maintain the orbital orthonormality to first order in ϵ since

〈ϕk + ϵϕa|ϕi〉 = δik + ϵ����:0
〈ϕa|ϕi〉 . (4.4)

We therefore substitute (4.3) into (4.1), pick out the coefficient of ϵ and set it to zero. Doing this for
the one-electron part gives

h′kk :=
〈
ϕk + ϵϕa

∣∣∣ĥ∣∣∣ϕk + ϵϕa

〉
= hkk + ϵ(hak + hka) + ϵ2haa . (4.5)

The coefficient is therefore 2hak by Hermiticity. Similarly,

(kk|jj)′ := (k + ϵa k + ϵa|jj) = (kk|jj) + ϵ[(ka|jj) + (ak|jj)] +O(ϵ2) , (4.6)
(ii|kk)′ := (ii|k + ϵa k + ϵa) = (ii|kk) + ϵ[(ii|ka) + (ii|ak)] +O(ϵ2) , (4.7)
(kj|kj)′ := (k + ϵa j|k + ϵa j) = (kj|kj) + ϵ[(aj|kj) + (kj|aj)] +O(ϵ2) , (4.8)
(ik|ik)′ := (i k + ϵa|i k + ϵa) = (ik|ik) + ϵ[(ik|ia) + (ia|ik)] +O(ϵ2) . (4.9)

Using the appropriate symmetries of two-electron integrals, and by replacing
∑

i with
∑

j when
appropriate, we get the first order variation in energy

δE = 4hak +

n∑
j=1

[8 (ak|jj)− 4 (aj|kj)] . (4.10)

Hence, the stationary condition is

hak +

n∑
j=1

[2 (ak|jj)− (aj|kj)] = 0 (4.11)

for every k = 1, . . . , n, a = n+ 1, . . . ,m. We then define the Fock Hamiltonian F̂ to be the operator
such that 〈

ϕa

∣∣∣F̂ ∣∣∣ϕk〉 := hak +

n∑
j=1

[2 (ak|jj)− (aj|kj)] . (4.12)
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Then the Fock Hamiltonian can be written as

F̂ (x) = ĥ(x) + 2

n∑
j=1

∫
d3y

|ϕj(y)|2

‖x− y‖
−

n∑
j=1

∫
d3y

ϕ∗j (y)ϕj(x)

‖x− y‖
P̂xy , (4.13)

where P̂xyϕk(x) = ϕk(y).

The Fock Hamiltonian is therefore an effective one-electron Hamiltonian, including kinetic, nuclear
attraction and an average potential term made up of Coulomb and exchange parts.

Therefore, from equations (4.11) and (4.12), the condition that the energy E is stationary with
respect to variations of the molecular orbital coefficients is

Fak :=
〈
ϕa

∣∣∣F̂ ∣∣∣ϕk〉 = 0 (k = 1, . . . , n , a = n+ 1, . . . ,m) . (4.14)

Written in matrix form, it is a necessary and sufficient condition that the Fock matrix is in the block
diagonal form

F =

1
2
...

n+1
...
m

1 2 · · · n+1 · · · m

0

0 Fab

Fij



 . (4.15)

Then a clearly sufficient condition is that the Fock matrix F is fully diagonalised, i.e.

F =



ϵ1
ϵ2

. . .
ϵn+1

. . .
ϵm


0

0

. (4.16)

The resulting orbitals {ϕi}, satisfying
F̂ ϕi = ϵiϕi , (4.17)

or equivalently
Fji =

〈
ϕj

∣∣∣F̂ ∣∣∣ϕi〉 = ϵi 〈ϕj |ϕi〉 = ϵiδij (4.18)

is known as the canonical Hartree–Fock orbitals. If we expand it in the non-orthogonal atomic orbital
basis as ϕi =

∑
µ ηµcµi, then∑

µν

c∗µjcνi

〈
ηµ

∣∣∣F̂ ∣∣∣ην〉 = ϵi
∑
µν

c∗µjcνi 〈ηµ|ην〉

c†jFci = ϵic
†
jSci

Fci = ϵiSci , (4.19)

where F is in the AO basis and Sµν = 〈ηµ|ην〉 is the overlap integral. This can be rewritten into the
canonical secular equations

m∑
ν=1

〈
ηµ

∣∣∣F̂ − ϵi

∣∣∣ην〉 cνi = 0 . (4.20)

Since F̂ is an effective Hamiltonian, and ϵi are the corresponding energies of the orbitals ϕi, we choose
the lowest n eigensolutions to be the occupied orbitals and the remaining (m−n) as unoccupied virtual
orbitals.
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Note that F̂ itself involves the occupied orbitals ϕj , so an iterative process is therefore required
to solve the self-consistent field equations:

(i) Select the geometry of the molecule and the basis set {ηµ};

(ii) Evaluate the basis function integrals hµν , (µν|στ) and Sµν ;

(iii) Guess some coefficients cµi for the occupied orbitals;

(iv) Form the density matrix Dµν =
∑n

i=1 cµic
∗
νi, where the sum is taken over occupied spatial

orbitals;

(v) Construct the Fock matrix

Fµν =
〈
ηµ

∣∣∣F̂ ∣∣∣ην〉 = hµν +

m∑
σ,τ=1

Dτσ[2 (µν|στ)− (µσ|ντ)] ; (4.21)

(vi) Solve the secular equations. Determine the new density matrix D. If D has changed (greater
than a sufficiently small tolerance), return to (v). If not, proceed to (vii);

(vii) Calculate the energy through

E = 2

m∑
µ,ν=1

Dνµhµν +

m∑
µ,ν,σ,τ=1

DνµDτσ[2 (µν|στ)− (µσ|ντ)] . (4.22)

This is the Hartree–Fock (HF) or self-consistent field (SCF) method.2

Proposition 4.1. The computational scaling of an RHF cycle with 2n electrons in m spatial atomic
orbitals is O(m4).

Proof. We consider the computational scaling of each step.

(i) Select geometry and basis set.
This creates a list of atomic orbitals {ηµ}mi=1. O(m)

(ii) Evaluate atomic basis function integrals.
There are m2 integrals of types Sµν and hµν . O(m2)
There are m4 integrals of type (µν|στ). O(m4)

(iii) Guess the initial MO coefficients.
This is a m× n matrix. O(mn).

(iv) Form the density matrix

Dµν =

n∑
i=1

cµic
∗
νi . (4.24)

This is a m×m matrix, each element is a sum over n orbitals. O(m2n)

(v) Construct the Fock matrix

Fµν = hµν +

m∑
σ,τ

Dτσ[2 (µν|στ)− (µσ|ντ)] . (4.25)

This is a m×m matrix, each element is a sum over m×m terms. O(m4)

2You will prove these expressions in the exercises. We often define the auxiliary interaction matrix

Gµν =

m∑
σ,τ=1

Dστ [2 (µν|στ)− (µσ|ντ)] , (4.23)

so that Fµν = hµν +Gµν and E = 2
∑m

µ,ν=1 Dµνhµν +
∑m

µ,ν=1 DµνGµν .

17
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(vi) Solve the secular equation
Fc = ϵSc . (4.26)

This is a matrix diagonalisation. The best algorithm does it in O(dim3). O(m3)

The overall scaling is therefore O(m4). Step (v) is the most computationally expensive step. Although
step (ii) and step (v) are both O(m4), (ii) only needs to be done once while (v) needs to be done in
every iteration. □

Theorem 4.2 (Koopmans’ theorem). In closed-shell restrictive Hartree–Fock theory, the first
ionisation energy of a molecular system is equal to the negative of the orbital energy of the highest
occupied molecular orbital.

Proof. We first use the frozen orbital approximation, which assumes that the orbitals do not relax
after ionisation. Assume that n electrons in a closed-shell system, then by the definition of the Fock
matrix (4.12), the energy of the ith orbital is

ϵi =
〈
ϕi

∣∣∣F̂ ∣∣∣ϕi〉 = hii +

n/2∑
j=1

[2 (ii|jj)− (ij|ij)] . (4.27)

This is a summation over spatial orbitals, and the Coulomb and exchange terms do not include any
spin integrations. We may rewrite this as a sum over n spin-orbitals as

ϵi = hii +

n∑
j=1

[(ii|jj)− (ij|ij)] . (4.28)

The RHF energy of the system with all n electrons is

En =

n∑
i=1

hii +

n∑
i<j

[(ii|jj)− (ij|ij)] . (4.29)

By assumption, the energy of the ionised system is the same summation up to the (n− 1)th electron,
which is

En−1 =

n−1∑
i=1

hii +

n−1∑
i<j

[(ii|jj)− (ij|ij)] . (4.30)

Then the ionisation energy is

IE1 = En−1 − En

= −hnn −
n−1∑
i=1

[(ii|nn)− (in|in)]

= −hnn −
n∑

i=1

[(nn|ii)− (in|in)]

= −ϵn . (4.31)

Note that this result does not include electron correlation or orbital relaxation, so it is far from
being exact. □

Proposition 4.3. The density matrix obeys the idempotency condition

DSD = D , (4.32)

and at the convergence of the SCF method,

SDF = FDS . (4.33)
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Proof.

(DSD)µν = cµic
∗
ji 〈ηj |ηk〉 cklc∗νl

= cµi 〈cjiηj |cklηk〉 c∗νl
= cµi 〈ϕi|ϕl〉 c∗νl
= cµiδilc

∗
νl

= cµic
∗
νi

= Dµν . (4.34)

At convergence,
FC = ϵSC , (4.35)

where ϵ is the diagonal matrix of orbital energies. Hence

FCC† = ϵSCC† (4.36)

FD = ϵSD . (4.37)

FDS = ϵSDS

= SDϵS . (4.38)

FDSD = SDϵSD

= SDFD . (4.39)

Therefore,
FDS = SDF . (4.40)

□

4.2 Open Shell High Spin Hartree–Fock Theory (Non-examinable)

The energy of the high spin open shell Slater determinant of form Â(ϕ21 . . . ϕ
2
Nϕ

α
N+1 . . . ϕ

α
N+P ) is

E =

N∑
i=1

hii +

N∑
i,j=1

[2 (ii|jj)− (ij|ij)]

+

N+P∑
m=N+1

hmm +
1

2

N+P∑
m,n=N+1

[(mm|nn)− (mn|mn)]

+

N∑
i=1

N+P∑
m=1

[2 (mm|ii)− (im|im)] . (4.41)

We will use i, j, . . . to denote doubly occupied orbitals, m,n, . . . to denote singly occupied orbitals
and a, b, . . . to denote the unoccupied orbitals.

To obtain the conditions for optimised orbitals, we consider the variations

(i) ϕi → ϕi + ϵϕa , (4.42)

(ii) ϕm → ϕm + ϵϕa , (4.43)

(iii) ϕi → ϕi + ϵϕm ,

ϕm → ϕm − ϵϕi . (4.44)
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On substitution of these into the energy expression and the conditions ∂E
∂ϵ

∣∣
ϵ=0

it follows that the self
consistent conditions are

(i) Fai = 0 , (4.45)

(ii) Fma − 1
2K

O
ma = 0 , (4.46)

(iii) Fmi +
1
2K

O
mi = 0 , (4.47)

where
F := h+ 2JC − KC + JO − 1

2
KO , (4.48)

and we have introduced the notations

JC
pq :=

N∑
i=1

(pq|ii) , (4.49)

KC
pq :=

N∑
i=1

(pi|qi) , (4.50)

JO
pq :=

N+P∑
m=N+1

(pq|mm) , (4.51)

KO
pq :=

N+P∑
m=N+1

(pm|qm) . (4.52)

We can define the alpha and beta Fock matrices as follows

Fα := F− 1

2
KO , (4.53)

Fβ := F+
1

2
KO . (4.54)

The iterative solutions for this ROHF model are the construction and diagonalisation of the following
matrix



Fβ 1
2 (F

α + Fβ)

Fβ Fα

1
2 (F

α + Fβ) Fα



i, j, . . .

m, n, . . .

a, b, . . .

i, j, . . . m, n, . . . a, b, . . .

, (4.55)

where the three rows and columns refer to doubly occupied, singly occupied and virtual orbitals. The
diagonal blocks may be defined in any convenient ways — the standard choices are (F− KO), F and
(F+ KO) on the respective diagonal.

4.3 Unrestricted Hartree–Fock Theory

For a system with α spin-alpha electrons and β spin-beta electrons, unrestricted Hartree–Fock (UHF)
finds the determinant with the lowest energy of the form

EUHF =

α+β∑
i

hii +
1

2

α+β∑
i,j=1

(ii|jj)− 1

2

α∑
i,j=1

(ij|ij)− 1

2

β∑
i,j=1

(ij|ij) (4.56)
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while allowing the alpha and beta orbitals to have different spatial parts. This expression accounts
for the fact that both α and β electrons can interact with each other, while spin-alpha electrons only
exchange with spin-alpha electrons, and spin-beta electrons only exchange with spin-beta electrons.

RHF ROHF UHF

Figure 4.1: A schematic example of an RHF, an ROHF and a UHF system.

In UHF, two sets of SCF equations are simultaneously solved, using the alpha and beta Fock
operators respectively

F̂α(x) = ĥ(x) +

α+β∑
j=1

∫
d3y

ϕ2j (y)

‖x− y‖
−

α∑
j=1

∫
d3y

ϕj(y)ϕj(x)

‖x− y‖
P̂xy , (4.57)

F̂ β(x) = ĥ(x) +

α+β∑
j=1

∫
d3y

ϕ2j (y)

‖x− y‖
−

β∑
j=1

∫
d3y

ϕj(y)ϕj(x)

‖x− y‖
P̂xy . (4.58)

4.3.1 Symmetry Breaking

Note that since the α and β electrons are no longer required to share the same set of spatial orbitals
in UHF, it has more degrees of freedom than RHF and ROHF. Therefore, EUHF is generally lower
than ERHF. We take the dissociation of H2 as an example. H2 will dissociate into two H atoms.
However, in RHF, we restrict the two electrons in the ground electronic state with opposite spins
to have the same spatial wavefunction. It is sometimes described that there are two half electrons
associated with each nucleus, so at dissociation (RH−H → ∞), the two electrons still have Coulomb
interaction. Therefore, RHF predicts a higher energy than reality at dissociation. This can be fixed
by UHF, in which the two electrons may take different spatial wavefunctions. This is shown in the
figure below.

We can see that the main advantage of the UHF wavefunction is its simplicity and also that since
the alpha and beta orbitals may be different, alpha and beta electrons avoid one another and therefore
said to be correlated. No such correlation is present in RHF wavefunctions.

An objection to UHF theory is that the wavefunction is not an eigenfunction of Ŝ2. The spin
contamination may be measured from the expectation value of Ŝ2

〈
Φ
∣∣∣Ŝ2
∣∣∣Φ〉 =MS(MS + 1) + nβ −

α∑
i

β∑
j

(Sαβ
ij )2 , (4.59)

where MS := 1
2 (n

α − nβ) and Sαβ
ij =

〈
ϕαi

∣∣∣ϕβj 〉.
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σg

σu

RHF

ψ1

ψ2

UHF

ERHF

EUHF

Coulson–Fischer
Point

Figure 4.2: UHF allows α and β spin electrons to take different spatial orbitals. This makes UHF
significantly better than RHF when calculating dissociation.

5 Electron Correlation

The self-consistent field method is an independent electron approximation. This is understood
by recognising that each orbital is an eigenfunction of the same Fock Hamiltonian. Further, the
wavefunction only depends upon the absolute coordinate of each electron, and not on the distance
between the electrons. The motion of the electrons is therefore not correlated. The difference between
the SCF energy using a large basis set (the so-called Hartree–Fock energy) and the exact energy of
the Schrödinger Hamiltonian is called the correlation energy

Ecorr = Eexact − ERHF < 0 . (5.1)

Correlation energy is usually pretty significant, being approximately 0.04 Hartrees (100 kJ mol−1)
for two electrons in a doubly occupied orbital. Therefore if a single bond is broken, this quantity is
released. It is therefore important to be able to calculate the value of the correlation energy for a
molecular system.

A simple way forward is to introduce interelectronic distances r ≡ rij = ‖ri − rj‖ into the
wavefunction. We can see why this is a good idea. Consider two electrons of opposite spin moving
in space. Noting that their reduced mass is m/2 and denoting r as the distance between them, the
Schrödinger equation for their motion is(

−∇2 +
1

r

)
ψ = Eψ . (5.2)

Expanding the Laplacian in spherical polar coordinates yields(
− ∂2

∂r2
− 2

r

∂

∂r
+

L̂
2

r2
+

1

r

)
ψ = Eψ , (5.3)

where L̂ is the angular momentum operator. We now want to find a series expansion solution for an
s orbital near r = 0, so that we can ignore the L̂ part. We write ψ(r) = a+ br+O(r2), substitute in
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the equation and let the coefficient of r−1 be zero. This yields

ψ(rij) = a

(
1 +

1

2
rij +O(r2ij)

)
. (5.4)

This expression demonstrates the reduction in probability as two electrons approach one another,
although of course because the electrons have different spins, the wavefunction is not zero at
coincidence. Thus we have shown that the exact wavefunction must contain terms which are linear
in interelectronic distances.

However, we cannot proceed this way because the matrix elements of wavefunctions would then
involve 3n-dimensional integrals, where n is the number of electrons. The main current way forward
is to continue with the use of determinants. We can easily show that by taking a linear combination
of determinants we can introduce the square of the interelectronic distances. Consider a four-
determinant wavefunction of the He atom

Ψ =

4∑
I=1

cI Â(ϕαI ϕ
β
I ) , (5.5)

where
c1 = 1 , c2 = c3 = c4 = c . (5.6)

ϕ1 = exp(−2r) , (5.7)

ϕ2 = xϕ1 , ϕ3 = yϕ1 , ϕ4 = zϕ1 . (5.8)

ϕ1 corresponds to the 1s orbital and ϕ2, ϕ3, ϕ4 corresponds to the 2px, 2py and 2pz orbitals
respectively. Hence these four determinants correspond to the four states shown in the figure below.

I =

cI =

1

1 c c c

2

1 c c c

3

1 c c c

4

1 c c c

Substitution yields

Ψ =
1√
2
(αβ − βα)e−2(r1+r2)(1 + c(x1x2 + y1y2 + z1z2)) . (5.9)

The result follows by noting

x1x2 + y1y2 + z1z2 = r1 · r2 =
1

2
(r21 + r22 − r212) . (5.10)

The second, third and fourth determinants in the above example are each double replacements of
the first determinant, and thus we have seen that double replacement determinants introduce the
square of the interelectronic distances, and therefore introduce electron correlation effects into the
wavefunction in the form

Ψ ∼ (1 + r212 + . . . ) . (5.11)

Note that there exist methods called explicitly correlated, often denoted f12 or f(r12), which
include r12 in linear order into the wavefunction, but they are beyond the scope of our course.
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ϕ1

ϕ2

ΦI ΦJ

5.1 Full Configuration Interaction

The way forward is therefore to represent the wavefunction as a linear combination of many
determinants. We now denote the Hartree–Fock determinant as Φ0, and in general, we can make
the excited determinant using the same set of orbitals.

Note that by the orthogonality of orbitals, we have

(ΦI |ΦJ) = δIJ . (5.12)

In configuration interaction (CI), we write the wavefunction as

Ψ =
∑
I

cIΦI . (5.13)

The CI coefficients cI and the energy E are found by solving the secular equations∑
J

〈
ΦI

∣∣∣Ĥ − E
∣∣∣ΦJ

〉
cJ = 0 . (5.14)

If one includes all possible determinants then this is called the full configuration interaction (FCI)
method and it gives the best possible solution to the Schrödinger equation in the finite basis set we
are using. However it is impractical for all but the tiniest system due to the exponentially large size
of the matrix we have to diagonalise. Consider a system of m spatial orbitals and 2n electrons. The
number of determinants we need to include is(

2m
2n

)
=

(2m)!

(2n)!(2m− 2n)!
= O(eam) . (5.15)

Example. Determine the symmetries of the ground and excited states in an FCI calculation for a
minimal basis H2 molecule.

HA HB
HF

σ+
g

σ+
u

The number of determinants is(
# spin-orbitals

# e−

)
=

(
4
2

)
= 6 . (5.16)

5.2 Configuration Interaction with Singles and Doubles

The way forward is therefore to represent the wavefunction as a linear combination of many deter-
minants, especially including all single and double replacements of the dominant SCF determinants
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σ+
g

σ+
u

symmetry 1Σ+
g

1Σ+
u ⊕ 3Σ+

u
1Σ+

g
3Σ+

u
MS = 0 MS = 0 MS = 1 MS = −1

to give configuration interaction with singles and doubles (CISD). In practice it is found that the CI
method is very slowly convergent, needing very large basis sets to generate a large number of virtual
orbitals to use in the double replacement determinants. We can understand this: we have shown that
the wavefunction requires terms linear in the interelectronic distance, but that CI only introduces
the square of the interelectronic distance. It will then clearly take the CI wavefunction to involve
many terms to approximate the true wavefunction. Even so, this is the only practical way forward.
We have seen that the matrix element of the above secular equation can be evaluated in terms of
one and two electron integrals. Almost all correlated wavefunction calculations are based on linear
combination of determinants.

Ψexact

ΨHF

Figure 5.1: Increasing the size of basis set generates more virtual orbitals that allow us to include
more terms in configuration interaction.

The introduction of higher angular momentum in basis results in better cusps. It can be shown
from partial wave expansion that the truncation error is of the order

∆E ∼ c(ltrunc + 1)−3 . (5.17)

We can extrapolate energies with increasing basis set.

5.3 Size Consistency

There is a further difficulty with straightforward truncated CI called the problem of size consistency.
A method is said to be size consistent if the energy of a composite system A−B at infinite separation
is the same as the energy of A plus the energy of B evaluated separately.

1A

aA

HeA

ΨA
0

HeB

ΨB
0

1B

aB

⇒ ΨA
0 Ψ

B
0

1A

aA

HeA

ΨA
0

HeB

ΨaaB
11

1B

aB

⇒ ΨA
0 Ψ

aaB
11

Figure 5.2: The ground state and an excited configuration of the He2 system.
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Consider a wavefunction for He involving one double replacement

Ψ = Ψ0 + cΨaa
11 . (5.18)

For two such He atoms represented by such a wavefunction a long way apart, the correct combined
wavefunction is

(ΨA
0 + cΨaaA

11 )(ΨB
0 + cΨaaB

11 ) = ΨA
0 Ψ

B
0 + c(ΨaaA

11 ΨB
0 +ΨaaB

11 ΨA
0 ) + c2ΨaaA

11 ΨaaB
11 . (5.19)

This wavefunction involves fourfold replacement of the reference wavefunction. Thus if the CI of the
composite He2 system is restricted to double replacements, the last term is removed, and then the
wavefunction and its energy will not correspond to that of two separated He atoms. In practice it
is very difficult to include all possible determinants in a full-CI calculation and therefore limited CI
calculations suffer from this deficiency which is found to be significant numerically. On the other
hand methods based on perturbation theory are size consistent as we shall see later.

There are two types of electron correlation effects, dynamic and non-dynamic. Dynamic correlation
is like that met in the He atom, essentially arising from the reduction in probability of two electrons
coming together. It is said to be short-range correlation. Electrons want to be further apart, and thus
the electron repulsion contribution to the total energy is lowered. Non-dynamic correlation is best
explained through CI. We have seen that to describe the dissociation of H2 correctly, it is necessary to
include the determinant Â(σ2

u) in addition to the determinant Â(σ2
g), and at infinite separation these

two determinants are of equal weight because they are degenerate.3 Non-dynamic electron correlation
is therefore long range, and is introduced in CI by including those determinants which are essential
to ensure correct dissociation. Such determinants are approximations to low-lying electronic states.

5.4 Møller–Plesset Theory

This is the simplest way to include the effects of electron correlation. It is an example of second order
Rayleigh–Schrödinger perturbation theory.4

Theorem 5.1 (Rayleigh–Schrödinger perturbation theory). Suppose we have an exactly
solvable reference eigenvalue problem

Ĥ(0)Ψ
(0)
i = E

(0)
i Ψ

(0)
i , (5.20)

and we are interested in solving a related eigenvalue problem

ĤΨi = EiΨi , (5.21)

where
Ĥ = Ĥ(0) + Ĥ(1) (5.22)

for some small perturbation Ĥ(1). Then if the eigenstate Ψ
(0)
i of Ĥ(0) is non-degenerate,

E
(1)
i =

〈
Ψ

(0)
i

∣∣∣Ĥ(1)
∣∣∣Ψ(0)

i

〉
, (5.23)

Ψ
(1)
i =

∑
j 6=i

〈
Ψ

(0)
j

∣∣∣Ĥ(1)
∣∣∣Ψ(0)

i

〉
E

(0)
i − E

(0)
j

Ψ
(0)
j , (5.24)

E
(2)
i =

〈
Ψ

(0)
i

∣∣∣Ĥ(1)
∣∣∣Ψ(1)

i

〉
. (5.25)

3See course A4: Theoretical Techniques.
4We will only introduce the non-degenerate time independent perturbation theory. See more details, including a

discussion on degenerate perturbation theory and time dependent perturbation theory in course C7: Further Quantum
Mechanics. If you are interested in some mathematical details, see my notes on Mathematical Tripos Part II: Principles
of Quantum Mechanics.
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Proof. Let the Hamiltonian depend smoothly on a parameter λ

Ĥ(λ) = H(0) + λĤ(1) . (5.26)

Then Ĥ(1) is the question we are interested in. The key is to assume that the eigenfunctions and
eigenvectors of Ĥ(λ) are also analytic on the parameter λ, so that we can express them as a series
expansion

Ψi = Ψ
(0)
i + λΨ

(1)
i + λ2Ψ

(2)
i +O(λ3) , (5.27)

Ei = E
(0)
i + λE

(1)
i + λ2E

(2)
i +O(λ3) , (5.28)

such that
ĤΨi = EΨi (5.29)

with the conventional intermediate normalisation. Then〈
Ψ

(0)
i

∣∣∣Ψi

〉
= 1 ⇒

〈
Ψ

(0)
i

∣∣∣Ψ(n)
i

〉
= 0 (5.30)

for all n 6= 0. Then we can expand ĤΨi = EΨi to get

(Ĥ(0) + λĤ(1))(Ψ
(0)
i + λΨ

(1)
i + λ2Ψ

(2)
i + . . . )

= (E
(0)
i + λE

(1)
i + λ2E

(2)
i + . . . )(Ψ

(0)
i + λΨ

(1)
i + λ2Ψ

(2)
i + . . . ) , (5.31)

which holds true for all λ. Hence, we gather terms in the same order of λ and get

λ0 : Ĥ(0)Ψ
(0)
i = E

(0)
i Ψ

(0)
i (5.32)

λ1 : Ĥ(1)Ψ
(0)
i + Ĥ(0)Ψ

(1)
i = E

(1)
i Ψ

(0)
i + E

(0)
i Ψ

(1)
i (5.33)

λ2 : Ĥ(1)Ψ
(1)
i + Ĥ(0)Ψ

(2)
i = E

(0)
i Ψ

(2)
i + E

(1)
i Ψ

(1)
i + E

(2)
i Ψ

(0)
i (5.34)

. . .

To extract E(1), we act
〈
Ψ

(0)
i

∣∣∣ to the terms in the order of λ1 to get〈
Ψ

(0)
i

∣∣∣Ĥ(1)
∣∣∣Ψ(0)

i

〉
+
〈
Ψ

(0)
i

∣∣∣Ĥ(0)
∣∣∣Ψ(1)

i

〉
︸ ︷︷ ︸
=
〈
E

(0)
i Ψ

(0)
i

∣∣∣Ψ(1)
i

〉
=0

= E
(1)
i

〈
Ψ

(0)
i

∣∣∣Ψ(0)
i

〉
︸ ︷︷ ︸

=1

+E
(0)
i

〈
Ψ

(0)
i

∣∣∣Ψ(1)
i

〉
︸ ︷︷ ︸

=0

, (5.35)

which rearranges to give
E

(1)
i =

〈
Ψ

(0)
i

∣∣∣Ĥ(1)
∣∣∣Ψ(0)

i

〉
. (5.36)

Next, to work out Ψ(1)
i , we act

〈
Ψ

(0)
j

∣∣∣ to the terms of order λ1 to get〈
Ψ

(0)
j

∣∣∣Ĥ(1)
∣∣∣Ψ(0)

i

〉
+
〈
Ψ

(0)
j

∣∣∣Ĥ(0)
∣∣∣Ψ(1)

i

〉
︸ ︷︷ ︸
=
〈
E

(0)
j Ψ

(0)
j

∣∣∣Ψ(1)
i

〉
= E

(1)
i

〈
Ψ

(0)
j

∣∣∣Ψ(0)
i

〉
︸ ︷︷ ︸

=δij

+E
(0)
i

〈
Ψ

(0)
j

∣∣∣Ψ(1)
i

〉
, (5.37)

〈
Ψ

(0)
j

∣∣∣Ĥ(1)
∣∣∣Ψ(0)

i

〉
= (−E(0)

j + E
(0)
i )

〈
Ψ

(0)
j

∣∣∣Ψ(1)
i

〉
. (5.38)

Since {Ψ(0)
j } is a complete orthonormal basis set and

〈
Ψ

(0)
i

∣∣∣Ψ(1)
i

〉
= 0, we have

Ψ
(1)
i =

∑
j

∣∣∣Ψ(0)
j

〉〈
Ψ

(0)
j

∣∣∣Ψ(1)
i

〉
=
∑
j 6=i

〈
Ψ

(0)
j

∣∣∣Ĥ(1)
∣∣∣Ψ(0)

i

〉
E

(0)
i − E

(0)
j

Ψ
(0)
j . (5.39)

Similarly, by acting
∣∣∣Ψ(0)

i

〉
on the λ2 terms, we get

E
(2)
i =

〈
Ψ

(0)
i

∣∣∣Ĥ(1)
∣∣∣Ψ(1)

i

〉
(5.40)

etc. □
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Our system of interest is clearly the Schrödinger Hamiltonian Ĥ, and we need to find a reference
Hamiltonian that has known eigenstates and eigenvalues. Having just derived the Hartree–Fock
theory, the sum of the Fock operators is obviously a good choice. Let

Ĥ(0) =

n∑
i=1

F̂ (i) , (5.41)

Ĥ(1) = Ĥ − Ĥ(0) . (5.42)

In the restricted space defined by the basis set, the orbitals are eigenfunctions of the Fock operators

F̂ ϕp = ϵpϕp . (5.43)

It follows that in zeroth order, the eigenstates of Ĥ(0) are the Slater determinants made out of n of
the m spin-orbitals, denoted ΦI := Â(ϕI1 . . . ϕIn), such that

Ĥ(0)ΦI = E
(0)
I ΦI , (5.44)

E
(0)
I =

n∑
i=1

ϵIi . (5.45)

Particularly, the ground state

Ĥ(0)Φ
(0)
0 = E

(0)
0 Φ

(0)
0 , (5.46)

E
(0)
0 =

n∑
i=1

ϵi . (5.47)

This method is the Møller–Plesset theory, MPn, where n labels the order of perturbation we consider.

The zeroth order energy is simply the sum of the orbital energies, which is a very poor estimate
of the total energy because it involves double counting. Now from perturbation theory, the first order
correction is

E
(1)
I =

〈
Φ

(0)
I

∣∣∣Ĥ(1)
∣∣∣Φ(0)

I

〉
(5.48)

and hence to the first order, the total ground state energy is

E
(0)
0 + E

(1)
0 =

〈
Φ

(0)
0

∣∣∣Ĥ∣∣∣Φ(0)
0

〉
= EHF , (5.49)

which is exactly the Hartree–Fock SCF energy.

Next, we want to calculate the second order energy correction, but first we need the ground state
wavefunction corrected to the first order. By Rayleigh–Schrödinger perturbation theory, it can be
expanded in the orthonormal set {ΦI}, which are the eigenstates of Ĥ(0), as

Φ(1) =
∑
I 6=0

CIΦI , (5.50)

where

CI = −

〈
ΦI

∣∣∣Ĥ(1)
∣∣∣Φ(0)

0

〉
H

(0)
II − E

(0)
0

. (5.51)

Replacement of Ĥ(1) by Ĥ − Ĥ(0) yields

CI = −

〈
ΦI

∣∣∣Ĥ∣∣∣Φ(0)
0

〉
H

(0)
II − E

(0)
0

. (5.52)

Now we consider the various possibilities for ΦI .
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(i) Single replacement determinants Φa
i .

By Proposition 3.4 and (4.14), we get〈
Φa

i

∣∣∣Ĥ∣∣∣Φ(0)
0

〉
= Fai = 0 . (5.53)

This is known as Brillouin’s theorem.

(ii) Double replacement determinants Φab
ij .

By Proposition 3.4, 〈
Φab

ij

∣∣∣Ĥ∣∣∣Φ(0)
0

〉
= (ai|bj)− (aj|bi) . (5.54)

(iii) Triple and higher replacement determinants Φabc...
ijk... .〈

Φabc...
ijk...

∣∣∣Ĥ∣∣∣Φ(0)
0

〉
= 0 (5.55)

because Ĥ has no three electron operators.

Thus the only coefficients in (5.52) that are non-vanishing are those for double replacements. This
shouldn’t be surprising following our CI discussion. For a particular Φab

ij the denominator is

H
(0)
II − E

(0)
0 = ϵa + ϵb − ϵi − ϵj , (5.56)

and note that Φab
ij , −Φab

ji , −Φba
ij and Φba

ji are the same, the second order ground state energy correction
hence takes the form

E
(2)
0 = −

∑
I

∣∣∣〈ΦI

∣∣∣Ĥ∣∣∣Φ(0)
0

〉∣∣∣2
H

(0)
II − E

(0)
0

= −1

4

n∑
i,j=1

m∑
a,b=n+1

[(ia|jb)− (ib|ja)]2

ϵa + ϵb − ϵi − ϵj

=:
∑
ij

ϵij , (5.57)

where ϵij may be interpreted as the correlation energy of a pair of electrons.

For a closed-shell system Φ0 = Â(ϕα1ϕ
β
1ϕ

α
2ϕ

β
2 . . . ϕ

α
nϕ

β
n) with 2n electrons, we can work out the

terms vanishing due to spins in (5.57). Consider the possible spin combinations for a particular set
of spatial orbital i, j, a, b:

Spatial i a j b (ia|jb) (ib|ja)

Spin

α α α α
β β β β
α α β β
β β α α
α β β α
β α α β

and all other combinations of spins vanish. Summing these up gives

E
(2)
0 = −1

4

n∑
i,j=1

m∑
a,b=n+1

4 (ia|jb)2 + 4 (ib|ja)2 − 4 (ia|jb) (ib|ja)
ϵa + ϵb − ϵi − ϵj

. (5.58)

Since
∑

ijab (ib|ja)
2
=
∑

ijab (ia|jb)
2, we can further simplify this to get

E
(2)
0 = −

∑
i,j,a,b

(ia|jb) [2 (ia|jb)− (ib|ja)]
ϵa + ϵb − ϵi − ϵj

. (5.59)

EMP2 = E
(0)
0 + E

(1)
0 + E

(2)
0 = EHF + E

(2)
0 . (5.60)
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Figure 5.3: A localisation of a He2 system that shows that MP2 is size consistent.

5.4.1 Size Consistency

Finally we need to explain why MP2 is a size consistent energy expression. We will assert, without
proof, the following lemma.
Lemma 5.2. The Møller–Plesset energy is invariant to occupied-occupied and virtual-virtual orbitals
unitary rotations of degenerate orbitals.
Remark. This is analogous to Proposition 3.3.

Consider two He atoms, each with 1s and 2s basis. At infinity, they give a pair of degenerate 1σg,
1σu orbitals

|1σg〉 =
|1sA〉+ |1sB〉√

2
, (5.61)

|1σu〉 =
|1sA〉 − |1sB〉√

2
. (5.62)

By the above lemma, they can be localised on each atom. Thus a term in the MP2 energy expression
[(ai|bj)− (aj|bi)](ϵa + ϵb − ϵi − ϵj)

−1 is only non-zero if the orbitals ϕa, ϕb, ϕi and ϕj are all on the
same atom, in which case the term will be a part of the energy of the separate system A or B. If the
orbitals are not all on A, or all on B, then the two electron integrals will be zero by zero overlap.
Thus the sum of the separate energies of A and B is obtained. If we consider a large molecule, then
the MP2 method will obtain the pair energies for all pairs of electrons, and thus there will be no
degradation with system size.

On the other hand for CI, the percentage of the wavefunction accounted for by the reference
configuration, single excitation and double excitations rapidly decreases as the number of electrons
increases because of the increasingly large proportion of all the other excitation, i.e.

〈ΨCISD|ΨFCI〉 ↓ as ne− ↑ . (5.63)

Thus CI cannot be used for the study of large molecules.

5.4.2 Higher Orders of Perturbation Theory

The Møller–Plesset perturbation theory can be extended to include not only the second, but also the
third and fourth order perturbation, named MP2, MP3, MP4 etc. MP2 is always useful, because
for the ground state the energy correction is always negative (clear by the form of (5.57)) as it picks
up electron corrections. However, it is not guaranteed that the MP2 energy is higher than the true
ground state energy since the correction term

E
(2)
0 =

〈
Φ

(0)
0

∣∣∣Ĥ(1)
∣∣∣Φ(1)

0

〉
(5.64)
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Figure 5.4: Dissociation of H2 using different orders of Møller–Plesset perturbation theory with
cc-pVTZ basis. The result of full-CI is also included, which can be seen as the correct answer. We
see that a higher order of perturbation does not necessarily give a better answer, especially when the
perturbation is large. In the r → ∞ limit, the correlation is so large that the 1σ+

g and 1σ+
u orbitals of

H2 become degenerate, so the MP2 energy diverges to infinity. This is also the case for higher-order
perturbations. (In fact in this case CCSD(T) will also break down for molecules apart from hydrogen.
Multi-reference methods (e.g. CASSCF, CASPT2) should be used in these cases.)

is not the expectation value of Ĥ for a single state, so the variational principles do not apply.

It has been argued that the higher orders, especially MP4, will give greater accuracy, because they
introduce higher order excitations (e.g. MP4 introduces three- and four- replacements). However,
it has been demonstrated, by using larger basis sets in full-CI calculations, in many cases that the
perturbation series for Ĥ(λ) = Ĥ(0) + λĤ(1) has singularities inside |λ| = 1, and thus the series is
not convergent for λ = 1. For example, it is explicitly shown that for Ne, the ground state and first
excited state of Ĥ(λ) become degenerate when λ = −0.82. This problem is more severe if the electron
correlation is strong so that the perturbation is large. For example, if we add a quartic potential
perturbation to a harmonic oscillator’s quadratic potential, then the radius of convergence of the
perturbation energy will have a radius of convergence of zero.

5.5 Coupled Cluster Theory

Consider the full-CI wavefunction
ΨFCI =

∑
I

cIΦI . (5.65)

We now introduce the excitation operator âI such that

âIΦ0 := ΦI (5.66)

excites the ground electron configuration to an excited configuration. An example would be

âaiΦ0 = Φa
i . (5.67)

We can excite an already excited state
âaiΦ

b
j = Φab

ij , (5.68)
and we need to introduce the rule

âaiΦ
b
i = 0 . (5.69)

Then we may write

ΨFCI =
∑
I

cI âIΦ0

= ĉΦ0 , (5.70)

where we defined
ĉ :=

∑
I

cI âI . (5.71)

We further define

T̂1 :=
∑
i

∑
a

tai â
a
i , (5.72)

T̂2 :=
∑
i<j

∑
a<b

tabij â
ab
ij , (5.73)

· · ·

31



5 Electron Correlation B10 Electronic Structure

for some {tai } and {tabij }, and
T̂ := T̂1 + T̂2 + · · ·+ T̂n , (5.74)

then
ΨFCI = (1 + T̂ )︸ ︷︷ ︸

ĉ

Φ0 (5.75)

if we choose {t} appropriately. If we truncate T̂ to

T̂SD = T̂1 + T̂2 , (5.76)

then this is exactly CISD. Hence, we want to rewrite it a little bit.

Now, consider the coupled cluster (CC) wavefunction

ΨCC = exp(T̂ )Φ0 , (5.77)

where the exponential of an operator is defined as

exp(T̂ ) := 1 +

∞∑
n=1

1

n!
T̂n

= 1 + T̂ +
1

2
T̂ T̂ + . . . (5.78)

This also includes all possible excitations of Φ0, and so

exp(T̂ )Φ0 = ΨFCI (5.79)

for well-chosen {t}. But now if we truncate T̂ to the second excitation, we get

exp(T̂SD) = 1 + T̂1 + T̂2 +
1

2
(T̂1 + T̂2)(T̂1 + T̂2) + . . . , (5.80)

which includes the terms

T̂ 2
2Φ0 =

∑
i<j

∑
k<l

∑
a<b

∑
c<d

tabij t
cd
klΦ

abcd
ijkl (5.81)

. . .

We note immediately that it introduces quadruple excitations (and above) in a natural way. This
method with T̂SD truncated up to T̂2 is known as coupled cluster with single and double excitation
(CCSD).

The CC wavefunction is size consistent. Consider a supermolecule AB, where A and B are infinitely
separated, then

ΨAB = exp(T̂A + T̂B)[ΦAΦB ] = exp(T̂A)ΦA exp(T̂B)ΦB = ΨAΨB , (5.82)

and hence

ĤABΨAB = (ĤA + ĤB)ΨAΨB = (EA + EB)ΨAB . (5.83)

To determine the amplitudes {tai }, {tabij } and the energy E, we need to solve the Schrödinger
equation

ĤΨ = EΨ ⇒ (Ĥ − E) |Ψ〉 = |0〉 . (5.84)

The inner product of |0〉 with any state is 0, as so obtained the projected Schrödinger equation〈
χ
∣∣∣Ĥ − E

∣∣∣Ψ〉 = 0 , (5.85)

where |χ〉 can be any vector. We choose to project the Schrödinger equation with Φ0, Φa
i and Φab

ij ,
and use the normalisation 〈

Φ0

∣∣∣eT̂SD

∣∣∣Φ0

〉
= 1 . (5.86)
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(i) Projecting onto Φ0, the Hartree–Fock solution:〈
Φ0

∣∣∣Ĥ − E
∣∣∣eT̂SDΦ0

〉
= 0 (5.87)

⇒
〈
Φ0

∣∣∣∣Ĥ (1 + T̂2 +
1

2
T̂ 2
1

)
Φ0

〉
= E , (5.88)

where no terms higher than double replacements enter by the usual theorem for matrix elements
for Slater determinants. The term T̂i vanishes by Brillouin’s theorem as SCF orbitals are used.

(ii) Projecting onto Φa
i :〈

Φa
i

∣∣∣∣Ĥ (1 + T̂1 + T̂2 +
1

2
T̂ 2
1 + T̂1T̂2 +

1

6
T̂ 3
1

)
Φ0

〉
= Etai . (5.89)

Note that at most triple replacements enter the ket.

(iii) Projecting onto Φab
ij :〈

Φab
ij

∣∣∣∣Ĥ(1 + T̂1 +
1

2
T̂ 2
1 +

1

6
T̂ 3
1 +

1

24
T̂ 4
1

+ T̂2 +
1

2
T̂ 2
2 + T̂2T̂1 +

1

2
T̂ 2
1 T̂2

)
Φ0

〉
= E(tabij + tai t

b
j − tbi t

a
j ) . (5.90)

The most costly term to evaluate is
〈
Φab

ij

∣∣∣Ĥ∣∣∣T̂ 2
2Φ0

〉
.

5.5.1 Brueckner Coupled Cluster Theory (Non-Examinable)

These equations are greatly simplified if the concept of the Brueckner orbital is introduced. This
is non-examinable. The Brueckner orbital is usually defined in terms of a full-CI expansion of the
wavefunction.

Ψ = Φ0 +
∑

caiΦ
a
i +

∑
cabij Φ

ab
ij + . . . (5.91)

The occupied Brueckner orbitals ϕi are defined such that cai are zero. Thus in the Brueckner coupled
cluster theory (called BD theory), we can remove T̂1 from the CCSD equations to obtain

(i)
〈
Φ0

∣∣∣Ĥ(1 + T̂2)Φ0

〉
= E , (5.92)

(ii)
〈
Φa

i

∣∣∣Ĥ(1 + T̂2)Φ0

〉
= 0 , (5.93)

(iii)
〈
Φab

ij

∣∣∣Ĥ (1 + T̂2 +
1
2 T̂

2
2

)
Φ0

〉
= Etabij . (5.94)

In practice the equations have to be iterated until the orbitals satisfy (ii). The precise form of these
equations are

(i) E = Fii +
1
2 (ij‖ij) +

1
4 (ij‖ab) t

ab
ij , (5.95)

(ii) 0 = Fia + tacikFkc + uai , (5.96)

(iii) 0 = (ab‖ij) + Fbct
ac
ij + Fact

cb
ij − Fjkt

ab
ik − Fikt

ab
kj + uabij + vabij , (5.97)
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Re 1.5Re 2.0Re

SCF 216 271 370
MP2 11 30 70
MP4 2 12 30
CCSD 4.122 10.158 21.404

CCSD(T) 0.717 1.998 -4.634
Chemical 1 kcal mol−1 = 1.6 mEh

Spectroscopic 1 cm−1 = 4.6× 10−3 mEh

Table 1: The calculated E − EFull-CI in mEh using DZP basis set for water.

where the following notations have been introduced:

(pq‖rs) = (pr|qs)− (ps|qr) (5.98)
Fpq = hpq + (pk‖qk) (5.99)

uai = −1

2
(ja‖bc) tbcij −

1

2
(jk‖ib) tabjk (5.100)

uabij =
1

2
(ab‖cd) tcdij +

1

2
(kl‖ij) tabkl

− (kb‖jc) tcdik − (ka‖jc) tcbik − (kb‖ic) tackj − (ka‖ic) tabjk (5.101)

vabij =
1

4
(kl‖cd) [tcdij tabkl − 2(tacij t

bd
kl + tbdij t

ac
kl )

− 2(tabik t
cd
jl + tcdik t

ab
jl ) + 4(tacik t

bd
jl + tbdik t

ac
jl )] . (5.102)

Summation convention applies. The costs of these equations are n3N3 and n2N4, where n and N
are the numbers of occupied and virtual orbitals. Thus, the computational cost of CCSD is O(N6).
They are best evaluated in the A.O. basis.

The principal omission is the inclusion of the effect of triple replacements. It is best to include
these perturbatively through terms like the following

tabij

〈
Φab

ij

∣∣∣Ĥ∣∣∣Φacd
ijk

〉〈
Φacd

ijk

∣∣∣Ĥ∣∣∣Φac
il

〉
tacil (ϵa + ϵc + ϵd − ϵi − ϵj − ϵk)

−1 . (5.103)

The inclusion of these terms is denoted CCSD(T) or BD(T). CCSD(T) is the gold standard of quantum
chemistry, with computational cost O(N7).

An example is shown in table 1, where E − EFull-CI calculated using DZP basis is tabulated in
millihartrees at various bond lengths for H2O, C2v point group. The importance of triple replacements
is observed. Note that the energy obtained using CCSD(T) falls below the actual (full-CI) energy
since this method is not variational.
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Figure 5.5: The equilibrium geometry and bond length calculated using various methods with cc-
pVTZ basis set. The full-CI result is included as the dashed line. Note that CCSD is equivalent to
full-CI in two-electron systems.

6 Self Consistent Field Gradient Theory (Non-examinable)

We are going to derive a formula for the gradient of the SCF energy, at a point X on the SCF potential
energy surface. Therefore we wish to calculate

lim
δX→0

E(X+ δX)− E(X)

δX
=

dE

dX
. (6.1)

At X + δX, the orbitals ϕi will have changed through their basis functions ηα and through their
molecular orbital coefficients cαi.

The change in the basis functions is easily evaluated. Consider a basis function ηα which is an
s-Gaussian exp(−α(x−X)2). Differentiating it with respect to centre X, we obtain

dηα
dX

= −2α(X− x) exp(−α(x−X)2) . (6.2)

This is a p-Gaussian. We denote it as ηXα .

It is simplest to proceed using Lagrange multipliers. We wish to differentiate the energy
maintaining orbital orthogonality. We therefore consider the function G(c,X), where

G(c,X) = E(c,X)−
∑
i,j

ϵij(Sij − δij) . (6.3)

Here E(c,X) is the SCF energy expression in terms of molecular orbital integrals, Sij is the overlap
integral 〈ϕi|ϕj〉, and ϵij are the Lagrange multipliers. We know that

∂G

∂c
= 0 (6.4)

because this is the SCF condition. Indeed it can be easily shown that (6.4) is equivalent to (4.20) if
we use orbitals which diagonalise the Lagrangian matrix, and in this case ϵii = ϵi, the orbital energies.
In this case

G(c,X) = E(c,X)−
∑
i

ϵi(Sii − 1) . (6.5)
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The expression for the gradient of the energy is

dG

dX
=
∂G

∂c

dc

dX
+
∂G

∂X
. (6.6)

The first term is zero by (6.4), and thus the expression for the energy gradient is

dG

dX
=
∂G

∂X
=
∂E

∂X
−
∑
i

ϵi
∂Sii

∂X
. (6.7)

Using the superscript notation introduced above to denote differentiation with respect to basis
functions only, we have the expression for the energy gradient

dE

dX
= EX −

∑
i

ϵiS
X
ii , (6.8)

where, for example,

SX
ii = 2

〈
ϕXi
∣∣ϕi〉 =∑

α,β

cαicβiS
X
αβ

=
∑
α,β

cαicβi[
〈
ηXα
∣∣ηβ〉+ 〈ηα∣∣ηXβ 〉] . (6.9)

We can now write the expression for the gradient of the closed-shell SCF energy in terms of
differentiated basis function integrals and some density matrices

dE

dX
= 2

∑
α,β

Dαβh
X
αβ +

∑
α,β,γ,δ

DαβDγδ[2 (αβ|γδ)X − (αγ|βδ)X]− 2
∑
αβ

EαβS
X
αβ , (6.10)

where

(αβ|γδ)X =
(
αXβ

∣∣γδ)+ (αβX
∣∣γδ)+ (αβ∣∣γXδ)+ (αβ∣∣γδX) , (6.11)

hXαβ =
〈
αX
∣∣h∣∣β〉+ 〈α∣∣∣h∣∣∣βX

〉
+
〈
α
∣∣hX∣∣β〉 , (6.12)

Dαβ =
∑
i

c∗αicβi , (6.13)

Eαβ =
∑
i

ϵic
∗
αicβi . (6.14)

Equation (6.10) shows that a knowledge of the density matrices D, E (available following the
SCF calculation) and differentiated basis function integrals lead directly to the energy gradient;
it is therefore a very easy computational procedure and an extremely important one for quantum
chemistry, the Hartree–Fock geometry of a molecule can now be determined efficiently.
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7 Multi-Configurational Methods

Not all systems are even moderately well described by a single Slater determinant, and these are
known as multi-reference systems, as there is more than one sensible reference Slater determinant.
Such situations commonly arise when bond breakings or degeneracies are involved (e.g. for transition
metals). In such cases, the single-determinant Hartree–Fock equations usually have multiple solutions
close in energy to each other.

The way to proceed in such systems is to do multi-configurational SCF (MCSCF) theory where
the wavefunction is expressed as a limited Slater determinant expansion, Ψ =

∑
I CIΦI , and we find

min
{cµi

},{CI}

〈
Ψ
∣∣∣Ĥ∣∣∣Ψ〉 . (7.1)

This method can be considered a combination between configuration interaction (where the molecular
orbitals are not varied but the expansion of the wavefunction is) and Hartree–Fock (where there is
only one determinant, but the molecular orbitals are varied).

The determinants ΦI are made from the set of orbitals, and can be chosen by hand or as a complete
active space CAS(e,o), where e is the number of active electrons and o is the number of active orbitals.
Such calculation is known as complete active space self-consistent field (CASSCF).

ϵ

core: always occupied

active space

virtual: always empty

Figure 7.1: In this example, we would like to consider all possible Slater determinants in CAS(4e,5o).
It picks up the non-dynamic correlation.

7.1 Correlation

We need to extend MCSCF to include dynamic correlations. Most single-reference methods have
an extension to a multi-reference version, where MCSCF wavefunctions are often used as reference
states, but usually with some drawbacks.

Complete active space configuration interaction (CASCI) or multi-reference configuration inter-
action (MRCI) makes a space of single and double (and sometimes triple) excitations of all the
determinants in the reference wavefunction, and diagonalises the Hamiltonian in this space. As for
single-reference CI, it is not size-consistent and is quite computationally expensive.

Complete active space perturbation theory (CASPT2) extends Møller–Plesset perturbation theory
to a CAS reference function. Among such calculations it is relatively widely used, but requires a lot of
skill to set up calculations and suffers from intruder state problems (if there exists EI for an excited
state ΦI that has similar energy to one in the active space, the denominator in the perturbation
energy will be close to zero, and the energy will blow up).
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Multi-reference coupled cluster (MRCC) method suffers from a difficulty of defining what
excitations to include in T̂ and are generally quite computationally expensive as well as losing the
size-consistency inherent in the CC ansatz.

7.2 Valence Bond Methods

Valence bond (VB) methods are an attempt to form the wavefunction explicitly in terms of bonds.
A simple form of the hydrogen molecule wavefunction is

ΨVB =
1√

2(1 + S2)
(ϕ1(1)ϕ2(2) + ϕ2(1)ϕ1(2))

1√
2
(α(1)β(2)− β(1)α(2)) , (7.2)

where ϕ1 and ϕ2 are non-orthogonal atomic orbitals centred on nucleus 1 and 2 respectively, so overlap
S = 〈ϕ1|ϕ2〉 is nonzero.

A more general form of this allows variational flexibility, forming non-orthogonal orbitals u and v
expanded in a basis set

ΨGVB =
1√

2(1 + S2)
(u(1)v(2) + v(1)u(2))

1√
2
(α(1)β(2)− β(1)α(2)) , (7.3)

with S = 〈u|v〉.

The GVB has a simple form that dissociates H2 correctly, but generalisations to many more
electrons quickly become complicated. These equations are also hard to solve, with multiple solutions.

7.3 Non-Orthogonal CI

The Hartree–Fock SCF equations also have multiple solutions, corresponding to stationary points
and local minima on the potential energy surface. It is possible to retain the attractive features
of HF theory (size-consistency and low computational cost), and include multi-reference character
by enumerating the low-energy SCF solutions, {Φx}, and performing configuration interaction with
them. Define

Hxy =
〈
Φx

∣∣∣Ĥ∣∣∣Φy

〉
, (7.4)

Sxy = 〈Φx|Φy〉 , (7.5)

then we need to solve the secular equation∑
y

HxyCy = E
∑
y

SxyCy . (7.6)

The orbitals in state x are different and not orthogonal to those in state y, so the Slater–Condon
rules cannot be used. Löwdin’s method of corresponding orbitals allows for a generalisation of the
Slater–Condon rules, and the generalised eigenvalue problem (including Sxy) must be solved. The
solutions are however variational and size-consistent where the requisite SCF states can be located.
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Part II

Density Functional Theory

8 Schrödinger Equation

The basic equation of Quantum Mechanics is given by the Schrödinger equation

ĤΨ = EΨ , (8.1)

with the Hamiltonian
Ĥ =

∑
i

−1

2
∇2

i +
∑
i

v(ri) +
∑
i>j

1

‖ri − rj‖
. (8.2)

The ground state energy E0 of the system is given by finding the ground state many electron
wavefunction Ψ(r1, r2, . . . , rN ). This can also be written as

E0 = min
‖Ψ‖=1

〈
Ψ
∣∣∣Ĥ∣∣∣Ψ〉 . (8.3)

For example the Hartree–Fock solution is by minimising the energy with the constraint that the
wavefunction is given by a single Slater determinant

E0 = min
Ψ∈{ΨSD}

〈
Ψ
∣∣∣Ĥ∣∣∣Ψ〉 . (8.4)

To go beyond the Hartree–Fock approximation, the wavefunction has to be improved; generally
this is done by including other determinants. Methods such as Møller–Plesset theory and coupled
cluster theory have become very widely used for standard chemical problems. For more complicated
electronic structure problems multi-reference methods have also been widely used.

However the expansion of the wavefunction is costly. Hartree–Fock scales like N4, MP2 like N5,
CCSD like N6 and full-CI scales like eN . For small molecules the computational requirements are
modest, though the scaling of the methods means that they quickly become prohibitively expensive
and even the great advances made in computing and development of algorithms still make the need
for other computational methods.

Converging full-CI to the basis set limit is the ultimate benchmark method, though in general
unnecessarily expensive compared to basis-set-extrapolated coupled cluster calculations. Nevertheless
CI calculations are still performed on multi-configurational systems, generally using a Complete
Active Space (CAS). The largest conventional CI calculation to date has only been carried out on the
(22e,22o) active space of pentacene, with some 1.2 × 1011 Slater determinants of the appropriate
symmetry, though much larger systems have been studied by approximating the solutions (see
section 17.3.1). This still makes the prospect of solving the Schrödinger equation for condensed
phase chemical reactions look impossibly far in the future.

“The fundamental laws necessary for the mathematical treatment of a large part of physics
and the whole of chemistry are thus completely known, and the difficulty lies only in the
fact that application of these laws leads to equations that are too complex to be solved.”

Paul A. M. Dirac (1929)

Computers have helped greatly but still the direct solution of the Schrödinger equation is a big
challenge and a current area of research as outlined in the first half of the course. The complexity is
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all in the wavefunction, (ignoring spin) and the probability of finding electron 1 at r1, electron 2 at
r2 and so on is given by |Ψ(r1, r2, . . . , rN )|2. The electrons are indistinguishable so the probability
to find any electron at a given point r is given by

ρ(r) =

∫ N∏
i=1

d3ri |Ψ(r1, . . . , rN )|2
N∑
j=1

δ(rj − r) . (8.5)

This probability is the electron density, ρ(r). It is a physical observable and no matter how many
electrons are in the system it is only a real function of three dimensions ρ : R3 → R.
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9 Density Functional Theory

Density functional theory (DFT) is an alternative to wavefunction-based theories and is grounded
on the fact that the electron density, which is a physically measurable quantity, contains all the
information required to determine the ground-state electronic energy of a system. More formally,
this means that given a ground state electron density ρ(r), there is a unique value of the electronic
energy, E. This means that the energy is a functional of the density, and is denoted

E[ρ(r)] . (9.1)

We use the properties of the density and of functionals to give a proof of this below.

9.1 Functionals and Functional Derivatives

Definition 9.1. A functional is a special type of function that maps functions to values. Let X be
a space of functions, then

F : X → R
y 7→ F [y] (9.2)

is a functional.

The analogue to differentiation of a function is the functional derivative. It can be thought of as
the change in the value of the functional when its function argument is changed by an infinitesimal
amount.

Definition 9.2. Let F : V → R be a functional and ρ, ϕ ∈ V . The functional differential of F at ρ
in the direction of ϕ is defined as the directional derivative

δF [ρ, ϕ] = lim
ϵ→0

F [ρ+ ϵϕ]− F [ρ]

ϵ

=
d

dϵ

∣∣∣∣
ϵ=0

F [ρ+ ϵϕ] (9.3)

In most cases, the domain of the functional F is a space of differentiable functions ρ defined on
some space Ω ⊂ Rn and F is of the form

F [ρ] =

∫
Ω

dnxL(x, ρ(x), Dρ(x)) (9.4)

for some function L, where Dρ denotes the derivative of ρ. If this is the case, then we may define the
functional derivative of F .

Definition 9.3. A functional of the form

F [ρ] =

∫
Ω

dnxL(x, ρ(x), Dρ(x)) (9.5)

is differentiable if there exists a function δF/δρ such that

δF [ρ, ϕ] =

∫
Ω

dnx
δF

δρ
(x)ϕ(x) . (9.6)

Then δF/δρ is the functional derivative of F at ρ.
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If F is restricted to only certain functions ρ (for example, if there are some boundary conditions
imposed) then ϕ is restricted to functions such that ρ + ϵϕ continues to satisfy these conditions.
Heuristically, ϕ is the change in ρ, so we formally have ϕ = δρ.

Lemma 9.4. Let
G[y] =

∫ β

α

dx f(x, y, y′) (9.7)

be a functional of y : R → R smooth and restricted to some constant values at its boundary. Then
the functional derivative of G is

δG

δy
=
∂f

∂y
− d

dx

(
∂f

∂y′

)
. (9.8)

Proof. For ‖δy‖ → 0,

δG =

∫ β

α

dx f(y + δy, y′ + δy′;x)−
∫ β

α

dx f(y, y′;x)

=

∫ β

α

dx

[
f(y, y′;x) + δy

∂f

∂y
+ (δy)′

∂f

∂y′
+ . . .

]
−
∫ β

α

dx f(y, y′;x)

=

∫ β

α

dx δy
∂f

∂y
+

[
δy
∂f

∂y′

]β
α

−
∫ β

α

dx δy
d

dx

(
∂f

∂y′

)
+ . . . (9.9)

Therefore, when δy(α) = δy(β) = 0,

δG =

∫ β

α

dx δy

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
. (9.10)

□

Remark. We may alternatively define the functional derivative of a function G as

δG

δy(x)
:= lim

ϵ→0

G[y(u) + ϵδ(u− x)]−G[y(u)]

ϵ
, (9.11)

if this limit exists. Although this definition is a bit awkward and involves the delta function, it depends
only on the functional G and its argument y. It can be shown that this definition is consistent with
the theorem above.∫ β

α

dx δy(x)
δG

δy(x)
=

∫ β

α

dx δy(x) lim
ϵ→0

G[y + ϵδ(x− y)]−G[y]

ϵ

=

∫ β

α

dx δy(x) lim
ϵ→0

[ ∫ β

α

du f(u, y(u, ϵδ(u− x)), y′(u) + ϵδ′(u− x))

− f(u, y(u), y′(u))

]
1

ϵ

=

∫ β

α

dx δy(x) lim
ϵ→0

1

ϵ

[∫ β

α

du
∂f

∂y
ϵδ(u− x) +

∂f

∂y′
δ′(u− x)

]

=

∫ β

α

dx δy(x)

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
. (9.12)

Theorem 9.5 (Euler–Lagrange equation). Let y(x) be a real, smooth function with fixed values
at x = α and x = β. The functional

G[y] =

∫ β

α

dx f(x, y, y′) (9.13)

is stationary if and only if
d

dx

(
∂f

∂y′

)
=
∂f

∂y
. (9.14)
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Proof. Trivial from above lemma. □

Proposition 9.6. The functional derivative of

G[y] =

∫
dnx v(x)y(x) , (9.15)

is given by
δG

δy(x)
= v(x) . (9.16)

Proof.
δG

δy
=
∂vy

∂y
= v . (9.17)

□

Proposition 9.7. The functional

F [ρ] =

∫
d3r f(r, ρ(r),∇ρ(r)) (9.18)

has a functional derivative
δF

δρ(r)
=

∂f

∂ρ(r)
−∇ · ∂f

∂∇ρ(r)
. (9.19)

Proof. For ϕ(r) that vanishes on the boundary of the region of integration,∫
d3rϕ(r)

∂F

∂ρ(r)
=

d

dϵ

∣∣∣∣
ϵ=0

∫
d3r f(r, ρ+ ϵϕ,∇ρ+ ϵ∇ϕ)

=

∫
d3r

(
∂f

∂ρ
ϕ+

∂f

∂∇ρ
·∇ϕ

)
=

∫
d3r

[
∂f

∂ρ
ϕ+∇ ·

(
∂f

∂∇ρ
ϕ

)
−
(
∇ · ∂f

∂∇ρ

)
ϕ

]
=

∫
d3r

[
∂f

∂ρ
ϕ−

(
∇ · ∂f

∂∇ρ

)
ϕ

]
=

∫
d3r

(
∂f

∂ρ
−∇ · ∂f

∂∇ρ

)
ϕ , (9.20)

where the second line is obtained using the total derivative, the third line is obtained by use of a
product rule for divergence, and the fourth line is obtained using the divergence theorem and the
condition that ϕ = 0 on the boundary of the region of integration. □

9.2 The Density

We define ri to be the spatial coordinate, si to be the abstract spin coordinate and xi := (ri, si).

As a result of the Born–Oppenheimer approximation, the Coulomb potential arising from the
nuclei is treated as a static external potential

Vext(r) = v(r) ≡ −
∑
α

Zα

‖r− rα‖
. (9.21)

We use Vext for a general potential and v for the nuclear-electron potential specifically. We define the
remainder of the electronic Hamiltonian as

F̂ := T̂ + V̂e-e = −1

2

∑
i

∇2
i +

∑
i>j

1

‖ri − rj‖
(9.22)
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such that
Ĥ = F̂ + V̂ext , (9.23)

where
V̂ext =

∑
i

Vext(ri) . (9.24)

F̂ is the same for all N -electron systems, so the Hamiltonian, and hence the ground state |Ψ0〉 are
completely determined by N and Vext(r). The ground state |Ψ0〉 of this Hamiltonian gives rise to a
ground state electronic density

ρ(r1) = N

∫
ds1

N∏
i=2

d4xi |Ψ|2 . (9.25)

Note that d4xi ≡ dsi d
3ri integrates over both the spin and spatial coordinate of electron i. We

clearly have ∫
d3r ρ(r) = N . (9.26)

Thus the ground-state |Ψ0〉 and density ρ0(r) are both functionals of the number of electrons N and
the external potential Vext(r).

9.3 Hohenberg–Kohn Theorems

Density functional theory, introduced in 1964 by Hohenberg and Kohn, makes two remarkable
statements.

Theorem 9.8 (The first Hohenberg–Kohn theorem). The external potential Vext(r) and hence
the total energy are unique functionals of the electron density ρ(r) up to an additive constant.

Proof. Suppose there are two external potentials V1(r) and V2(r) both lead to the same ρ(r). There
will be two Hamiltonians Ĥ1 and Ĥ2 with the same ground state density, but different wavefunctions
Ψ1 and Ψ2. Now use the variational principle,

E0
1 <

〈
Ψ2

∣∣∣Ĥ1

∣∣∣Ψ2

〉
=
〈
Ψ2

∣∣∣Ĥ2

∣∣∣Ψ2

〉
+
〈
Ψ2

∣∣∣Ĥ2 − Ĥ1

∣∣∣Ψ2

〉
= E0

2 +

∫
d3r ρ(r)[V1(r)− V2(r)] , (9.27)

where E1
0 and E0

2 are the ground state energies for Ĥ1 and Ĥ2, respectively. The subscripts 1 and 2
may be interchanged to give a second inequality. These two inequalities may be added to give

E0
1 + E0

2 < E0
2 + E0

1 , (9.28)

which is a contradiction. □

Thus, at least in principle, the ground-state density determines (within a constant) the external
potential of the Schrödinger equation of which it is a solution. The external potential and number of
electrons

N =

∫
d3r ρ(r) (9.29)

determine all the ground-state properties of the system since the Hamiltonian and ground state
wavefunction are determined by them.

So for all densities ρ(r) which are ground state densities for some external potential (such a density
is known as v-representable), the functional

F [ρ] =
〈
Ψ
∣∣∣F̂ ∣∣∣Ψ〉 =

〈
Ψ
∣∣∣T̂ + V̂e-e

∣∣∣Ψ〉 = T [ρ] + Ve-e[ρ] (9.30)
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is unique and well-defined, since ρ(r) determines the external potential and N (and therefore F̂ ) and
thence |Ψ〉. Now a functional for an arbitrary external potential Vext(r) unrelated to the Ṽext(r)
determined by ρ(r) can be defined:

EV [ρ] = F [ρ] +

∫
d3rVext(r)ρ(r) . (9.31)

Theorem 9.9 (The second Hohenberg–Kohn theorem). For an arbitrary external potential
Vext and v-representable densities ρ(r) of N electrons,

EV [ρ] = F [ρ] +

∫
d3rVext(r)ρ(r) ≥ E0 , (9.32)

where E0 is the ground state energy for N electrons in the external potential Vext(r), and this
functional reaches its minimum if and only if ρ is the true ground state electron density in such
external potential Vext.

Proof. By the first theorem, a given ρ(r) determines its own external potential Ṽext(r) and ground
state

∣∣∣Ψ̃〉. If this state is used as a trial state for the Hamiltonian with external potential Vext(r), we
have 〈

Ψ̃
∣∣∣Ĥ∣∣∣Ψ̃〉 =

〈
Ψ̃
∣∣∣F̂ ∣∣∣Ψ̃〉+

〈
Ψ̃
∣∣∣V̂ext

∣∣∣Ψ̃〉 = F [ρ] +

∫
d3rVext(r)ρ(r) = EV [ρ] ≥ E0 (9.33)

by the variational principle. For non-degenerate ground states, equality holds if
∣∣∣Ψ̃〉 is the ground

state for the potential Vext(r). □

Thus the problem of solving the Schrödinger equation for non-degenerate ground-states can be
recast into a variational problem of minimising the functional EV [ρ] with respect to v-representable
densities.

• An aside: Bright–Wilson proof of the first Hohenberg–Kohn theorem.
If one knew the exact electron density, ρ(r), then the cusps of ρ(r) would occur at the positions
of the nuclei. Furthermore, a knowledge of ‖∇ρ(r)‖ at the nuclei would give their nuclear
charges, as it may be shown that the nuclear cusp condition gives

∂

∂r

∣∣∣∣
r=0

ρ̄(r) = −2Zρ̄(0) , (9.34)

where ρ̄(r) is the average of ρ(r) on a sphere of radius r around the nucleus. Thus the full
Schrödinger Hamiltonian is known because it is completely defined once the position and charge
of the nuclei are given. Hence, in principle (through full-CI), the wavefunction and energy are
known, and thus everything is known. In conclusion, a knowledge of the density was all that
was necessary for a complete determination of all molecular properties.

9.3.1 Levy Constrained Search

The original Hohenberg–Kohn proof is restricted to non-degenerate ground states and ρ being v-
representable. However, this is not a problem if we consider another alternative proof given by Levy.
We define a functional of the density ρ(r) for the operator F̂ defined above as

F [ρ] = min
|Ψ〉7→ρ

〈
Ψ
∣∣∣F̂ ∣∣∣Ψ〉 , (9.35)

i.e. the functional taking the minimum value of the expectation value with respect to all states |Ψ〉
which give the density ρ. For a system with external potential Vext(r) and ground state |Ψ0〉 with
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energy E0, consider a state
∣∣Ψ[ρ]

〉
, an N -electron state which yields density ρ(r) and minimises F [ρ].

Define EV [ρ] as
EV [ρ] = F [ρ] +

∫
d3r ρ(r)Vext(r) =

〈
Ψ[ρ]

∣∣∣F̂ + V̂ext

∣∣∣Ψ[ρ]

〉
. (9.36)

Since Ĥ = F̂ + V̂ext, by the variational principle we obtain

EV [ρ] ≥ E0 , (9.37)

with equality if and only if
∣∣Ψ[ρ]

〉
= |Ψ0〉. This holds for all densities which can be obtained from an

N -electron wavefunction (such a density is said to be N -representable — this is a weaker condition
than v-representable). From the definition of F [ρ] we must also have

F [ρ0] ≤
〈
Ψ0

∣∣∣F̂ ∣∣∣Ψ0

〉
, (9.38)

since |Ψ0〉 must be one of the states which yield ρ0(r). Adding
∫
d3r ρ0(r)Vext(r) gives

EV [ρ0] ≤ E0 . (9.39)

Hence, combining with (9.37) we have

EV [ρ] ≥ EV [ρ0] = E0 (9.40)

as desired.

Thus the ground-state density ρ0(r) minimises the functional EV [ρ] and the minimum value is
the ground-state electronic energy. Note that the requirement for non-degeneracy of the ground-state
has disappeared, and further that instead of considering only v-representable densities, we can now
consider N -representable densities. The requirements of N -representability are much weaker and
satisfied by any well-behaved density, subjected to only a few conditions like non-negativity and
proper differentiability.

This variational principle allows us to write down the condition that the energy (9.32) is stationary
with respect to changes in the density, subjected to the constraint that (9.26) holds:

δEV [ρ]− µδ

[∫
d3r ρ(r)−N

]
= 0 , (9.41)

for which the stationary condition is, in terms of the functional derivative,

µ = Vext(r) +
δF [ρ]

δρ(r)
. (9.42)

The importance of this theorem is its practicality, namely that if we assume that we have a good
functional representation, then we can minimise it to get best density and structure. It is also the
place where the ground state restriction enters, because the second Hohenberg–Kohn theorem can
only be proved for the ground state.
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10 Pure Density Functional Theory

10.1 Thomas–Fermi Theory

The simplest example of a density functional theory came long before the Hohenberg–Kohn theorem
and came not long after the introduction of the Schrödinger equation. Thomas and Fermi used the
density as the basic variable, using a model system of the uniform electron gas to define functionals
with explicit approximations for T [ρ] and Ve-e[ρ]. For the T they took the kinetic energy of the
uniform electron gas (see later), and the classical (or Hartree) electron-electron repulsion term for
Ve-e

J [ρ] =
1

2

∫
d3r d3r′

ρ(r)ρ(r′)

‖r− r′‖
. (10.1)

This gives an energy expression

ETF[ρ] =
3

10
(3π2)2/3

∫
d3r ρ5/3︸ ︷︷ ︸

T [ρ]

+
1

2

∫
d3r d3r′

ρ(r)ρ(r′)

‖r− r′‖︸ ︷︷ ︸
Ve-e[ρ]=J[ρ]

+

∫
d3rVext(r)ρ(r) . (10.2)

Minimisation of the energy expression leads to the Thomas–Fermi equation
5

3
cFρ

2/3(r) +

∫
d3r′

ρ(r′)

‖r− r′‖
+ Vext(r) = µ , (10.3)

where cF = 3(3π2)2/3/10.

This is a beautiful and simple theory along the lines of the exact density functional theory however
with approximate functionals. There was much interest in understanding this theory, especially in
the solid state community, where it was thought to be a good basis for the description of metals.
However for chemistry Thomas–Fermi theory suffers from a devastating issue — Teller’s non-binding
theorem. The energy of a molecular system as a function of the nuclear coordinates

E(R) = ETF[ρ;R] +
∑
A>B

ZAZB

‖RA −RB‖
(10.4)

decreases as ‖RA −RB‖ → ∞. No molecule is bound with respect to dissociation to its
constituent atoms — meaning that Thomas–Fermi model is not applicable to any molecular system.
This illustrates the difficulty of using approximate functionals and here the especial difficulty in
approximating T . For atoms and molecules near equilibrium the virial theorem can show that
〈T 〉 = −E. The kinetic energy is a massive term and any approximation to it has a very large
error.

10.2 Kinetic Energy Functionals

Aside from the uniform electron gas kinetic energy

TUEG[ρ] =
3

10
(3π2)2/3

∫
d3r ρ5/3(r) , (10.5)

which is exact when ρ is constant, it has proven challenging to derive functionals for kinetic energy.
For a one-electron system, the wavefunction is simply the square root of its density, and from this
von Weizsäcker gave the functional form

T vW[ρ] =
1

8

∫
d3r

‖∇ρ‖2

ρ
. (10.6)

The problem of finding an accurate kinetic energy functional for more than one electron is a subject
of ongoing research in orbital-free density functional theory, but little progress has been made over
the years and effort has generally been focused on the Kohn–Sham formulation instead.
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11 Kohn–Sham Theory

The major step forward for the implementation of density functional theory came with the
introduction of the Kohn–Sham equations. The key idea here is to consider a fictitious system of non-
interacting electrons which has the same density as the fully interacting system. The non-interacting
wavefunction is a single determinant of N non-interacting electrons in N orbitals ϕi

ΦKS = Âϕ1ϕ2 . . . ϕN . (11.1)

The key part here is that for this non-interacting system the kinetic energy is known exactly. The
non-interacting kinetic energy (or Kohn–Sham kinetic energy) Ts can be expressed in terms of the
Kohn–Sham orbitals

Ts[{ϕi}] =
N∑
i

〈
ϕi

∣∣∣T̂ ∣∣∣ϕi〉 , (11.2)

and the density is given by

ρ(r) =

N∑
i

|ϕi(r)|2 . (11.3)

In this form Ts is not strictly a functional of ρ, but instead of {ϕi} and hence we denote it as Ts[{ϕi}].
For any ρ, we can partition it into orbitals {ϕi} in many ways. Since we wish to find the minimal
E[ρ], we define

Ts[ρ] = min
{ϕi}7→ρ

Ts[{ϕi}] . (11.4)

The Kohn–Sham orbitals ϕi(r) are eigenfunctions of an effective one-electron Hamiltonian

ĥsϕi = ϵiϕi , (11.5)

where
ĥs = −1

2
∇2 + Vs(r) , (11.6)

and Vs is an as-yet determined potential. Hence, the Kohn–Sham Hamiltonian is

ĤKS =

N∑
i=1

ĥs(ri) . (11.7)

ΦKS is an eigenfunction of ĤKS not Ĥ, but ΦKS yields the same electron density as the true ground
state wavefunction of Ĥ.

We can therefore rewrite the total energy as

E[ρ] = T [ρ] + Ve-e[ρ] + Vext[ρ]

= Ts[ρ] + J [ρ] + Vext[ρ] + [(T [ρ]− Ts[ρ]) + (Ve-e[ρ]− J [ρ])] . (11.8)

The last term is the important exchange-correlation functional which contains all the complicated
many-body quantum effects

Exc[ρ] = (T [ρ]− Ts[ρ]) + (Ve-e[ρ]− J [ρ]) . (11.9)

If we take the total energy expression

E[ρ] = Ts[ρ] +

∫
d3r ρ(r)v(r) + J [ρ] + Exc[ρ] (11.10)

and minimise with respect to orbitals we get the famous Kohn–Sham equations(
−1

2
∇2 + v(r) + vJ(r) + vxc(r)

)
ϕi = ϵiϕi , (11.11)
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where the Coulomb potential is
vJ(r) =

∫
d3r′

ρ(r′)

‖r− r′‖
(11.12)

and the exchange-correlation potential is given by the functional derivative

vxc =
δExc
δρ(r)

. (11.13)

If, for example, the exchange-correlation functional takes the form

Exc[ρ] =

∫
d3r fxc(ρ,∇ρ) , (11.14)

then the calculus of variations gives

vxc(r) =
δExc
δρ(r)

=
∂fxc
∂ρ

−∇ · ∂fxc
∂∇ρ

. (11.15)

All the complexity is now in one term: the exchange-correlation potential.

As you can see, the electron density is solved by Kohn–Sham equations, which in turn depends
on the electron density. Thus, we again use the self-consistent field method to iteratively solve ρ.
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12 The Density and Exact Relations

12.1 One and Two Particle (Reduced) Density Matrices

Since the true Hamiltonian is made up from at most two-particle operators, it is possible to express
the energy in terms of at most two-particle quantities, rather than the full many-particle wavefunction
Ψ. We form these by integrating over the many coordinates of all but a few electrons, producing
reduced density matrices. The one particle (real space) reduced density matrix is formed from the
wavefunction

ρ1(r
′
1, r1) = N

∫
ds1

N∏
i=2

d4xi Ψ
∗(r′1, s1,x2, . . . )Ψ(r1, s1,x2, . . . ) . (12.1)

The ‘diagonal’ of this is its value for r′1 = r1,

ρ1(r1, r1) = N

∫
ds1

N∏
i=2

d4xi |Ψ(x1,x2, . . . )|2 , (12.2)

which is the usual electron density
ρ(r) = ρ1(r, r) . (12.3)

This is the real-space analogue of density matrix Dµν , related by

ρ1(r
′, r) =

∑
µ,ν

η∗µ(r
′)Dµνην(r) . (12.4)

To calculate general expectation values we need the two-particle density matrix Γ2(r
′
1, r

′
2, r1, r2).

For our purposes, we only need its diagonal

ρ2(r1, r2) = Γ2(r1, r2, r1, r2)

=
N(N − 1)

2

∫
ds1 ds2

N∏
i=3

d4xi |Ψ(x1,x2,x3, . . . )|2 . (12.5)

The factor N(N − 1)/2 in front is the number of equivalent pairs.

The energy, E, given as the expectation value of the Hamiltonian can be expressed in terms of
these matrices

E = −1

2

∫
d3r [∇2

rρ1(r
′, r)]

∣∣
r′=r

+

∫
d3r v(r)ρ(r) +

∫
d3r1 d

3r2
ρ2(r1, r2)

‖r1 − r2‖
. (12.6)

In closed-shell restricted Hartree–Fock or Kohn–Sham theory the wavefunction is a single Slater
determinant, and the one particle density matrix and the density are expressed in terms of spatial
orbitals

ρ1(r
′, r) = 2

∑
i

ϕ∗i (r
′)ϕi(r) , (12.7)

ρ(r) = 2
∑
i

|ϕi(r)|2 . (12.8)

In Hartree–Fock theory, the exchange energy is

K = −
∫

d3r1 d
3r2

∑
i,j

ϕ∗i (r1)ϕi(r2)ϕ
∗
j (r2)ϕj(r1)

‖r1 − r2‖

= −1

4

∫
d3r1 d

3r2
|ρ1(r1, r2)|2

‖r1 − r2‖
. (12.9)
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12.2 Scaling Relations

Scaling relations have proven important in the development of some exact conditions for the exchange
and correlation functionals. If we consider the normalisation of the density∫

d3r ρ(r) = N (12.10)

and we introduce a change of variables r = λr′, then we have∫
d3r′ λ3ρ(λr′) = N

⇒
∫

d3rλ3ρ(λr) = N . (12.11)

We can define the scaled density
ρλ(r) = λ3ρ(λr) (12.12)

such that ∫
d3r ρλ(r) = N . (12.13)

We now consider the coordinate scaling of the exact exchange energy used in the scaled orbitals
ϕiλ(r) = λ3/2ϕi(λr). We begin by writing the total exchange in terms of a contribution from pairs of
orbitals

Ex[{ϕiλ}] =
∑
i,j

Ex[ϕiλ, ϕjλ] . (12.14)

The scaling of each orbital-pair component is determined from

Ex[ϕiλ, ϕjλ] =
1

2

∫
d3r1 d

3r2
ϕ∗iλ(r1)ϕjλ(r1)ϕiλ(r2)ϕ

∗
jλ(r2)

‖r1 − r2‖

=
λ6

2

∫
d3r1 d

3r2
ϕ∗i (λr1)ϕj(λr1)ϕi(λr2)ϕ

∗
j (λr2)

‖r1 − r2‖

=
λ

2

∫
λ3d3r1 λ

3d3r2
ϕ∗i (λr1)ϕj(λr1)ϕi(λr2)ϕ

∗
j (λr2)

‖λr1 − λr2‖

=
λ

2

∫
d3λr1 d

3λr2
ϕ∗i (λr1)ϕj(λr1)ϕi(λr2)ϕ

∗
j (λr2)

‖λr1 − λr2‖
= λEx[ϕi, ϕj ] . (12.15)

Now we can use the above scaling relation to find out more about possible forms of the exchange
density functionals. If we examine a functional of the form

Elocal
x [ρ] = c

∫
d3r ρk(r) , (12.16)

where ‘local’ means that the integrand does not depend on the density at two different positions
simultaneously. Then

Elocal
x [ρλ] = c

∫
d3rλ3kρk(λr)

= cλ3k−3

∫
d3λr ρk(λr) . (12.17)

To satisfy the scaling requirement, we need 3k − 3 = 1, and therefore k = 4/3.
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12.3 Adiabatic Connection

Langreth and Perdew defined a family of Hamiltonians interpolating between the fully interacting
Hamiltonian and the Kohn–Sham Hamiltonian which retain the same ground-state density. They
parameterised this with constant λ which scales the electron-electron repulsion term

Ĥλ = T̂ + λV̂e-e + V̂λ , (12.18)

where V̂λ =
∑

i vλ(ri) is the result of a one-electron local potential vλ(r). For each Ĥλ there is an
energy-minimising wavefunction Ψλ satisfying

ĤλΨλ = EλΨλ . (12.19)

At each λ, the one-electron potential vλ(r) is chosen such that the density is kept the same as the
full interacting density: ∫ N∏

i=2

d3ri |Ψλ(r, r2, . . . )|2 = ρλ(r) = ρ(r) (12.20)

for all λ; in particular ρ0 = ρ1 = ρ. At λ = 1 we have the full interacting Hamiltonian

Ĥ1 = T̂ + V̂e-e +
∑
i

v(ri) , (12.21)

and at λ = 0 we have the Kohn–Sham system

Ĥ0 = T̂ +
∑
i

vs(ri) , (12.22)

where vs = v + vJ + vxc. At each value of λ, the wavefunction Ψλ will be different, even though it
corresponds to the same density ρ(r). Since Ψλ is the minimum-energy eigenfunction of Ĥλ, we can
think of this as a search over the wavefunctions which give density ρ

Eλ = min
Ψλ 7→ρ

〈
Ψλ

∣∣∣Ĥλ

∣∣∣Ψλ

〉
= min

Ψλ 7→ρ

(〈
Ψλ

∣∣∣T̂ + λV̂e-e

∣∣∣Ψλ

〉
+
〈
Ψλ

∣∣∣V̂λ∣∣∣Ψλ

〉)
. (12.23)

For a given λ, since V̂λ =
∑

i vλ(ri) contains only local one-electron operators, its expectation
value is dependent only on the density, ρ(r), and does not vary with Ψλ. Ψλ therefore minimises〈
Ψλ

∣∣∣T̂ + λV̂e-e

∣∣∣Ψλ

〉
.

Consider the derivative of this expectation value

∂

∂λ

〈
Ψλ

∣∣∣T̂ + λV̂e-e

∣∣∣Ψλ

〉
=

∂

∂λ′

〈
Ψλ′

∣∣∣T̂ + λV̂e-e

∣∣∣Ψλ′

〉
+

∂

∂λ′

〈
Ψλ

∣∣∣T̂ + λV̂e-e

∣∣∣Ψλ

〉
= 0 +

〈
Ψλ

∣∣∣V̂e-e

∣∣∣Ψλ

〉
, (12.24)

where the first term is zero by the Hellmann–Feynman theorem as Ψλ is the minimising wavefunction.
Now integrate between 0 and 1 gives∫ 1

0

dλ
〈
Ψλ

∣∣∣V̂e-e

∣∣∣Ψλ

〉
=

∫ 1

0

dλ
∂

∂λ

〈
Ψλ

∣∣∣T̂ + λV̂e-e

∣∣∣Ψλ

〉
=
〈
Ψ1

∣∣∣T̂ + V̂e-e

∣∣∣Ψ1

〉
−
〈
Ψ0

∣∣∣T̂ ∣∣∣Ψ0

〉
= T [ρ] + Ve-e[ρ]− Ts[ρ] . (12.25)

Now subtract the Coulomb energy from both sides

T [ρ] + Ve-e[ρ]− Ts[ρ]− J [ρ] =

∫ 1

0

dλ
〈
Ψλ

∣∣∣V̂e-e

∣∣∣Ψλ

〉
− J [ρ] . (12.26)
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Define
Wλ :=

〈
Ψλ

∣∣∣V̂e-e

∣∣∣Ψλ

〉
− J [ρ] , (12.27)

then we get

Exc[ρ] =

∫ 1

0

dλWλ . (12.28)

Thus if we know Wλ[ρ], we can use it to create an exchange-correlation functional. In the λ = 0
limit, we have

W0 =
〈
Ψ0

∣∣∣V̂e-e

∣∣∣Ψ0

〉
− J [ρ]

= J [ρ]−K[ρ]− J [ρ]

= −K[ρ] =: Ex[ρ] , (12.29)

which is the Hartree–Fock exchange energy of density ρ. For λ = 1,

W1 =
〈
Ψ1

∣∣∣V̂e-e

∣∣∣Ψ1

〉
− J [ρ]

= Ve-e[ρ]− J [ρ] , (12.30)

where Ve-e(ρ) contains all two-electron Coulomb, exchange and correlation contributions. To make
headway we consider that, for the exact exchange-correlation functional, the energy is identical to
the FCI energy, E0[ρ] = E1[ρ], so

E0[ρ] = Ts[ρ] + J [ρ] + Exc[ρ] = E1[ρ] = T [ρ] + Ve-e[ρ] . (12.31)

Rearranging this we have

W1 = Ve-e[ρ]− J [ρ] = Ts[ρ]− T [ρ] + Exc[ρ] , (12.32)

and so
W1 − Exc[ρ] = Ts[ρ]− T [ρ] =: −Tc[ρ] , (12.33)

where Tc[ρ] is the correction to the non-interacting kinetic energy due to correlation.

This form of the exchange-correlation functional is instructive as Wλ can be evaluated for model
systems and approximated.

12.4 Asymptotic Behaviour of the Density

An exact result which is of value for the electron density is that asymptotically

ρ ∼ exp(−2
√

2Iminr) , (12.34)

where Imin is the exact first ionisation potential. We shall now prove this.

Consider a point rN which is a long way from the molecule. The exact wavefunction for this
molecule, which has N electrons may be written in this situation as

ΨN = ΨN−1ϕN (rN ) , (12.35)

since there is no chance of having two electrons at such a large distance. ΨN−1 is the wavefunction
of the cation. We may write the N electron Hamiltonian as ĤN = ĤN−1 + ĥN , with ĥN being the
one electron Hamiltonian for the last electron.

ĤN = −
N−1∑
i=1

1

2
∇2

i +
∑
I

N−1∑
i=1

−ZI

riI
+

N−1∑
i<j

1

rij︸ ︷︷ ︸
ĤN−1

−1

2
∇2

N +
∑
I

−ZI

rNI
+

N−1∑
i=1

1

riN︸ ︷︷ ︸
ĥN

. (12.36)
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An application of ĤN to ΨN yields

ĤNΨN−1ϕN = (ĤN−1ΨN−1)ϕN +ΨN−1ĥNϕN (12.37)
ENΨN−1ϕN = (EN−1ΨN−1)ϕN +ΨN−1ĥNϕN (12.38)

ENϕN = EN−1ϕN + ĥNϕN , (12.39)

so
(EN − EN−1)ϕN = ĥNϕN , (12.40)

or
−1

2
∇2

NϕN − 1

rN
ϕN = −IminϕN . (12.41)

At a large distance the behaviour of ϕN is exponential, i.e. ϕN ∼ exp(−αr). Substitution yields
α2 = 2Imin. The asymptotic form of the density will be given by ϕN (rN )2 and the result is obtained.
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13 Approximate Exchange-Correlation Functionals

13.1 Local Density Approximation

There is no straightforward way in which the exchange-correlation functional Exc[ρ] can be
systematically improved, unlike ab initio quantum chemistry. In ab initio quantum chemistry SCF
can be systematically improved in principle to unlimited accuracy through configuration interaction
or perturbation theory. One way forward in DFT is to start from a model for which there is an exact
solution — the uniform electron gas.

It is defined as a large number N of electrons in a cube of volume V = l3, throughout which there
is uniformly spread out a positive charge sufficient to make the system neutral. The uniform electron
gas corresponds to the limit N → ∞, V → ∞, with density ρ = N/V remaining finite.

We will now briefly indicate how the expressions for Ts[ρ] and Ex[ρ] are derived. The Kohn–Sham
equations for the uniform electron gas are satisfied by plane wavefunctions

ϕk =
1√
V
eik·r (13.1)

where periodic boundary conditions require

k =
2π

l
n , n ∈ Z3 . (13.2)

The one particle density matrix is given by

ρ1(r1, r2) =
2

V

∑
k occupied

e−ik·(r1−r2) , (13.3)

which, on replacing the sum by an integral with d3n = (V/8π3)d3k yields

ρ1(r1, r2) =
1

4π3

∫
d3k e−ik·(r1−r2)

=
1

4π3

∫ kF

0

dk k2
∫

dθ dϕ sin θe−ik·r12 . (13.4)

The Fermi level kF is defined by evaluating the density ρ(r) = ρ1(r, r)

ρ(r) =
k3F
3π2

⇒ kF = [3π2ρ(r)]1/3 . (13.5)

The kinetic energy
Ts =

∫
d3r

[
−1

2
∇2

rρ1(r
′, r)

]
r′=r

(13.6)

is easily obtained. It is

Ts[ρ] =
1

8π2

∫
d3r

∫ kF

0

dk 4πk4

=
1

10π2

∫
d3r k5F

=
3

10
(3π2)2/3

∫
d3r ρ5/3(r) . (13.7)

To evaluate ρ1(r1, r2) generally we introduce the coordinates

r =
r1 + r2

2
, s = r1 − r2 (13.8)

55



13 Approximate Exchange-Correlation Functionals B10 Electronic Structure

and choose s to lie on the kz axis. The integral may then be evaluated to give the exact first order
spinless density matrix

ρ1(r1, r2) = 3ρ(r)
sin t− t cos t

t3
, (13.9)

where t := kF(r) ‖s‖. The complete result is

Ts[ρ] = CF

∫
d3r ρ5/3(r) (13.10)

ELDA
x [ρ] = −Cx

∫
d3r ρ4/3(r) , (13.11)

where we defined the constants

CF =
3

10
(3π2)2/3 ≈ 2.8712 (13.12)

Cx =
3

4

(
3

π

)1/3

≈ 0.7386 . (13.13)

To derive the result for ELDA
x , we have used the result∫ ∞

0

dt (sin t− t cos t)2t−5 =
1

4
. (13.14)

The exchange energy is called the Dirac exchange energy or sometimes Slater exchange energy.

It is usual to introduce the exchange energy per particle ϵx as a function of rs, the radius of a
sphere whose volume is the effective volume of an electron,

4

3
πr3s =

1

ρ
. (13.15)

The results are
ELDA

x [ρ] =

∫
d3r ρ(r)ϵx(rs) , (13.16)

where
ϵLDA

x = −0.4582

rs
. (13.17)

In the case when the alpha spin density is not equal to the beta spin density, the kinetic and
exchange energies are

Ts[ρα, ρβ ] = 22/3CF

∫
d3r [ρ5/3α + ρ

5/3
β ] , (13.18)

ELSDA
x [ρα, ρβ ] = −21/3Cx

∫
d3r [ρ4/3α + ρ

4/3
β ] , (13.19)

as may be verified by putting ρα = ρβ = ρ/2 for the closed-shell case.

The ground state total energy of the uniform electron gas is

E[ρ] = Ts[ρ] +

∫
d3r ρ(r)Vext(r) + J [ρ] + Exc[ρ] + Eb , (13.20)

where Eb being the electrostatic energy of the positive background, which is equal to the Coulomb
energy because the magnitude of the positive charge density n(r) is equal to ρ(r). Because the
external potential is defined by

Vext(r) = −
∫

d3r′
n(r′)

‖r− r′‖
, (13.21)
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it follows that the second, third and fifth terms of (13.20) add to zero, and therefore

E[ρ] = Ts[ρ] + Exc[ρ]

= Ts[ρ] + Ex[ρ] + Ec[ρ] , (13.22)

where we have now split up the exchange-correlation term into an exchange term plus a correlation
term.

For the correlation functional of the electron gas, reliance is placed on the numerical simulations of
the uniform electron gas by Ceperley and Alder using the quantum Monte-Carlo method for several
different values of rs. (They studied rs = 1, 2, 5, 10, 20, 50, 100 for ζ = 0 and 1). The correlation
energy was obtained by subtracting the kinetic and exchange energies from (13.22). Also using
analytic information for the high and the low density limit, Vosko, Wilk and Nusair gave the first
accepted form for the correlation electron density per electron ϵc(rs), which is defined such that

Ec[ρ] =

∫
d3r ρ(r)ϵc(rs(ρ(r))) , (13.23)

which covers both the spin polarised and spin compensated cases.

ϵLDA
c (rs) =

A

2

(
ln

x2

X(x)
+

2b

Q
tan−1 Q

2x+ b

− bx0
X(x0)

[
ln

(x− x0)
2

X(x)
+

2(b+ 2x0)

Q
tan−1 Q

2x+ b

])
, (13.24)

where x = r
1/2
s , X(x) = x2 + bx + c, Q = (4c − b2)1/2, and A = 0.0621814, x0 = −0.409286,

b = 13.0720, c = 42.7198. It was later updated by Perdew and Wang to give the PW91 local
correlation functional.

This completes the description of the uniform electron gas and its functionals. The application
of these functionals in chemistry is often referred to as the local density approximation (LDA) or the
local spin density approximation (LSDA). For molecular chemistry the errors from LDA energies are
often too large to be useful. The LDA also does not bind anions as ϵx(r) decays too rapidly. Typical
errors in Ex is usually 5% for being not negative enough, and Ec are usually too negative by 100%.
The mean absolute error in atomisation energies is around 180 kJ mol−1.

The main step forward for the introduction of DFT into chemistry was the introduction of the
density gradient ∇ρ.

13.2 Generalised Gradient Approximation

Let’s first introduce the dimensionless reduced gradient density

x =
‖∇ρ‖
ρ4/3

, (13.25)

and a related additional factor
s =

x

2(3π2)1/3
. (13.26)

It can be shown from the gradient expansion that for a slightly inhomogeneous electron gas with a
slowly varying density, the exchange energy behaves like

EGEA2
x = −

∫
d3r cDρ

4/3 +
7

432π(3π2)1/3
‖∇ρ‖2

ρ4/3

=: −
∫

d3r cDρ
4/3 + cx2ρ4/3x2 , (13.27)
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where the Dirac exchange constant cD = 3
4 (

3
π )

1/3 and cx2 = 7/432(3π2)1/3. This idea stems from the
solid state however it did not take off in chemistry until the introduction of the generalised gradient
approximation (GGA) as the density in molecules is a long way from slowly varying. In fact in
molecular tails where the density has an exponential decay then the reduced gradient diverges. This
causes big problems for the direct use of the gradient expansion as can be clearly seen for the use of
the fourth order correction where the energy diverges for any atom.

Note that although GGA functionals make use of ∇ρ (via x or s), they are still local. The
functionals don’t require ρ at two different r simultaneously. Using the gradient alleviates some of
this locality.

• Becke86
EB86

x = ELDA
x −

∑
σ

∫
d3r ρ4/3σ

(
βγx2σ

1 + γx2σ

)
. (13.28)

A simple form makes sure that the energy does not diverge as x→ ∞. This is fitted to atomic
exchange energies with β = 0.0036 and γ = 0.004.

• Becke88
EB88

x = ELDA
x −

∑
σ

∫
d3r ρ4/3σ

(
βx2σ

1 + 6βxσ sinh
−1(xσ)

)
. (13.29)

This is one of the most widely used exchange functionals in the literature. Its form was designed
to give the correct asymptotic behaviour of the exchange energy density. However, its success
is viewed more likely to be due to the procedure used to determine the constant β = 0.0042, a
least squares fit to the Hartree–Fock exchange energies of the rare gas atoms (He-Kr).

• PBE

EPBE
x = ELDA

x − cD
∑
σ

∫
d3r ρ4/3σ

(
κ− κ

1 +
µs2σ
κ

)
, (13.30)

where µ = 0.21951 and κ = 0.804. These parameters are chosen to satisfy the linear response of
the uniform electron gas and also to make sure that the functional never breaks the Lieb–Oxford
bound.

• OPTX

EOPTX
x = 1.05151ELDA

x − 1.43169
∑
σ

∫
d3r ρ4/3σ

(
γx2σ

1 + γx2σ

)2

. (13.31)

The coefficients were obtained from fitting the HF energies of the atoms H-Ar. In the uniform
gas limit (x→ 0) OPTX does not reproduce LDA.

13.3 Correlation Functionals

The development of correlation functionals has been more difficult with less firm theoretic basis on
which to base the correlation functional. Even the scaling relation which has been too complicated
to help simply in development of functionals.

There are two main correlation functionals that are used in the literature today.

13.3.1 PBE Correlation Functional

In the paper by Perdew, Burke and Ernzerhof they developed a correlation functional based on
previous work of Perdew for the correlation energy of the uniform electron gas

EPBE
c =

∫
d3r ρ(r)

(
ϵLDA

c (rs, ζ) +H(rs, ζ, t)
)
, (13.32)
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where rs is the local Seitz radius 1
ρ = 4

3πr
3
s , ζ = (ρα − ρβ)/ρ ∈ [−1, 1] is the spin polarisation and

t = ‖∇ρ‖ /(2ϕksρ) is a dimensionless density gradient, in which ϕ(ζ) = [(1 + ζ)2/3 + (1− ζ)2/3]/2 is
a spin scaling factor and ks =

√
4kF/π is a screening factor. The gradient correction part is given by

H = γϕ3 ln

[
1 +

β

γ
t2
(

1 +At2

1 +At2 +A2t4

)]
, (13.33)

where

A =
β

γ

[
exp

(
−ϵLDA

c
γϕ3

)
− 1

]−1

. (13.34)

13.3.2 LYP Correlation Functional

Colle and Salvetti have presented an approximated correlation energy formula for helium in terms of
the electron density and a Laplacian of the second order Hartree–Fock density matrix. Their very
clever analysis involved (a) a Jastrow representation for the correlation hole (b) a correlation energy
expression in terms of this density matrix (c) assuming that the one-particle density matrix maintains
its HF form (d) introducing a Taylor expansion for the correlation energy integrand (e) obtaining a
good formula for the correlation energy, and then (f) fixing its parameters such that it holds for He.
Lee, Yang and Parr restated this formula in terms of the density and the local kinetic energy density.
Using gradient expansions for the latter term, they turned this formula into an explicit functional of ρ,
involving the gradient and the Laplacian. Miehlich, Savin, Stoll and Preuss eliminated the Laplacian
terms by integration by parts, and for a closed-shell system the result is

Ec = −a
∫

d3r
ρ

1 + dρ−1/3

− ab

∫
d3rωρ2

[
CFρ

8/3 + ‖∇ρ‖2
(

5

12
− δ

7

72

)
− 11

24
ρ2 ‖∇ρ‖2

]
, (13.35)

where
ω =

exp(−cρ−1/3)

1 + dρ−1/3
ρ−11/3 and δ = cρ−1/3 +

dρ−1/3

1 + dρ−1/3
(13.36)

and a = 0.04918, b = 0.132, c = 0.2533, d = 0.349, which are the Colle–Salvetti parameters from
their fit to the helium atom. The great advantage of this functional is that it was derived from an
actual correlated wavefunction for a two electron system, and has no relation to the uniform electron
gas.

13.4 Hybrid Functionals

The next major advance in the development of functionals came from Becke with the introduction of
hybrid functionals. Consider again the formula for the adiabatic connection

Exc =

∫ 1

0

dλWλ . (13.37)

Becke tried a simple model for the adiabatic connection integrand

Wmodel
λ = a+ bλ . (13.38)

For this to be correct at λ = 0 and λ = 1 we need

a =W0 , b =W1 −W0 . (13.39)

The initial point of the adiabatic connection is exact exchange and Becke used LDA approximation
WLDA

1 at λ = 1. The simple integration of the model λ and substitution gives

Exc =
1

2
EHF

x +
1

2
WLDA

1 . (13.40)
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This is the famous introduction of exact exchange into the functionals. The same year Becke tried
a more empirical mixing of Hartree–Fock exchange into the functional and he found a good fit to a
small set of atoms and molecules with the following form

Exc = aEHF
x + (1− a)ELDA

x + bE∆B88X
x + cELDA

c + (1− c)EGGA
c . (13.41)

He found the parameters a = 0.2, b = 0.72 and c = 0.81. This leads to the most widely used functional
B3LYP.

More recent work has tried to develop the adiabatic connection work with a more in depth study
of possible models. Some success was had with a [1,1] Padé model

Wmodel
λ = a+

bλ

1 + cλ
(13.42)

using some sort of information from W0, W ′
0 and Wp. This gives rise to an expression

Exc = a+
b

c

(
1− ln(1 + c)

c

)
, (13.43)

where

a =W0 (13.44)
b =W ′

0 (13.45)

c =
Wp − pW ′

0 −W0

p(Wp −W0)
. (13.46)

13.5 Fitted Exchange-Correlation Functionals

The exact properties of the exchange-correlation functionals can be very difficult to impose and also
they may not necessarily help! For example the uniform electron gas condition that has been a
driving force for the development of functionals — how is it helpful for chemistry when we never
have a density that looks uniform? This is obviously an open question for debate. Many people have
adopted a more pragmatic approach to the development of functionals and taken a flexible functional
form that is fitted to a large amount of highly accurate experimental data. This is typified by the G2
set from Pople and co-workers where they try to find accurate experimental heats of formation for
molecules to within 1 kcal/mol (the standard of chemical accuracy). For example the 10 parameter
B97 functional and 15 parameter HCTH were some early examples fitted to data from the G2 set
(with 93 systems). More recent work especially from the group of Truhlar in Minnesota have come
up with a family of functionals, of which the best general performance functional is probably M06-2X
with around 41 parameters fitted to more than 300 systems.

13.6 Other Ideas in Functionals

There have been several recent ideas in functional development

• Range separation
1

r12
≡ erf(µr12)

r12
+

1− erf(µr12)

r12
, (13.47)

so we can use DFT to short range and HF for long range. It is also the other way for screened
hybrids. Examples of such functionals are the long-range corrected CAM-B3LYP and the
screened HSE functional.
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• Dispersion (Van der Waals) correction.
DFT performs poorly for many dispersion related problems and is thought to be incorrect in
the asymptotic limit. An r−6 empirical correction of the form

Edisp = −s6
Nat∑
i<j

Cij
6

R6
ij

fdamp(Rij) (13.48)

is added to give methods often denoted DFT-D.

• RPA
RPA makes use of the unoccupied orbitals and eigenvalues from methods based on the many-
body Green’s function. It also helps to correct dispersion related problems.

• OEP
Any energy expression can be minimised with respect to a local potential in their minimising
equations, using a basis set expansion for the potential as well(

−1

2
∇2 + v0(r) +

∑
t

btft(r)

)
ϕi(r) = ϵiϕi(r) , (13.49)

∂E

∂v(r)
= 0 . (13.50)

This can place methods such as B3LYP firmly within Kohn–Sham theory. Note, the OEP
potential can be determined exactly (up to a constant) if one knows any of the Kohn–Sham
orbitals. For example, this is the case given the density in any one orbital system (one electron
or closed-shell two electrons)

vs(r) = −∇2ϕi(r)

2ϕi(r)
+ C . (13.51)
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14 Energy versus Number of Electrons

The behaviour of energy versus number of electrons is of key importance in understanding some
very important processes in electronic structure as well as more recently helping to understand the
behaviour of approximate functionals.

14.1 Kohn–Sham Eigenvalues and Ionisation Energies

The interpretation of the Kohn–Sham eigenvalues is intimately related to the dependence of total
energy on the number of electrons, i.e. ionisation potentials I and electron affinities A. These
quantities are rigorously defined as the differences in total energy

I = EN−1 − EN (14.1)
A = EN − EN+1 , (14.2)

where EN is the total energy of an N -electron system. In DFT, ionisation potentials and electron
affinities are estimated from fully self-consistent total energies using approximate density functionals.
I and A values computed this way are referred to as ∆-SCF estimates. In Hartree–Fock, Koopmans’
theorem says I and A are related to the HOMO and LUMO energy eigenvalues

I = −ϵHOMO = −ϵN (N) , (14.3)
A = −ϵLUMO = −ϵN+1(N) , (14.4)

where ϵn(N) is the eigenvalue of spin-orbital number n of an N -electron system (which are generally
negative). These numbers are derived using a frozen orbital approximation, where orbitals are not
relaxed in response to removal or addition of electrons. In the Kohn–Sham approach we normally
work with relaxed orbitals and (14.3, 14.4) does not hold. In general one finds I is underestimated
and A is overestimated. For GGA functionals, provided molecules are small, ∆-SCF estimates are
usually good (errors on the order of 0.1 ∼ −0.5 eV). Estimates from HOMO and LUMO are usually
much worse (errors ∼ 1 eV).

14.2 Non-Integral Numbers of Electrons

The work of Perdew, Parr, Levy and Balduz demonstrated using the grand canonical ensemble the
simple result that the behaviour of the exact energy in density functional theory for non-integer
numbers of electrons is a straight line interpolation between the nearest integers

E(N + δ) = (1− δ)E(N) + δE(N + 1) . (14.5)

14.3 Meaning of the Eigenvalues

It is easy to show from an extension to non-integer occupation numbers ni with a density

ρ =
∑
i

ni |ϕi|2 , (14.6)

the energy is
E[ρ] =

∑
i

ni

〈
ϕi

∣∣∣∣−1

2
∇2

∣∣∣∣ϕi〉+

∫
d3r ρ(r)v(r) + J [ρ] + Exc[ρ] . (14.7)

By taking derivatives, Janak showed that for simple functionals such as LDA and GGA,

∂E

∂ni
= ϵi . (14.8)
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14.4 Band Gap

The band gap is defined as the energy difference between electron removal and electron addition

Egap = [E(N + 1)− E(N)]− (E(N)− E(N − 1))

= I −A . (14.9)

However due to the behaviour of the E versus N curve, we can also get the band gap from the
derivatives at the integers

Egap =
∂E

∂N

∣∣∣∣
+

− ∂E

∂N

∣∣∣∣
−
. (14.10)

The Kohn–Sham expression for the bandgap is given by

Egap = ϵLUMO − ϵHOMO +
∂E

∂N

∣∣∣∣
+

− ∂E

∂N

∣∣∣∣
−
.

= ϵLUMO − ϵHOMO +∆xc . (14.11)

This expression has led to a fair bit of confusion in the literature. In part this is due to the very
poor performance of approximate functionals for the E vs N curve. For all functionals of the LDA or
GGA form, ∆xc = 0. This means that the difference of derivatives at N is given by the difference of
the Kohn–Sham eigenvalues. However if we look at the typical values for the HOMO-LUMO gap in
atoms or small molecules they underestimate the experimental gap by around 100 kcal mol−1 (5 eV)
(In solids the difference is smaller though LDA/GGA typically underestimates the gap by 30− 50%).

The problems of approximate density functionals for the band-gap indicate much bigger problems
for calculation of the ground state energy of molecules. This is extremely important for the future
improvement of DFT.
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15 Practical Information

15.1 Numerical Quadrature

This is one of the difficulties of DFT. It is quite clear that the new integrals which arise in the
Kohn–Sham equations may not be evaluated by analytic means because of the fractional powers of
the density which arise. There are various ways forward, and they all involve a grid of points in the
3D real space. Some people favour a least squares fit of vxc to an auxiliary Gaussian basis set, some
people favour a completely numerical approach. Here we shall simply evaluate the required integrals
using quadrature, and we now describe a quadrature scheme which we have found satisfactory.

• Space is divided into atomic Voronoi polyhedra such that the integral can be written as a sum
over atomic contributions.

• Around each atom a radial and angular quadrature is chosen. For example the radial quadrature
can be determined using Euler–Maclaurin, Treutler–Ahlrichs or several other schemes. For the
2D angular quadrature originally Gauss–Legendre was used but Lebedev has devised a very good
angular scheme which exactly integrates the spherical harmonics Ylm(θ, ϕ) for all −l ≤ m ≤ l,
0 ≤ l ≤ L for some L. There are (L + 1)2 such functions. Lebedev described 194, 302 point
quadrature schemes for which L = 23, 29 and are based on the symmetry of the octahedron.

In the end the integral is represented as

Exc[ρ] =

∫
d3r fxc(ρ(r),∇ρ(r))

=
∑
m

wt(m)fxc(ρ(m),∇ρ(m)) . (15.1)

The standard grids have approximately 30,000 points per atom. It is possible to substantially
reduce the cost of the quadrature by (i) using symmetry (ii) reducing the number of angular points
near nuclei (iii) carrying out Kohn–Sham iterations using low cost quadrature, and obtaining the
energy by higher accuracy quadrature (iv) inserting several tests to eliminate the evaluation of basis
functions which are far from grid points (v) evaluating the Becke weights at the start and sorting
them.

15.2 Implementation of the Kohn–Sham Equations

For example the Kohn–Sham scheme has been implemented as part of the CADPAC program. It is
not relevant to give the details here, but for typical molecular calculations the cost is approximately
twice that of an SCF calculation. Essentially the structure for the extra part is
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DO 2 Atomic r, θ, ϕ points. This determines grid points
DO 3 basis functions
evaluate ηα and ∇ηα
END 3
DO 4 basis functions
DO 5 basis functions
form ρ etc
END 5,4
Form vxc
DO 6 basis functions
DO 7 basis functions
construct Kohn–Sham matrix
END 7,6
END 2,1

From the looping structure in this outline it is easy to see that the basis cost is O(N3), where N
is a measure of the size of the molecule. It is a relatively trivial matter to further reduce the cost, by
predetermining those basis functions which have a significant value at the particular grid point. The
evaluation is then formally linear.

We observe that there are a large number of DFT codes in the literature under names
such as GAUSSIAN/DFT, CADPAC, TURBOMOLE, DGAUSS, DeMon, ADF, Molpro, QCHEM,
DALTON, each of which treats the evaluation of the Kohn–Sham matrix in a slightly different way.

Finally in this section we stress that for a given functional, it is possible to obtain the exact
Kohn–Sham solution, provided a complete basis and exact quadrature are used. Our experience
is that this is in practice achievable provided a TZ2P(+f) type basis is used, that is a good SCF
basis. We can see every reason for using as reliable a quadrature as possible. The great advantage
of DFT is that no configuration interaction calculation is performed, and therefore we are not trying
to describe the electron-electron cusp in the wavefunction, which is well established to be the reason
why correlated calculations are so slowly convergent with respect to basis set. This is the overriding
advantage of modern density functional theory.
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16 Challenges for DFT

16.1 Multi-Reference and Strongly Correlated Systems

As the Kohn–Sham equations rely on a single Slater determinant to produce the Kohn–Sham orbitals,
systems where there are many different configurations close in energy (e.g. transition metals in low
spin states) can be particularly challenging. A very revealing example is the lack of ability of most
functionals to dissociate both H2 and H+

2 , and similar problems are seen breaking other bonds. The
nature of the problem is often described in terms of self-interaction, where the Coulomb contribution
of an electron interacting with itself can only be removed by including 100% exact Hartree–Fock
exchange, which is not usually included in most functionals.

DFT is particularly widely used in periodic (solid-state) systems where it has generally proven
very successful. However in systems where there are atoms with multiple oxidation states (d- and
f-block elements), there is a tendency for density functionals to delocalise electrons. This is often
patched up (unsatisfactorily) by adding an empirical interaction penalising two electrons in the same
spatial orbitals. This is known as DFT+U, where the U parameter stems from fitting a Hubbard
model behaviour. This unfavourable U interaction encourages electrons to localise singly on atoms,
though is a rather blunt instrument, and this approach needs careful benchmarking.

16.2 Charge Transfer

There are extensions to DFT to describe excited states (time-dependent DFT) which have been
shown to be reasonably successful at describing localised excitations, but the same self-interaction
errors above mean that charge-transfer excitations are very poorly described, and have energies which
are too low.

16.3 Dispersion and Weak Interactions

The local form of the correlation functionals means that they cannot describe the spontaneous-dipole
induced-dipole between separated atoms or molecules which give rise to London dispersion forces.
In some weakly bonded systems this can be the majority of the binding energy, and so empirical
corrections have been added (DFT-D) which include these explicitly. The difficulty of performing
more accurate ab initio calculations on systems of sufficient size for this to be important means these
corrections have not been widely tested beyond some benchmark systems.

16.4 Systematically Improvable Functionals

Though there has been a great deal of work parameterising functionals over the past thirty years,
creating a pseudo-systematically improvable Jacobs Ladder of functionals, there has been very little
successful development in the form of the functional, and once at the top of the ladder, for systems
which still defy description at that level there is currently no direction to take towards more accurate
descriptions (unlike the successive levels of accuracy in e.g. coupled cluster theory). As computer
power has increased, there may be ways to include non-local effects into the functionals, which (aside
from the inclusion of Hartree–Fock exchange) are not generally used in present paradigms.
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17 Quantum Monte Carlo Methods

17.1 Variational Monte Carlo

To include e-e and e-n cusps, we write the wavefunction as

Ψ = ‖ϕ1 . . . ϕN‖ exp(J({ri}, {Ri})) , (17.1)

where J is the Jastrow factor
J =

∑
i<j

u(rij) +
∑
i,I

χI(riI) . (17.2)

The explicit forms of u and χI vary but allow the e-e and e-n cusp conditions to be built in. An
example is

u(rij) =
arij

a+ brij
. (17.3)

Unfortunately, the energy of this form of the wavefunction involves integrals which cannot be
performed analytically. Instead we can use Monte Carlo sampling to calculate energy. Denote
r = {ri}Ni=1.

E =

∫
d3nrΨ∗(r)ĤΨ(r)∫
d3nrΨ∗(r)Ψ(r)

=

∫
d3nr

Ψ∗(r)Ψ(r)

N

(ĤΨ(r))

Ψ(r)

=

∫
d3nrP (r)Eloc(r)

=
1

NT

NT∑
rµ∼P (r)

Eloc(rµ) . (17.4)

17.1.1 Metropolis Sampling

To generate a distribution according to P (r), we start from a point r consider the move r → r′, which
we accept with probability

Paccept =

{
1 if P (r′) > P (r)
P (r′)
P (r) otherwise .

(17.5)

We perform this with a set of ‘walkers’, each with its own value of r, and sample E accordingly.
We can also sample, e.g. ∂E

∂b and use this to optimize our wavefunction variationally.

17.2 Diffusion Monte Carlo

For Hamiltonian
Ĥ = −1

2
∇2

r + V (r,R) , (17.6)

we consider the time-dependent Schrödinger equation

iℏ
∂

∂t
|Ψ〉 = Ĥ |Ψ〉 (17.7)

⇒ ∂Ψ

∂τ
= −Ĥ |Ψ〉 , (17.8)
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where τ = it is the imaginary time. The state |ψ〉 is expanded in eigenstates of the Hamiltonian

|ψ〉 =
∞∑
i=1

ci |ϕi〉 , (17.9)

where
Ĥ |ϕi〉 = ϵi |ϕi〉 . (17.10)

A formal solution of the imaginary time Schrödinger equation is

|Ψ(τ0 + δτ)〉 = e−Ĥδτ |ψ(τ0)〉 , (17.11)

where the state |ψ〉 evolve from imaginary time τ0 to a later time τ0 + δτ . If the initial state |τ0〉 is
expanded in energy ordered eigenstates, then

|ψ(δτ)〉 =
∞∑
i=0

cie
−ϵiδτ |ϕi〉 . (17.12)

Hence any initial state |ψ〉 that is not orthogonal to the ground state |ϕ0〉 will evolve to the ground
state in the long time limit

lim
τ→∞

|Ψ(τ)〉 = c0e
−ϵ0τ |ϕ0〉 . (17.13)

To find the ground state, we therefore need to solve the imaginary-time Schrödinger equation

∂Ψ

∂τ
=

1

2
∇2

rΨ− V (r,R)Ψ . (17.14)

This is the diffusion equation with an extra source/sink term.

We may therefore solve the Schrödinger equation by creating a set of walkers, each containing
a complete configuration of electrons, rµ , which diffuse classically, so each walkers position is τ -
dependent, rµ(τ). The potential term requires these walkers to also contain a weight, wµ(r), which is
changed by the local value of V (r). The energy is calculated from the (imaginary) time-average of the
local energy of all the walkers (once they have reached sufficient imaginary time, τ0, to be considered
relaxed to the ground state):

E =

∫ ∞

0

dτ
∑
µ

Elocal(rµ(τ))wµ(τ) . (17.15)

To perform this computationally we create a set of rules which simulate diffusion of walkers, as well
as including processes to allow them to increase/decrease their population when the potential is very
low/high.

This is known as diffusion Monte Carlo (DMC). In essence, the problem has been recast by two
steps:

• representing the wavefunction as a time-averaged population of moving walkers rather than a
3n-dimensional function;

• evolving this population with a stochastic process whose long-(imaginary) time limit is the
ground state wavefunction.

17.2.1 Problems with Diffusion Monte Carlo

For electrons, Ψ has nodes as it is antisymmetric, so is not positive everywhere. Naively using DMC
will produce the ground state bosonic wavefunction. To force this to represent fermionic electrons,
we impose a boundary condition, forcing a nodal surface from a trial wavefunction ΨT. This is the
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fixed node approximation. For a given nodal surface defined by ΨT = 0, DMC will give the lowest
energy under those conditions, so the problem reduces to finding an appropriate ΨT.

To get ΨT correct, we go back to quantum chemistry, and generally use a Slater determinant,
or a Slater–Jastrow wavefunction (which may have been optimized by Variational Monte Carlo),
or possibly a multi-configurational wavefunction from e.g. CASSCF. E[ΨT] will in general give an
error, but this is systematically improvable. Overall, DMC is in general very accurate (better than
CCSD(T)) and potentially low-scaling (O(N3)), albeit with a large prefactor. It is also embarrassingly
parallel, and has seen a small, but growing usage over the past 20 years both in benchmarking and
for real-world-scale calculations.

17.3 Fock Space Quantum Monte Carlo

One potential route to avoid approximations like the fixed-node approximation is to instead perform
the Monte Carlo sampling in a space which is already antisymmetric, so the lowest state is fermionic.
An appropriate such space is for example Slater determinant space, where the wavefunction expressed
in terms of only Slater determinants can never collapse to the bosonic wavefunction.

17.3.1 Full Configuration Interaction Quantum Monte Carlo

Full configuration interaction quantum Monte Carlo (FCIQMC) is essentially the same problem as
full-CI, but instead of finding the lowest eigenfunction by diagonalizing a matrix, a stochastic process
is used to evolve the coefficients of the ground-state wavefunction. We may consider a conventional
CI parameterization of the wavefunction

Ψ =
∑
I

CIΦI . (17.16)

When substituted into the imaginary-time Schrödinger equation as in DMC, we get

∂Ψ

∂τ
= −ĤΨ . (17.17)

We would like to achieve a stable stationary ground state of this, when

ĤΨ = EΨ , (17.18)

i.e. (Ĥ − E)Ψ = 0, and so we can in general shift the Hamiltonian by an as yet undetermined
constant, E, to achieve stability. (This is also done in DMC).

dΨ

dτ
= −(Ĥ − E)Ψ (17.19)∑

I

dCI

dτ
ΦI = −

∑
I

CI(Ĥ − E)ΦI (17.20)

∑
I

dCI

dτ
〈ΦJ |ΦI〉 = −

∑
I

CI

〈
ΦJ

∣∣∣Ĥ − E
∣∣∣ΦI

〉
(17.21)

dCJ

dτ
= −

∑
I

(HJI − EδJI)CI . (17.22)

This may be solved by finite-(imaginary)-timestep integration

CJ(τ + δτ) = CJ(τ)− δτ
∑
I

(HJI − EδJI)CI(τ)

= [1− δτ(HJJ − E)]CJ(τ)− δτ
∑
I 6=J

HJICI(τ) . (17.23)
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The crucial second step in this process is to discretize the problem. Instead of CJ being represented
by an arbitrary-precision real number, we choose to represent it as a population of particles (psi-
particles or psips, also known as walkers akin to DMC) which are discrete. To obey (17.23) we must
probabilistically kill particles (first term) or spawn new particles at J from other particles at I (second
term).

The resulting dynamics are quite complicated, but it turns out that for many wavefunctions
the wavefunction can be well-represented by orders of magnitude fewer particles than there are
Slater determinants. Slater determinant spaces of 1038 have been simulated, and with further
approximations up to 10108. The wavefunction is still on-average exact however, and can be evaluated
from the (imaginary-)time-average

Ψ =
∑
I

〈CI(τ)〉τΦI . (17.24)

The occupied Slater determinants change over (imaginary-)time, so for very low-CI determinants,
there is seldom a particle there.

This method is not without challenges however, and a critical population of particles is needed
for it to remain stable. This size of this critical population is usually a small fraction of the overall
Slater determinant space, but has been shown to still scale exponentially with system size.

17.3.2 Coupled Cluster Monte Carlo

To avoid the inherent exponential scaling, it is possible to choose a polynomially scaling ansatz for the
wavefunction and apply Monte Carlo to its solution. Coupled cluster quantum Monte Carlo (CCQMC)
follows essentially the same dynamics as FCIQMC, but instead of representing the configuration
interaction amplitudes (CI) discretely, it represents excitation amplitudes (e.g. tai in T̂1 =

∑
i,a t

a
i â

a
i ).

The dynamics of this are even more complicated, but it can recover the polynomial scaling of coupled
cluster methods along with the reduced storage requirements from the discrete representation.
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