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C7 Further Quantum Mechanics
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Preface

This course focuses on quantum mechanics, and it is slightly more advanced than
what you have learned in Part IB Chemistry A: Introduction to Quantum Mechanics.
It will mostly focus on perturbation theory, including both the time-independent and
the time-dependent cases, and it also covers topics that are removed from the A4
Theoretical Techniques course this year, namely normal modes. This course will avoid
the rigorous mathematical formulation of quantum mechanics, and especially, it will
not introduce concepts like projective Hilbert space or functional analysis. If you
want a more mathematical approach to quantum mechanics, you can find my notes
on Mathematical Tripos Part II: Principles of Quantum Mechanics.
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1 Foundational Principles C7 Further Quantum Mechanics

1 Foundational Principles

We will start from a revision of the foundational principles of quantum mechanics that should be
familiar from part IB Chemistry A.

1.1 Wavefunctions and Operators

In quantum mechanics, all physical information about a system is embodied in its wavefunction,
denoted Ψ. The wavefunction is complex-valued, and we will use the position representation of the
wavefunction, so it is a function of the spatial coordinates. In Born’s interpretation, the probability
density of finding a particle at r is

P (r) ∝ |Ψ(r)|2 . (1.1)

Wavefunctions should be single-valued and (at least) twice differentiable. Under such interpretation,
we often choose to normalise the wavefunction such thatˆ

dτ Ψ∗Ψ = 1 , (1.2)

where dτ is a shorthand notation for integrating over all spatial coordinates. This integral should
converge for a proper wavefunction, so that it can be normalised.

A quantum mechanical system is defined by its Hamiltonian, Ĥ, the total energy operator.
The Hamiltonian usually includes the kinetic and potential energies of the particles. A quantum
mechanical system evolves according to the time-dependent Schrödinger equation

iℏ
∂

∂t
Ψ = ĤΨ . (1.3)

Often, the Hamiltonian operator is independent of time. For such a time-independent system, the
wavefunction satisfies the time-independent Schrödinger equation (which we often directly refer to as
the Schrödinger equation)1

Ĥψ = Eψ , (1.5)

where the constant E is the energy of the system2 and ψ(r) is now a wavefunction independent of
time. This is a (partial) differential equation, so it is only analytically solvable in a few limited cases,
most of which you have seen already. Approximations are generally needed to solve for more complex
systems, and one of the most important approximation techniques, the perturbation theory, is exactly
the main theme of this course.

In general, the Schrödinger equation will have multiple (usually a countably infinite number of)
solutions, which can be indexed by a quantum number n such that

Ĥψn = Enψn . (1.6)

The ψn are different states available to the system, and the state with the lowest energy En is known
as the ground state. We usually arrange the states in sequence so that the ground state is labelled
ψ0 (or ψ1 if you find it more convenient to start numbering from n = 1). We say two or more states
are degenerate if they have the same energy. Any linear combination of degenerate wavefunctions is
also a solution to the Schrödinger equation with the same energy.

1This is because if Ĥ is independent of t, then a special class of solutions of the time-dependent Schrödinger equation
exist

Ψ(r, t) = ψ(r)e−iEt/ℏ , (1.4)
where ψ(r) is independent of time and satisfies the time-independent Schrödinger equation.

2This is essentially the conservation of energy — if a system has time-translational symmetry, then the energy of
the system is conserved. This is an example of Noether’s theorem.

1



1 Foundational Principles C7 Further Quantum Mechanics

The Schrödinger equation is a specific example of the more general eigenvalue equation. In
quantum mechanics, all physical observables A have a corresponding operator Â, if the wavefunction
satisfies

Âψ = aψ , (1.7)
then the value of A will always be measured to be a. If this equation is not satisfied, then measured
values of A will be drawn from a probability distribution in the set of eigenvalues, also known as the
spectrum, of Â. The expectation value and uncertainty of A is

〈A〉 =
´
dτ ψ∗Âψ´
dτ ψ∗ψ

(1.8)

∆A =

√
〈A2〉 − 〈A〉2 . (1.9)

To avoid writing integrations over and over again, we introduce the Dirac bra-ket notation, in
which a bra is 〈ψ| ≡ ψ∗ and a ket is |ψ〉 ≡ ψ, and a pair of a bra and a ket forms a bra-ket (or just
bracket), which implies performing integration3

〈ψ|ψ〉 :=
ˆ

dτ ψ∗ψ . (1.10)

An operator can be placed in the middle of a bra-ket, so〈
ψ
∣∣∣Â∣∣∣ψ〉 :=

ˆ
dτ ψ∗Âψ . (1.11)

To know what the quantum operator Â corresponding to a physical observable A is, we write
the classical expression of A in terms of position and momentum, and we replace the position and
momentum with their quantum operators45

x −→ x̂ = x (1.12)

px −→ p̂x = −iℏ ∂

∂x
. (1.13)

In general, two operators do not commute, meaning that ÂB̂ 6= B̂Â. This can be characterised
by their commutator, defined as

[Â, B̂] := ÂB̂ − B̂Â . (1.14)
Two commuting operators have vanishing commutator. If two (suitably well-behaved) operators
commute, they admit a common set of eigenfunctions. The converse also holds true: if there is a
complete set of common eigenfunctions (’complete’ means being able to expand any state in terms of
these eigenfunctions), then the operators commute. Only if the state ψ is a simultaneous eigenstate
of two operators can we measure the two physical observables with certainty. If the condition is not
met, then the commutator places a lower bound on the product of the uncertainties

∆A∆B ≥ 1

2

∣∣∣〈[Â, B̂]
〉∣∣∣ . (1.15)

3Actually more formally, |ψ⟩ is what is truly fundamental, and is the quantum state of a system living in an abstract
vector space called a (projective) Hilbert space H. The wavefunction ψ(x) is just the position-space representation of
the vector |ψ⟩. If a quantum state is a vector in the Hilbert space, |ψ⟩ ∈ H, then an operator is an operator in H,
Â : H → H, and a bra will be a dual vector living in the dual space of H, ⟨ψ| ∈ H∗. What allows us to do this is the
Riesz representation theorem, which shows for any |ψ⟩ ∈ H, there is always a corresponding ⟨ψ| ∈ H∗ and vice versa.

4This is the position-space representations of these operators, which act on wavefunctions that are written as a
function of spatial coordinates. These operators have different representations in different bases.

5If you turn to an advanced QM book, you may find that it converts a classical theory into a quantum one by
promoting (generalised) coordinates and (conjugate) momenta to operators and then define their commutation relations
from a classical mechanical counterpart called Poisson bracket, rather than directly claiming their form in position
representation. This is known as canonical quantisation. What we are doing here is equivalent to canonical quantisation
because once we have the expressions of the operators, we naturally have their commutation relations. However, the
canonical quantisation is more general in the sense that it does not rely on a particular representation.
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1.2 Hermitian Operators

Not all operators can correspond to physical observables. First of all, it has to be linear, so that

Â(a |ϕ〉+ b |ψ〉) = aÂ |ϕ〉+ bÂ |ψ〉 , (1.16)

where a, b ∈ C are constants. Moreover, operators that correspond to physical observables must be
Hermitian. For any linear operator Â, we define its adjoint Â† to be the operator such that〈

ϕ
∣∣∣Â∣∣∣ψ〉 =

〈
Â†ϕ

∣∣∣ψ〉 . (1.17)

An operator is Hermitian if it is self-adjoint,6 meaning Â = Â†, so that〈
ϕ
∣∣∣Â∣∣∣ψ〉 =

〈
Âϕ
∣∣∣ψ〉 =

〈
ψ
∣∣∣Â∣∣∣ϕ〉∗ . (1.18)

It is not difficult to show that taking the adjoint has the following properties:

(aÂ)† = a∗Â† (1.19)
(Â+ B̂)† = Â† + B̂† (1.20)

(ÂB̂)† = B̂†Â† (1.21)
(Â |ψ〉)† = 〈ψ| Â† . (1.22)

A Hermitian operator has the following nice properties:

(i) The eigenvalues are all real.

(ii) Eigenfunctions with different eigenvalues are orthogonal. Even if some eigenfunctions are
degenerate, orthogonal eigenfunctions can always be constructed.

(iii) The eigenfunctions form a complete basis set.7

Two functions are said to be orthogonal if their inner product, defined as 〈ϕ|ψ〉, is zero. Moreover,
the completeness of the basis set means that any wavefunction ψ satisfying the boundary conditions
can be expressed as a linear combination of the eigenfunctions,

ψ =
∑
i

ciϕi . (1.23)

We can always make this basis set, which we denote as {ϕi}, orthonormal by normalising the
orthogonal eigenfunctions, so that 〈ϕi|ϕj〉 = δij . Then taking the inner product of the above
eigenfunction expansion with ϕj , we have

〈ϕj |ψ〉 =

〈
ϕj

∣∣∣∣∣∑
i

ciϕi

〉
=
∑
i

ci 〈ϕj |ϕi〉

=
∑
i

ciδij = cj , (1.24)

and so
|ψ〉 =

∑
i

〈ϕi|ψ〉 |ϕi〉 . (1.25)

6There are actually some extremely subtle differences between self-adjoint and Hermitian operators in functional
analysis, but they would only bother pure mathematicians.

7The existence of continuum spectrum and generalised function actually make the condition a bit more subtle, but
we won’t discuss this in this course.
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Suppose Â has eigenstates {ϕi} and spectrum {ai}, and we have a quantum state ψ. The probability
of a measurement to get ai is |〈ϕi|ψ〉|2.

From now on, we will denote the eigenstates just by their quantum number in the bra-ket notation:
|i〉 ≡ |ϕi〉, so that for example, we have

|ψ〉 =
∑
i

〈i|ψ〉 |i〉 . (1.26)

1.3 Unitary Operators: for Basis Transformation

The next type of operator that is ubiquitous in Quantum Mechanics is the unitary operators. They
play two roles: a transformation for a basis change and an active transformation for state evolution.
In this section, we will investigate its role for basis transformation in detail, and we will briefly
introduce its role for active transformation at the end.

Before that, we first need to define the identity operator. We define the identity operator to be
an operator Î such that

Î |ψ〉 = |ψ〉 (1.27)

for any |ψ〉. A useful way of constructing the identity operator is the resolution of identity. For any
complete orthonormal basis set {ϕi}, we have

Î =
∑
i

|i〉 〈i| . (1.28)

This is because if we act this operator on any |ψ〉, we get its eigenfunction expansion in that basis

Î |ψ〉 =
∑
i

|i〉 〈i|ψ〉 =
∑
i

〈i|ψ〉 |i〉 = |ψ〉 , (1.29)

where we moved 〈i|ψ〉 to the front to make the expression more obvious — we are allowed to do this
because 〈i|ψ〉 is just a number.

Having defined the identity operator, we can define the inverse of an operator Â, denoted Â−1, to
be the operator such that

ÂÂ−1 = Â−1Â = Î . (1.30)

A unitary operator Û is one for which the adjoint is equal to the inverse,

Û−1 = Û † , (1.31)

so that
Û Û † = Û †Û = Î . (1.32)

As we stated above, the unitary operators are closely linked to basis transformations. This is due
to the following result.

Theorem 1.1. Suppose we have two orthonormal bases {|ϕi〉} and {|θj〉}, then there exists a unitary
operator Û such that

|θi〉 = Û |ϕi〉 (1.33)

for all i.

Proof. We will show that the matrix
Û =

∑
k

|θk〉 〈ϕk| (1.34)

4
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is what we want. Acting this on |ϕi〉 gives

Û |ϕi〉 =
∑
k

|θk〉 〈ϕk|ϕi〉 =
∑
k

|θk〉 δik = |θi〉 (1.35)

as claimed. This is unitary because

Û†Û =
∑
i,j

|ϕi〉 〈θi|θj〉 〈ϕj |

=
∑
i,j

|ϕi〉 〈ϕj | δij

=
∑
i

|ϕi〉 〈ϕi| = Î (1.36)

by the resolution of identity. □

1.3.1 Example: The Momentum Space Representation

We are used to representing a quantum state as a wavefunction, which is a function of spatial
coordinates — that is the position space representation of a quantum state. The squared modulus
of ψ(x) tells us the probability density of finding the particle at position x. An equally valid basis
to represent the quantum state is the momentum space, where a quantum state is described as a
function of the momentum p. We will denote this as ψ̃(p). The squared modulus of ψ̃(p) should tell
us the probability density of finding the particle with momentum p.

Consider the transformation, in one-dimensional space, defined by the unitary operator

ψ̃(p) = Ûψ(x) =
1√
2πℏ

ˆ ∞
−∞

dx e−ipx/ℏψ(x) , (1.37)

which you may recognise as the Fourier transform — especially if you are happy to work in atomic
units in which ℏ = 1.8 This is a unitary transformation because its inverse transform is given by

ψ(x) = Û†ψ̃(p) =
1√
2πℏ

ˆ ∞
−∞

dp eipx/ℏψ̃(p) , (1.38)

which is exactly the adjoint of the forward transformation. This transforms our wavefunction ψ(x)
from the position basis to the momentum basis. We will rationalise why this transformation looks
like this a bit later.

For simplicity, we will use atomic units where ℏ = 1 in this section.

Before we proceed, we first introduce a useful object called the Dirac delta.

The Dirac delta function δ(x) is a weird ‘function’ defined such that δ(x) = 0 ∀x 6= 0 but for any
ϵ > 0, we have ˆ ϵ

−ϵ
dx δ(x) = 1 . (1.39)

If you are willing to give up some mathematical rigor, you can define it as

δ(x)
?
=

{
0 x 6= 0

+∞ x = 0 .
(1.40)

A slightly better way to define it is to think of this as a normalised Gaussian centred at the origin in
the limit of its variance → 0.9

8If we want to stick to the real units, we may use the wavenumber defined as k = p/ℏ.
9As you can tell, the Dirac delta is not really a R → R function. Rigorously, it is something known as a distribution

or generalised function. See my notes on NST IB Mathematical Methods for more details.
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Despite its weird definition, the Dirac delta has a nice property.

Proposition 1.2. ˆ ∞
−∞

dx f(x)δ(x− x′) = f(x′) . (1.41)

Proof. Since δ(x) = 0 for all x 6= 0, we must have
ˆ ∞
−∞

dx f(x)δ(x− x′) =
ˆ ∞
−∞

dx f(x′)δ(x− x′)

= f(x′)

ˆ ∞
−∞

dx δ(x− x′)

= f(x′) . (1.42)

□

Proposition 1.3.
1

2π

ˆ ∞
−∞

dx ei(p−p
′)x = δ(p− p′) , (1.43)

where δ(x) is the Dirac delta function.10

Now it’s time to investigate the momentum space representation. Specifically, we would like to
find out how the position and momentum operators look like in the momentum representation. We
do this by rewriting the position-space expectation value of momentum into the momentum space,
and we find

〈p〉 =
ˆ ∞
−∞

dxψ∗(x)

(
−i ∂
∂x

)
ψ(x)

=
1

2π

ˆ ∞
−∞

dx

[ˆ ∞
−∞

dp ψ̃(p)∗e−ipx
](
−i ∂
∂x

)[ˆ ∞
−∞

dp′ ψ̃(p′)e+ip′x

]
=

1

2π

ˆ ∞
−∞

dx

ˆ ∞
−∞

dp

ˆ ∞
−∞

dp′ p′ψ̃(p)∗ψ̃(p′)ei(p−p
′)x

=

ˆ ∞
−∞

dp

ˆ ∞
−∞

dp′ p′ψ̃(p)∗ψ̃(p′)δ(p′ − p)

=

ˆ ∞
−∞

dp ψ̃(p)∗pψ̃(p) . (1.44)

This is exactly the momentum-space average of the operator p. We see that in the momentum
representation, the momentum operator is unsurprisingly p itself — and that is why we call this
representation the momentum representation.

To work out the momentum representation of the position operator, we do the same trick again.

〈x〉 =
ˆ ∞
−∞

dxψ(x)∗xψ(x)

=

ˆ ∞
−∞

dx

[ˆ ∞
−∞

dp′ ψ̃(p′)∗e−ip
′x

]
x

[ˆ ∞
−∞

dp ψ̃(p)eipx
]
. (1.45)

Since
−i ∂
∂p

eipx = xeipx , (1.46)

we can rewrite it as

〈x〉 = 1

2π

ˆ ∞
−∞

dx

ˆ ∞
−∞

dp′
ˆ ∞
−∞

dp ψ̃(p′)∗ψ̃(p)

(
−i ∂
∂p

ei(p−p
′)x

)
. (1.47)

10Both sides of the equations are not converging so we are being consistent here.
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We now use integration by parts, and noting by the normalisation requirement, we must have ψ̃(p)→ 0
as p→ ±∞, we get

〈x〉 = 1

2π

ˆ ∞
−∞

dx

ˆ ∞
−∞

dp′
ˆ ∞
−∞

dp ψ̃(p′)∗ei(p−p
′)x

(
i
∂

∂p
ψ̃(p)

)
=

ˆ ∞
−∞

dp′
ˆ ∞
−∞

dp δ(p− p′)ψ̃(p′)∗
(
i
∂

∂p
ψ̃(p)

)
=

ˆ ∞
−∞

dp ψ̃(p)∗
(
i
∂

∂p

)
ψ̃(p) . (1.48)

This is the expectation value integral of the operator i∂/∂p.

Proposition 1.4. The momentum representation of the position and momentum operators are11

x̃ = i
∂

∂p
(1.51)

p̃ = p . (1.52)

1.3.2 The State Vector

You can see that even though we transformed a wavefunction from the position representation to the
momentum representation, it is still fundamentally the same thing — both representations describe
the same underlying quantum state. Although we may define various unitary transformations and
try to represent a quantum state in different representations, there must be an invariant underlying
object. Just as we may choose different bases to describe a vector, and the vector may have different
coordinates in different bases, it is still the same vector. We can do the same thing in quantum
mechanics.

The true underlying quantum state is called a state vector, denoted |ψ〉, and it lives in a special
vector space called a Hilbert space. The position representation of a wavefunction is just writing
out the coefficients of a state vector in the position basis {|x〉}, and so ψ(x) = 〈x|ψ〉. Similarly the
momentum representation is ψ̃(p) = 〈p|ψ〉.

Let’s think again what we are doing when transforming the position wavefunction ψ(x) = 〈x|ψ〉
to the momentum wavefunction ψ̃(p) = 〈p|ψ〉. What we are doing is actually inserting an identity
operator12

Î =

ˆ
dx |x〉 〈x| (1.53)

into the momentum wavefunction:

ψ̃(p) = 〈p|ψ〉 = 〈p|
ˆ

dx |x〉 〈x|ψ〉 =
ˆ

dx 〈p|x〉 〈x|ψ〉 =
ˆ

dx 〈p|x〉ψ(x) . (1.54)

All we need to do is to find 〈p|x〉. We can transform it into a more familiar object, 〈p|x〉 = 〈x|p〉∗
— it is the complex conjugate of the position representation of momentum eigenstate wavefunctions.
We can find it as the eigenfunction of −id/dx, 〈x|p〉 = eipx/

√
2π. You should have done this in Part

IB Chemistry A: Introduction to Quantum Mechanics. Therefore, we have

ψ̃(p) =
1√
2π

ˆ
dx e−ipxψ(x) . (1.55)

11If we are not in atomic units, then

x̃ = iℏ
∂

∂p
(1.49)

p̃ = p . (1.50)

12We are using an integral instead of a sum since we have a continuum of position eigenstates.
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We can use any other basis we want to represent a quantum state, but it should better be
orthonormal and it should be complete, meaning that the basis should span the whole Hilbert space
so that we can represent any quantum state we want in such a basis — the eigenstates of a Hermitian
operator seems perfect for this purpose.13 Then a quantum state is defined by the countably infinite
number of coefficients of each basis vector. This leads to the vector and matrix representations.

1.3.3 Vector and Matrix Representations

If we have a quantum state |ψ〉 and a complete, orthonormal basis set {|ϕi〉}, then we can expand
and write

|ψ〉 =
∑
i

ci |ϕi〉 , (1.56)

where as we claimed before, if the basis functions |ϕi〉 are orthonormal, then the coefficients ci are
given by

ci = 〈ϕi|ψ〉 . (1.57)
This expansion can be rewritten in matrix notation as

|ψ〉 =
(
|ϕ1〉 |ϕ2〉 · · ·

)c1c2...
 = ϕTc , (1.58)

where ϕ is the column vector of the basis set and c is the column vector of coefficients. Therefore in
the basis set {|ϕi〉}, the quantum state |ψ〉 is represented by a column vector c.

Now suppose we have a second complete, orthonormal basis set called {|θj〉}. As shown in
Theorem 1.1, this set of basis can be written as

|θj〉 = Û |ϕj〉 (1.59)

for some unitary operator Û . We insert the resolution of identity in the {ϕi} basis set, then we get

|θj〉 =
∑
i

|ϕi〉
〈
ϕi

∣∣∣Û ∣∣∣ϕj〉
=
∑
i

|ϕi〉Uij , (1.60)

where Uij =
〈
ϕi

∣∣∣Û ∣∣∣ϕj〉 = 〈ϕi|θj〉 is some set of coefficient describing the old basis in the new basis.
This can be written in the matrix notation as

(
|θ1〉 |θ2〉 · · ·

)
=
(
|ϕ1〉 |ϕ2〉 · · ·

)U11 U12 · · ·
U21 U22 · · ·

...
... . . .

 , (1.61)

or
θT = ϕTU . (1.62)

Note that since we want to keep the basis orthonormal after the transformation, we must have

δij = 〈θi|θj〉

=
∑
k,l

U∗kiUlj 〈ϕk|ϕl〉

=
∑
k

U∗kiUkj , (1.63)

13In fact the position and the momentum representations are one of the worst representations. They are examples of
continuum bases, and their eigenstates like ⟨x|x′⟩ = δ(x− x′) are not normalisable.
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which implies
U†U = I , (1.64)

and so U is a unitary matrix. A unitary operator for transformation between two orthonormal bases
is represented by a unitary matrix.

We hope to represent the same state |ψ〉 in this new transformed basis {|θi〉} by a vector d such
that

|ψ〉 = θTd . (1.65)
Then clearly, we should have

|ψ〉 = θTd = ϕTUd = ϕTc , (1.66)
so

c = Ud or d = U†c . (1.67)
The components transform in the opposite way from the basis.

The same thing goes for operators. If a Hermitian operator Â is represented in the {|ϕi〉} basis
with matrix elements Aij =

〈
ϕi

∣∣∣Â∣∣∣ϕj〉, then in the new basis {|θi〉}, the matrix A′ will be given by

A′ij =
〈
θi

∣∣∣Â∣∣∣θj〉
=
∑
k,l

U∗kiUlj

〈
ϕk

∣∣∣Â∣∣∣ϕl〉
=
∑
k,l

U∗kiAklUlj , (1.68)

and so
A′ = U†AU . (1.69)

Now suppose |ψ〉 is an eigenstate of the operator Â, with

Â |ψ〉 = λ |ψ〉 . (1.70)

Then by inserting the resolution of identity in the basis of {|ϕi〉}, we get

Â
∑
j

|ϕj〉 〈ϕj |ψ〉 = λ
∑
k

|ϕk〉 〈ϕk|ψ〉 . (1.71)

Left multiply this by a bra 〈ϕi| gives∑
j

〈
ϕi

∣∣∣Â∣∣∣ϕj〉 〈ϕj |ψ〉 = λ
∑
k

〈ϕi|ϕk〉 〈ϕk|ψ〉 , (1.72)

or
Aijψj = λψi . (1.73)

In matrix form, this is
Ac = λc , (1.74)

where c is the vector representing |ψ〉 in the {|ϕi〉} basis. This is the eigenvalue equation in the vector
form. Therefore, solving the eigenvalues and eigenstates of an operator is equivalent to finding the
eigenvalues and eigenvectors (diagonalisation) in the matrix representation.

It might be apparent, but it is important to note that we can also do this in the {|θj〉} basis,
giving

A′d = λd , (1.75)
where d is the vector representing |ψ〉 in the {|θj〉} basis, related to c by d = U†c by (1.67). We are
free to do unitary transformations to change the basis as we want. The basis we choose to describe
a system does not affect the physics.
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1 Foundational Principles C7 Further Quantum Mechanics

1.3.4 Symmetry Orbitals

The above transformation is exactly what we are doing when we transform from the atomic orbital
basis (denoted |ϕi〉) to symmetry orbitals (denoted |θi〉) in Hückel theory. If we have figured out the
symmetry orbitals to be |θj〉 =

∑
i |ϕi〉Uij and the Hamiltonian in the atomic orbital basis to be

Hij =
〈
ϕi

∣∣∣Ĥ∣∣∣ϕj〉, then the Hamiltonian in the symmetry orbital basis set is

H′ = U†HU . (1.76)

In practice we don’t usually do this by matrix multiplication because we already know that a lot
of the matrix elements will be zero, so we would rather work out H ′ij element by element. The goal
of Hückel theory is usually to work out the Hückel molecular orbitals as well as their energies, which
are the eigenvectors and eigenvalues of H. By doing a unitary basis transformation, the eigenvalues
of H′ should be the same as H, and the eigenvectors should be the same ones but represented in the
symmetry orbital basis. The point is that the block-diagonal form of H′ makes them easier to find.

1.3.5 Unitary Operators for Active Transformation

The next role of the unitary operators actually change the quantum state |ψ〉 itself, and evolve it
to a new state, say |ϕ〉. In this course, we will only consider one of such operators, that is the
time evolution operator Û(t, t0) which evolves a quantum state |ψ(t0)〉 to |ψ(t)〉 according to the
Schrödinger equation so that

|ψ(t)〉 = Û(t, t0) |ψ(t0)〉 . (1.77)

You will briefly touch this operator in section 5 and investigate it in much greater details in the
appendix section E. Another important class of active unitary operators is those for symmetry
transformations, such as spatial translations and rotations, but they are of more interest for theoretical
physicists and we will not discuss them in any detail.14

However, we will introduce a simple but profound result that is somewhat similar but subtly
different to what we introduced in section 1.3.3. Suppose we have a Hermitian operator Â with
eigenstates {|ai〉} and spectrum {ai}. Then a unitary equivalent observable is Û ÂÛ†, where Û is a
unitary operator.

Theorem 1.5. Unitary equivalent observables have the same spectrum.

Proof. Since
Â |ai〉 = ai |ai〉 , (1.78)

as Û is unitary, we have
Û ÂÛ †Û |ai〉 = aiÛ |ai〉 . (1.79)

Identifying |bi〉 = Û |ai〉, we have
B̂ |bi〉 = ai |bi〉 , (1.80)

where |bi〉 is the eigenstate of the unitary equivalent operator B̂ = Û ÂÛ−1, with the same eigenvalue
ai as Â. □

An example of this is the component of the spin angular momentum operator Ŝz. We can, for
example, use a unitary operator corresponding to a 90◦ rotation along y axis to change it to Ŝx. They
have the same spectrum: ±ℏ/2.

The above result also hints that if we transform all of our states by |ψ〉 7→ Û |ψ〉 and all of our
operators by Â 7→ Û ÂÛ†, everything will be equivalent before and after the transformation.

14See my notes on Mathematical Tripos: Principles of Quantum Mechanics if you are interested.
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1.4 Uncertainty Principle

We have asserted that the uncertainties of two observables are related to the expectation value of
their commutator. It is time to see where the uncertainty principle comes from.

In statistics, the variance of a random variable A is given by

σ2
A =

〈
A2
〉
− 〈A〉2 =

〈
(A− 〈A〉)2

〉
. (1.81)

This can be translated into the quantum mechanical expression of the uncertainty of a physical
observable

∆A2 =

〈
ψ

∣∣∣∣(Â− 〈Â〉)2∣∣∣∣ψ〉 . (1.82)

If Â is a Hermitian operator, then we can write this as

∆A2 =
〈(
Â−

〈
Â
〉)

ψ
∣∣∣(Â− 〈Â〉)ψ〉 . (1.83)

If we denote ψA =
(
Â−

〈
Â
〉)

ψ, then ∆A2 is exactly the squared norm of ψA:

∆A2 = 〈ψA|ψA〉 = ‖|ψA〉‖2 . (1.84)

Suppose we have another observable with operator B̂, then if ψB =
(
B̂ −

〈
B̂
〉)

ψ, we have

∆B2 = 〈ψB |ψB〉 = ‖|ψB〉‖2 (1.85)

by exactly the same argument. The product of the two variances is

∆A2∆B2 = ‖|ψA〉‖2 ‖|ψB〉‖2 . (1.86)

Next, we will use Cauchy–Schwarz inequality.

Lemma 1.6 (Cauchy–Schwarz inequality). Let V be a vector space with an inner product · ,
then for all u,v ∈ V ,

|u · v|2 ≤ (u · u)(v · v) . (1.87)

Therefore, we have
∆A2∆B2 ≥ |〈ψA|ψB〉|2 . (1.88)

For any complex number z ∈ C, we have

|z|2 = Re(z)2 + Im(z)2 =

(
z + z∗

2

)2

+

(
z − z∗

2i

)2

, (1.89)

and since 〈ψA|ψB〉 = 〈ψB |ψA〉∗, we have

∆A2∆B2 ≥
(
〈ψA|ψB〉+ 〈ψB |ψA〉

2

)2

+

(
〈ψA|ψB〉 − 〈ψB |ψA〉

2i

)2

. (1.90)

To simplify things up, we need to work out 〈ψA|ψB〉 and 〈ψB |ψA〉.

〈ψA|ψB〉 =
〈(
Â−

〈
Â
〉)

ψ
∣∣∣(B̂ − 〈B̂〉)ψ〉

=
〈
ψ
∣∣∣(Â− 〈Â〉)(B̂ − 〈B̂〉)∣∣∣ψ〉

=
〈
ψ
∣∣∣ÂB̂ − Â〈B̂〉− B̂ 〈Â〉+

〈
Â
〉〈

B̂
〉∣∣∣ψ〉

=
〈
ÂB̂
〉
−
〈
Â
〉〈

B̂
〉
. (1.91)
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Similarly
〈ψB |ψA〉 =

〈
B̂Â
〉
−
〈
Â
〉〈

B̂
〉
. (1.92)

Defining the anti-commutator
{Â, B̂} := ÂB̂ + B̂Â , (1.93)

we have

〈ψA|ψB〉+ 〈ψB |ψA〉 =
〈
{Â, B̂}

〉
− 2

〈
Â
〉〈

B̂
〉
, (1.94)

〈ψA|ψB〉 − 〈ψB |ψA〉 =
〈
[Â, B̂]

〉
. (1.95)

This gives what is known as the Robertson–Schrödinger uncertainty principle.

Theorem 1.7 (Robertson–Schrödinger uncertainty principle). For two observables A and B,

∆A∆B ≥

√(
1

2

〈
{Â, B̂}

〉
−
〈
Â
〉〈

B̂
〉)2

+

(
1

2i

〈
[Â, B̂]

〉)2

. (1.96)

This version of the uncertainty principle is very general, but it simplifies in the special case of
uncorrelated operators. The first parenthesised quantity in (1.96) is

cov(Â, B̂) :=
1

2

〈
ÂB̂ + B̂Â

〉
−
〈
Â
〉〈

B̂
〉
, (1.97)

which is known as the covariance of the operators. The corresponding quantity in statistics is

cov(X,Y ) := 〈XY 〉 − 〈X〉 〈Y 〉 , (1.98)

but in quantum mechanics we have to be a little bit more careful because in general
〈
ÂB̂
〉
6=
〈
B̂Â
〉

.
The covariance is a measure of the correlation between operators, and is 0 if the operators are
uncorrelated. If this is the case, then (1.96) reduces to the more familiar Robertson uncertainty
principle.

Theorem 1.8 (Robertson uncertainty principle). For two observables A and B,

∆A∆B ≥ 1

2

∣∣∣〈[Â, B̂]
〉∣∣∣ . (1.99)

Note that the Robertson uncertainty principle is valid for both correlated and uncorrelated
observables. It is just that if the two operators are correlated, the Robertson–Schrödinger lower
bound is larger than the Robertson lower bound, so the Robertson–Schrödinger provides a stronger
condition. If the two operators are uncorrelated, the two bounds are the same.
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2 Normal Modes C7 Further Quantum Mechanics

2 Normal Modes

In Part IB Chemistry A, we discussed the use of symmetry and group theory to make qualitative
conclusions about normal modes.

Example. For example, consider the C−H stretching modes in benzene, with point group D6h.

H

x1

H

x2

H

x3
H

x4

H

x5

H

x6

Figure 1: The basis set for representing the C−H stretches in benzene.

Reducing the representation formed by these basis vectors yields

ΓC−H = A1g ⊕ E2g ⊕B1u ⊕ E1u . (2.1)

Since there is only one combination for each irreducible representation, it should be easy to determine
the symmetry-adapted linear combinations of displacements along the C−H bonds that transform
according to the symmetries. Based on the Cartesian functions listed in the character table, the
projection operators, or perhaps just by intuition, we can determine the normal modes to be

QA1g
=

1√
6
(x1 + x2 + x3 + x4 + x5 + x6) (2.2)

QE2g,1 =
1

2
(x2 − x3 + x5 − x6) (2.3)

QE2g,2 =
1√
12

(2x1 − x2 − x3 + 2x4 − x5 − x6) (2.4)

QE1u,1 =
1√
12

(2x1 + x2 − x3 − 2x4 − x5 + x6) (2.5)

QE1u,2 =
1

2
(x2 + x3 − x5 − x6) (2.6)

QB1u =
1√
6
(x1 − x2 + x3 − x4 + x5 − x6) . (2.7)

This method is nice and easy, especially for simple cases like this with restricted basis sets. But
it does leave unanswered questions. What if we have more than one symmetry-adapted combination
transforming as a particular IR? These symmetry-adapted combinations of displacement vectors are
like symmetry orbitals, and some process analogous to combining symmetry orbitals to form molecular
orbitals should be indicated. Most of the combinations we have here are only approximations (albeit
useful ones) to normal modes, as we can see a lot of them would move the centre of mass. Also, it is
impossible that only H atoms are moving during the vibrations — we also need the motion of C atoms
as well as displacements in other directions. In such a complete basis set, how to correctly combine

13
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the symmetry-adapted displacement vectors to form the true normal modes would be a problem.
Additionally, some indication of the frequencies would be useful.

To do this, we have to treat the mechanical problem of molecular vibration seriously.

2.1 Diatomic Vibration

We begin by looking at the vibration of a diatomic molecule, and hopefully this can give us some
insight on treating the general problem. Each atom in a diatomic can move in three independent
directions (x, y and z), so there are in total six possible independent motions. We know that three
of them are translations and two of them are rotations, leaving us with only one vibrational mode.
It turns out that only the motion along the internuclear axis is useful for vibration. To label the
positions of the atoms relative to their equilibrium positions, we define two basis vectors x1 and x2.
Then the configuration of the atoms can be labelled by a vector

v = x1x1 + x2x2 , (2.8)

where x1 and x2 are the components, meaning that atom 1 has displaced by length x1 along the
direction x1, and atom 2 has displaced by x2 along x2. We can put the components into a single
column vector x =

(
x1
x2

)
.

m1
x1

y1

z1
m2

x2

y2

z2

Figure 2: A basis set representing the motion of a diatomic molecule.

The simplest model for the internuclear potential is the harmonic oscillator, with the potential
given by

VHO =
1

2
k(x1 − x2)2 , (2.9)

where k is the force constant. We can write the Hamiltonian as15

Ĥ(x) = − ℏ2

2m1

∂2

∂x1
2 −

ℏ2

2m2

∂2

∂x2
2 +

1

2
k(x1 − x2)2 , (2.10)

where the first two terms are the kinetic energies of the two particles with masses of m1 and m2

respectively. Now this is a non-separable Hamiltonian — we have cross terms x1x2 in the potential
energy, so that we cannot write the Hamiltonian as Ĥ(x1) + Ĥ(x2). We would not like to solve this
kind of partial differential equation directly.

To make progress, we want to try some coordinate transformation that would make the cross
terms vanish. The transformation

w1 =
1√
2
(x1 − x2)

w2 =
1√
2
(x1 + x2)

(2.11)

of the components seems promising, since it eliminates the cross terms in the potential energy by
making it into a single term kw2

1. Moreover, these two coordinates have solid physical meaning —
w1 is the compression/extension along the internuclear axis, which is exactly the vibrational motion

15We treat this problem using Hamiltonian. If you do Part IB Mathematics, you will solve this type of problems
using Lagrangian — you will find that these two methods are closely related.
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we are trying to model, and w2 describes the translation along the internuclear axis, another motion
of the molecule. This is described by the unitary transformation matrix

U =
1√
2

(
1 −1
1 1

)
(2.12)

generated by placing the expressions for the new components in terms of the old ones as rows of U,16

so that the components transform as desired:(
w1

w2

)
= U

(
x1
x2

)
=

1√
2

(
1 −1
1 1

)(
x1
x2

)
, (2.13)

or
w = Ux . (2.14)

We can be satisfied that no physical properties will be altered by this unitary transformation.

However, we will see that the problem of this basis transformation is that although the potential
terms are nicely simplified, the kinetic term is screwed up. From chain rule, we have

∂

∂x1
=
∂w1

∂x1

∂

∂w1
+
∂w2

∂x1

∂

∂w2

=
1√
2

(
∂

∂w1
+

∂

∂w2

)
, (2.15)

∂

∂x2
=
∂w1

∂x2

∂

∂w1
+
∂w2

∂x2

∂

∂w2

=
1√
2

(
− ∂

∂w1
+

∂

∂w2

)
. (2.16)

Therefore in this transformed basis, the Hamiltonian is

Ĥ(w) = − ℏ2

4m1

(
∂

∂w1
+

∂

∂w2

)2

− ℏ2

4m2

(
− ∂

∂w1
+

∂

∂w2

)2

+ kw2
1 . (2.17)

The kinetic part contains a mixed partial derivative

−ℏ2

2

(
1

m1
− 1

m2

)
∂2

∂w1∂w2
, (2.18)

which is non-vanishing for m1 6= m2.

It seems that by doing a unitary transformation, we can only separate one of the kinetic and the
potential part. Whenever we separate one of the terms, the other will necessarily be screwed up.

However, the above trial did provide us some inspiration. The mixed partial derivative term does
vanish if the masses of the two particles are equal. What if we do some scaling to the coordinates
based on the masses? It turns out that for this particular question, the useful scaling is

Q1 =

√
m1m2

m1 +m2
(x1 − x2) (2.19)

Q2 =
1√

m1 +m2
(m1x1 +m2x2) (2.20)

We will explain how we obtained this later, but now let’s try this out. Again, the potential is
straightforward to rewrite in the Q basis, as

VHO =
k(m1 +m2)

2m1m2
Q2

1 . (2.21)

16Then the basis vector would transform as U†. Remember that the basis vectors and the components transform in
the inverse way.
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For the kinetic energies, we again need the chain rule, and we obtain

∂

∂x1
=

1√
m1 +m2

(
√
m1m2

∂

∂Q1
+m1

∂

∂Q2

)
, (2.22)

∂

∂x2
=

1√
m1 +m2

(
−
√
m1m2

∂

∂Q1
+m2

∂

∂Q2

)
. (2.23)

If we substitute this into the expression of the Hamiltonian, we will see that all the mixed derivatives
magically cancel out and we get

Ĥ(Q) = −ℏ2

2

∂2

∂Q1
2 +

k(m1 +m2)

2m1m2
Q2

1 −
ℏ2

2

∂2

∂Q2
2 . (2.24)

This can be nicely separated into

Ĥ(Q) = Ĥ(Q1) + Ĥ(Q2) , (2.25)

where

Ĥ(Q1) = −
ℏ2

2

∂2

∂Q1
2 +

k(m1 +m2)

2m1m2
Q2

1 , (2.26)

Ĥ(Q2) = −
ℏ2

2

∂2

∂Q2
2 . (2.27)

If we compare (2.26) with the Hamiltonian of a canonical harmonic oscillator, we see that this is a
harmonic oscillator with a unit mass and a modified force constant of

k′ =
k(m1 +m2)

m1m2
=:

k

µ
, (2.28)

where we defined the familiar reduced mass µ := m1m2/(m1 +m2). This gives an angular frequency

ω =

√
k′

1
=

√
k

µ
. (2.29)

This is a familiar result. The vibration of a diatomic molecule is the same as the vibration of a single
molecule with reduced mass of the system. The second equation (2.27) has only a kinetic term. This
is the translation of the whole molecule along the internuclear axis — it can also be thought of as a
harmonic oscillator with zero force constant, and so a zero frequency.

2.1.1 Mass-Weighted Coordinates

Now let’s consider what is going on. The transformation we proposed can be expressed by the matrix

A =
1√

m1 +m2

(√
m1m2 −√m1m2

m1 m2

)
. (2.30)

You may verify that this is not a unitary matrix — the easiest way to see this is by checking its
determinant. Therefore, physical observables do not have to be preserved by this transformation.
For example, we can see that all masses have reduced to 1, and the actual masses have somehow
been taken into the modified force constant. However, the observable we really care about, the
(angular) frequency of the oscillator ω, is related to the ratio of these, and this is unchanged by our
transformation.

To see what is really going on in our transformation, we can split our transformation into two
phases. The first phase is to mass-weight the coordinates, defining qi =

√
mixi, which is a diagonal

transform, but is not unitary. This is represented by the diagonal matrix

B =

(√
m1 0
0

√
m2

)
. (2.31)
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The Hamiltonian in this mass-weighted basis set is

Ĥ(q) = −ℏ2

2

(
∂2

∂q1
2 +

∂2

∂q2
2

)
+
k

2

(
q1√
m1
− q2√

m2

)2

. (2.32)

This transformation does not remove the cross term in the potential, but it has reduced all the
kinetic terms to a nice and simple form where all the masses are unity. This is exactly the case that
we wanted before — if the masses are equal, then when you do the unitary transformation to simplify
the potential term, all the cross terms in the kinetic term after the transformation will automatically
cancel out! We are then ready to do our second transformation defined by

Q1 =
1√

m1 +m2
(
√
m2q1 −

√
m1q2) , (2.33)

Q2 =
1√

m1 +m2
(
√
m1q1 +

√
m2q2) , (2.34)

which can be represented by the unitary matrix

C =
1√

m1 +m2

(√
m2 −√m1√
m1

√
m2

)
. (2.35)

The combination of these two transformations is the one we claimed before:

A = CB . (2.36)

2.2 Quadratic Form

Before investigating more complicated cases, you may find it extremely useful to formulate the above
process in matrices. Hence, we may rewrite the Hamiltonian in the following matrix form

Ĥ(x) = −ℏ2

2

(
∂
∂x1

∂
∂x2

)( 1
m1

0

0 1
m2

)( ∂
∂x1
∂
∂x2

)
+

1

2

(
x1 x2

)( k −k
−k k

)(
x1
x2

)
=: −ℏ2

2
ẋTTxẋ+

1

2
xTHxx . (2.37)

The subscript x here stands for the x basis, and H is confusingly the canonical notation for the Hessian
matrix which unfortunately happens to share its notation with the Hamiltonian. Note that ẋ here is
the gradient operator, not the time derivative of x (velocity).

Now we can do the transformations. The first step is to mass-scale the coordinates by

q = Bx , (2.38)

where
B =

(√
m1 0
0

√
m2

)
. (2.39)

Written in suffix notation, this is qi = Bijxj . By chain rule, we have

∂

∂xj
=
∂qi
∂xj

∂

∂qi

= Bij
∂

∂qi

= (BT)ji
∂

∂qi
, (2.40)

or in matrix form,
ẋ = BTq̇ . (2.41)

17
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This gives
ẋTTxẋ = q̇TBTxB

Tq̇ =: q̇TTqq̇ . (2.42)

This transformation is designed to reduce the T matrix to the identity matrix in this basis:

Tq := BTxB
T = I , (2.43)

and so
ẋTTxẋ = q̇TIq̇ = q̇Tq̇ . (2.44)

Similarly for the Hessian matrix,

xTHxx = qT(B−1)THxB
−1q =: qTKq , (2.45)

where the Hessian matrix in this mass-scaled coordinate is called the dynamical matrix and is given
the special notation K. We can calculate this as

K := (B−1)THxB
−1 =

(
k
m1

− k√
m1m2

− k√
m1m2

k
m2

)
. (2.46)

Similarly, we then do the unitary transformation that diagonalises K as well, and we finally get

TQ = I , HQ =

(
0 0
0 k

µ

)
(2.47)

in the Q basis. Since both matrices are diagonal, we are then able to separate the Hamiltonian.

2.3 The General Case

Now we are ready to generalise the above method for all molecules. Consider a molecule consisting
of N atoms. The position of each atom is described by a displacement vector (xi, yi, zi) (1 ≤ i ≤ N)
from its equilibrium position. We can compactly string them together as a 3N -dimensional vector

x = (x1, y1, z1, . . . , xN , yN , zN ) . (2.48)

A general Hamiltonian can be written as

Ĥ = −ℏ2

2

3N∑
i

1

mi

∂2

∂xi
2 +

1

2

3N∑
i

∑
j>i

kij(xi − xj)2 . (2.49)

Note that we sum over i > j in the potential term to avoid double counting, and we allow a potential
term to arise between any two coordinates, although in practice we can set most of them to be zero.
We can write this into the matrix form introduced above

Ĥ = −ℏ2

2
ẋTTxẋ+

1

2
xTHxx , (2.50)

where T is a diagonal matrix whose elements are the reciprocal masses

Tx,ii =
1

mi
, (2.51)

and the Hessian matrix elements are

Hx,ij =
∂2V

∂xi∂xj
=

{∑
n kin if i = j

−kij if i 6= j
. (2.52)
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We first scale the Hamiltonian into the mass-weighted basis qi =
√
mixi so that

Ĥ(q) = −ℏ2

2
q̇Tq̇+

1

2
qTKq . (2.53)

The matrix Tq in the mass-weighted basis is the identity matrix so we have omitted it, and the
dynamical matrix is simply

Kij =
1

√
mimj

Hx,ij . (2.54)

We now need to transform the basis such that the K is made diagonal. We can always do this because
K is a real symmetric matrix, which is always diagonalisable by an orthogonal matrix (a real unitary
matrix). This transformation is guaranteed to keep T matrix still diagonalised because the identity
matrix is always the identity matrix in any basis. This is done by the orthogonal matrix C such that

HQ = C†KC , (2.55)

where each column of C is the normalised eigenvector of K, and HQ is a diagonal matrix whose
elements are eigenvalues {λi} of K in corresponding order. Finally in this basis, we have

Ĥ(Q) = −ℏ2

2
Q̇

T
Q̇+

1

2
QTHQQ

=

3N∑
i

(
−ℏ2

2

∂2

∂Qi
2 +

1

2
λiQ

2
i

)
(2.56)

separated into 3N one-dimensional harmonic oscillators with modified force constants {λi}. The
angular frequencies of the modes are therefore

ωi =
√
λi . (2.57)

The eigenvectors of K, which we denote by e(k), are the displacement vectors of the normal modes
in the q basis. Defining the diagonal matrix of masses as M, so that Mij = δijmi, we can transform
this into the physical x basis via

u(k) = M−1/2e(k) , (2.58)

or in component form
(u(k))i =

1
√
mi

(e(k))i . (2.59)

Note that although the normal mode vectors are orthogonal in the q coordinates, they are not
necessarily so in the x coordinates since the mass scaling is not unitary. However, we may still often
find them to be orthogonal, as they must be so if they transform according to different irreducible
representations.

Note that since we used all 3N displacement vectors, there will be 6 (or 5) normal modes
corresponding to translations or rotations. If we use a restricted basis set, there may be less of
them. They can be easily identified as modes with frequencies zero.

The coordinates Qk in which the Hamiltonians are nicely separated are called the normal
coordinates. They are the projections of atomic displacements onto the eigenvectors:

Qk = (e(k))Tq = (u(k))TMx , (2.60)

or
Qk =

∑
i

(e(k))iqi =
∑
i

mi(u
(k))ixi . (2.61)
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Figure 3: An AAA molecule.

2.4 Example: AAA Linear Molecule

As a simple example, let’s look at the AAA linear molecule of three identical atoms connected by
two bonds of equal strength. An example of this would be the azide anion. For simplicity, we only
consider the motions along the internuclear axis.

The potential can be modelled as

V =
k

2
(x1 − x2)2 +

k

2
(x2 − x3)2 . (2.62)

The Hessian matrix can be found by either taking the partial derivative or by expanding the above
function.

Hx =

 k −k 0
−k 2k −k
0 −k k

 . (2.63)

The dynamical matrix is

K =

 k
m − k

m 0
− k
m

2k
m − k

m

0 − k
m

k
m

 . (2.64)

We then simply need to diagonalise this matrix. The eigenvalues and the corresponding normal mode
frequencies are

λ1 = 0 λ2 =
k

m
λ3 =

3k

m
(2.65)

ω1 = 0 ω2 =

√
k

m
ω3 =

√
3k

m
. (2.66)

We can also find the normalised eigenvectors, which give the displacement vectors in the q basis
(which is also the normal mode in the x basis since all atoms have equal masses)

e1 =
1√
3

1
1
1

 e2 =
1√
2

−10
1

 e3 =
1√
6

 1
−2
1

 . (2.67)

In mode 1, all atoms move in the same direction with the same magnitude. This is the translation.
Mode 2 is the symmetric stretch, in which both bonds are simultaneously stretched/compressed, and
mode 3 is the antisymmetric stretch, in which when one bond is stretched, the other is compressed.

translation symmetric stretch antisymmetric stretch

Figure 4: Normal modes of an AAA molecule.
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2.5 The Use of Symmetry

The dynamical matrix in the above example is 3 × 3, which we can easily diagonalise directly. For
larger molecules, we will encounter the same issue that we had when constructing MOs: any bigger
matrix will be too tedious to diagonalise directly by hand. The solution is the same too: we can use
an intermediate symmetry-adapted basis set to transform the dynamical matrix to a block-diagonal
form.

We will summarise the process of constructing normal modes by symmetry as well as molecular
orbitals in the table below.

MOs Normal modes

1. Write down the Hamiltonian matrix in
the AO basis.

2. Determine the IRs spanned by the AO
basis set.

3. Construct symmetry-adapted combina-
tions of the AOs.

4. Transform the Hamiltonian matrix into
the symmetry-adapted basis set.

5. The eigenvalues are the orbital energies
and the eigenvectors are the MO coef-
ficients in the symmetry-adapted basis
set.

6. The eigenvectors can be transformed
back to the AO basis set.

1. Write down the dynamical matrix in the
mass-weighted basis.

2. Determine IRs spanned by the mass-
weighted basis set.

3. Construct symmetry-adapted combina-
tions of the mass-weighted coordinates.

4. Transform the dynamical matrix into
the symmetry-adapted basis set.

5. The eigenvalues are the frequencies
squared and the eigenvectors are
the normal mode coordinates in the
symmetry-adapted basis set.

6. The eigenvectors can be transformed
back to the coordinate displacement ba-
sis set.

2.6 Example: BABA Linear Molecule

Consider the motions along the bond for a centrosymmetric BABA linear molecule, for example
acetylene. The masses of the two types of atoms are now different, and we also allow the strength of
the A− B bond to be different from the B− B bond.

mB mA
k1

mBmA
k1 k2

x1 x2 x3 x4

Figure 5: A centrosymmetric BABA linear molecule.

If we proceed without using symmetry, then we have a 4× 4 dynamical matrix to diagonalise

K =


k1
mA

− k1√
mAmB

0 0

− k1√
mAmB

k1+k2
mB

− k2
mB

0

0 − k2
mB

k1+k2
mB

− k1√
mAmB

0 0 − k1√
mAmB

k1
mA

 . (2.68)
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To simplify things up, we will create a q̃ basis from symmetry-adapted combinations of q. The point
group of the molecule is D∞h, and we can split the basis into two two-dimensional sets {q1,q4} and
{q2,q3}. The irreducible representations and the symmetry-adapted combinations of basis vectors
should be easy to find17

q̃1 =
1√
2
(q1 − q4) Σ+

g (2.69)

q̃2 =
1√
2
(q2 − q3) Σ+

g (2.70)

q̃3 =
1√
2
(q1 + q4) Σ+

u (2.71)

q̃4 =
1√
2
(q2 + q3) Σ+

u . (2.72)

This is the basis transformation represented by the unitary matrix

C̃ =
1√
2


1 0 1 0
0 1 0 1
0 −1 0 1
−1 0 1 0

 (2.73)

so that the components transform as
q̃ = C̃†q . (2.74)

We must have
q†Kq = q̃†K̃q̃ = q†C̃K̃C̃†q , (2.75)

and so18

K̃ = C̃†KC̃

=


k1
mA

− k1√
mAmB

0 0

− k1√
mAmB

k1+2k2
mB

0 0

0 0 k1
mA

− k1√
mAmB

0 0 − k1√
mAmB

k1
mB

 . (2.76)

This is block-diagonal as expected. For simplicity, we will only work out the Σ+
u (bottom right) block.

The eigenvalues are

λ3 = 0 λ4 =
k1(mA +mB)

mAmB
, (2.77)

and the eigenvectors in the various basis sets are

ẽ3 =
1√

mA +mB

(√
mA√
mB

)
q̃
Σ
+
u

ẽ4 =
1√

mA +mB

( √
mB

−√mA

)
q̃
Σ
+
u

e3 =
1√

2(mA +mB)


√
mA√
mB√
mB√
mA


q

e4 =
1√

2(mA +mB)


√
mB

−√mA

−√mA√
mB


q

u3 =
1

2


1
1
1
1


x

u4 =

√
mAmB√

2(m2
A +m2

B)



√
mB

mA

−
√

mA

mB

−
√

mA

mB√
mB

mA


x

. (2.78)

17Recall when constructing a representation, we transform the basis, not the components.
18An easier thing to do is to evaluate the matrix component by component, using K̃ij = q̃†

iKq̃j .
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We’ve added subscripts labelling the basis that the displacement vectors are represented in to avoid
confusion.

Mode three is the uniform translation, and mode four is the antisymmetric stretch in which when
one A− B bond is stretched, the other is compressed.

translation antisymmetric stretch

2.7 Beyond Harmonic Oscillators

Real molecules are not harmonic oscillators in general. We will have some complicated potential as
a function of the nuclear coordinates, which defines the nuclear potential energy surface (PES). We
can perform a Taylor expansion around an equilibrium position to get

V (R) = V (Req) +
3N∑
i=1

xi
∂V

∂xi

∣∣∣∣
Req

+
1

2

3N∑
i=1

3N∑
j=1

xixj
∂2V

∂xi∂xj

∣∣∣∣
Req

+O(xixjxk) . (2.79)

V (Req) is the energy at the bottom of the potential well, which we can set to 0, and the first derivatives
at the equilibrium positions should also be 0. For sufficiently small oscillations, the cubic terms and
above are not significant, so we can truncate our expression at the quadratic term, which is equivalent
to making a harmonic approximation. We are left with

V (R) ≈ 1

2

3N∑
i,j=1

xixj
∂2V

∂xi∂xj

∣∣∣∣
Req

=
1

2
xTHxx (2.80)

with Hessian matrix elements
Hx,ij =

∂2V

∂xi∂xj

∣∣∣∣
Req

. (2.81)

For harmonic potentials, this is equivalent to finding the quadratic coefficients of V . If we want to
include the effect of cubic terms and above, we can do this by perturbation theory, which is the topic
of the rest of this course.

2.8 Transition States

The eigenvalues of the Hessian matrix represent the second derivatives of the potential energies along
the principal directions. Recall that a positive second derivative corresponds to a minimum. Ignoring
the six directions that do not correspond to an internal change of the molecule, we can classify
a stationary point on the potential energy surface according to the number of negative Hessian
eigenvalues. If there are no negative Hessian eigenvalues, then this is a minimum on the PES. If all
the eigenvalues are negative, the point is a maximum.

The Murrell–Laidler definition of a transition state is an index-1 saddle point, that is a stationary
point with only one negative Hessian value. Therefore a transition state is a maximum along one
direction and a minimum in all other orthogonal directions. The normal mode corresponding to the
negative Hessian eigenvalue is the reaction coordinate at the transition state. Since the vibrational
frequency is the square root of the eigenvalue, the frequency in such a direction is imaginary.19

19This statement should make you question the derivation of transition state theory presented in the Part IB MELT
course. A rigorous treatment of reaction kinetics will be left to Part III.
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3 Non-Degenerate Perturbation Theory

3.1 Non-Degenerate Perturbation Theory

Often the Schrödinger equation of a Hamiltonian Ĥ will be too complicated to be solved directly:

Ĥψn = Enψn , (3.1)

where n ∈ N labelling the quantum states. Then we need to start to make approximations. The
starting point of the perturbation theory is to find a simpler Hamiltonian, which we call Ĥ(0), that
somewhat resembles H but whose eigenfunctions ψ(0)

n and eigenvalues E(0)
n are known:

Ĥ(0)ψ(0)
n = E(0)

n ψ(0)
n . (3.2)

At this stage we will assume that the states are non-degenerate.

The next thing we do is to consider the whole one-parameter family of Hamiltonians

Ĥ(λ) = Ĥ(0) + λĤ(1) (3.3)

such that
Ĥ(λ∗) = Ĥ (3.4)

at some specific value of λ = λ∗. Ĥ(1) is the perturbation to the reference Hamiltonian. Usually we
would just let

Ĥ(1) = Ĥ − Ĥ(0) (3.5)
so that Ĥ(λ) becomes the Hamiltonian Ĥ of interest at λ = 1. However, sometimes the perturbation
to the reference Hamiltonian has a natural perturbation in it. For example, if we consider applying
a small electric field E ẑ to a molecule with dipole µ, then the strength of the electric field E will be
a natural perturbation parameter.

Then the fundamental assumption in perturbation theory is to assume that both the energies and
the quantum states are analytic near λ = 0, so that if we gradually turn on the perturbation from
the reference state where λ = 0 to some small non-zero λ, the energies and the wavefunctions will
also change smoothly given by the power series

ψn(λ) = ψ(0)
n + λψ(1)

n + λ2ψ(2)
n + . . . (3.6)

En(λ) = E(0)
n + λE(1)

n + λ2E(2)
n + . . . (3.7)

In the hope that these series do converge to the true values, we can then evaluate these power
series expansions (usually the first few correction terms only) at the desired value of λ to get an
approximation of the true En and ψn.

We will employ the conventional intermediate normalisation, where the unperturbed wavefunction
will be normalised 〈

ψ(0)
n

∣∣∣ψ(0)
n

〉
≡ 〈n|n〉 = 1 . (3.8)

This choice means that the perturbed wavefunctions ψn(λ) will not be normalised. However, since
ψ
(1)
n , ψ

(2)
n , . . . are corrections to ψ(0)

n , we may require that〈
n
∣∣∣ψ(i)
n

〉
= 0 (3.9)

for all i > 0, from which it follows that
〈n|ψn〉 = 1 . (3.10)

We can claim this because if ψ(i)
n has some non-zero ψ(0)

n component for i > 0, we can absorb it into
ψ
(0)
n and renormalise ψn to make the coefficient of ψ(0)

n to be 1 again.
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E1(λ)

E2(λ)
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E1(λ)
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1

Figure 6: The perturbation theory is appropriate in the first case, in which the reference Hamiltonian
is “close enough” to the true Hamiltonian such that the perturbation only leads to small changes in
the energies and wavefunctions. The perturbation theory may not work in the second case where the
changes in energy levels are comparable with the energy level separations. The reference Hamiltonian
is too far away from the true Hamiltonian. Either we will then need too many terms in the series
expansion to get a satisfactory result, or the series just may not converge. We will discuss this
convergence issue in appendix section A.

3.1.1 The Perturbation Equations

To work out the coefficients E(i)
n and ψ

(i)
n of the power series, we simply need to plug the expansion

ansatz (3.7) and (3.6) into the Schrödinger equation (3.1) to get

(Ĥ(0) + λĤ(1) − E(0)
n − λE(1)

n − λ2E(2)
n + . . . )(ψ(0)

n + λψ(1)
n + λ2ψ(2)

n + . . . ) = 0 . (3.11)

For this equation to be satisfied for all λ sufficiently small such that the series converges, the
coefficients of all powers of λ must be zero. Gathering the terms in λ0, λ1, λ2,…, we get a series
of equations

(Ĥ(0) − E(0)
n )

∣∣∣ψ(0)
n

〉
= 0 (3.12)

(Ĥ(0) − E(0)
n )

∣∣∣ψ(1)
n

〉
+ (Ĥ(1) − E(1)

n )
∣∣∣ψ(0)
n

〉
= 0 (3.13)

(Ĥ(0) − E(0)
n )

∣∣∣ψ(2)
n

〉
+ (Ĥ(1) − E(1)

n )
∣∣∣ψ(1)
n

〉
− E(2)

n

∣∣∣ψ(0)
n

〉
= 0 (3.14)

...

The zeroth-order equation (3.12) is exactly the unperturbed Schrödinger equation (3.2), which we
should have already solved. The next equation of interest is the first-order equation (3.13). If we
contract it with

〈
ψ
(0)
n

∣∣∣ ≡ 〈n|, we get〈
n
∣∣∣Ĥ(0) − E(0)

n

∣∣∣ψ(1)
n

〉
+
〈
n
∣∣∣Ĥ(1) − E(1)

n

∣∣∣n〉 = 0 . (3.15)

Since Ĥ(0) is Hermitian, the first term vanishes:〈
n
∣∣∣Ĥ(0) − E(0)

n

∣∣∣ψ(1)
n

〉
=
〈
ψ(1)
n

∣∣∣Ĥ(0) − E(0)
n

∣∣∣n〉∗ = 0 , (3.16)

and we are left with
E(1)
n =

〈
n
∣∣∣Ĥ(1)

∣∣∣n〉 . (3.17)

This is the key result in perturbation theory. The first-order correction in energy is simply the
expectation value of the perturbation for the unperturbed state. This also implies that

E(0)
n + λE(1)

n =
〈
n
∣∣∣Ĥ(0) + λĤ(1)

∣∣∣n〉 =
〈
n
∣∣∣Ĥ∣∣∣n〉 . (3.18)
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The energy corrected to first order is the expectation value of the complete Hamiltonian with the
unperturbed wavefunction.

A similar procedure yields the second-order energy. If we contract the second-order perturbation
equation (3.14) with 〈n|, we get〈

n
∣∣∣Ĥ(0) − E(0)

n

∣∣∣ψ(2)
n

〉
+
〈
n
∣∣∣Ĥ(1) − E(1)

n

∣∣∣ψ(1)
n

〉
−
〈
n
∣∣∣E(2)

n

∣∣∣n〉 = 0 . (3.19)

The first term again vanishes since Ĥ(0) is Hermitian. By the intermediate normalisation, we also
have E(1)

n

〈
n
∣∣∣ψ(1)
n

〉
in the second term vanishes and the third term

〈
n
∣∣∣E(2)

n

∣∣∣n〉 = E
(2)
n . Therefore,

the second-order energy is
E(2)
n =

〈
n
∣∣∣Ĥ(1)

∣∣∣ψ(1)
n

〉
. (3.20)

To use this expression we will need to obtain the first-order wavefunction ψ(1)
n . This can be obtained

by solving the complicated first-order equation (3.13), which we don’t expect to have a simple closed
form solution in general unless in very simple cases. We will introduce alternative methods to work
this out later.

3.1.2 Higher-order Energies and Wigner’s 2n+ 1 Theorem

By expanding higher order terms of (3.11), one can show that the nth-order correction in energy is
given by

E(i)
n =

〈
n
∣∣∣Ĥ(1)

∣∣∣ψ(i−1)
n

〉
, (3.21)

so it seems that we need to know the wavefunction to the order i− 1 to calculate the energy to order
i. In fact, we can do better than this.
Theorem 3.1 (Wigner’s 2n+ 1 rule). The 2n + 1st-order correction to the energy can be
calculated from the first nth-order perturbation of wavefunctions.

This is more easily seen in a different formulation of the perturbation theory called the Wigner–
Brillouin perturbation theory, but it is a far more complicated topic. A brief proof of this is in
appendix section B, and here we will only show explicitly how to construct E(3)

n from ψ
(1)
n .

If we contract the first-order perturbation equation (3.13) with the second-order wavefunction〈
ψ
(2)
n

∣∣∣, we get an overall third-order expression〈
ψ(2)
n

∣∣∣Ĥ(0) − E(0)
n

∣∣∣ψ(1)
n

〉
+
〈
ψ(2)
n

∣∣∣Ĥ(1) − E(1)
n

∣∣∣n〉 = 0 . (3.22)

By (3.21) and the intermediate normalisation, we identify the second term as E(3)
n , and so

E(3)
n = −

〈
ψ(2)
n

∣∣∣Ĥ(0) − E(0)
n

∣∣∣ψ(1)
n

〉
. (3.23)

We can get another third-order expression by contracting the second-order equation (3.14) with the
first-order wavefunction

〈
ψ
(1)
n

∣∣∣〈
ψ(1)
n

∣∣∣Ĥ(0) − E(0)
n

∣∣∣ψ(2)
n

〉
+
〈
ψ(1)
n

∣∣∣Ĥ(1) − E(1)
n

∣∣∣ψ(1)
n

〉
= 0 . (3.24)

We identify the first term in the above expression as the negative third-order energy by (3.23), and
so

E(3)
n =

〈
ψ(1)
n

∣∣∣Ĥ(1) − E(1)
n

∣∣∣ψ(1)
n

〉
, (3.25)

which contains only the first-order wavefunction as claimed.

We can obtain higher order expression using the same trick as above, but they will be much more
complicated to derive and are rarely needed. For a problem to be properly treated using perturbation
theory, the higher order corrections should be small and so the series should converge quickly.
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3.2 The Hellmann–Feynman Theorem

We have formulated the perturbation problem as the eigenvalue problem of a family of one-parameter
Hamiltonians

Ĥ(λ)ψ(λ) = E(λ)ψ(λ) . (3.26)
How the energy E(λ) changes against λ actually tells us something more about the system.

Theorem 3.2 (Hellmann–Feynman theorem). Let E(λ) and ψ(λ) be the eigenvalues and
eigenstates of the one-parameter family of Hamiltonians

Ĥ(λ)ψ(λ) = E(λ)ψ(λ) , (3.27)

then
dE(λ)

dλ
=

〈
ψ(λ)

∣∣∣∣∣dĤ(λ)

dλ

∣∣∣∣∣ψ(λ)
〉
. (3.28)

Proof. Let ψ(λ) be normalised. Then by the product rule,

dE(λ)

dλ
=

d

dλ

〈
ψ(λ)

∣∣∣Ĥ(λ)
∣∣∣ψ(λ)〉

=

〈
dψ(λ)

dλ

∣∣∣∣Ĥ(λ)

∣∣∣∣ψ(λ)〉+

〈
ψ(λ)

∣∣∣∣∣dĤ(λ)

dλ

∣∣∣∣∣ψ(λ)
〉

+

〈
ψ(λ)

∣∣∣∣Ĥ(λ)

∣∣∣∣dψ(λ)dλ

〉

=

〈
ψ(λ)

∣∣∣∣∣dĤ(λ)

dλ

∣∣∣∣∣ψ(λ)
〉

+ E(λ)

[〈
dψ(λ)

dλ

∣∣∣∣ψ(λ)〉+

〈
ψ(λ)

∣∣∣∣dψ(λ)dλ

〉]

=

〈
ψ(λ)

∣∣∣∣∣dĤ(λ)

dλ

∣∣∣∣∣ψ(λ)
〉

+ E(λ)
d

dλ
〈ψ(λ)|ψ(λ)〉

=

〈
ψ(λ)

∣∣∣∣∣dĤ(λ)

dλ

∣∣∣∣∣ψ(λ)
〉
. (3.29)

□

Let’s make a connection with the perturbation theory. We can expand E(λ) in a Taylor series

E(λ) = E(0) +
dE

dλ

∣∣∣∣
λ=0

λ+
1

2

d2E

dλ2

∣∣∣∣
λ=0

λ2 + . . . (3.30)

Then we may identify the nth derivatives of E(λ) at λ = 0 as the nth-order correction in energy

E(1) =
dE

dλ

∣∣∣∣
λ=0

(3.31)

E(2) =
1

2

d2E

dλ2

∣∣∣∣
λ=0

(3.32)

...

Now, for example, consider a molecule/atom in an electric field of strength E parallel to the z
axis, for which the Hamiltonian is

Ĥ(E) = Ĥ(0) − E µ̂z , (3.33)
where Ĥ(0) is the molecular Hamiltonian without external fields and µ̂z =

∑
i qizi is the z-component

of the dipole moment operator. We have

dĤ(E)
dE

= −µ̂z . (3.34)
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Using the Hellmann–Feynman theorem, we can write

E(1) =
dE

dE

∣∣∣∣
E=0

= −〈ψ(E = 0)|µ̂z|ψ(E = 0)〉 . (3.35)

This is the expectation value of the dipole moment in the unperturbed state, which is, by definition,
the permanent dipole moment,

E(1) = −µ0
z . (3.36)

Looking at the second-order contribution, we have

E(2) =
1

2

d2E

dE2

∣∣∣∣
E=0

=
1

2

d

dE
(−µz)

∣∣∣∣
E=0

. (3.37)

The definition of the polarisability is exactly

αij :=
dµi
dEj

∣∣∣∣
Ej=0

, (3.38)

and so
E(2) = −1

2
αzz . (3.39)

Example. Quadratic Stark effect and the polarisability of hydrogen atom.

Consider the ground electronic state of the hydrogen atom, where the electronic Hamiltonian,
ground state wavefunction and energy are

Ĥ(0) = −1

2
∇2 − 1

r
(3.40)

ψ
(0)
0 =

1√
π
e−r (3.41)

E
(0)
0 = −1

2
. (3.42)

We again consider the perturbation of an external electric field of strength E in the z direction, giving
a perturbing Hamiltonian

λ = E Ĥ(1) = z . (3.43)

The first-order energy is
E

(1)
0 = 〈0|z|0〉 = 0 , (3.44)

which can easily be evaluated by symmetry. This shows that a ground state hydrogen atom has no
permanent dipole moment. Using the first-order perturbation equation (3.13), one can obtain the
differential equation (

−1

2
∇2 − 1

r
+

1

2

)
ψ
(1)
0 +

1√
π
ze−r = 0 . (3.45)

This is one of the extremely rare cases where the first-order wavefunction can be solved analytically
in a closed form,20 which gives

ψ
(1)
0 = − 1√

π

(
1 +

r

2

)
ze−r . (3.46)

One can then obtain the exact second-order energy

E
(2)
0 =

〈
0
∣∣∣z∣∣∣ψ(1)

0

〉
= −9

4
. (3.47)

20Even in this case, this equation is not easy to solve at all! You need to change to parabolic coordinates and do
fancy stuff.
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Hence, the electronic energy of hydrogen in an electric field of strength E is given by

E = −1

2
− 9

4
E2 +O(E4) , (3.48)

where one can actually argue that only even power terms are permitted by symmetry. This tells us
that the ground state hydrogen atom has a polarisability of α = 9/2 exactly.

This is a particularly important example, which we will use as a benchmark for the methods
introduced later since we know the answer exactly.

3.3 Matrix Formulation

Let’s say we have an unperturbed wavefunction expressed in some orthonormal basis {ϕi}∣∣∣ψ(0)
n

〉
=
∑
i

cniϕi = ϕ
Tcn . (3.49)

Then if
∣∣∣ψ(0)
n

〉
and hence cn is normalised, we can express the first-order energy as

E(1)
n =

〈∑
i

cniϕi

∣∣∣∣∣∣Ĥ(1)

∣∣∣∣∣∣
∑
j

cnjϕj

〉

=
∑
i,j

c∗nicnj

〈
ϕi

∣∣∣Ĥ(1)
∣∣∣ϕj〉

= c†nH
(1)cn , (3.50)

where H(1) is the matrix representation of Ĥ(1) in the {ϕi} basis

H
(1)
ij =

〈
ϕi

∣∣∣H(1)
∣∣∣ϕj〉 . (3.51)

3.3.1 Perturbations to Normal Modes

The Hamiltonian of a (unperturbed) molecular vibration is

Ĥ(0)(q) = −ℏ2

2
q̇Tq̇+

1

2
qTK(0)q . (3.52)

in the mass-weighted basis. If we perturb the system by changing some of the bond strengths or the
masses, then this will lead to a change in the dynamical matrix

K = K(0) + K(1) . (3.53)

If the first-order change in the eigenvalue of H (energy) is given by c†H(1)c, where c is the eigenvector
of H(0) (eigenstates), then we can equally show that the first-order change in the eigenvalues of
K (frequency squared) is given by e†K(1)e, where e is the eigenvector of K(0) (normal modes).21

Therefore, we can write
(ω2
n)

(1) = λ(1)n = e†nK
(1)en . (3.55)

21Can be seen by replacing all the H to K and ψ to e in the above derivation of perturbation theory. Or equally,
you can see

H(1)(q) =
1

2
qTK(1)q , (3.54)

so the matrix representation of H(1) in the {qi} basis is 1
2
K(1). Since H(0) and K(0) share the same set of eigenvectors

(normal modes), the first-order change in the eigenvalues of K(0) will be twice the change in the eigenvalues of H(0).
Hence, if E(1)

n = e†nH(1)en, we naturally have (ω2
n)

(1) = λ
(1)
n = e†nK(1)en.
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Example. AAB linear triatomic.

We will consider an AAB triatomic linear molecule as a perturbation of the AAA linear molecule
which we have already solved. We will let atom B have a different mass than atom A, and let the
bond strength of A− B and A−A be different. Of course this still leads to a 3×3 dynamical matrix,
which we can directly diagonalise. However, the algebra will be very tedious, so we will try to treat
it using perturbation theory.

The dynamical matrices of interest are

K =


k1
mA

− k1
mA

0

− k1
mA

k1+k2
mA

− k2√
mAmB

0 − k2√
mAmB

k2
mB

 (3.56)

K(0) =

 k1
mA

− k1
mA

0

− k1
mA

2k1
mA

− k1
mA

0 − k1
mA

k1
mA

 (3.57)

K(1) = K− K(0)

=

0 0 0

0 k2−k1
mA

k1
mA
− k2√

mAmB

0 k1
mA
− k2√

mAmB

k2
mB
− k1

mA

 . (3.58)

We also know that for the reference system, the three modes are

λ
(0)
1 = 0 e1 =

1√
3

1
1
1

 (3.59)

λ
(0)
2 =

k1
mA

e2 =
1√
2

−10
1

 (3.60)

λ
(0)
3 =

3k1
mA

e3 =
1√
6

 1
−2
1

 . (3.61)

Therefore, the first-order eigenvalues are

λ
(1)
1 = e†1K

(1)e1 =
k2

3mAmB
(
√
mA −

√
mB)

2 (3.62)

λ
(1)
2 = e†2K

(1)e2 =
1

2

(
k2
mB
− k1
mA

)
(3.63)

λ
(1)
3 = e†3K

(1)e3 =
1

6mA

(
k2
mB

(2
√
mB +

√
mA)

2 − 9k1

)
. (3.64)

The frequencies correct to first order are

ωi =

√
λ
(0)
i + λ

(1)
i . (3.65)

3.4 Rayleigh–Schrödinger Perturbation Theory

Since the eigenstates of a Hermitian operator form a complete orthonormal set, we can try to expand
the first-order wavefunction

∣∣∣ψ(1)
n

〉
in the basis of the unperturbed wavefunction {|k〉}. As we have

shown above,
∣∣∣ψ(1)
n

〉
should have no component of |n〉, so we can write∣∣∣ψ(1)

n

〉
=
∑
k ̸=n

ck |k〉 . (3.66)
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If we substitute this into the first-order equation (3.13), we get∑
k ̸=n

ck(E
(0)
k − E

(0)
n ) |k〉+ (Ĥ(1) − E(1)

n ) |n〉 = 0 . (3.67)

To find the coefficient cj of a particular |j〉, we contract the above equation with 〈j| and get∑
k ̸=n

ck(E
(0)
k − E

(0)
n ) 〈j|k〉+

〈
j
∣∣∣Ĥ(1) − E(1)

n

∣∣∣n〉 = 0 , (3.68)

and then by orthogonality, we have22

cj = −

〈
j
∣∣∣Ĥ(1)

∣∣∣n〉
E

(0)
j − E

(0)
n

= −
H

(1)
jn

E
(0)
j − E

(0)
n

. (3.69)

If we substitute this back (3.66), we get an expansion of the first-order wavefunction

∣∣∣ψ(1)
n

〉
= −

∑
j ̸=n

H
(1)
jn

E
(0)
j − E

(0)
n

|j〉 . (3.70)

We can also substitute this into (3.20) to get an expansion of the second-order energy

E(2)
n =

〈
n
∣∣∣Ĥ(1)

∣∣∣ψ(1)
n

〉
= −

∑
j ̸=n

H
(1)
nj H

(1)
jn

E
(0)
j − E

(0)
n

= −
∑
j ̸=n

∣∣∣H(1)
jn

∣∣∣2
E

(0)
j − E

(0)
n

, (3.71)

where notice that H(1) is Hermitian. This is the key result of Rayleigh–Schrödinger perturbation
theory. Higher-order results may be obtained in analogous ways, but they are rarely needed.23

Example. Polarisability of hydrogen revisited.

Last time using the exact result of the first-order wavefunction, we have worked out that the
polarisability of hydrogen is α = 4.5 exactly. Now let’s see what Rayleigh–Schrödinger gives us.

Since we have identified α = −2E(2)
0 from Hellmann–Feynman theorem, the ground state

polarisability of hydrogen is given by

α = 2
∑
k ̸=0

|〈0|z|k〉|2

E
(0)
k − E

(0)
0

. (3.72)

The ground state |0〉 is totally symmetric, so for the integral 〈0|z|k〉 to be non-zero, k should transform
the same as the irreducible representation as the Cartesian function z — these are exactly the

22This expression goes well with our assumption that |n⟩ is non-degenerate. If |n⟩ is degenerate with some |j⟩, then
this expression will diverge. We will comment a bit more on this when discussing the degenerate perturbation theory.

23In fact due to some convergence issue that we will discuss later, stopping at the first or the second-order correction
is usually a better choice.
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2pz, 3pz, . . . orbitals. 24 The first of these is

ψ
(0)
2pz

=
1√
32π

ze−r/2 (3.74)

with energy − 1
8 . This gives a contribution 2.96 to α. Clearly this is a poor estimate of α since we have

only calculated the first term. You will evaluate the 3pz contribution in the exercises. As you include
more and more contributions, the result should converge, albeit very slowly since the denominator of
(3.72) does not get any larger than 1

2 , so we are only relying on the numerator for convergence.

However, if you really calculate this series, summing up over all npz orbitals, you will find that
it actually converges to a wrong value! This is because there are also continuum (unbounded) states
above the bounded energy levels. We also need to include these into our summation. This is very tricky
to do, even numerically on a computer, and it is included in section C together with an alternative
method by A. Dalgarno and J.T. Lewis that can evaluate the exact polarisability of hydrogen in a
clever way.

A much easier thing to do is to give an upper bound for this series. Since E(0)
k − E

(0)
0 > E

(0)
n=2 −

E
(0)
0 = 3

8 for all (bounded and unbounded) states k,25 we have

α <
16

3

∑
k ̸=0

|〈0|z|k〉|2 . (3.75)

If we write ∑
k ̸=0

〈0|z|k〉 〈k|z|0〉 , (3.76)

we see something very similar to the resolution of identity in the middle of this expression, except it
excluded |0〉 from all states |0〉. This is actually not a problem, since 〈0|z|0〉 is exactly the first-order
energy, which we have identified to be zero. Therefore,∑

k ̸=0

〈0|z|k〉 〈k|z|0〉 =
∑
k

〈0|z|k〉 〈k|z|0〉 =
〈
0
∣∣z2∣∣0〉 . (3.77)

We have reduced this infinite series into a single term! Due to the spherical symmetry of |0〉, this can
also be easily evaluated as 〈

0
∣∣z2∣∣0〉 = a20 , (3.78)

where the Bohr radius a0 = 1 in atomic units. Hence, we have an upper bound

α <
16

3
. (3.79)

The exact value α = 4.5 does sit in this range.

Despite its practical difficulty, Rayleigh–Schrödinger perturbation theory provides some useful
physical insight. The expression (3.72) shows that an atom will have a large polarisability if it
possess low-lying excited states with an appropriate symmetry.

24Since the wavefunction |k⟩ ≡ |n, ℓ,m⟩ = Rn,ℓ(r)Yℓ,m(θ, φ) is a product of totally symmetric radial wavefunction
and a spherical harmonic |ℓ,m⟩ = Yℓ,m(θ, φ), we need Yℓ,m(θ, φ) to transform as the Cartesian function z. These are
the |1, 0⟩ = Y1,0(θ, φ) spherical harmonics, which combine with the radial wavefunctions Rn,1(r), n ≥ ℓ+1 = 2 to give
npz orbitals, n ≥ 2.

More generally, we have 〈
n′, ℓ′,m′∣∣z∣∣nℓm〉

= 0 unless
{
ℓ′ = ℓ± 1

m′ = m.
(3.73)

This comes from the Wigner–Eckart theorem with T
(1)
q=0 and parity consideration. See my notes on Mathematical

Tripos Part II: Principles of Quantum Mechanics for more detail.
25We cannot give a lower bound of α using this method because the energy of unbounded states can be arbitrarily

high. A lower bound can be given using variational perturbation theory, which will be introduced in section 3.6.
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3.5 Ladder Operators

A ladder operator in quantum mechanics is an operator that acts on an eigenstate of another operator
to produce another eigenstate with a different eigenvalue. Since the changes to the quantum number
are usually +1 (raising operator) or −1 (lowering operator), they got their names by imagining
stepping up or down one ‘rung’ on the ‘ladder’ of eigenstates.

If we have a Hermitian operator B̂, and another operator â which satisfy the commutation
relationship

[B̂, â] = câ (3.80)
for some real constant c, then â is a ladder operator26 for B̂. To show this, consider acting â on the
eigenstate of B̂, |b〉 with eigenvalue b. We have

B̂â |b〉 = âB̂ |b〉+ [B̂, â] |b〉
= bâ |b〉+ câ |b〉
= (b+ c)â |b〉 , (3.81)

and so â |b〉 is an eigenstate of B̂ with eigenvalue b+ c. Depending on the sign of c, this state is either
raised or lowered.

By taking the adjoint of (3.80), we have

[B̂, â†] = −câ† . (3.82)

Hence, if â is a raising (lowering) operator, then its Hermitian conjugate â† will be a lowering (raising)
operator, changing the magnitude of the eigenvalue by the same amount.

3.5.1 Harmonic Oscillator Ladder Operators

The Hamiltonian of a standard harmonic oscillator takes the form

Ĥ = −1

2

d2

dq2
+

1

2
q2 . (3.83)

We can actually work out the spectrum of the harmonic oscillator by only using the ladder operators,
without needing to solve any differential equations as we did in Part IB. The ladder operators of the
Harmonic oscillator are given by

â =

√
1

2

(
q +

d

dq

)
(3.84)

â† =

√
1

2

(
q − d

dq

)
. (3.85)

It is easy to see that â lowers the eigenvalue of an eigenstate by 1, and â† raises the eigenvalue by 1.
Additionally, we find that the ladder operators nicely “factor out” the Hamiltonian

ââ† = Ĥ +
1

2
â†â = Ĥ − 1

2
. (3.86)

We define the numbering operator N̂ = â†â = Ĥ − 1
2 , with N̂ |n〉 = n |n〉.27 Then |n〉 is also an

eigenstate of Ĥ, with Ĥ |n〉 = (n+ 1
2 ) |n〉. However, since

n =
〈
n
∣∣∣N̂ ∣∣∣n〉 =

〈
n
∣∣â†â∣∣n〉 = ‖â |n〉‖2 ≥ 0 , (3.87)

26The notation a here stands for annihilation, as â and â† are more formally known as the annihilation and creation
operator. They create/destroy quanta of excitations.

27It is named so because it counts the number of quantum of vibrations (phonon) in a vibrational eigenstate.
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we find that we cannot lower the eigenstate |n〉 infinitely. We must have n ≥ 0, so the lowering
process must somehow terminate at some point to avoid negative values of n. This will be our ground
state, and is given by â |n〉 = 0. Therefore, we must have n = 0 to be the ground state. The excited
states can be obtained by repeatedly acting â† on |0〉, so the spectrum of Ĥ are given by {k + 1

2},
where k ∈ N0.

Using this method, we can also easily find the eigenfunctions of Ĥ. If we directly solve the
Schrödinger equation, then we have a second-order differential equation which we can’t easily solve.
The standard method would then be to solve this using an infinite series. However, we have claimed
that the ground state satisfies

âψ(q) =

√
1

2

(
qψ +

dψ

dq

)
= 0 . (3.88)

This is now a first-order, linear, homogeneous equation, which we know the general solution. The
ground state wavefunction is therefore

ψ(q) = π−1/4e−
1
2 q

2

. (3.89)

The wavefunction of the excited state can be obtained by acting â† repeatedly.

We know that â |n〉 ∝ |n− 1〉 and â† ∝ |n+ 1〉, but it might not be normalised. Suppose â |n〉 =
cn |n− 1〉, where cn is real to keep all eigenfunctions real. Then consider〈

n
∣∣â†â∣∣n〉 = |cn|2 〈n− 1|n− 1〉 = |cn|2 . (3.90)

We also have 〈
n
∣∣â†â∣∣n〉 = 〈n∣∣∣N̂ ∣∣∣n〉 = n 〈n|n〉 = n . (3.91)

Equating the above two results give cn =
√
n. We can use the same method to work out the coefficient

for the raising operator.

â |n〉 =
√
n |n− 1〉 â† |n〉 =

√
n+ 1 |n+ 1〉 . (3.92)

Example. Harmonic oscillator with cubic perturbation potential.

Now consider adding a cubic perturbation Ĥ(1) = λq3 to the harmonic oscillator Hamiltonian.
We anticipate evaluating integrals like

〈
j
∣∣q3∣∣n〉, which seems algebraically tedious. However, this can

be much more easily done using ladder operators.

From the definition of ladder operators, one can write

q =
1√
2
(â+ â†) . (3.93)

so if we act it on some eigenstate of Ĥ, we will get

q |n〉 =
√
n+ 1

2
|n+ 1〉+

√
n

2
|n− 1〉 . (3.94)

Now, let’s consider what q3 |n〉 will give us. By taking the cube of (3.93), we see that q3 consists
of eight combinations of raising and lowering operators. One of the combinations is triple raising
operator â†â†â† which will raise |n〉 by three quanta, and another is triple lowering operator âââ.
There will be three combinations that raise |n〉 by one quantum (â†â†â, â†ââ†, ââ†â†), and three that
lower |n〉 by one quantum (â†ââ, ââ†â, âââ†). Therefore, when acting on |n〉, we expect to see a
mixture of four states: |n± 3〉 and |n± 1〉.

Let’s first consider the first-order variation in energy, given by

E(1)
n =

〈
n
∣∣q3∣∣n〉 . (3.95)
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Since q3 |n〉 is only a combination of |n± 3〉 and |n± 1〉, it will be zero by orthogonality.

Next, we will consider the second-order energy

E(2)
n = −λ2

∑
j ̸=n

∣∣〈j∣∣q3∣∣n〉∣∣2
j − n

. (3.96)

For simplicity, we will consider the ground state |n〉 = |0〉. Since we cannot lower |0〉 anymore, all
the single lowering and triple contributions vanish. Of the remaining four terms, we find that

â†â†â |0〉 = 0 (3.97)

also vanishes since it first lowers |0〉. The other three terms are then

â†ââ† |0〉 =
√
1
√
1
√
1 |1〉 = |1〉 (3.98)

ââ†â† |0〉 =
√
1
√
2
√
2 |1〉 = 2 |1〉 (3.99)

â†â†â† |0〉 =
√
1
√
2
√
3 |3〉 =

√
6 |3〉 , (3.100)

and so 〈
1
∣∣q3∣∣0〉 = 1√

8
(2 + 1) 〈1|1〉 = 3

2
√
2

(3.101)

〈
3
∣∣q3∣∣0〉 = 1√

8

√
6 〈3|3〉 =

√
3

2
. (3.102)

Therefore, the second-order energy is

E
(2)
0 = −λ2

(∣∣〈1∣∣q3∣∣0〉∣∣2
1− 0

+

∣∣〈3∣∣q3∣∣0〉∣∣2
3− 0

)
= −11

8
λ2 . (3.103)

This is an exact result. Although the Rayleigh–Schrödinger sum runs over an infinite series of excited
states, only two of them have non-zero contributions. In contrast to the polarisability example, the
series converges really fast here.

Using a similar approach, one can find the exact first-order wavefunction of the ground state to
be

ψ
(1)
0 = −λ

(
q +

1

3
q3
)
ψ
(0)
0 . (3.104)

3.5.2 Angular Momentum Ladder Operators

By the commutation relationship of angular momentum operator

[Ĵi, Ĵj ] = i
∑
k

ϵijkĴk [Ĵ
2
, Ĵi] = 0 (3.105)

for i, j, k ∈ {x, y, z}, one can show that the operators

Ĵ+ = Ĵx + iĴy (3.106)
Ĵ− = Ĵx − iĴy (3.107)

satisfy the commutation relationships

[Ĵz, Ĵ±] = ±Ĵ± (3.108)

[Ĵ
2
, Ĵ±] = 0 , (3.109)
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and so they are ladder operators for Ĵz.

Suppose we denote a simultaneous eigenstate of Ĵ2 and Ĵz by |β,m〉, where

Ĵ
2
|β,m〉 = ℏ2β |β,m〉 (3.110)

Ĵz |β,m〉 = ℏm |β,m〉 . (3.111)

From the properties of the ladder operators, we learn that

Ĵ
2
(Ĵ± |β,m〉) = Ĵ±Ĵ

2
|β,m〉 = ℏ2βĴ± |β,m〉 (3.112)

and
Ĵz(Ĵ± |β,m〉) = ([Ĵz, Ĵ±] + Ĵ±Ĵz) |β,m〉 = (m± 1)ℏ(Ĵ± |β,m〉) . (3.113)

These show that the new states Ĵ± |β,m〉, if not zero, are still eigenstates of both Ĵ
2 and Ĵz, with

the same eigenvalues βℏ2 for Ĵ
2. However, their Ĵz eigenvalue is shifted up or down by one unit of

ℏ. Their role is to rotate our system, aligning more or less of its total angular momentum along the
z-axis without changing the total angular momentum available.

Just as for the harmonic oscillator, examining the algebra of our raising and lowering operators
has told us the separation between angular momentum eigenstates, given a starting point |β,m〉. To
fix our initial states, we must examine the norm. Let’s assume |β,m〉 is correctly normalized and we
compute ∥∥∥Ĵ+ |β,m〉∥∥∥2 =

〈
β,m

∣∣∣Ĵ−Ĵ+∣∣∣β,m〉 = 〈β,m|(Jx − iJy)(Jx + iJy)|β,m〉

=
〈
β,m

∣∣∣Ĵ2
− Ĵ2

z − ℏĴz
∣∣∣β,m〉 = ℏ2(β −m(m+ 1)) . (3.114)

But since this is a norm, whatever state |β,m〉 we started we must have

β −m(m+ 1) ≥ 0 , (3.115)

with equality iff Ĵ+ |β,m〉 = 0 vanishes. This shows that it cannot be possible to keep applying Ĵ+,
repeatedly raising Ĵz eigenvalue m. There must be some maximum value of m — let’s call it j — for
which Ĵ+ |β, j〉 = 0. This can only be the case if β obeys

β = j(j + 1) (3.116)

and so is fixed in terms of the maximum allowed value of m.

Similarly for a generic m value we find∥∥∥Ĵ− |β,m〉∥∥∥2 = ℏ2(β −m(m− 1)) (3.117)

so it also cannot be possible to keep lowering the Ĵz eigenvalue. There must be some minimum value
of m, say j′, for which Ĵ− |β, j′〉 = 0 and this can only be the case if

β = j′(j′ − 1) . (3.118)

Applying Ĵ± does not change the Ĵ
2 eigenvalue β, so these two values of β must agree. Comparing

them, we obtain a equation
β = j(j + 1) = j′(j′ − 1) , (3.119)

with solutions j′ = j+1 or j′ = −j. By definition j′ can’t be greater than j so we must have j′ = −j.
The eigenvalue βℏ2 = j(j + 1)ℏ2 is determined by j, so we henceforth label our states as |j,m〉; this
labelling is simple less cluttered than |β = j(j + 1),m〉.
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z

−2

−1

0

1

2
Ĵ+

Ĵ−

Figure 7: J eigenvectors for j = 2 states. Only the magnitude and the projection along the z axis is
definite so each state is represented by a circle on a sphere. The raising and lowering operators makes
the J more/less aligned with the z axis.

Finally, we note that since applying Ĵ− repeatedly will take us from the highest state |j, j〉 through
|j, j − 1〉 , . . . down to |j,−j〉, so it must be that 2j is a non-negative integer. In other words, the
possible values for j are

j ∈
{
0,

1

2
, 1,

3

2
, . . .

}
=

1

2
N0 . (3.120)

Once the total angular momentum quantum number j is fixed, we have

m ∈ {−j,−j + 1, . . . , j − 1, j} . (3.121)

Thus there is in total of 2j + 1 possible m values for each j. We can move between states with the
same j but different m using raising and lowering operators Ĵ± which obey

Ĵ+ |j,m〉 = ℏ
√
j(j + 1)−m(m+ 1) |j,m+ 1〉 (3.122)

Ĵ− |j,m〉 = ℏ
√
j(j + 1)−m(m− 1) |j,m− 1〉 . (3.123)

These operators only change the Ĵz eigenvalue, not the Ĵ
2 one. They just realign a given system,

placing more (Ĵ+) or less (Ĵ−) of its angular momentum along the z-axis.

3.6 Variational Perturbation Theory

You should be familiar with the variational principle.

Lemma 3.3 (Variational principle). Let Ĥ be a Hamiltonian with ground state wavefunction ψ0

with energy E0. Let ψ̃ be any trial wavefunction, then

Ẽ =

〈
ψ̃
∣∣∣Ĥ∣∣∣ψ̃〉〈
ψ̃
∣∣∣ψ̃〉 ≥ E0 , (3.124)

where the equality holds if and only if ψ̃ = ψ0.

Now consider the ground state energy corrected to the first order,

E
(0)
0 + λE

(1)
0 =

〈
0
∣∣∣Ĥ(0)

∣∣∣0〉+
〈
0
∣∣∣λĤ(1)

∣∣∣0〉 =
〈
0
∣∣∣Ĥ∣∣∣0〉 . (3.125)

This can be seen as using the unperturbed ground state |0〉 as a trial function for the perturbed
Hamiltonian, so we must have

E
(0)
0 + λE

(1)
0 ≥ E0 . (3.126)

The ground state energy corrected to first order is greater than the true ground state energy.
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However, if we consider the second-order energy

E
(2)
0 =

〈
ψ
(1)
0

∣∣∣Ĥ(1)
∣∣∣0〉 , (3.127)

we see that it is not an expectation value. Therefore, the variational principles do not apply, and the
energy corrected to the second order E(0)

0 + λE
(1)
0 + λ2E

(2)
0 may be lower than the true ground state

energy E0.

3.6.1 An Upper Bound to the Second Order Energy

Although the variational principles do not apply, we can get an upper bound for E(2)
0 using some trial

first-order wavefunction. This will be helpful if we can’t solve the first-order wavefunction exactly,
nor do we want to expand it as a series, but we have some intuitive guess of what its form might be.

Let φ be a trial function that approximates the true (unknown) ground-state first-order
wavefunction ψ

(1)
0 . Let η = φ − ψ

(1)
0 . As usual, we require the first-order wavefunctions to be

orthogonal to the zeroth-order wavefunction, and we also impose this property on the trial function

〈φ|0〉 = 〈η|0〉 = 0 . (3.128)

Now consider the quantity

X(2) =
〈
φ
∣∣∣Ĥ(0) − E(0)

0

∣∣∣φ〉+
〈
φ
∣∣∣Ĥ(1)

∣∣∣0〉+
〈
0
∣∣∣Ĥ(1)

∣∣∣φ〉 . (3.129)

Substituting φ = ψ
(1)
0 + η and expanding, we have

X(2) =
〈
η
∣∣∣Ĥ(0) − E(0)

0

∣∣∣η〉+
〈
ψ
(1)
0

∣∣∣Ĥ(0) − E(0)
0

∣∣∣η〉
+
〈
η
∣∣∣Ĥ(0) − E(0)

0

∣∣∣ψ(1)
0

〉
+
〈
ψ
(1)
0

∣∣∣Ĥ(0) − E(0)
0

∣∣∣ψ(1)
0

〉
+
〈
ψ
(1)
0

∣∣∣Ĥ(1)
∣∣∣0〉+

〈
η
∣∣∣Ĥ(1)

∣∣∣0〉+
〈
0
∣∣∣Ĥ(1)

∣∣∣ψ(1)
0

〉
+
〈
0
∣∣∣Ĥ(1)

∣∣∣η〉 . (3.130)

We can use the first-order perturbation equation (3.13) to replace (Ĥ(0) − E(0)
0 )

∣∣∣ψ(1)
0

〉
by −(Ĥ(1) −

E
(1)
0 ) |0〉, and then a lot of terms cancels out or vanishes by orthogonality, and we are left with

X(2) =
〈
η
∣∣∣Ĥ(0) − E(0)

0

∣∣∣η〉+
〈
0
∣∣∣Ĥ(1)

∣∣∣ψ(1)
0

〉
. (3.131)

The first term is positive by the variational principle, and the second term is the second-order energy.
Hence we can conclude that

X(2) ≥ E(2)
0 , (3.132)

so X(2) is an upper bound to the second-order energy of the ground state. As usual, we can include
some parameters in φ, and minimise X(2) to get the tightest upper bound.

Example. Polarisability of hydrogen revisited.

Let’s consider again the polarisability of hydrogen. Since we are applying an electric field along
the z direction, we might reasonably choose a trial function

φ = Azψ
(0)
0 (3.133)

for the first-order wavefunction, where A is some constant. Note that 〈φ|0〉 = 0 as we imposed before.
If we substitute this ansatz into (3.129), we get

X(2) = A2
〈
zψ

(0)
0

∣∣∣Ĥ(0) − E(0)
0

∣∣∣zψ(0)
0

〉
+ 2A

〈
0
∣∣z2∣∣0〉 . (3.134)
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This is evaluated to be
X(2) =

1

2
A2 + 2A . (3.135)

X(2) is minimised when A = −2, taking the value X(2) = −2, which is our upper bound to the
second-order energy. Recalling that the polarisability is α = −2E(2), we conclude that α = 4 is a
lower bound to the ground state polarisability of the hydrogen atom.

Comparing with the exact value α = 4.5, we see that this is a really good one-term estimation,
significantly better than the first term estimation in the Rayleigh–Schrödinger.

3.7 Multiple Perturbations

Sometimes we have two or more perturbations happening at the same time. It is helpful to treat such
cases according to the relative sizes of the perturbations.

3.7.1 Perturbations of Unequal Magnitudes

If one effect is substantially stronger than the other, it makes sense to regard the weaker one as a
second-order perturbation to the Hamiltonian, and we can write

Ĥ = Ĥ(0) + λĤ(1) + λ2Ĥ(2) . (3.136)

We again substitute the same series expansions of ψn and En to the perturbed Schrödinger equation.
The first-order equation remains unchanged, so the first-order energy and wavefunction are the same.
However, the second-order equation now has an extra term and becomes

(Ĥ(0) − E(0)
n )

∣∣∣ψ(2)
n

〉
+ (Ĥ(1) − E(1)

n )
∣∣∣ψ(1)
n

〉
+ (Ĥ(2) − E(2)

n ) |n〉 = 0 . (3.137)

Contracting with 〈n| gives the expression of the second-order energy

E(2)
n =

〈
n
∣∣∣Ĥ(1)

∣∣∣ψ(1)
n

〉
+
〈
n
∣∣∣Ĥ(2)

∣∣∣n〉 , (3.138)

which now has an extra term compared with the single perturbation case.

3.7.2 Perturbations of Comparable Strengths

When two perturbations of similar strengths are present, it is more appropriate to treat them as two
first-order perturbations, each with its own prefactor

Ĥ = Ĥ(0,0) + λaĤ
(1,0)
a + λbĤ

(0,1)
b . (3.139)

This is a two-dimensional family of Hamiltonians, and so the energies and wavefunctions are given
by two-dimensional series

En =
∑
j,k

λjaλ
k
bE

(j,k)
n

= E(0,0)
n + λaE

(1,0)
n + λbE

(0,1)
n︸ ︷︷ ︸

first order

+λ2aE
(2,0)
n + λaλbE

(1,1)
n + λ2bE

(0,2)
n︸ ︷︷ ︸

second order

+ . . . (3.140)

|ψn〉 =
∑
j,k

λjaλ
k
b

∣∣∣ψ(j,k)
n

〉
=
∣∣∣ψ(0,0)
n

〉
+ λa

∣∣∣ψ(1,0)
n

〉
+ λb

∣∣∣ψ(0,1)
n

〉
︸ ︷︷ ︸

first order

+λ2a

∣∣∣ψ(2,0)
n

〉
+ λaλb

∣∣∣ψ(1,1)
n

〉
+ λ2b

∣∣∣ψ(0,2)
n

〉
︸ ︷︷ ︸

second order

+ . . . (3.141)
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λa

λb

E

En(λa, λb)

Figure 8: The energy of state n as a function of the parameters λa, λb when imposing two
perturbations of comparable strengths.

We can then substitute these series ansatz into the Schrödinger equation of the doubly perturbed
Hamiltonian. Since λa and λb are independent variables, we need to gather and equate terms in each
combination of them separately. The terms in λa and λb lead to two first-order equations

(Ĥ(1,0)
a − E(1,0)

n )
∣∣∣ψ(0,0)
n

〉
+ (Ĥ(0,0) − E(0,0)

n )ψ(1,0)
n = 0 (3.142)

(Ĥ
(0,1)
b − E(0,1)

n )
∣∣∣ψ(0,0)
n

〉
+ (Ĥ(0,0) − E(0,0)

n )ψ(0,1)
n = 0 , (3.143)

and contracting with
〈
ψ
(0,0)
n

∣∣∣ ≡ 〈n| yields two first-order energy expressions analogous to (3.17)

E(1,0)
n =

〈
n
∣∣∣Ĥ(1,0)

a

∣∣∣n〉 (3.144)

E(0,1)
n =

〈
n
∣∣∣Ĥ(0,1)

b

∣∣∣n〉 . (3.145)

The second-order equations in λ2a and λ2b are analogous to (3.14). However, we also have a second-order
equation in λaλb containing cross terms

(Ĥ(0,0)−E(0,0)
n )

∣∣∣ψ(1,1)
n

〉
+(Ĥ(1,0)

a −E(1,0)
n )

∣∣∣ψ(0,1)
n

〉
+(Ĥ

(0,1)
b −E(0,1)

n )
∣∣∣ψ(1,0)
n

〉
−E(1,1)

n |n〉 = 0 . (3.146)

Contracting with 〈n| gives

E(1,1)
n =

〈
n
∣∣∣Ĥ(1,0)

a

∣∣∣ψ(0,1)
n

〉
+
〈
n
∣∣∣Ĥ(0,1)

b

∣∣∣ψ(1,0)
n

〉
. (3.147)

3.7.3 Interchange Theorem

This expression contains both
∣∣∣ψ(1,0)
n

〉
and

∣∣∣ψ(0,1)
n

〉
— we can do slightly better than that. If we take

inner products of (3.142) and (3.143) with
∣∣∣ψ(0,1)
n

〉
and

∣∣∣ψ(1,0)
n

〉
, respectively, and we get two mixed

second-order equations. From these two equations, we can easily get〈
n
∣∣∣Ĥ(1,0)

a

∣∣∣ψ(0,1)
n

〉
=
〈
ψ(1,0)
n

∣∣∣Ĥ(0,1)
b

∣∣∣n〉 . (3.148)

This allows us to rewrite the mixed second-order energy as

E(1,1)
n =

〈
n
∣∣∣Ĥ(1,0)

a

∣∣∣ψ(0,1)
n

〉
+
〈
ψ(0,1)
n

∣∣∣Ĥ(1,0)
a

∣∣∣n〉 . (3.149)

This is known as the interchange theorem. Analogous results hold for mixed higher-order energy
expressions as well, although they are much more complicated.
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Example. Molecular polarisability.

In previous example, we have examined the polarisability of a hydrogen atom. Due to its spherical
symmetry, the first-order energy vanishes, and a single number is sufficient to assign its (isotropic)
polarisability. However, a molecule may possess a permanent dipole moment and its polarisability
may be anisotropic. We must therefore consider the orientations of the molecules and the electric
field.

Suppose a molecule consists of a collection of N point charges (including nuclei and electrons) ei
located at positions {ri}. In the presence of a uniform electric field E , there is an extra energy, which
we see as a perturbation, given by

Ĥ(1) = −
N∑
i=1

eiE · ri = −E · µ̂ , (3.150)

where we define the dipole moment operator to be

µ̂ =
∑
i

eiri . (3.151)

In component form,
Ĥ(1) = −

∑
β

Eβµ̂β , (3.152)

where β ∈ {x, y, z}. These are three independent perturbations of comparable magnitudes.

By the Hellmann–Feynman theorem, we can write

E0 = E
(0)
0 −

∑
β

µ0
βEβ −

1

2

∑
β,γ

αβγEβEγ − . . . (3.153)

for β, γ ∈ {x, y, z}, where µ0 is the permanent dipole moment vector and α is the polarisability
tensor. The first-order energy is

E
(1)
0 =

〈
0
∣∣∣Ĥ(1)

∣∣∣0〉 = −
∑
β

Eβ 〈0|µ̂β |0〉 , (3.154)

and we indeed have µ0 = 〈0|µ̂|0〉. For the second-order energy, we apply the Rayleigh–Schrödinger
result

E
(2)
0 = −

∑
j ̸=0

|〈j|−E · µ̂|0〉|2

E
(0)
j − E

(0)
0

= −
∑
β,γ

EβEγ
∑
j ̸=0

〈j|µ̂β |0〉 〈0|µ̂γ |j〉
E

(0)
j − E

(0)
0

. (3.155)

We can identify the latter sum as 1
2αβγ , but the polarisability is usually put into a symmetric form,

although any antisymmetric part will cancel in the total second-order energy in (3.153). Therefore,
we will choose the components of the polarisability to be in the symmetrised form

αβγ =
∑
j ̸=0

〈j|µ̂β |0〉 〈0|µ̂γ |j〉+ 〈j|µ̂γ |0〉 〈0|µ̂β |j〉
E

(0)
j − E

(0)
0

. (3.156)
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4 Degenerate Perturbation Theory

Degeneracy presents issues in the above formulation of perturbation theory. First, it is obvious to see
that if any state is degenerate to the unperturbed state, the denominator in the Rayleigh–Schrödinger
sum (3.70) will be zero. This suggests that an arbitrarily small perturbation will cause an extremely
dramatic shift in the degenerate states of the system.

This is not an unfamiliar effect. If we put a small ball in a bowl, then it will stay at the distinct,
non-degenerate ground state at the bottom. If we tilt the bowl slightly, then the ball will also move
slightly in the direction we tilt it to find the new minimum. However, if we put a ball on a flat table,
where any point on it is degenerate, tilting the table however slightly will make the ball run away to
infinity in the direction we tilt it. Perturbation lifts degeneracy.

Suppose we impose a perturbation that lifts the degeneracy, thereby leading to unique perturbed
states. If we gradually decrease the strength λ of the perturbation to zero, we expect that the system
will return to a particular linear combination of the degenerate unperturbed state. This combination
should resemble the perturbed states for small λ. The key to degenerate perturbation theory is thus
to identify those correct zeroth-order wavefunctions stable to perturbation.

4.1 Secular Equations for the Unperturbed Wavefunctions

Suppose there is an M -fold degenerate state n with energy E
(0)
n . We denote the ith component of

the unperturbed state by
∣∣∣ψ(0)
ni

〉
, i ∈ {1, . . . ,M}, where these degenerate wavefunctions are mutually

orthogonal
〈
ψ
(0)
ni

∣∣∣ψ(0)
nj

〉
= δij . Any linear combination of these functions has unperturbed energy

E
(0)
n . We write the zeroth-order wavefunctions that perturbed states return to in the limit λ→ 0 as∣∣∣Φ(0)
nj

〉
. They are just linear combinations of the basis

{∣∣∣ψ(0)
ni

〉}
, so we may write

∣∣∣Φ(0)
nj

〉
=

M∑
i=1

∣∣∣ψ(0)
ni

〉
cij . (4.1)

The perturbation expansions of the states are therefore

|ψnj(λ)〉 =
∣∣∣Φ(0)
nj

〉
+ λ

∣∣∣ψ(1)
nj

〉
+ λ2

∣∣∣ψ(2)
nj

〉
+ . . . , (4.2)

giving the first-order equations

(Ĥ(0) − E(0)
n )

∣∣∣ψ(1)
nj

〉
+ (Ĥ(1) − E(1)

nj )

M∑
i=1

∣∣∣ψ(0)
ni

〉
cij = 0 . (4.3)

Contracting with some
〈
ψ
(0)
nk

∣∣∣ gives∑
i

〈
ψ
(0)
nk

∣∣∣Ĥ(1) − E(1)
nj

∣∣∣ψ(0)
ni

〉
cij = 0 . (4.4)

This is a set of M ×M simultaneous equations for j, k ∈ {1, . . . ,M}, which we may put into the
matrix form as

(H(1) − IE
(1)
nj )cj = 0 (4.5)

for j ∈ {1, . . . ,M}, where H(1)
ki =

〈
ψ
(0)
nk

∣∣∣Ĥ(1)
∣∣∣ψ(0)
ni

〉
is the matrix element of H(1) in the degenerate

basis
{∣∣∣ψ(0)

ni

〉}
, and cj = (c1j , . . . , cMj). The non-trivial solutions for cij are given by the secular

equation ∣∣∣H(1) − IE
(1)
nj

∣∣∣ = 0 . (4.6)
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Therefore, the appropriate zeroth-order wavefunctions are given by the eigenvectors of H(1), with the
first-order energies given by the eigenvalues. We would also add the additional constraint〈

Φ
(0)
nj

∣∣∣Φ(0)
nj

〉
=
∑
i

|cij |2 = 1 (4.7)

so that the zeroth-order wavefunctions are normalised.

Since
{∣∣∣Φ(0)

ni

〉}
diagonalises the perturbation Hamiltonian H(1) in the basis spanned by themselves〈

Φ
(0)
nk

∣∣∣Ĥ(1)
∣∣∣Φ(0)
nj

〉
= δkjE

(1)
nj , (4.8)

we claim that the second-order energy for any one member of the degenerate set therefore involves a
sum that excludes all members of the degenerate set

E
(2)
nj = −

∑
m ̸=n

∣∣∣〈m∣∣∣Ĥ(1)
∣∣∣Φ(0)
nj

〉∣∣∣2
E

(0)
m − E(0)

n

. (4.9)

Unfortunately, the expression of the first-order wavefunction is not simple, and it is explained in the
appendix section D together with the proof of this second-order energy expression.

Example. Linear Stark effect in the hydrogen atom.

We have examined the response of the 1s orbital energy of a hydrogen atom to a small and uniform
electric field. The energy shift is proportional to the square of the electric field in the leading order,
so it is known as the quadratic Stark effect. We treated it using non-degenerate perturbation theory
because the 1s state of hydrogen is non-degenerate.

To analyse the shift of the degenerate 2p energy levels, we must instead use the degenerate
perturbation theory. For the perturbation Hamiltonian Ĥ(1) = z, the matrix elements are evaluated
as

H(1) =


0 0 0 3
0 0 0 0
0 0 0 0
3 0 0 0

 , (4.10)

where the only non-zero matrix elements are
〈
2s
∣∣∣Ĥ(1)

∣∣∣2pz〉 =
〈
2pz

∣∣∣Ĥ(1)
∣∣∣2s〉 = 3. Therefore, the 2px

and 2py orbitals are unaffected by the electric field to first order. The other two perturbed orbitals
are

∣∣∣Φ(0)
±

〉
= (|2s〉 ± |2pz〉)/

√
2, with first-order energies E(1)

± = ±3.

The electric field therefore partially lifts the degeneracy of the hydrogen atom’s n = 2 states with
energies E± = − 1

8 ± 3E , leaving two orbitals unaffected to the first order. This is known as the linear
Stark effect. In a many-electron atom, the 2s and 2pz orbitals are no longer degenerate, and so the
Stark effect is again quadratic.

4.2 Nearly Degenerate Perturbation Theory

If we have the state of interest non-degenerate, but very close in energy to some other states,
we cannot use non-degenerate perturbation theory because although the individual terms in the
Rayleigh–Schrödinger sum do not blow up, the perturbation series may fail to converge even for
very small λ as the perturbation gets easily larger than the energy level separation. We need nearly
degenerate perturbation theory.

Since we have
(Ĥ(0) − E(0)

n )
∣∣∣ψ(0)
ni

〉
= 0 , (4.11)
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we may multiply this expression by cij and add to the secular equation (4.4) multiplied by λ to get∑
i

〈
ψ
(0)
nk

∣∣∣Ĥ(0) + λĤ(1) − E(0)
n − λE

(1)
nj

∣∣∣ψ(0)
ni

〉
cij = 0 (4.12)

for degenerate states. Since Ĥ = Ĥ(0) + λĤ(1) is the total Hamiltonian, and Enj = E
(0)
n + λE

(1)
nj is

the total energy corrected to the first order, for a set of exactly degenerate states, solving the secular
equations28

(H− IEnj)cj = 0 (4.14)
using the total Hamiltonian is entirely equivalent to solving for the secular equation for just the
perturbing Hamiltonian in the degenerate perturbation theory.

The advantage of this form of secular equation is that it can also be applied when a set of states
lie close in energy but are not rigorously degenerate. We can think of this as redefining the Ĥ(0) and
Ĥ(1) in a way such that the small differences in the energy of the unperturbed states is absorbed into
the perturbation, so that the unperturbed states are now somehow degenerate.

Example. Fermi resonance in CO2.

Under harmonic approximation (2.80), the molecular vibrational potential can be approximated
as a sum of quadratic potential, which can be decoupled into a sum of independent Hamiltonians of
harmonic potentials (2.56). We will show later that the transition intensity between the initial state
|ψi〉 and the final state |ψf 〉 is proportional to the squared modulus of the transition dipole moment29

Rf←i = 〈ψf |µ̂|ψi〉 . (4.15)

One can write the dipole moment operator into a sum of the normal coordinates Qk, which can in
turn be written as a sum of the ladder operators âk and â†k.30 This will show that only transitions
between states in which the quantum number of only a single mode changes by one can happen, i.e.
∆nk = ±1.

However, anharmonicity brings interesting complications. Since raising and lowering operators no
longer hold for anharmonic states, overtones and combination lines are now allowed. Moreover, the
fact that the Hamiltonian itself changes leading to the coupling of normal modes can bring interesting
features to the IR and Raman spectra. The harmonic states |n1, n2, . . .〉 which originally diagonalise
the harmonic Hamiltonian

〈
n′1, n

′
2, . . .

∣∣∣Ĥharmonic

∣∣∣n1, n2, . . .
〉
=
∑
i ωi(ni +

1
2 )δn1n′

1
δn2n′

2
. . . no longer

do so. This effect can be particularly strong if the two states with the same symmetry happen to be
close in energy. We will investigate this effect using nearly degenerate perturbation theory.

The classic example is CO2. We will take the harmonic approximation as the reference
Hamiltonian. In this case, the molecule has 4 normal modes: a symmetric stretch (Q1) of symmetry
Σ+
g , a doubly-degenerate bend (Q2x, Q2y) of symmetry Πu and an antisymmetric stretch (Q3) of

symmetry Σ+
u . We label a vibrational state by the three quantum numbers |n1, n2, n3〉, where

n2 = n2x + n2y. Denoting Q2
2 = Q2

2x +Q2
2y, the unperturbed Hamiltonian and energy are

Ĥ(0) = −1

2

(
∂2

∂Q1
2 +

∂2

∂Q2x
2 +

∂2

∂Q2y
2 +

∂2

∂Q3
2

)
+

1

2
(ω2

1Q
2
1 + ω2

2Q
2
2 + ω2

3Q
2
3) , (4.16)

E(0)
n1,n2,n3

=

(
n1 +

1

2

)
ω1 +

(
n2 +

1

2

)
ω2 +

(
n3 +

1

2

)
ω3 . (4.17)

28This is essentially the Schrödinger equation
Hcj = Enjcj (4.13)

in the confined basis set of the nearly degenerate orbitals using the full Hamiltonian, so we should be convinced that
this equation is appropriate whether the states are degenerate or not.

29See time-dependent perturbation theory later.
30One can first integrate out the common electronic wavefunction to work out µ̂(Q) as a function of nuclear

coordinates only, then expand it around the equilibrium nuclear geometry. See B8: Symmetry for detail.
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O C O

sym. stretch
Σ+
g

O C O O C O

degenerate bending
Πu

O C O

antisym. stretch
Σ+
u

The symmetric stretch and bend frequencies are ω1 = 1354.07 cm−1 and ω2 = 672.95 cm−1

respectively. Relative to the ground state, the doubly-excited bend |020〉 at energy 2ω2 =
1345.90 cm−1, lying just ∆ = 8.17 cm−1 below the |100〉 state. Moreover, the symmetry of the
|020〉 states are given by Πu ⊗ Πu = Σ+

g + [Σ−g ] + ∆g, so the component of |020〉 with zero angular
momentum, ∣∣0200〉 = 1√

2
(|02x0〉+ |02y0〉) (4.18)

has the correct symmetry to interact with |100〉 if there exists appropriate coupling perturbation.

We will add cubic potentials as a perturbation. Since the Hamiltonian must be totally symmetric,
not all cubic potentials QiQjQk are permitted to be present. It turns out that the only allowed terms
in the cubic potential are

Ĥ(1) = aQ3
1 + bQ1Q

2
2 + cQ1Q

2
3 . (4.19)

Using the nearly degenerate perturbation theory, we can see that this perturbing Hamiltonian
indeed couples these two states. The total Hamiltonian matrix in the basis of the two states is given
by

H =

(
ω1 W
W 2ω2

)
, (4.20)

where W is the Fermi coupling constant given by

W =
〈
100
∣∣∣Ĥ(0) + Ĥ(1)

∣∣∣0200〉 =
〈
100
∣∣bQ1Q

2
2

∣∣0200〉 . (4.21)

This coupling is due to the cubic term Q1Q
2
2. We can again use ladder operators

Qi =
1√
2ωi

(âi + â†i ) (4.22)

to work this out. We write〈
100
∣∣bQ1Q

2
2

∣∣0200〉 = b 〈1|Q1|0〉
〈
0
∣∣Q2

2

∣∣2〉 〈0|0〉 . (4.23)

The first term is easy to evaluate

〈1|Q1|0〉 =
1√
2ω1

〈
1
∣∣â+ â†

∣∣0〉 = 1√
2ω1

, (4.24)

but the second degenerate mode is a bit more subtle. We need to expand it into its components〈
0
∣∣Q2

2

∣∣20〉 = 1√
2

(〈
0x, 0y

∣∣Q2
2x

∣∣2x, 0y〉+ 〈0x, 0y∣∣Q2
2y

∣∣0x, 2y〉)
=
√
2
〈
0
∣∣Q2

2x

∣∣2x〉 (4.25)

as the two components are equivalent. Then
√
2
〈
0
∣∣Q2

2x

∣∣2x〉 = 1√
2ω2

〈
0
∣∣â2∣∣2〉

=
1

ω2
. (4.26)
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Combining the results gives
W =

b√
2ω1ω2

. (4.27)

Solving the secular equation, we find that the perturbed states are separated by
√
4W 2 +∆2,

which is clearly bigger than the original separation ∆. This effect is known as the Fermi resonance.
The two lines are observed to be 102.78 cm−1 apart in the Raman spectrum, implying |W | =
51.2 cm−1 — a rather large coupling.

The mixing of the vibrational states also means that the |000〉 → |100〉 and |000〉 →
∣∣0200〉

transitions are no longer pure. Consequently, the latter transition, which would normally be a weak
overtone, borrows intensity from the strong fundamental symmetric stretch. The pair of mixed levels
are known as a Fermi dyad.

ν − νL

|000⟩ →
∣∣0200〉

|000⟩ → |100⟩

1250 1300 1350 1400

no coupling

ν − νL

mixed

mixed

1250 1300 1350 1400

with coupling

Example. Nearly free electron gas.

You should have met the concept of nearly free electron gas model for solids in Part IB Chemistry
A. The idea of degenerate perturbation theory gives us some more insight on it.

For our electron gas to be ‘nearly free’, let’s consider the situation where a particle moves in a
region having a weakly periodic potential. By weakly periodic, we mean that the free energy of the
particle is much greater than the periodic potential present: the particle floats well above a corrugated
base. For example, let’s assume that the underlying potential has the form

V (x) = 2V cos

(
2πx

a

)
= V (eiGx + e−iGx) , (4.28)

where G = 2π/a characterises the periodicity of the lattice in the form of a wavevector. Suppose the
system has total length L = Na, so it comprises N cells of size a. For a real periodic potential in a
periodic crystal lattice, we would replace this by a Fourier series, but let’s now focus on this simple
case.

The fact that the periodic potential is weak makes it perfect for perturbation theory. We take the
unperturbed Hamiltonian to be the free electron gas

Ĥ(0) = − ℏ2

2m

∂2

∂x2
, (4.29)

and the unperturbed wavefunction is
ψ
(0)
k =

1√
L
eikx (4.30)

with unperturbed energy

E
(0)
k =

ℏ2k2

2m
. (4.31)
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We impose the periodic boundary condition: ψ(x) = ψ(x+ L) so k is discretised

k =
2πn

L
, n ∈ Z . (4.32)

The perturbing Hamiltonian is our periodic potential

Ĥ(1) = 2V cos

(
2πx

a

)
. (4.33)

To proceed, we would like to find the matrix elements of the perturbation〈
k
∣∣∣Ĥ(1)

∣∣∣k′〉 =
2V

L

ˆ L

0

dx ei(k
′−k)x cos

(
2πx

a

)
=
V

L

ˆ L

0

dx ei(k
′−k+G)x + ei(k

′−k−G)x

= V [δk−k′,−G + δk−k′,+G] . (4.34)

Therefore, the only terms that survive are those for which

k′ − k = ±G = ±2π

a
, (4.35)

or
n′ − n = ±N . (4.36)

State |k〉 will only interact with states |k +G〉 and |k −G〉.

In general, the states |k〉 and |k′〉 are non-degenerate, and the new energies can be calculated by
non-degenerate perturbation theory

Ek = E
(0)
k +

〈
k
∣∣∣Ĥ(1)

∣∣∣k〉+
∑
k′ ̸=k

∣∣∣〈k′∣∣∣Ĥ(1)
∣∣∣k〉∣∣∣2

E
(0)
k − E

(0)
k′

= E
(0)
k +

|V |2

E
(0)
k − E

(0)
k+G

+
|V |2

E
(0)
k − E

(0)
k−G

. (4.37)

However, the above method will break down in the neighbourhood of k ≈ ±πa , since by then, E(0)
k ≈

E
(0)
k+G. We would then need to use nearly degenerate perturbation theory. For example, if we are

interested in a state with k ≈ +π
a , which would interact with a nearly degenerate state at k′ =

k − 2π
a ≈ −

π
a , then the appropriate Hamiltonian matrix to diagonalise is

H =

(
Ek V
V Ek′

)
, (4.38)

giving first-order energies

E =
Ek + Ek′

2
± 1

2

√
(Ek − Ek′)2 + 4V 2 . (4.39)

The two levels are now separated by a gap larger than their original separation:√
(Ek − Ek′)2 + 4V 2 > (Ek − Ek′) . (4.40)

If we consider k = +π
a and k′ = −πa , so the two interacting states are exactly degenerate, then the

perturbation will result in a gap of 2V . A band gap of 2V is opened at k = ±πa .

For a real periodic potential that can be written in a Fourier series

V (x) =

∞∑
m=1

Vm cos

(
2πmx

a

)
, (4.41)
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k /
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E

Figure 9: The dispersion curve of a nearly free electron gas model calculated using nearly degenerate
perturbation theory, with V set to be 0.5 in arbitrary units. A band gap of 1 is opened at k = ±πa .

the term cos(2πmx/a) = e+imGx+e−imGx will lead to the interaction between |k〉 and |k ±mG〉, and
hence band gaps will open at ±mπa . For a most general periodic potential, Vm 6= 0 for all m, so band
gaps are opened at all positive integer multiples of ±πa , leading to the band structure you met in IB
Chemistry A.
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5 Time-Dependent Systems

5.1 Time-Dependent Schrödinger Equation

For a time-dependent system, we have to turn to consider the time-dependent Schrödinger equation

ĤΨ(x, t) = iℏ
∂Ψ(x, t)

∂t
. (5.1)

The wavefunction is now a function of time as well as the spatial coordinates. We will first focus on
the special case that the Hamiltonian is independent of time. This is then a straightforward first-order
differential equation in time, with solutions given by

Ψ(x, t) = e−iĤt/ℏΨ(x, 0) , (5.2)

where Û(t, 0) = e−iĤt/ℏ is the time evolution operator and Ψ(x, 0), the wavefunction at time t = 0,
solves the time-independent Schrödinger equation

ĤΨ(x, 0) = EkΨ(x, 0) , (5.3)

where it is common to denote the time-independent wavefunction as ψk(x) ≡ Ψ(x, 0). e−iĤt/ℏ is
the time-evolution operator, which is unitary. The exponential of the operator is defined via the
Maclaurin series

e−iĤt/ℏ |ψk〉 = 1− i
t

ℏ
Ĥ |ψk〉 −

t2

2ℏ2
Ĥ2 |ψk〉+ i

t3

6ℏ3
Ĥ3 |ψk〉+ . . .

= 1− i
t

ℏ
Ek |ψk〉 −

t2

2ℏ2
E2
k |ψk〉+ i

t3

6ℏ3
E3
k |ψk〉

= e−iEkt/ℏ |ψk〉 . (5.4)

Therefore, for a time-independent Hamiltonian, there is a special class of solutions that can be written
as

Ψ(x, t) = e−iEkt/ℏψk(x) . (5.5)

These are known as stationary states because it is just a time-independent state multiplied by a phase
factor rotating with time. None of the physical observables will change with time, as one might expect
by the action of a unitary operator.

From now on, we will adopt atomic units, so all ℏ’s are gone from our expressions.

5.2 Ehrenfest Theorem

The Ehrenfest theorem concerns the time evolution of expectation values of physical observables. We
begin with

d

dt
〈A〉 = d

dt

〈
Ψ
∣∣∣Â∣∣∣Ψ〉

=

〈
∂Ψ

∂t

∣∣∣∣Â∣∣∣∣Ψ〉+

〈
Ψ

∣∣∣∣∣∂Â∂t
∣∣∣∣∣Ψ
〉

+

〈
Ψ

∣∣∣∣Â∣∣∣∣∂Ψ∂t
〉
. (5.6)
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We can use the time-dependent Schrödinger equation to substitute for the time derivatives of the
wavefunction

d

dt
〈A〉 =

〈
−iĤΨ

∣∣∣Â∣∣∣Ψ〉+

〈
Ψ

∣∣∣∣∣∂Â∂t
∣∣∣∣∣Ψ
〉

+
〈
Ψ
∣∣∣Â∣∣∣−iĤΨ

〉
= i
〈
Ψ
∣∣∣ĤÂ∣∣∣Ψ〉+

〈
∂Â

∂t

〉
− i
〈
Ψ
∣∣∣ÂĤ∣∣∣Ψ〉

= −i
〈
[Â, Ĥ]

〉
+

〈
∂Â

∂t

〉
. (5.7)

This result is general, but the Ehrenfest theorem relates to the specific case of position and momentum.

Theorem 5.1 (Ehrenfest theorem).

m
d

dt
〈x〉 = 〈p〉 (5.8)

d

dt
〈p〉 = −

〈
dV (x)

dx

〉
. (5.9)

They are the quantum equivalents of the familiar classical expressions

p = mv (5.10)
F = ma , (5.11)

but they are not quite the same. To match up with the classical expression exactly, we would need

d

dt
〈p〉 ?

= −dV (〈x〉)
dx

, (5.12)

but this would imply 〈
dV (x)

dx

〉
?
=

dV (〈x〉)
dx

, (5.13)

which is not in general true. For example, if we set V (x) = x3, then this equation implies
〈
x2
〉 ?
= 〈x〉2.

The difference in them is related to ∆x, so if we are approaching the classical limit, ∆x→ 0, then the
Ehrenfest equations would approach Newton’s equations. This is an example of the correspondence
principle.

It is possible to go the other way around and derive the time-dependent Schrödinger equation from
the Ehrenfest theorem, so the Ehrenfest theorem is just as fundamental as the Schrödinger equation
and could be used as the starting point for quantum mechanics.

5.3 Time-Dependent Perturbation Theory

We will consider the time-dependent Hamiltonian of the general form

Ĥ(x, t) = Ĥ(0)(x) + λĤ(1)(x, t) , (5.14)

where the unperturbed Hamiltonian is time-independent and we know its eigenstates ψk(x) and
eigenvalues Ek exactly. The time dependence appears only in the perturbation Ĥ(1), which is ‘small’.
In the absence of the perturbation, there are stationary solutions

|Ψk(t)〉 = e−iEkt |ψk〉 , (5.15)

where
Ĥ(0) |ψk〉 = Ek |ψk〉 . (5.16)

50



5 Time-Dependent Systems C7 Further Quantum Mechanics

We have dropped the superscript (0) on ψk and Ek because the stationary state is necessarily
unperturbed.

As in the Rayleigh–Schrödinger perturbation theory, we now expand the perturbed wavefunction
in terms of the unperturbed states. In the method developed by Dirac, known as the variation of
constants,31 the coefficients depend on time

|Ψ(t)〉 =
∑
k

ak(t) |Ψk(t)〉 =
∑
k

ak(t)e
−iEkt |ψk〉 . (5.17)

We must be able to do this because {|ψk〉} is a complete orthonormal basis, so we can expand |Ψ(t)〉
at each time.

There is no subscript to label the state, since the state is changing in time. Moreover, the squared
modulus of the coefficient is the probability of observing the system in the stationary state k with
energy Ek at time t.32 Substituting into the time-dependent Schrödinger equation, we get∑

k

ak

(
Ek + λĤ(1)

)
|Ψk〉 = i

∑
k

(
dak
dt
− iakEk

)
|Ψk〉

λ
∑
k

Ĥ(1)ak |Ψk〉 = i
∑
k

dak
dt
|Ψk〉 . (5.18)

To work out the contribution of a particular |Ψj〉, we contract it with 〈Ψj | = e+iEjt 〈ψj | and get

λ
∑
k

ake
−i(Ek−Ej)t

〈
j
∣∣∣Ĥ(1)

∣∣∣k〉 = i
∑
k

dak
dt

e−i(Ek−Ej)t 〈j|k〉 , (5.19)

and by orthogonality of unperturbed wavefunctions, we get
daj
dt

= −iλ
∑
k

Ĥ
(1)
jk (t)ak(t)e

iωjkt , (5.20)

where ωjk = Ej − Ek. This is a coupled system of differential equations, telling us how the weights
of various states evolve with time. The rate of change of one weight depends on the current values of
all the weights.

To break the interdependency of the coefficients, we must make approximations. We expand the
coefficients ak(t) in a power series of λ

ak(t) = a
(0)
k (0) + λa

(1)
k (t) + λ2a

(2)
k (t) + . . . (5.21)

Note that the unperturbed system is time-independent, so a
(0)
k does not depend on time. We can

then solve for each power in λ individually. Note the presence of λ on the right-hand side of (5.20)
means that the dependence of first-order terms are given purely by the time-independent zeroth-order
terms. Therefore we have successfully decoupled the time dependence of the coefficients. We have

da
(0)
j

dt
= 0 (5.22)

da
(1)
j

dt
= −i

∑
k

a
(0)
k (0)Ĥ

(1)
jk (t)eiωjkt (5.23)

...
31This is formally known as the interaction picture, or the Dirac picture. We will not introduce it in the main text,

because we can work out the first-order time-dependent perturbation theory without using this formal framework.
However, this is very useful if we want to go to higher orders to explain things like Raman scattering, so it is introduced
in the appendix, together with the other two pictures: the Schrödinger picture and the Heisenberg picture.

32Technically the stationary state Ψk is the energy eigenstate of the system only if perturbing Hamiltonian is not
present, so we should remove it before measuring the energy if we are interested in the question ‘which state of Ψk has
our system evolved into’.
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The zeroth-order equation reassures that the aj is unchanging because Ĥ(0) is time-independent. The
first-order equation is our main interest, telling us how the state is evolving to the leading order.

If we now suppose that at time t = 0, the system is known to be in one of the stationary states
|ψn〉, such that a(0)k = δnk, we can remove the sum and get

daj
dt

= −iH(1)
jn (t)eiωjnt , (5.24)

where we dropped the superscript because we are only interested in the first-order contribution, so
this is the rate of change of our total ak. We may integrate with respect to time and get

aj(t) = −i
ˆ t

0

dt′H
(1)
jn (t′)eiωjnt

′
. (5.25)

Heuristically, this amounts to considering only direct transitions from initial state |n〉 to the state |j〉
of interest. Excitations that proceed via intermediate states are neglected. We therefore derived a
first-order result, where the perturbation is only allowed to act once. A second-order expression can
be obtained by substituting (5.25) back to (5.20), but we will do it using the interaction picture in
the appendix section E.
Example. A slowly-switched-on perturbation.

Let’s first investigate the response of a system to a perturbation that is gradually switched on and
approaching a constant value. A possible form of this can be

Ĥ(1)(x, t) = (1− e−kt)V̂ (x) (5.26)

for some time-independent perturbation V̂ (x). Suppose we are initially in a state |n〉, then the
coefficient of state |j〉 is

aj(t) = −iVjn
ˆ t

0

dt′ (1− e−kt
′
)eiωjnt

′

= −iVjn
(
eiωjnt − 1

iωjn
− e(iωjn−k)t − 1

iωjn − k

)
, (5.27)

where Vjn =
〈
j
∣∣∣V̂ ∣∣∣n〉. After some non-trivial amount of algebra, one may show that the probability

of transition from state |n〉 to |j〉, |aj(t)|2, is given by

|aj(t)|2 =
V 2
jn

ω2
jn

[ωjn(1− e−kt)− k sinωjnt]2 + k2(1− cosωjnt)
2

k2 + ω2
jn

. (5.28)

This is not a tidy expression, and we will have a brief analysis of this later. We will now focus on the
long-time behaviour limit, kt � 1, and suppose that the switching is very slow in comparison with
the relevant frequency offset, k � ωjn. We then have

aj(t) = −iVjn
eiωjnt

iωjn
= − Vjn

Ej − En
eiωjnt . (5.29)

Evidently, this result cannot be applied to the initial state |n〉, but we argue that since the perturbation
is small, the transition is negligible and we will have an(t) = an(0) = 1 to the leading order. The
complete wavefunction is

Ψ(t) = Ψn(t) +
∑
j ̸=n

aj(t)Ψj(t)

= |n〉 e−iEnt −
∑
j ̸=n

Vjn
Ej − En

eiωjnt |j〉 e−iEjt

=

|n〉 −∑
j ̸=n

Vjn
Ej − En

|j〉

 e−iEnt . (5.30)
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Figure 10: Scaled probability of transition to excited state in a two-level system when a perturbation
is switched on at different rates.

We observe that this is exactly the Rayleigh–Schrödinger sum of the first-order wavefunction
multiplied by a time-dependent phase factor of constant modulus. Therefore, in the long-time limit,

Ψ(t) = (ψ(0)
n + ψ(1)

n )e−iEnt , (5.31)

which is just the first-order time-independent perturbation result multiplied with its phase factor.

This justifies the application of time-independent perturbation theory to the study of external
perturbations to a system, provided that the perturbation is switched on sufficiently slowly. The
system remains in the state that can be properly labelled as n described by the time-independent
perturbation theory. We say that such a system is adiabatic, standing for slowly varying. This is the
adiabatic theorem due to Max Born and Vladimir Fock.

Theorem 5.2 (Adiabatic theorem). A physical system remains in its instantaneous eigenstate if
a given perturbation is acting on it slowly enough and if there is a gap between the eigenvalue and
the rest of the Hamiltonian’s spectrum.

This is closely linked to the adiabatic (Born–Oppenheimer) approximation, in which since the motion
of the nuclei is varying slowly with respect to electrons, the electrons can be thought of as in the
electronic eigenstates of the instantaneous nuclear geometry at each instant.

If k is not sufficiently small compared to ω then the switching cannot be regarded as adiabatically
slow, and we must use the more complex form of the transition probability (5.28). We consider a
two-level system with E0 = 0 and E1 = ω, initially residing in the ground state, and a perturbation
V01 = V is turned on with rate k. The transition probability is plotted in scaled time ωt and is
normalised by the adiabatic long-time limit V 2/ω2.

We see that switching at a finite rate induces oscillations in the occupation of the upper state,
and the magnitude of the oscillation increases with the switching rate. The oscillations continue even
after their mean has settled down to its final value. If you are careful enough, you can see that the
mean does not coincide with the adiabatic limit.33

Example. Fermi’s golden rule.
33You may replace all the oscillatory terms (sin and cos) with 0 in (5.28), and get

k2 + ω2(1− e−kt)2

k2 + ω2
, (5.32)

which does tend to 1 as t→ ∞ regardless of k. However, oscillatory terms do shift the mean value because it is squared.
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We now study the interaction of oscillating electromagnetic radiation with atoms or molecules.
We will investigate the stimulated absorption and stimulated emission, which should be familiar from
A3: High Resolution Molecular Spectroscopy.

The most general form of the perturbing Hamiltonian should be

Ĥ(1)(t) = V̂ eiωt + V̂ †e−iωt (5.33)

for some time-independent operator V̂ . We let V̂ be Hermitian so that

Ĥ(1) = 2V̂ cosωt . (5.34)

We insert this into (5.25) and we will get

aj(t) = −Vjn
(
ei(ωjn+ω)t − 1

ωjn + ω
+

ei(ωjn−ω)t − 1

ωjn − ω

)
. (5.35)

We can see that if ωjn is positive (|j〉 above |n〉) and ω is close to ωjn, then the second fraction
will dominate. This corresponds to a stimulated absorption process, in which |ajn|2 describes the
probability of the molecule moving from |n〉 to a higher energy state |j〉. If ωjn is negative and is
close to −ω, then the first term will dominate, and this corresponds to stimulated emission.

We will focus on absorption and ignore the first term. The probability of finding the system in
|j〉 after time t is

Pj(t) = |aj(t)|2 =
4 |Vjn|2

(ωjn − ω)2
sin2

(ωjn − ω)t
2

. (5.36)

In practice, the radiation is never monochromatic. We will describe this by the frequency density
of states ρ(ω) so that ρ(ω)dω is the number of photons with frequency between ω and ω + dω. The
probability of observing the system in |j〉 after time t is therefore the integral of (5.36) weighted by
the density ρ(ω):

Pj(t) =

ˆ
dω

4 |Vjn|2

(ωjn − ω)2
sin2

(ωjn − ω)t
2

ρ(ω)

=

ˆ
dω

sin2 1
2Ωt

Ω2t
4 |Vjn|2 ρ(ω)t , (5.37)

where Ω = ωjn−ω. We see an interesting function: sin2 1
2Ωt/Ω

2t. Viewing it as a function of Ω, and
t is a parameter, we see that it is sharply peaked at Ω = 0, showing that only photons with frequency
ω close to ωjn contributes significantly to the transition. Moreover, as t increases, the function gets
more and more sharply peaked, and in fact, in the t→∞ limit, it tends to 1

2πδ(Ω).

Therefore, in the t→∞ limit, we can write

Pj(t) =

ˆ
dω 2πδ(ωjn − ω) |Vjn|2 tρ(ω)

= 2π |Vjn|2 ρ(ωjn)t . (5.38)

This is linear in time. The transition rate from |n〉 to |j〉 is

Rnj =
dPj(t)

dt
= 2π |Vjn|2 ρ(ωjn) , (5.39)

or if we are not using atomic units,

Rnj =
2π

ℏ2
|Vjn|2 ρ(ωjn) . (5.40)

This is Fermi’s golden rule.
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Figure 11: A plot of sin2 1
2Ωt/Ω

2t as a function of Ω. It gets more and more sharply peaked as t→∞.

To move further, we must consider the nature of the V̂ operator. For our purpose, it should
describe the interaction between the molecule and the oscillating electric field. The ‘oscillating’ part
is already dealt with by the cos term in (5.34), so we need V̂ to be a time-independent operator
describing the effect of an electric field of some polarisation (direction) and magnitude, represented
by a vector E . We will make some further assumptions:

• The field is continuous. Rigorously, the electromagnetic wave should be quantised into packets
of photons, and this is necessary if we want to investigate effects like spontaneous emission.
However, this is the realm of quantum field theory, and is far beyond the scope of this course.3435

• We assume the amplitude of the field is constant over the molecule. This is known as the dipole
approximation, and it holds as long as the wavelength of the photon is significantly larger than
the size of the molecule, and so it is fine up to UV-Vis spectroscopy. It will be problematic if
we are interested in ionisations by X-rays.

• We assume that the field is isotropic, so the polarisation can have any random orientation with
respect to the molecule.

Within this approximation, we can write the perturbing Hamiltonian as

Ĥ(1) = −E · µ̂ cos(ωt) , (5.41)

and so
V̂ = −1

2
E · µ̂ = −1

2
Eµ̂ cos θ , (5.42)

where θ is the angle between the polarising plane of the electromagnetic wave and the dipole moment
of the molecule. Note the factor of 1

2 comes from (5.34). Averaging over the angle θ, we get

Rnj =
π

2ℏ2
|〈j|E · µ̂|n〉|2 ρ(ωjn)

〈
cos2 θ

〉
, (5.43)

34It is fluctuations in the zero-point value of the electromagnetic field that allow the atom to spontaneously emit
a photon and decay; heuristically, the fluctuating value of the quantum electromagnetic field — even in the vacuum
— ‘tickles’ the excited atom prompting the decay. Treating the electromagnetic field classically is appropriate if the
radiation comes from a high intensity laser, where the energy density of the field is so high that the stimulated emissions
and absorptions dominate. By contrast, emission of light from the atoms in a humble candle is an inherently quantum
phenomenon, occurring purely by spontaneous emission once the flame is lit — candlelight shines even in ambient
darkness.

35Actually, the way you deal with spontaneous emission in QFT is more or less the same as what we have done
here. You calculate the transition amplitude from perturbation theory, or more formally Dyson formula that we will
introduce in appendix section E.4 A ∼

〈
m
∣∣∣Ŝ∣∣∣n〉. The decay rate is then related to this amplitude by the Fermi’s

golden rule.
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where 〈
cos2 θ

〉
=

´ 2π
0

dϕ
´ π
0
dθ sin θ cos2 θ´ 2π

0
dϕ
´ π
0
dθ sin θ

=
1

3
, (5.44)

and so
Rnj =

π

6ℏ2
E2 |〈j|µ̂|n〉|2 ρ(ωjn) . (5.45)

The transition dipole moment can only be non-zero if its integrand, ψ∗j µ̂ψn is totally symmetric under
the operations of the molecule’s point group. This requirement restricts the combinations of states
between which transitions may be observed, and is the origin of spectroscopic selection rules.

We have given the transition rate for an individual particle, but we can easily adjust to giving
the rate of change of the number of particles in the initial state for a collection of non-interacting
particles by multiplying the concentration of particles,

dnn
dt

= − π

6ℏ2
E2 |〈j|µ̂|n〉|2 ρ(ωjn)nn . (5.46)

This is not quite the same as the expression we saw in A3, this is because there we instead used the
energy density of photons, ρ′(ν), such that

´ ν2
ν1

dν ρ′(ν) is the energy per unit volume of photons in
the frequency range ν1 to ν2. Here, we defined ρ(ω) to be such that

´ ω2

ω1
dω ρ(ω) is the number of

particles in the frequency range ω1 to ω2. Therefore, we need the conversion factor

ρ(ω) =
V

2πℏω
ρ′(ν) . (5.47)

Also, from Maxwell’s equations, we may show that the electric field per photon for a collection of
photons in a given volume V is

E =

√
2ℏω
ϵ0V

. (5.48)

Combining all of these together, we get the rate of stimulated absorption

dnn
dt

= −Bnjρ′(νnj)nn , (5.49)

where the Einstein B coefficient is

Bnj =
1

6ϵ0ℏ2
|〈j|µ̂|n〉|2 =

8π3

(4πϵ0)3h2
|〈j|µ̂|n〉|2 (5.50)

as claimed in A3: High Resolution Molecular Spectroscopy. The same equation also holds for
stimulated emissions.

Example. Dynamic polarisability.

We see that near-resonant radiations will induce transition. Let us turn to the response of
molecules to oscillating electric fields whose frequency ω is far from any transition frequency. To
ensure that the molecule is not shocked by the field, we switch it on slowly, with

Ĥ(1) = V̂ (eiωt + e−iωt)(1− e−kt) = 2V̂ (1− e−kt) cosωt , (5.51)

where k � ω. For simplicity, we will assume z polarised radiation, so that V̂ = − 1
2 µ̂zEz. Substituting

into (5.25), performing the time integral, and taking the long time limit t� k−1, we obtain

aj(t) =
1

2
Ez 〈j|µ̂z|n〉

(
ei(ωjn+ω)t

ωjn + ω
+

ei(ωjn−ω)t

ωjn − ω

)
. (5.52)

Since our radiation frequency is not close to the energy gaps ωjn, we don’t expect any one of the two
terms to dominate, and we have to consider both of them.

Ψ(t) = Ψn(t) +
∑
j ̸=n

aj(t)Ψj(t) . (5.53)
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We are interested in how the electron distribution, and hence the electric dipole of the molecule
fluctuates in response to the imposed oscillating field, so we would like to evaluate the time-dependent
response of the molecular dipole moment.

µz(t) = 〈Ψ|µ̂z|Ψ〉

=

〈
Ψn +

∑
j ̸=n

ajΨj

∣∣∣∣∣∣µ̂z
∣∣∣∣∣∣Ψn +

∑
j ̸=n

ajΨj

〉

= 〈Ψn|µ̂z|Ψn〉+
∑
j ̸=n

[aj 〈Ψn|µ̂z|Ψj〉+ a∗j 〈Ψj |µ̂z|Ψn〉] +O(E2z )

= 〈n|µ̂z|n〉+
∑
j ̸=n

[aj 〈n|µ̂z|j〉 e−iωjnt + a∗j 〈j|µ̂z|n〉 eiωjnt] +O(E2z ) , (5.54)

where we have kept only the first-order terms in the field strength by discarding contributions that
are quadratic in the coefficients aj .36 Substituting the expression of aj(t), we arrive at

µz(t) = µ(0)
z,n +

1

2
Ez(eiωt + e−iωt)

∑
j≠n

|〈j|µ̂z|n〉|2
(

1

ωjn + ω
+

1

ωjn − ω

)
. (5.55)

We see that the dipole oscillates harmonically about its permanent value µ(0)
z,n in the absence of a field

with the same frequency ω as the driven frequency. Since, in general,

µ = −∂E
∂E

= µ(0) + αE + . . . , (5.56)

we may interpret the sum in (5.55) as a frequency-independent or dynamic polarisability,

αzz(ω) := 2
∑
j ̸=n

ωjn |〈j|µ̂z|n〉|2

ω2
jn − ω2

, (5.57)

so that
µz(t) = µ(0)

z + αzz(ω)Ez cosωt . (5.58)

The subscript zz emphasises that it measures the dipole induced in the z direction by a field along z
direction — the polarisability is a tensor.

Note the dynamic polarisability (5.57) reduces to the static polarisability (3.156) as ω → 0. Also
the polarisability diverges if ω → ωjn since then an electric dipole will not induce a dipole but instead
cause a transition.

36The term proportional to E2
z should also have contributions from the second-order perturbation coefficient a(2)j .

We don’t have it, so including
∣∣∣a(1)j

∣∣∣2 here is meaningless.
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6 Intermolecular Interactions

6.1 The Dispersion Energy

Weak attractive forces exist even between uncharged non-polar particles, and are significant enough
to result in weakly bound dimers of noble gas atoms. Although atoms are spherical on average,
and therefore have no permanent dipole moment, fluctuations in the electron density constitute
instantaneous dipole moments. We will show in this section that the average interaction between
fluctuations on different atoms lowers the energy, and we will derive an expression for the strength of
the resulting dispersion force.

For a two-atom system, A and B, we let the zeroth-order Hamiltonian be the sum of the
Hamiltonian of the isolated atoms, and contains no terms of interaction between them:

Ĥ(0) = Ĥ
(0)
A + Ĥ

(0)
B . (6.1)

The zeroth-order wavefunctions are therefore the products of the individual wavefunctions, ψ(0)
mn =

ψ
(0)
A,mψ

(0)
B,n, and we will denote this by |mn〉.

We now add the interaction between the atoms as a perturbation. The largest contribution comes
from the energy of the instantaneous dipole moments. From classical electrostatics, and replacing the
classical quantities by their quantum mechanical operators, the energy of two point dipole µA and
µB at separation R is37

Ĥ(1) =
1

R3

[
µ̂A · µ̂B −

3

R2
(µ̂A ·R)(µ̂B ·R)

]
. (6.5)

Without loss of generality, we can take R to be parallel to z axis, giving the simpler form

Ĥ(1) =
1

R3
(µ̂Axµ̂Bx + µ̂Ayµ̂By − 2µ̂Azµ̂Bz) . (6.6)

The first-order energy E(1)
0 =

〈
00
∣∣∣Ĥ(1)

∣∣∣00〉 only contains terms

〈00|µ̂Aiµ̂Bi|00〉 = 〈0A|µ̂Ai|0A〉 〈0B|µ̂Bi|0B〉 , (6.7)
37Let’s put dipole µA at origin and a dipole µB = qd at R, with ∥R∥ ≫ ∥d∥. The potential generated by µB at

origin is

ϕ =
1

4πϵ0

(
q

R
−

q

∥R+ d∥

)
=

q

4πϵ0

[
1

R
−

(
1

R
+ d · ∇

1

R
+

1

2
(d · ∇)2

1

R
+ . . .

)]
=

q

4πϵ0

d ·R
R3

=
µB ·R
4πϵ0R3

. (6.2)

Then the electric field by µB at origin is

E = −∇ϕ = −
1

4πϵ0
ei

∂

∂xi

µBjxj

(xkxk)3/2

= −
1

4πϵ0
ei

[
µBjδij(xkxk)

3/2 − µBjxj · 3
2
(xlxl)

1/2 · 2δikxk
(xmxm)3

]

=
1

4πϵ0
ei

3(R · µB)RR− µBR
3

R6

=
µB

4πϵ0R3
[3(R̂ · µ̂B)R̂− µ̂B] (6.3)

using summation convention. Note a vector with a hat here means unit vector. Then finally, the interaction energy of
the two dipoles is

E = −E · µA =
1

4πϵ0R3

[
µA · µB −

3

R2
(R · µA)(R · µB)

]
. (6.4)
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where i ∈ {x, y, z}. All of these are zero since an atom has no permanent dipole moment in any
direction, so E(1)

0 = 0.

The second-order energy is

E
(2)
0 = −

∑
m ̸=0

∑
n ̸=0

∣∣∣〈00∣∣∣Ĥ(1)
∣∣∣mn〉∣∣∣2

E
(0)
A,m + E

(0)
B,n − E

(0)
A,0 − E

(0)
B,0

. (6.8)

Since Ĥ(1) contains three terms, the square in the numerator contains nine. However, all the cross
terms like

〈00|µ̂Aiµ̂Bi|mn〉 〈mn|µ̂Aj µ̂Bj |00〉 = 〈0A|µ̂Ai|mA〉 〈0B|µ̂Bi|nB〉 〈mA|µ̂Aj |0A〉 〈nB|µ̂Bj |0B〉 (6.9)

vanish, where i 6= j ∈ {x, y, z}. This is because we can reverse the direction of, say, axis i on atom
A, and this will change the sign of the expression. However, energy should be totally symmetric, so
it can only be zero. The only non-vanishing terms are

〈00|µ̂Aiµ̂Bi|mn〉 〈mn|µ̂Aiµ̂Bi|00〉 = 〈0A|µ̂Ai|mA〉 〈0B|µ̂Bi|nB〉 〈mA|µ̂Ai|0A〉 〈nB|µ̂Bi|0B〉 , (6.10)

where i ∈ {x, y, z}. Moreover, by spherical symmetry, this is the same for x, y and z, and we have 6
such terms in total (1 from x, 1 from y and 22 = 4 from z). This gives us the total expression

E
(2)
0 = − 6

R6

∑
m,n ̸=0

|〈0A|µ̂Az|mA〉|2 |〈0B|µ̂Bz|nB〉|2

(E
(0)
A,m − E

(0)
A,0) + (E

(0)
B,n − E

(0)
B,0)

. (6.11)

Since both the numerator and denominator are positive, the dispersion force is attractive and scales
as R−6.

Equation (6.11) resembles the polarisability, and we might expect that the strength of dispersion
energy would be related to the polarisability of the atom as they need to respond to the instantaneous
field generated by each other. However, the connection is not obvious to work out explicitly. We need
the seemingly arbitrary identity

2

π

ˆ ∞
0

dω
xy

(x2 + ω2)(y2 + ω2)
=

1

x+ y
. (6.12)

Putting x = ωm0 = E
(0)
A,m − E

(0)
A,0 and y = ωn0 = E

(0)
B,n − E

(0)
B,0, the equation becomes

E
(2)
0 = − 12

πR6

∑
m,n ̸=0

ˆ ∞
0

dω
ωm0 |〈0A|µ̂Az|mA〉|2 ωn0 |〈0B|µ̂Bz|mB〉|2

(ω2
m0 + ω2)(ω2

n0 + ω2)

= − 3

πR6

∑
m,n ̸=0

ˆ ∞
0

dω αA,zz(iω)αB,zz(iω) , (6.13)

where
αzz(iω) = 2

∑
n ̸=0

ωn0 |〈0|µ̂z|n〉|2

ω2
n0 + ω2

(6.14)

is the dynamic polarisability (5.57) with imaginary frequency.

The advantage of (6.13) is that it is formally exact and of practical use, since the polarisabilities
can be calculated both experimentally and computationally. The dispersion energy is often written
−C6/R

6, where the coefficient C6 is often treated as an empirical quantity. Equation (6.13), however,
allows us to compute it analytically.
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6.1.1 Drude–London Model (Non-examinable)

The dispersion interaction (6.13) simplifies to some even simpler form if we are willing to take
further approximations. London claimed that our expansion of dynamic polarisability with imaginary
frequency (6.14) can be approximated by a single term

α(iω) ≈ 2ω0 |µeff|2

ω2
0 + ω2

, (6.15)

where ω0 sits somewhere near the ionisation threshold of the atom,

ω0 ' I . (6.16)

The static polarisability is then obtained by taking ω = 0 (or by doing the same approximation to
(3.72))

α(0) ≈ 2 |µeff|2

ω0
. (6.17)

This allows us to write
α(iω) =

α(0)ω2
0

ω2
0 + ω2

. (6.18)

This is the Drude–London model.38 Plugging this into the integral (6.13) gives

E
(2)
0 = − 3

πR6

ˆ ∞
0

dω
αA(0)αB(0)ω

2
A0ω

2
B0

(ω2
A0 + ω2)(ω2

B0 + ω2)
. (6.21)

We can invoke the integral identity (6.12) again to get

E
(2)
0 = −3

2

ωA0ωB0

ωA0 + ωB0

αA(0)αB(0)

R6

= −3

2

IAIB
IA + IB

αA(0)αB(0)

R6
(6.22)

6.2 The Induction Energy

The situation would be much more complex for molecules. If the molecule possesses a permanent
dipole, then the first-order energy

E
(1)
0 =

〈
00
∣∣∣Ĥ(1)

∣∣∣00〉 , (6.23)

where
E

(1)
0 =

1

R3
(µ

(0)
Axµ

(0)
Bx + µ

(0)
Ayµ

(0)
By − 2µ

(0)
Azµ

(0)
Bz ) , (6.24)

is no longer zero. But since the interaction is now orientation-dependent, we need to integrate
over all possible relative orientations weighted by the corresponding Boltzmann factor since not all
orientations are equally probable and obtain a weighted average of interaction. This is too complicated
to deal with, so we will not do it here. We will quote the result:〈

E
(1)
0

〉
= − µ2

Aµ
2
B

kBTR3
. (6.25)

38It seems that we have done some crazy approximations that makes little sense, but there are some rationalisation
for this. If you have a classical Lorentz oscillator of charge q, mass m and natural frequency ω0 driven at imaginary
frequency iω, the equation of motion

mẍ+mω2
0x = qE0e

iωt (6.19)
gives

α(iω) =
q2/m

ω2
0 + ω2

=
α(0)ω2

0

ω2
0 + ω2

, (6.20)

where α(0) = q2/mω2
0 . Another rationalisation is the sum-rule (Slater–Kirkwood) matching, which is a lot more

complicated, and we will not explain it here.
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This is the thermal average of the interaction energy between two isolated dipoles, scaling as R−3.39

In the second-order energy, we should only exclude |m,n〉 = |0, 0〉 from the Rayleigh–Schrödinger
sum, but in the dispersion force of atom, (6.8), we have excluded all states with either m = 0 or
n = 0 since they evaluate to zero. The dispersion energy can be thought of as an interaction between
simultaneous excited states of two atoms. However, for polar molecules, terms of form

〈
00
∣∣∣Ĥ(1)

∣∣∣m0
〉

and
〈
00
∣∣∣Ĥ(1)

∣∣∣0n〉, where only one of the two species is excited, may be non-zero. It is therefore
conventional to separate the second-order energy into three contributions,

E
(2)
0 = Edisp + EA,ind + EB,ind , (6.27)

where

Edisp = −
∑
m ̸=0

∑
n ̸=0

∣∣∣〈00∣∣∣Ĥ(1)
∣∣∣mn〉∣∣∣2

E
(0)
A,m + E

(0)
B,n − E

(0)
A,0 − E

(0)
B,0

, (6.28)

EA,ind = −
∑
m ̸=0

∣∣∣〈00∣∣∣Ĥ(1)
∣∣∣m0

〉∣∣∣2
E

(0)
A,m − E

(0)
A,0

, (6.29)

EB,ind = −
∑
n ̸=0

∣∣∣〈00∣∣∣Ĥ(1)
∣∣∣0n〉∣∣∣2

E
(0)
B,n − E

(0)
B,0

. (6.30)

The dispersion term (6.28) is again the interaction between the instantaneous dipole of A and the
instantaneous dipole of B, but we now have two extra contributions. The induction terms (6.29) and
(6.30) are the interactions between permanent dipole of A with the instantaneous dipole of B, and
the permanent dipole of B with the instantaneous dipole of A, respectively.40

39This is not what happens in a bulk system where there are more than just two molecules. When interaction
strengths ≪ kBT , the orientations of the molecules would be isotropic, and this first order contribution will also vanish
as there will be on average as many alignments as misalignments of molecular orientations. In such case, the average
interaction between each pair of molecules would be

−
µ2Aµ

2
B

3kBTR6
, (6.26)

which again scales as R−6. This is known as the Keesom interaction.
40In a bulk system, the orientationally averaged induction interaction becomes what is known as the Debye force.

For a polar molecule A and non-polar molecule B, the interaction energy is given by

−
µ2AαB

R6
. (6.31)

Note that it also scales as R−6, and it is now temperature independent.
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7 Relativistic Effects

Everything we discussed so far ignores relativity, which refers to the breakdown of non-relativistic
mechanics when particles have relative speeds approaching the speed of light in vacuum. Special
relativity is the simpler theory of relativity, which deals with situations in which gravity is negligible.
This is almost always the case as far as chemistry is concerned since electromagnetic forces are orders
of magnitude larger than gravity.41 The incorporation of special relativity into quantum mechanics
is known as Quantum Field Theory (QFT), and it was first achieved by Dirac in 1927. As its name
suggests, quantum field theory is the quantisation of classical field theories, in which all the fields,
such as the electromagnetic field, are quantised. Moreover, elementary particles like electrons are also
thought of as ‘ripples’ on an ‘electron field’ spanning throughout the whole universe. This is a much
deeper subject, but it can be chemically significant — in particular, spontaneous emission can only
be explained by QFT.42

General relativity is much more complicated and the unification of quantum mechanics and general
relativity (known as quantum gravity) is still an important open question in theoretical physics.

Although chemists often ignore relativity, as you have previously seen in the IA inorganic
and materials chemistry course, relativistic effects are significant for heavy atoms. However, any
sufficiently precise prediction for any atom, including hydrogen, must include relativistic effects to be
accurate.

The Dirac equation, in the form originally proposed by Dirac, for a free electron is(
βmec

2 + c

3∑
n=1

αnp̂n

)
ψ(x, t) = iℏ

∂ψ(x, t)

∂t
. (7.1)

You can find a brief derivation of the Dirac equation in section G. This looks reminiscent to the
time-dependent Schrödinger equation, but with a few important differences. The wavefunction ψ
is no longer a scalar function, but a 4-component vector43, which corresponds to a spin-up and
spin-down electron, and a spin-up and spin-down positron. The operator in brackets on the left
replaces the non-relativistic Hamiltonian. αn and β are 4 × 4 matrices that obey certain symmetry
and commutation properties. me is the rest mass of the electron, c is the speed of light and p̂n is the
nth component of the momentum operator. To include the potential due to the hydrogen nucleus, we
add in the potential term(

βmec
2 + c

3∑
n=1

αnp̂n −
e2

4πϵ0r

)
ψ(x, t) = iℏ

∂ψ(x, t)

∂t
. (7.2)

The Dirac equation for free spin- 12 massive particle is often recast in a more compact form as(
iℏγµ∂̂µ −mc

)
ψ = 0 , (7.3)

where γµ is a set of 4 × 4 matrices formed from αn and β, known as the Dirac (gamma) matrices.
∂̂µ is the component of the 4-gradient (essentially ∇ with an extra zeroth dimension of time), and
Einstein summation applies to sum over the four components µ.

As gravity is completely negligible in chemical systems, exact solutions to the Dirac equation offer
a huge improvement over the non-relativistic Schrödinger equation. However, we already know that

41The electromagnetic force between two electrons can be written as a power series in the dimensionless fine
structure constant, α ≈ 1

137
, which characterises the strengths of electromagnetic forces. The corresponding parameter

characterising the strength of gravitational force is αG ∼ 10−45, which is much smaller. It is therefore always safe to
ignore gravitational interactions in chemical systems.

42If you are really interested in QFT (I hope you are not), you can check Prof. David Tong’s notes on Quantum Field
Theory, which is a Part III course for Mathematical Tripos. It takes him 4 chapters to arrive at Dirac’s equation, and
to have a firm grasp on it, you should probably also read his notes on Classical Dynamics and General Relativity as
prerequisites.

43Technically, a bispinor. It transforms in a slightly different way than vectors under rotation.
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the exact solutions to the Schrödinger equation are rare for chemical systems, the Dirac equation is
only even harder to deal with.

This leads to the famous claim of Paul Dirac.

“The underlying physical laws necessary for the mathematical theory of a large part of
physics and the whole of chemistry are thus completely known, and the difficulty is only
that the exact application of these laws leads to equations much too complicated to be
soluble.”

— Paul Dirac (1929), The quantum mechanics of many-electron systems.

Since Dirac’s claim, significant progress has been made in the field of numerical solutions,
particularly with the advent of fast digital computation, and it is no longer the case that Dirac’s
equation is too complicated to be (numerically) solvable. It is, however, still complicated to be
soluble using pen and paper.

Instead, to investigate the relativistic effect, we will use perturbation theory to add the terms
that arise from the non-relativistic limit of Dirac’s equation into Schrödinger equation as small
perturbations. Our main example would be hydrogen spectrum, the observations of which were
also historically a significant driver in the development of relativistic quantum mechanics.

7.1 Hydrogen Fine Structure

The Lyman-α line in the hydrogen spectrum is the n = 1 → 2 transition observed at around
121.57 nm. Using the familiar exact solution to the Schrödinger equation, we can predict that the
line should be observed at

hν = E2 − E1 = RH

(
1− 1

4

)
=

3

4
RH , (7.4)

where RH is the Rydberg constant.

There is actually a subtlety concerning this constant that is worth mentioning. The collection of
constants that emerge from the normal Schrödinger equation for the Rydberg constant is

R∞ =
mee

4

8ϵ20h
2
= 2.179 87× 10−18 J . (7.5)

Using this value, we will predict the Lyman-α line should appear at 121.50 nm, noticeably different
from the experimental value. The error arises from the Born–Oppenheimer approximation: we have
treated the nucleus as immobile, or equivalently having infinite mass (and hence the subscript ∞ in
the Rydberg constant). The hydrogen nucleus is indeed massive compared with the electron, but it
is only heavier by a factor of ∼ 1836. The error of this approximation is easily observable in accurate
spectroscopic measurement. Instead, we should replace the electron mass with the reduced mass of
the electron-proton system

µ =
memp

me +mp
≈ 0.999 455me , (7.6)

which gives the true Rydberg constant

RH =
µe4

8ϵ20h
2
= 2.178 69× 10−18 J . (7.7)

Using this value, we predict the Lyman-α line at 121.57 nm, in agreement with experiment.
Incidentally, this also implies that the line for deuterium should be at a slightly shorter wavelength
than hydrogen due to a slightly larger effective mass, appearing at 121.54 nm. This is actually how the
existence of deuterium was proved in 1931, surprisingly even slightly before the discovery of neutron
in 1932.
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Figure 12: Hα (n = 2 → n = 3) lines of hydrogen and deuterium. Each is shown to be a doublet.
Figure adapted from G.N. Lewis and F.H. Spedding, Phys. Rev. 43, 964 (1933).

Even in the late nineteenth century, the precision of UV spectrometers exceeds the one-hundredth
of a nm we have just quoted. This reveals some more surprising details in the hydrogen energy
levels. In 1887, after Michelson and Morley failed to detect ether drift using their high precision
interferometer, they turned their eye to investigate atomic spectra. They found that the hydrogen
spectral lines were not singlets as predicted by Schrödinger equation, but actually consisted of closely
spaced multiple components. This splitting, which is also later observed for other atomic spectra, is
called the fine structure of the spectrum. For example, Theodore Lyman observed that the Lyman-α
for hydrogen is split into a doublet, with lines at 121.5668 nm and 121.5674 nm. The fine structure
is a result of relativistic effects, and we will have a look at how relativity give rise to it.

7.1.1 Relativistic Kinetic Energy

The first relativistic contribution is the easiest to understand. It arises from the relativistic correction
to the kinetic energy. Classically, the non-relativistic kinetic energy is

T =
p2

2m
, (7.8)

where p = mv is the classical non-relativistic momentum. However, in special relativity, the kinetic
energy is given by

T = (γ − 1)mc2 . (7.9)
Written in terms of the (relativistic) canonical momentum p, this is

T =
√
p2c2 +m2c4 −mc2

= mc2

(√
1 +

p2

m2c2
− 1

)
. (7.10)

Expanding for |p| � mc gives44

T =
p2

2m
− p4

8m3c2
+ . . . (7.11)

The first term is just the non-relativistic kinetic energy, and the second term is the relativistic
correction to the leading order. Therefore, for a hydrogen atom, we use perturbative Hamiltonian45

Ĥ
(1)
T = − p̂4

8µ3c2
. (7.12)

44Here p denotes the relativistic canonical momentum, represented in QM by −iℏ∇. In the non-relativistic limit
this coincides with mv, but in the relativistic regime p = γmv. That is why we expand T in powers of relativistic
momentum p rather than non-relativistic momentum mv.

45The official handout is again being rather loose here and directly set µ = me = 1 in atomic units.
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This term is the first of our three relativistic corrections, and we use a subscript T to stand for the
kinetic contribution to the relativistic correction. The first-order perturbation to the energy is46

E
(1)
T,nℓm =

〈
n, ℓ,m

∣∣∣Ĥ(1)
T

∣∣∣n, ℓ,m〉 = − 1

8µ3c2
〈
n, ℓ,m

∣∣p̂4
∣∣n, ℓ,m〉 . (7.13)

We can obtain a general expression of this by some algebraic manipulations. The Schrödinger equation
of the reference Hamiltonian gives(

p̂2

2µ
− 1

r

)
|n, ℓ,m〉 = E(0)

n |n, ℓ,m〉 (7.14)

p̂2 |n, ℓ,m〉 = 2µ

(
1

r
+ E(0)

n

)
|n, ℓ,m〉 (7.15)

in atomic units, where E(0)
n = − µ

2n2 is the non-relativistic energy of state |n, ℓ,m〉 of hydrogen atom.47

Therefore,

E
(1)
T,nℓm = − 1

8µ3c2
〈
n, ℓ,m

∣∣p̂2p̂2
∣∣n, ℓ,m〉

= − 1

2µc2

(
µ2

4n4
− µ

n2

〈
1

r

〉
+

〈
1

r2

〉)
. (7.16)

For hydrogen orbital, it can be shown that48〈
1

r

〉
=

µ

n2
, (7.17)〈

1

r2

〉
=

µ2

n3
(
ℓ+ 1

2

) . (7.18)

Combining all these, we get
E

(1)
T,nℓm = − µ

8n4c2

(
4n

ℓ+ 1
2

− 3

)
. (7.19)

7.1.2 Spin-Orbit Coupling

Due to its spin, an electron has a magnetic dipole moment. Since the electron is moving around the
nucleus, from the perspective of the electron, the nucleus is also moving around the electron, so the
electron is effectively experiencing a magnetic field. The magnetic dipole moment of the electron can
interact with the magnetic field, and the Hamiltonian of this perturbation is49

Ĥ
(1)
SO =

1

2µ2c2
l̂ · ŝ
r3

, (7.24)

46One might be worrying about the degeneracies. Note that our system is rotationally invariant, so in particular
[Lz , Ĥ

(1)
T ] = 0 and [L2, Ĥ

(1)
T ] = 0. Therefore

〈
n, ℓ′,m′

∣∣∣Ĥ(1)
T

∣∣∣n, ℓ,m〉
= 0 unless both ℓ′ = ℓ and m′ = m. Thus our

perturbation does not mix degenerate states of the gross structure, so non-degenerate perturbation theory is sufficient.
47You might be more familiar with the energy E(0)

n = − 1
2n2 , but this is under Born–Oppenheimer approximation.

48The first result is obvious from the virial theorem, which states that for a potential V (r) = ark, we have 2 ⟨T ⟩ =
k ⟨V ⟩, and so for the Coulomb potential,

〈
1
r

〉
= −⟨V ⟩ = −2E

(0)
n . The second result can also be evaluated using some

tricks of defining an effective potential. See my notes on Principles of Quantum Mechanics.
49The magnetic dipole moment of the electron is given by

m = −
gs

2µ
s , (7.20)

where gs is the electron g factor. It is exactly 2 in Dirac’s theory, but in quantum field theory (and in reality), it takes
the value gs ≈ 2.002 319 . . . due to an effect called anomalous magnetic dipole moment. When placed in a magnetic
field, this magnetic dipole will have an energy U = −m · B. If the electron has velocity v = p/µγ, then classically
the Lorentz transformation of the electric field generated by the nucleus gives the magnetic field experienced by the
electron

B =
γ

c2
v ×E =

1

µc2
p×

(
−

r̂

r2

)
=

1

µc2r3
l . (7.21)
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and so the first-order change in the energy is

E
(1)
SO,nℓm =

1

2µ2c2

〈
l̂ · ŝ
〉〈 1

r3

〉
. (7.25)

We have50 〈
1

r3

〉
=

µ3

n3ℓ(ℓ+ 1
2 )(ℓ+ 1)

. (7.26)

Next, to evaluate the spin-orbit expectation, we introduce the total angular momentum operator
ȷ̂ = l̂ + ŝ. The reference wavefunctions are eigenfunctions of l̂

2
and ŝ2 with eigenvalues ℓ(ℓ + 1)

and s(s + 1) = 3
4 respectively, and are also eigenfunctions of ȷ̂2 with eigenvalues j(j + 1). j is the

quantum number for the magnitude of the total angular momentum with possible values given by the
Clebsch–Gordan series

j ∈ {ℓ+ s, ℓ+ s− 1, . . . , |ℓ− s|} . (7.27)

Since s = 1
2 , the series reduces to

j =

{
ℓ± 1

2 ℓ 6= 0
1
2 ℓ = 0

. (7.28)

Since 〈
ȷ̂2
〉
=
〈
(̂l+ ŝ)2

〉
=
〈
l̂
2
〉
+
〈
ŝ2
〉
+ 2

〈
l̂ · ŝ
〉
, (7.29)

we have 〈
l̂ · ŝ
〉
=

1

2

(〈
ȷ̂2
〉
−
〈
l̂
2
〉
−
〈
ŝ2
〉)

=
1

2

(
j(j + 1)− ℓ(ℓ+ 1)− 3

4

)
. (7.30)

Putting these together, we have the spin-orbit coupling energy

E
(1)
SO,nℓm;j =

µ

4c2
j(j + 1)− ℓ(ℓ+ 1)− 3

4

n3ℓ(ℓ+ 1
2 )(ℓ+ 1)

. (7.31)

7.1.3 The Darwin Term

The third relativistic term is the Darwin term51 and is somewhat more mysterious in origin. It
has various interpretations, including a small rapid oscillation of the electron (zitterbewegung) near
the nucleus, a small mixing with the positron component of the wavefunction, or the effect of
spontaneously appearing and annihilating electron-positron pairs. Regardless of the origin, it is a
perturbation to the potential energy and has the form

Ĥ
(1)
D =

π

2µ2c2
δ(3)(r) , (7.32)

This contributes
gs

2µ2c2
l · s
r3

(7.22)

to the energy, and is known as the Larmor interaction. There is another complicated effect called Thomas precession,
which reduces the energy by l · s/2µ2c2r3. Therefore, the total interaction energy is

U =
(gs − 1)

2µ2c2r3
l · s ≈

1

2µ2c2r3
l · s (7.23)

using the approximate value gs = 2 (ignoring QFT effects).
50This can also be calculated using effective potential. See Principles of Quantum Mechanics.
51This is due to Charles Galton Darwin (1887-1962), not the more famous Charles Robert Darwin (1809-1882).
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where δ(3)(r) is the 3D Dirac delta. Since it only picks out the value of a function at the origin in an
integral, only orbitals non-zero at the origin will be affected, which is only the s orbitals. For ℓ 6= 0,
the first-order energy is zero. For s orbitals, the values of their wavefunctions at origin are

ψ
(0)
n00(0) =

√
µ3

n3π
, (7.33)

giving a Darwin contribution

ED,nℓm =
π

2µ2c2

∣∣∣ψ(0)
n00(0)

∣∣∣2 δℓ0 =
µ

2c2n3
δℓ0 . (7.34)

7.1.4 Total Effect

If we combine the three first-order relativistic corrections for hydrogen, we get the total expression

E
(1)
nj = E

(1)
T + E

(1)
SO + E

(1)
D

= − µ

2c2n4

(
n

j + 1
2

− 3

4

)
=
E

(0)
n

c2n2

(
n

j + 1
2

− 3

4

)
. (7.35)

Note that the ℓ-dependence has magically disappeared, and the energy is now only dependent on n
and j. The first order energy here is always negative, so the relativistic correction is a decrease in
energy.

As with much of spectroscopy, measurements and fitting were carried out before the theory had
existed to explain the observations. For historical reasons, (7.35) is often written as

E
(1)
nj =

E
(0)
n α2

n2

(
n

j + 1
2

− 3

4

)
, (7.36)

where α is the fine-structure constant. In atomic units, it is

α =
1

c
≈ 1

137
. (7.37)

Since α is dimensionless, it is the same number in real units

α =
e2

4πϵ0ℏc
≈ 1

137
. (7.38)

We can now calculate the magnitudes of the relativistic corrections to the hydrogen energy levels
n = 1 and n = 2 and predict the observed fine-structure for the Lyman-α line. Using the expressions
derived above, we predict the two Lyman-α lines to be spaced by 0.54 pm in wavelength. The
experimental value is 0.60 pm. We have accounted for a large proportion of this shift.

There are many remaining sources of error. The exact solution of Dirac’s equation for a hydrogenic
atom gives

Enj = mc2

1 +
 Zα

n− j − 1
2 +

√
(j + 1

2 )
2 − (Zα)2

2

−1/2

. (7.39)

Expanding in Zα gives

Enj = mc2
(
1− (Zα)2

1

2n2
+ (Zα)4

(
3

4n
− 2

2j + 1

)
1

2n3
+ . . .

)
. (7.40)
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Figure 13: The relativistic and non-relativistic pictures of the hydrogen energy levels. The graph is
to scale, only with the huge spacing between the n = 1 and n = 2 levels shortened — otherwise this
gap alone would span roughly 4500 pages at this scale. The fine structure is indeed a tiny effect!

The first term is the rest mass energy of the electron. The second term is the usual non-relativistic
hydrogen binding energy, while the third term is the fine-structure corrections that we have laboriously
computed above. The higher order terms contribute a large part of our error.

The remaining error comes from QFT effects. In particular, there is a very small difference of
0.03 cm−1 between the S and P levels with n = 2 and j = 1

2 , in the order of α5 ln 1/α, while we
(as well as Dirac equation) predicted them to be degenerate. This is known as the Lamb shift, and
it was only accurately measured in 1947, winning a Nobel prize in 1955. The Lamb shift cannot be
understood using the kind of single-particle quantum mechanics that we’re discussing in this course.
It is caused by quantum fluctuations of the electromagnetic field and needs the full machinery of
quantum field theory, specifically quantum electrodynamics, or QED for short. It is a really tiny
effect, but historically, the experimental discovery of the Lamb shift was one of the prime motivations
that led people to develop the framework of quantum field theory.

“Those years, when the Lamb shift was the central theme of physics, were golden years
for all the physicists of my generation. You were the first to see that this tiny shift, so
elusive and hard to measure, would clarify our thinking about particles and fields.”

— Freeman Dyson (1978), on Lamb’s 65th birthday.

7.1.5 Hyperfine Structure

Both the fine structure corrections and the QED corrections above treat the nucleus of the atom as
a point-like object. This means that, although the corrections are complicated, the problem always
has rotational symmetry. In reality, however, the nucleus has structure. This structure affects the
atomic energy levels, giving rise to what is called hyperfine structure. The most important effects
come from the fact that the nucleus also carries a magnetic dipole moment. We denote the spin
angular momentum of the nucleus as I, then the hyperfine structure will depend on the total angular
momentum of the whole atom, including the nucleus, F = I+J. It is of the order α2me/M , where M
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Figure 14: Experimental data of the hyperfine splitting of the n = 1 and n = 2 levels, drawn to scale.
The different F levels are drawn with different colors to emphasise their difference.

is the mass of the nucleus, so it is further depressed by a factor of electron-nucleus mass ratio than
the fine structure.

Since the hydrogen nucleus (a proton) has I = 1
2 , each fine-structure level of some J value will be

further split into two levels, F = J + 1
2 and F = J − 1

2 . For n = 1, the F = 1 and F = 0 states are
only separated by 5.88× 10−6 eV, corresponding to an electromagnetic wavelength of 21 cm.

Although this effect is small, the 21 cm line provides the most powerful way of tracing diffuse gas
in interstellar and intergalactic space. This wavelength is much longer than the size of typical specks
of dust, so 21 cm radiation can propagate with little absorption right through clouds of dust and gas
that do absorb visible light. It was this radiation that first revealed the large scale structure of our
galaxy. The line is intrinsically very narrow, so the temperature and radial (with the Earth as origin)
velocity of the hydrogen that emitted the radiation can be accurately measured from the Doppler
shift and broadening of the observed spectral line.

7.2 Larger Atoms

7.2.1 Hydrogenic Atoms

If we repeat our analysis with a hydrogenic atom of nuclear charge Z, we would find that the leading
relativistic correction is

E
(1)
nj =

E
(0)
n Z2α2

n2

(
n

j + 1
2

− 3

4

)
(7.41)

from which we see that the magnitude of the relativistic correction increases as the fourth power of
Z (since there is a Z2 within E

(0)
n ). Or we could say that the energy corrected to first-order is

Enj = E(0)
n

(
1 +

Z2α2

n2

(
n

j + 1
2

− 3

4

))
. (7.42)

We can derive an approximated form of this dependence using an approximate argument stated in
Part IA IMC. Using a completely classical model, the orbiting speed of electron around the nucleus
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is ≈ Zc/137 ≈ Zcα. The effective relativistic mass of the electron is therefore

m∗e = γme =
me√

1− Z2α2
. (7.43)

Replacing this with me in the definition of the Rydberg constant gives52

R∗H ≈
RH√

1− Z2α2
. (7.44)

Taking the first order expansion gives

En = E(0)
n

(
1 +

Z2α2

2

)
, (7.45)

which gives the correct dependence on Z and α, although it naturally misses the subtleties regarding
n and j.

7.2.2 Terms and Levels for Real Atoms

Real atoms include interactions between electrons and a full exact relativistic (or even non-relativistic)
treatment become analytically impossible. We will have a brief qualitative analysis of what is
happening.

We start by specifying the configuration for electrons in an atom. The configuration places
electrons into hydrogenic orbitals from the orbital approximation. Due to coulombic interactions
between electrons, they exchange angular momentum, and so it is no longer possible to specify an ℓ and
s value for each electron. What we can do is to specify the total quantum number L and S for the total
angular momentum over all electrons. Each such combination is called a term. The electron-electron
repulsion means different terms within the same configuration generally have different energies. Then
relativistic effects, or spin-orbit coupling in particular, allow exchange between L and S, making
them no longer well-defined as well. We can only specify the total angular momentum J . Individual
states with a particular J are called levels. As long as the splitting from spin-orbit coupling is small
compared to the energy difference between terms, we can treat this effect as a small perturbation to
the terms and we can still specify the L and S from which each level originates.53

This is illustrated for the ground state carbon atom in figure 15. We first couple individual l and
s using Clebsch–Gordan series to give the L and S values. This will give all the terms. Then, we
again use the Clebsch–Gordan series to couple L and S to give the possible J values for each term,
giving the levels.

7.2.3 The Clebsch–Gordan Series

The easiest way to derive the Clebsch–Gordan series is to consider the direct products of the irreducible
representations of the full rotation group. This is explained in B8: Symmetry.

Here, we will work it out in a more explicit way. Suppose there are two angular momenta
with quantum numbers L and S, and call the result of their coupling J . These quantum numbers
correspond to the magnitudes of vectors, so cannot be directly added, because in general ‖a‖+‖b‖ 6=
‖a+ b‖. What can be added are their z components, ML and MS . Following the usual rules of the
rigid rotor, ML takes values from L to −L in integer steps, so there are 2L+ 1 such values, and the
equivalent for MS . Therefore there must be (2L + 1)(2S + 1) values of MJ . The largest possible

52Our argument here is too crude to even concern the difference between RH and R∞, so we simply take RH ≈ R∞ ∝
me.

53Actually J and I also couple to give hyperfine structures as described above. However, this is too weak and we
usually ignore them.
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Figure 15: Terms and levels of the carbon ground state configuration.

value of MJ is from the addition of the maximum values of MS and ML, so L+ S. There must be a
J = L + S level to which this MJ state belongs. This J level has other states, in fact 2(L + S) + 1
in total, so there are 4LS states remaining unaccounted for. Now consider MJ = L + S − 1: there
are two such states, as we could have ML = L − 1 and MS = S, or we could have ML = L and
MS = S − 1. One of those states is associated with the J = L+ S level, leaving the other to belong
to a J = L+ S − 1 level, the next term in the Clebsch–Gordan series. 2(L+ S − 1) + 1 states belong
to this level. If we iterate this procedure, keeping track of the number of states accounted for, we run
out of states after including the J = |L− S| level.

One question remains concerning the allowed terms in figure 15: why do we not have 1P , 3D and
1S terms? The answer lies with the Pauli exclusion principle: when we consider the allowed values
of individual ml and ms, we cannot have two electrons with the same ml and ms values. There
are two approaches to deciding which combinations of L and S are allowed. The simplest is to keep
track of which L and S come from the symmetrised and antisymmetrised product, and only match a
symmetrised L with an antisymmetrised S, and vice versa, which is what we did in B8: Symmetry.
An alternative and more laborious procedure is to consider every possible combination of ms and ml

and the ML and MS they result in. Then infer which combinations of L and S give rise to the set of
ML and MS states you have generated.

7.2.4 Hund’s Rules

Hund’s rules allow us to determine the ground state term and level.

Theorem 7.1 (Hund’s rules).

1. the ground term is the one with the highest S;

2. if two or more terms have the same maximum S, the ground state is the one with the highest
L;

3. if the shell is less than half-full, the ground state level is the one with the lowest J , and if the
shell is more than half-full, the ground state level is the one with the highest J .

The justification for Hund’s first rule lies with Fermi holes and has been described previously.
Hund’s second rule can be justified by the classical analogy of orbiting electrons. Maximising L
means that the ml of individual electrons are, as far as possible, aligned, so they are ‘orbiting in the
same direction’. Two electrons orbiting in the same direction will ‘approach each other’ less frequently
than those orbiting in opposite directions, so the average repulsion is reduced.
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Figure 16: The ordering of the excited Mg violates the Hund’s rules due to configuration interaction.

For Hund’s third rule, consider that maximising J would mean maximising ML and MS , so
aligning L and S as far as possible. Remembering that spin-orbit coupling is a magnetic interaction,
this arrangement corresponds to aligning two magnets, which is higher energy than opposing them.
Therefore the lower J value is lower energy. If the shell is half full, then the ground state term must
have L = 0, so there is only one level and no decision to make. If the shell is more than half full,
consider instead a shell that is less than half full of holes. We can apply the exact same reasoning
to the holes as for the electrons, but now maximising the energy of the holes means minimising the
energy of the electrons, so the rules reverse.

As you can tell, our above arguments are rather qualitative. This is because there is no rigorous
proof of Hund’s rules as they are not rigorously true and exceptions exist. They tend to work well
for predicting the ground state level of the ground state configuration, but should not be trusted
for ordering beyond that. The classic example of an exception is for the excited configuration of
Mg 3s13d1. For this configuration, we find terms 3D and 1D and Hund’s first rule predicts that the
3D term is lower in energy. The opposite is observed: the 1D is lower in energy. The origin of the
problem is that configurations are not a real thing (they arise from the orbital approximation) and
when we apply electron-electron repulsion, the perturbation can cause a mixing of the configurations,
an example of nearly degenerate perturbation theory. Here, the 3p2 configuration lies not much
higher in energy and gives rise to a 1D term, but not a 3D term. The 1D terms from the two
configurations mix and the resultant terms contain some contribution from both configurations. As
ever with two-state mixing, the lower energy term is lowered and the higher energy term is raised.
Mixing like this always happens, but the only question that matters qualitatively is whether it is
strong enough to change the order of the terms.

7.2.5 jj Coupling

At the start of this section we said ‘as long as the splitting from spin-orbit coupling is small compared
to the energy difference between terms…’. This regime is called ‘LS coupling’ or ‘Russell–Saunders
coupling’. The assumption is that L and S are reasonably well-defined and the spin-orbit coupling is
a small perturbation. If we had included the nuclear charge in (7.31), we would have

E
(1)
SO,nℓm;j =

Z4

4c2
j(j + 1)− ℓ(ℓ+ 1)− 3

4

n3ℓ(ℓ+ 1
2 )(ℓ+ 1)

. (7.46)

The factor Z4 shows that the magnitude of the spin-orbit coupling increases rapidly with Z, and
when we arrive at around Lanthanoids, the electron-electron repulsions and spin-orbit coupling are
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Figure 17: A qualitative correlation diagram showing the levels in the np2 ground state configurations
of C and Pb.

about the same magnitude, making the idea of treating spin-orbit coupling as a small perturbation
no longer appropriate. As we further increase Z, the spin-orbit coupling would be so large that the
Coulombic splitting between terms to be small compared to the spin-orbit splitting between levels.
By then, we should use a different scheme, called jj coupling. There is no hard cutoff between LS
coupling and jj coupling, as in between both effects are similar in magnitude. Beyond about gold we
are safely in the jj coupling regime.

To apply jj coupling, first we generate an individual j for each electron, using the Clebsch–
Gordan series to couple the l and s of each electron. Then the individual j are then coupled using
the Clebsch–Gordan series to generate the overall J possibilities.

Example. Consider the ground state configuration of Pb, 6p2 as an example. As with Russell–
Saunders coupling, all full shells have zero angular momentum so can be ignored. Each individual
electron has l = 1 and s = 1

2 , so for each electron the possibilities for j are 1
2 and 3

2 . Then we have
several ways of combining to get J values. The Clebsch–Gordan series suggests that for ( 12 ,

1
2 ) then

J = 0, 1; for ( 32 ,
1
2 ) then J = 1, 2; and for ( 32 ,

3
2 ) then J = 0, 1, 2, 3. Evaluating the degeneracies of

each of these levels (2J + 1) and summing gives 30 states, and yet we know that there should be 15
states: 6 ways to place the first electron, 5 ways to place the second, and the order doesn’t matter.
This is because we have omitted the Pauli principle, which is relevant because both electrons are in
the same shell.

The statement of the Pauli principle in jj coupling is that electrons in the same shell with the
same j values must have different mj values. As with Russell–Saunders coupling, we can list all the
possible combinations of mj values, generate the list of MJ values by addition, and then infer the J
levels that give rise to them. Doing so removes the J = 1 level from the ( 12 ,

1
2 ) set leaving only J = 0.

It also removes the J = 3 and J = 1 levels from the ( 32 ,
3
2 ) set, leaving the J = 0 and J = 2 levels.

This has no effect on the ( 32 ,
1
2 ) levels as the electrons have different values of j. Overall then, we

have J = 0, 0, 1, 2, 2, for the expected total of 15 states.

Hund’s third rule still applies and we can suggest that sets with smaller j values will be lower in
energy. In the absence of Coulombic effects, the different J values from the same (j1, j2) set would
have the same energies, but treating the Coulombic effect as a small perturbation, the levels will split.
Quite which way is not easy to see, as we need to apply Hund’s first and second rules but we have not
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worked out S and L. We make the observation that there must be a continuous and smooth change
from the carbon levels to the lead levels as Z increases, with J staying unchanged, so we can correlate
the levels between the two situations. States with the same J are also subject to an avoided-crossing
rule, so we can unambiguously decide which level ends up where. The correlation diagram is shown
in figure 17. The diagram implies that even when we are in the jj coupling regime, levels can be
labelled with their Russell–Saunders term symbols. Although on the jj side, both J = 2 levels, for
example, will have a significant contribution from both 3P and 1D.
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Appendices

A Convergence of Perturbation Series

We began our study of perturbation theory by assuming that the states and energy spectrum of the
full Hamiltonian depend analytically on a dimensionless parameter λ controlling the perturbation.
Even when the individual coefficients of powers of λ are finite, this is often not the case because the
infinite perturbative series itself may fail to converge, or may converge only for some range of λ. The
issue is that the coefficients of λ may grow too rapidly. Heuristically, the condition for convergence
is thus that the typical energy splitting

〈
m
∣∣H(1)

∣∣n〉 induced by the perturbation should be much
smaller than the initial energy difference Em − En. However, a detailed criterion is often hard to
come by since the higher terms in the perturbation expansion involve complicated sums (or integrals)
over many different intermediate states.

To illustrate this in a simple context, let’s consider in turn the following three perturbations of a
1D harmonic oscillator potential

Ĥ =
p̂2

2m
+

1

2
mω2x2 +


−λmω2x0x

+ 1
2λmω

2x2

+λϵx4 ,

(A.1)

where x0 and ϵ are constants. Of course, the first two can be solved exactly — we’d never really use
perturbation theory to study them.

In the first case, we have

Ĥ =
p̂2

2m
+

1

2
mω2(x− λx0)2 −

λ2

2
mω2x20 , (A.2)

from which we easily see that the exact energies are

En(λ) =

(
n+

1

2

)
ℏω − λ2

2
mω2x20 (A.3)

with corresponding position space wavefunction 〈x|nλ〉 = 〈x− λx0|n〉 just a translation of the usual
harmonic oscillator wavefunction 〈x|n〉. If we instead tackled this problem using perturbation theory,
we’d find

En(λ) = En − λmω2x0 〈n|x|n〉+ λ2m2ω4x20
∑
k≠n

|〈k|x|n〉|2

(n− k)ℏω
+O(λ3)

=

(
n+

1

2

)
ℏω − λ2

2
mω2x20 +O(λ3) . (A.4)

To obtain this result, we note that the first-order term vanishes (e.g. by symmetry), while since x is a
linear combination of creation and annihilation operators â† and â, only the k = n+1 and k = n− 1
terms can contribute to the sum in the second-order term. Going further, we’d find that there are no
higher corrections in λ — the O(λ3) terms are in fact zero — though this is not easy to see directly.
Thus, in this case, the perturbative result converges to the exact result, and the radius of convergence
is infinite. This reflects the fact that the perturbation −λmω2x0x didn’t really change the character
of the original Hamiltonian. No matter how large λ is, for large enough x the perturbation remains
negligible.

Turning to the second case, it’s again immediate that the exact energy levels are

En(λ) =

(
n+

1

2

)
ℏω(λ) , (A.5)
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where ω(λ) = ω
√
1 + λ is the modified frequency. Viewing as a complex function, it has a branch

cut starting at λ = −1, so the energy is only analytic in the disc |λ| < 1. Again using perturbation
theory, we find

En(λ) = En +
λ

2
mω2

〈
n
∣∣x2∣∣n〉+ λ2

4
m2ω4

∑
k ̸=n

∣∣〈k∣∣x2∣∣n〉∣∣2
(n− k)ℏω

+O(λ3)

=

(
n+

1

2

)
ℏω
(
1 +

λ

2
− λ2

8
+O(λ3)

)
, (A.6)

agreeing to this order with the Taylor expansion of the exact answer. Continuing further, we’d find
that this Taylor series does indeed converge provided |λ| < 1, and that it then converges to the exact
answer. The physical reason why the perturbation series diverges when |λ| ≥ 1 is simply that if
λ = −1, the ‘perturbation’ has completely cancelled the original harmonic oscillator potential, so we
are no longer studying a system that can be treated as a harmonic oscillator in the first instance.
Once λ < −1 the harmonic oscillator potential is turned upside down, and we do not expect our
system to possess any stable bound states.

Finally, consider the case
Ĥ = Ĥ(0) + λϵx4 . (A.7)

I do not know whether this model has been solved exactly, but it can be treated perturbatively. After
a fair amount of non-trivial calculation54 one obtains the series

E0(λ) =
1

2
ℏω +

∞∑
n=1

(λϵ)nan (A.8)

for the ground state energy including the quartic interaction, where the coefficients behave as

an =
(−1)n+1

√
6

π3/2
3nΓ

(
n+

1

2

)(
1− 95
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n
+O(n−2)

)
. (A.9)

On account of the Γ-function, these grow factorially with n, so the series (A.8) has radius of
convergence λ = 0. Once again, this is easy to see from the form of the perturbed Hamiltonian:
even though we may only care about λ > 0, our assumption that the perturbation expansion is
analytic in λ at λ = 0 means that, if it converges, it will do so for a disc λ ∈ D ⊂ C. For any
λ ∈ R<0, the Hamiltonian of the quartic oscillator is unbounded below, so there cannot be any stable
bound states that are analytic in λ at λ = 0.

Let me comment that even when perturbative series do not converge, they may still provide very
useful information as an asymptotic series. Briefly, we say a series SN (λ) =

∑N
n=0 anλ

n is asymptotic
to an exact function S(λ) as λ→ 0+ (written SN (λ) ∼ S(λ) as λ→ 0+) if

lim
λ→0+

1

λN

∣∣∣∣∣S(λ)−
N∑
n=0

anλ
n

∣∣∣∣∣ = 0 . (A.10)

In other words, if we just include a fixed number N of terms in our series, then for small enough λ ≥ 0
these first N terms differ from the exact answer by less than ϵλN for any ϵ > 0 (so the difference is
o(λN )). However, if we instead try to fix λ and improve our accuracy by including more and more
terms in the series, then an asymptotic series will eventually diverge. Most of the perturbative series
one meets in the quantum world (including most Feynman diagram expansions in the fancy quantum
field theory) are only asymptotic series. Just as in our toy examples above, the radius of convergence
of such series is often associated with interesting physics.

54You can find the details in Bender, C. and Wu, T.T., Anharmonic Oscillator II: A Study of Perturbation Theory
in Large Order, Phys. Rev. D7, 1620-1636 (1973)
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B Wigner’s 2n+ 1 Theorem

Let’s first reformulate our problem a little bit. We know that the energy of a normalised state ψ is
given by the expectation value of the Hamiltonian E =

〈
ψ
∣∣∣Ĥ∣∣∣ψ〉. This allows us to consider the

energy as a functional
E[ψ, λ] =

〈
ψ
∣∣∣Ĥ∣∣∣ψ〉 =

〈
ψ
∣∣∣Ĥ(0) + λĤ(1)

∣∣∣ψ〉 . (B.1)

For example, in the unperturbed situation where λ = 0, the ground state energy is given by the
minimum of the energy functional

Emin = E[ψ
(0)
0 , 0] , (B.2)

where ψ(0)
0 is the ground state wavefunction of the unperturbed Hamiltonian. By the Rayleigh–Ritz

variational principle, all eigenstates of the Hamiltonian Ĥ are the stationary values of the energy
functional. Therefore, to find the kth eigenstate of Ĥ for any λ, we can write ψk = ψ

(0)
k +∆ψk, and

find the ∆ψk which satisfies
∂E[ψ

(0)
k +∆ψk, λ]

∂(∆ψk)
= 0 , (B.3)

and then the eigenvalue (energy) will be given by Ek(λ) = E[ψ
(0)
k +∆ψk, λ]. From now on, we will

drop the subscript k to refer to any eigenstate. If the perturbation λ is small, then we can expand
the eigenstates and the eigenvalues as a Taylor series (as what we did in the normal perturbation
theory)

∆ψ =

∞∑
n=1

1

n!

∂nψ

∂λn

∣∣∣∣
λ=0

≡
∞∑
n=1

ψ(n)λn (B.4)

E =

∞∑
n=0

1

n!

∂nE

∂λn

∣∣∣∣
λ=0

≡
∞∑
n=0

E(n)λn . (B.5)

Then what we want to claim is that we only need to know ψ(i) for i = 1, . . . , n to calculate E(2n+1).
Before proving this, we need some preparations.

First, let’s expand the functional E[ψ(0) +∆ψ, λ] in both ∆ψ and λ. We get the double series

E = E[ψ(0) +∆ψ, λ] =

∞∑
k=0

∞∑
p=0

1

k!

1

p!

δk+pE[ψ(0) +∆ψ, λ]

δ(∆ψ)kδλp

∣∣∣∣
∆ψ=0,λ=0

(∆ψ)kλp . (B.6)

Then for ψ = ψ(0) +∆ψ to be an eigenstate, we need to set ∂E[ψ(0) +∆ψ, λ]/∂(∆ψ) to zero, which
is evaluated as

∂E[ψ(0) +∆ψ, λ]

∂(∆ψ)
=

∞∑
k=1

∞∑
p=0

1

(k − 1)!

1

p!

δk+pE[ψ(0) +∆ψ, λ]

δ(∆ψ)kδλp

∣∣∣∣
∆ψ=0,λ=0

(∆ψ)k−1λp . (B.7)

For simplicity, we denote

f (p) :=

∞∑
k=1

1

(k − 1)!

1

p!

δk+pE[ψ(0) +∆ψ, λ]

δ(∆ψ)kδλp

∣∣∣∣
∆ψ=0,λ=0

(∆ψ)k−1 , (B.8)

and so the above expression reduces to

∂E[ψ(0) +∆ψ, λ]

∂(∆ψ)
=

∞∑
p=0

f (p)λp = 0 . (B.9)

For this to hold for all λ, we must have f (p) = 0 for all p.
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Next, let’s have a closer look at our energy expansion

E =

∞∑
n=0

E(n)λn =

∞∑
k=0

∞∑
p=0

ckp(∆ψ)
kλp (B.10)

for some complicated coefficients ckp given in (B.6). Here we can use the series expansion (B.4) for
∆ψ

∆ψ =

∞∑
n=1

ψ(n)λn (B.11)

so that

E =

∞∑
n=0

E(n)λn =

∞∑
k=0

∞∑
p=0

ckp

( ∞∑
n=1

ψ(n)λn

)k
λp (B.12)

Now consider the terms contributing to E(2n+1)λ2n+1 in the above expansion. We claim that the
terms must be linear in ψ(G)λG for all G > n. This is because if there is any quadratic (or above)
term, then

E(2n+1)λ2n+1 ∼ [ψ(G)λG]2
∞∑
p=0

λp = ψ(G)2 λ2G
∞∑
p=0

λp︸ ︷︷ ︸
λ2n+2 or higher

. (B.13)

The power of λ is at least 2n+2, so it cannot contribute to E(2n+1)λ2n+1. Then, we can write (∆ψ)k

in the following way:

(∆ψ)k =

[
k∑

n=1

ψ(n)λn

]k
= [ψ(1)λ+ ψ(2)λ2 + · · ·+ ψ(G)λG + . . . ][ψ(1)λ+ ψ(2)λ2 + . . . ] . . .

=

nk∑
a=k

P (a)(ψ(1), ψ(2), . . . , ψ(n))λa + kψ(G)λG(∆ψ)k−1 + [higher order terms.] (B.14)

The first term is a polynomial P of ψ(1) up until ψ(n), coming from picking a lower-than-ψ(n)λn term
from each of the square brackets in the first line. The second term pulls out a single ψ(G)λG from
one of the brackets, and there should be k terms like that. Technically this term is at least linear
in ψ(G)λG, since (∆ψ)k−1 will certainly contain ψ(G)λG in each factor of ∆ψ, but this expansion is
good enough to prove what we want. Finally, we are left with terms in which ψ(G)λG appears twice
or more often, and we are not interested in those.

Finally, to prove 2n + 1 theorem, we only need to plug this horrible-looking expansion of (∆ψ)k
into our Taylor expansion of E (B.6).

E =

∞∑
k=0

∞∑
p=0

1

k!

1

p!

δk+pE[ψ(0) +∆ψ, λ]

δ(∆ψ)kδλp

∣∣∣∣
∆ψ=0,λ=0[

nk∑
a=k

P (a)(ψ(1) . . . , ψ(n))λa + kψ(G)λG(∆ψ)k−1 + [H.O.T.]
]
λp , (B.15)

where G > n. Now consider terms contributing to E(2n+1)λ2n+1. They are

E(2n+1)λ2n+1 =

∞∑
k=0

∞∑
p=0

1

k!p!

δk+pE[ψ(0) +∆ψ, λ]

δ(∆ψ)kδλp

∣∣∣∣
∆ψ=0,λ=0

nk∑
a=k

P (a)(ψ(1) . . . , ψ(n))λa+p
∣∣∣∣
a+p=2n+1

+

∞∑
p=0

∞∑
k=1

1

(k − 1)!p!

δk+pE[ψ(0) +∆ψ, λ]

δ(∆ψ)kδλp

∣∣∣∣
∆ψ=0,λ=0

(∆ψ)k−1︸ ︷︷ ︸
f(p)

ψ(G)λG+p

∣∣∣∣
p+G=2n+1

.

(B.16)
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Since f (p) = 0, the second term vanishes, and we are only left with

E(2n+1)λ2n+1 =

∞∑
k=0

∞∑
p=0

1

k!p!

δk+pE[ψ(0) +∆ψ, λ]

δ(∆ψ)kδλp

∣∣∣∣
∆ψ=0,λ=0

nk∑
a=k

P (a)(ψ(1) . . . , ψ(n))λa+p
∣∣∣∣
a+p=2n+1

.

(B.17)
Only ψ(1), . . . , ψ(n) are present in this expression. This completes the proof. □

C More on the Polarisability of Hydrogen

C.1 Rayleigh–Schrödinger Sum Involving Continuum States

The Rayleigh–Schrödinger sum of the polarisability of hydrogen atom is given by

α = 2
∑
k ̸=0

|〈0|z|k〉|2

E
(0)
k − E

(0)
0

. (C.1)

Here |k〉 should include both the bound states and the continuum states. Let’s first consider the
bound states, which can be labelled by |n, ℓ,mℓ〉. We can separate this integral into radial and
angular parts,

〈0|z|n, ℓ,mℓ〉 = 〈Y00|cos θ|Yℓmℓ
〉 〈R1s|r|Rnℓ〉 , (C.2)

where Yℓmℓ
are the spherical harmonics. Since

Y00 =
1

2

√
1

π
, Y10 =

1

2

√
3

π
cos θ , (C.3)

we can evaluate the angular part to

〈Y00|cos θ|Yℓmℓ
〉 = 1√

3
〈Y10|Yℓmℓ

〉 = 1√
3
δ1ℓδ0mℓ

(C.4)

by the orthonormality of spherical harmonics. Thus we need the pz orbitals only. We can also put in
the energy expressions E(0)

0 = − 1
2 , E(0)

n = − 1
2n2 , giving

αbound =
4

3

∞∑
n=2

|〈R1s|r|Rnp〉|2

1− n−2
. (C.5)

To proceed, we need the radial wavefunctions. In atomic units, it is given by

Rnℓ(r) =
2

n2

√
(n− ℓ− 1)!

2n(n+ ℓ)!
e−

r
n

(
2r

n

)ℓ
L
(2ℓ+1)
n−ℓ−1

(
2r

n

)
, (C.6)

where L(α)
m is the generalised (associated) Laguerre polynomial of degree m.55 We will only need the

1s radial wavefunction
R1s(r) = 2e−r (C.8)

and the np wavefunction

Rnp(r) = 4

√
1

n7(n2 − 1)
re−r/nL

(3)
n−2

(
2r

n

)
. (C.9)

There is no good reason to assume that we can treat this sum analytically, so we can do this
numerically on a computer.

55There are unfortunately different conventions defining the generalised Laguerre functions, so you may see different
forms of this in different literatures. Here we define L(α)

m as the power series solution of the differential equation
xy′′ + (α+ 1− x)y′ +my = 0 , (C.7)

where m is a non-negative integer (necessary for the solution to be a finite-term power series), and α can be any real
number. It is linked to the more consistently defined confluent hypergeometric function in a way that we will mention
later.
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n Contributions summed up to n
2 2.959621106
5 3.552510445
10 3.634363556
20 3.655782791
50 3.662031178
100 3.662948342
200 3.663180129
500 3.663245412
1000 3.663254768
2000 3.663257109
5000 3.663257765

Table 1: Numerical sum of the hydrogen polarisability including contributions up to np orbital.

We see that the sum converges to something close to αbound ≈ 3.66326. As stated in the main
text, the sum converges slowly, and to the wrong value. We also need to include the contributions
of the unbounded states with energies above 0. They correspond to ionised free electrons, and the
energy becomes continuous rather than discrete, so they are also known as the continuum states.

An inspection on the Hamiltonian reveals that these continuum states should have the same
angular dependence as the bound states, and the only way to get a positive energy from the expression
is if n2 < 0, so we would have an imaginary n. These observations suggest that we need to evaluate

αunbound =
4

3

ˆ i∞

0

dn
|〈R1s|r|Rnp〉|2

1− n−2
. (C.10)

This integral is over purely imaginary n, so a first step would be to change the integration variable
to a real variable. The energy E is a good choice, so

αunbound =
2

3

ˆ ∞
0

dE
|〈R1s|r|REp〉|2

E + 1
2

. (C.11)

However, we would still need to adapt the radial wavefunction for complex n, as the generalised
polynomials are only defined for integer degree. Generalised Laguerre polynomials can be written as

L(α)
n (x) =

Γ(α+ n+ 1)

Γ(α+ 1)Γ(n+ 1)
1F1(−n, α+ 1, x) , (C.12)

where 1F1 is the confluent hypergeometric function of the first kind. It is defined for non-integer
parameters.56 Therefore, the radial continuum wavefunctions can be written as

REℓ(r) =

√
2k

π
e

π
2k

∣∣Γ (ℓ+ 1 + i
k

)∣∣
(2ℓ+ 1)!

(2kr)ℓe−ikr1F1

(
ℓ+ 1 +

i

k
, 2ℓ+ 2, 2ikr

)
, (C.14)

where k =
√
2E is the wavenumber. This expression is actually the same form as the bound state

expression other than the normalisation factor. The key difference is the e−ikr term. For the unbound
states, the wavenumber is real, meaning a complex exponential, so oscillations of the wavefunction.
For the bound states, the energy is negative so the wavenumber is complex, giving a real exponential
that decays with r.

56The confluent hypergeometric function (also known as the Kummer’s function) is the solution to the power series
solution to the differential equation

xy′′ + (b− x)y′ − ay = 0 . (C.13)
We can see that if a is a non-positive integer, then this reduces to the differential equation defining the generalised
Laguerre polynomials.
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We are only interested in the ℓ = 1 case, so the expression simplifies to

REp
(r) =

√
2k

r
e

π
2k

∣∣∣∣Γ(2 + i

k

)∣∣∣∣ kr3 e−ikr1F1

(
2 +

i

k
, 4, 2ikr

)
. (C.15)

Evaluating this integral numerically gives a continuum contribution αunbound ≈ 0.83674.57 Combining
all of these together, we get α ≈ 3.66326 + 0.83674 ≈ 4.5.

C.2 Alternative Method Finding the Exact Hydrogen Polarisability

There is actually a way of finding out the polarisability of hydrogen atom exactly, originally due to A.
Dalgarno and J.T. Lewis, without solving the first-order wavefunction analytically in the parabolic
coordinates, or evaluating the complicated Rayleigh–Schrödinger sum numerically.

Suppose there is an operator X̂ such that Ĥ(1) = [X̂, Ĥ(0)], then〈
m
∣∣∣Ĥ(1)

∣∣∣n〉 =
〈
m
∣∣∣X̂Ĥ(0)

∣∣∣n〉− 〈m∣∣∣Ĥ(0)X̂
∣∣∣n〉

= (E(0)
n − E(0)

m )
〈
m
∣∣∣X̂∣∣∣n〉 . (C.17)

We can then simplify the Rayleigh–Schrödinger sum of the second-order energy as

E(2)
n = −

∑
m ̸=n

〈
n
∣∣∣Ĥ(1)

∣∣∣m〉 (E(0)
n − E(0)

m )
〈
m
∣∣∣X̂∣∣∣n〉

E
(0)
m − E(0)

n

=
∑
m ̸=n

〈
n
∣∣∣Ĥ(1)

∣∣∣m〉〈m∣∣∣X̂∣∣∣n〉

=

〈
n

∣∣∣∣∣Ĥ(1)

(∑
m

|m〉 〈m|

)
X̂

∣∣∣∣∣n
〉
−
〈
n
∣∣∣Ĥ(1)

∣∣∣n〉〈n∣∣∣X̂∣∣∣n〉
=
〈
n
∣∣∣Ĥ(1)X̂

∣∣∣n〉− 〈n∣∣∣Ĥ(1)
∣∣∣n〉〈n∣∣∣X̂∣∣∣n〉 , (C.18)

where we have cleverly used the resolution of identity to eliminate the sum over all states. Now the
task reduces to finding the operator X̂. It turns out that this is not difficult to do. We have

[X̂, Ĥ(0)] |0〉 = Ĥ(1) |0〉 = Ez |0〉 . (C.19)

This is just a differential equation that can be solved by separation of variable, and we have

X̂ = −E
(
1

2
r + 1

)
z . (C.20)

The expectation values in (C.18) is easily calculated by exploiting spherical symmetry. The second
57In practice, there are some numerical issues to worry about. The continuum wavefunctions oscillate forever and

to not converge to 0 as r → ∞. However, the exponential decay of the 1s wavefunction does ensure a bounded result
of µE =

〈
R1s

∣∣r∣∣REp

〉
.We cannot evaluate µE at E = 0 since the wavefunction is undefined there, but it tends to 0

everywhere as E → 0 from above. The increasing denominator of the energy also ensures the contribution decreases as
the energy increases and the energy integral

αunbound =
2

3

ˆ ∞

0
dE

µ2E
E + 1

2

(C.16)

does converge. A lower limit of r = 10−7a0 and an upper limit of r = 100a0 would give sufficient precision, with the
greater error coming from a lower bound above 0.
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term vanishes since
〈
n
∣∣∣Ĥ(1)

∣∣∣n〉 = 0, so we have

E
(2)
0 = E

〈
0
∣∣∣zX̂∣∣∣0〉

= −E2
〈
0

∣∣∣∣(1

2
r + 1

)
z2
∣∣∣∣0〉

= −1

3
E2
〈
0

∣∣∣∣(1

2
r + 1

)
(x2 + y2 + z2)

∣∣∣∣0〉
= −1

3
E2
[
1

2

〈
0
∣∣r3∣∣0〉+ 〈0∣∣r2∣∣0〉] . (C.21)

This will give us E(2)
0 = − 9

4 and so α = 9
2 exactly.

D Wavefunctions in the Degenerate Perturbation Theory

Following the main text, we have split the unperturbed wavefunctions into two subsets:
{∣∣∣ψ(0)

i

〉}
that are non-degenerate with the state of interest, and

{∣∣∣Φ(0)
nj

〉}
that are degenerate with the state of

interest. All of the states in the two sets combined are orthonormal, and we impose the intermediate
normalisation such that 〈

Φ
(0)
nj

∣∣∣ψ(1)
nj

〉
= 0 . (D.1)

We will split the first-order wavefunction into the contribution from the non-degenerate states labelled
ND and the degenerate states labelled D∣∣∣ψ(1)

nj

〉
=
∣∣∣ψ(1)
nj,ND

〉
+
∣∣∣ψ(1)
nj,D

〉
=
∑
k ̸=n

ck,ND

∣∣∣ψ(0)
k

〉
+
∑
l ̸=j

cl,D

∣∣∣Φ(0)
nl

〉
. (D.2)

The first-order equation for a wavefunction in the degenerate set is

(Ĥ(0) − E(0)
n )

∣∣∣ψ(1)
nj

〉
+ (Ĥ(1) − E(1)

nj )
∣∣∣Φ(0)
nj

〉
= 0 . (D.3)

If we contract this with
〈
Φ

(0)
nm

∣∣∣ for some m, we get expression of the first-order energy that we find

in the main text. If we instead contract with
〈
ψ
(0)
i

∣∣∣, we obtain

ci,ND =
〈
ψ
(0)
i

∣∣∣ψ(1)
nj

〉
= −

〈
ψ
(0)
i

∣∣∣Ĥ(1)
∣∣∣Φ(0)
nj

〉
E

(0)
i − E

(0)
n

, (D.4)

and so the non-degenerate contribution to the first-order wavefunction is

∣∣∣ψ(1)
nj,ND

〉
= −

∑
k ̸=n

H
(1)
kj

E
(0)
k − E

(0)
n

∣∣∣ψ(0)
k

〉
(D.5)

as in the normal Rayleigh–Schrödinger sum.

To work out the degenerate coefficients, we need a bit more effort. Consider the second-order
equation

(Ĥ(0) − E(0)
n )

∣∣∣ψ(2)
nj

〉
+ (Ĥ(1) − E(1)

nj )
∣∣∣ψ(1)
nj

〉
− E(2)

nj

∣∣∣Φ(0)
nj

〉
= 0 . (D.6)
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Contracting with
〈
Φ

(0)
nm

∣∣∣ for some m gives

E
(2)
nj δjm =

〈
Φ(0)
nm

∣∣∣Ĥ(1) − E(1)
nj

∣∣∣ψ(1)
nj

〉
=
∑
k ̸=n

ck,ND

〈
Φ(0)
nm

∣∣∣Ĥ(1) − E(1)
nj

∣∣∣ψ(0)
k

〉
+
∑
l ̸=j

cl,D

〈
Φ(0)
nm

∣∣∣Ĥ(1) − E(1)
nj

∣∣∣Φ(0)
nl

〉
=
∑
k ̸=n

ck,ND

〈
Φ(0)
nm

∣∣∣Ĥ(1)
∣∣∣ψ(0)
k

〉
+ cm,D(E

(1)
nm − E

(1)
nj ) (D.7)

using the fact that
{
Φ

(0)
nl

}
diagonalises Ĥ(1) in its span. If we choose m = j, the second term vanishes

and we arrive at the second-order energy expression we claimed in the main text

E
(2)
nj =

∑
k ̸=n

ck,ND

〈
Φ

(0)
nj

∣∣∣Ĥ(1)
∣∣∣ψ(0)
k

〉
= −

∑
k ̸=n

∣∣∣H(1)
jk

∣∣∣2
E

(0)
k − E

(0)
n

. (D.8)

If we instead choose j 6= m, the term on the left vanishes and we get

cm,D = − 1

E
(1)
nm − E(1)

nj

∑
k ̸=n

ck,ND

〈
Φ(0)
nm

∣∣∣Ĥ(1)
∣∣∣ψ(0)
k

〉
=

1

E
(1)
nm − E(1)

nj

∑
k ̸=n

H
(1)
mkH

(1)
kj

E
(0)
k − E

(0)
n

. (D.9)

This gives us the total expression of the first-order wavefunction

∣∣∣ψ(1)
nj

〉
= −

∑
k ̸=n

H
(1)
kj

E
(0)
k − E

(0)
n

∣∣∣ψ(0)
k

〉
+
∑
k ̸=n

∑
l ̸=j

H
(1)
lk H

(1)
kj

(E
(0)
k − E

(0)
n )(E

(1)
nl − E

(1)
nj )

∣∣∣Φ(0)
nl

〉
. (D.10)

E The Three Pictures

Our formulation of quantum mechanics so far is known as the Schrödinger picture: a quantum state
evolves with time following the Schrödinger equation

iℏ
d

dt
|ψ〉 = Ĥ |ψ〉 , (E.1)

and observables are associated with operators that (usually) do not change with time, such that the
expectation value of a physical quantity A is given by

〈A〉 (t) =
〈
ψ(t)

∣∣∣Â∣∣∣ψ(t)〉 . (E.2)

We shall have a bit more careful consideration on the role of time.

E.1 State Propagation

Any general state can be expanded as a linear combination of the eigenstates of Ĥ

|ψ(t)〉 =
∑
n

cn |n〉 . (E.3)

We can also expand it in the eigenstates of any other Hermitian operators. Hence, the set of possible
outcomes of a measurement and eigenstates of an observable do not change with time. It is the
relative weights cn(t) that change with time.

83



E The Three Pictures C7 Further Quantum Mechanics

For now, let’s assume that the Hamiltonian is time independent. Substituting the expansion (E.3)
into the Schrödinger equation (E.1), we get

iℏ
∑
n

dcn(t)

dt
|n〉 =

∑
n

cn(t)Ĥ |n〉 ,

iℏ
dcn(t)

dt
= cn(t)En (E.4)

Solving this gives
cn(t) = cn(0)e

−iEnt/ℏ . (E.5)
Therefore, for a time-independent Hamiltonian, the state evolves as

|ψ(t)〉 =
∑
n

e−iEnt/ℏcn(0) |n〉 , (E.6)

where it is common to denote ωn := En/ℏ. If only one frequency component is present, the energy is
certain and the form of the states does not change with time — it is known as a stationary state.

The function of an operator is defined as

f(X̂) |ψn〉 = f(xn) |ψn〉 , (E.7)

where X̂ |ψn〉 = xn |ψn〉, and its action on a general state is defined by eigenstate expansion, so it has
the ket-bra form

f(X̂) =
∑
n

f(xn) |ψn〉 〈ψn| . (E.8)

Therefore, we can write
|ψ(t)〉 = e−iĤt/ℏ |ψ(0)〉 . (E.9)

This is often denoted as the time shift operator

Û(t, t0) = e−iĤ(t−t0)/ℏ =
∑
n

e−iωn(t−t0) |n〉 〈n| (E.10)

so that
|ψ(t)〉 = Û(t, t0) |ψ(t0)〉 . (E.11)

It is easily verified that Û(t− t0) is unitary.

E.2 Time-Dependent Hamiltonian

Now we allow the Hamiltonian to have time dependence. If we put |ψ(t′)〉 = Û(t′, t0) |ψ(t0)〉 into the
Schrödinger equation, we get

iℏ
d

dt′
Û(t′, t0) = Ĥ(t′)Û(t′, t0) . (E.12)

We integrate both sides from t0 to t and we get

Û(t, t0) = 1 +
−i
ℏ

ˆ t

t0

dt′ Ĥ(t′)Û(t′, t0) , (E.13)

where we used Û(t0, t0) = 1. This can be solved by iteration, where we substitute the expression
itself to Û(t′, t0) on the right-hand side repeatedly and get

Û(t, t0) = 1 +
−i
ℏ

ˆ t

t0

dt1 Ĥ(t1) +

(
−i
ℏ

)2 ˆ t

t0

dt1

ˆ t1

t0

dt2 Ĥ(t1)Ĥ(t2)

+

(
−i
ℏ

)3 ˆ t

t0

dt1

ˆ t1

t0

dt2

ˆ t2

t0

dt3 Ĥ(t1)Ĥ(t2)Ĥ(t3) + . . . (E.14)
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Since the Hamiltonian at one time does not commute with the Hamiltonian at a different time, the
order Ĥ(t1)Ĥ(t2)Ĥ(t3) . . . must be preserved.

Consider the double integral
ˆ t

t0

dt1

ˆ t1

t0

dt2 Ĥ(t1)Ĥ(t2) =

ˆ t

t0

dt1

ˆ t

t0

dt2 Ĥ(t1)Ĥ(t2)Θ(t1 − t2)

=

ˆ t

t0

dt1

ˆ t

t0

dt2 Ĥ(t2)Ĥ(t1)Θ(t2 − t1)

=
1

2

ˆ t

t0

dt1

ˆ t

t0

dt2
←−
T
[
Ĥ(t2)Ĥ(t1)

]
, (E.15)

where Θ is the Heaviside step function and we have introduced the time ordering operator

←−
T
[
Ĥ(t2)Ĥ(t1)

]
=

{
Ĥ(t2)Ĥ(t1) if t2 ≥ t1
Ĥ(t1)Ĥ(t2) if t2 < t1

(E.16)

ordering the operator by time. Similarly, one can show that the nth integral in E.14 is given by

←−
T
[
1

n!

ˆ t

t0

dt1

ˆ t

t0

dt2 . . .

ˆ t

t0

dtn Ĥ(t1)Ĥ(t2) . . . Ĥ(tn)

]
. (E.17)

Therefore, for t ≥ t0, we can write (E.14) as

Û(t, t0) =
←−
T

[ ∞∑
n=0

(
−i
ℏ

)n ˆ t

t0

dt1

ˆ t

t0

dt2 . . .

ˆ t

t0

dtn Ĥ(t1)Ĥ(t2) . . . Ĥ(tn)

]

=
←−
T exp

[
−i
ℏ

ˆ t

t0

dt′ Ĥ(t′)

]
(E.18)

taking the Taylor expansion of exponential function to define the time ordering exponential. One way
of thinking this is that time is divided into a number of discrete intervals, and the Hamiltonian is
approximately constant during each of those intervals. The eigenvectors and eigenvalues of Ĥ(t′) can
then be used to propagate the states over a short period.

Similarly, one can show that when t < t0, the operator propagating a state reverse in time is

Û(t, t0)
−→
T exp

[
−i
ℏ

ˆ t

t0

dt′ Ĥ(t′)

]
, (E.19)

where −→T is the anti-time ordering operator ordering the time in reverse e.g.

−→
T
[
Ĥ(t2)Ĥ(t1)

]
=

{
Ĥ(t1)Ĥ(t2) if t2 ≥ t1
Ĥ(t2)Ĥ(t1) if t2 < t1 .

(E.20)

One can show that Û is unitary and Û †(t2, t1) = Û(t1, t2).

E.3 The Heisenberg Picture

There is another approach to quantum mechanics, which is analogous to the Schrödinger picture.
Instead of putting the time dependency on the state, it puts all the time dependence on the operators.

In the Schrödinger picture, the expectation value of any observable is given by

〈A〉 (t) =
〈
ψ(t)

∣∣∣ÂS(t)
∣∣∣ψ(t)〉 . (E.21)
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We allow the operator to have time dependence (e.g. potential energy for a varying potential) as well
as the time evolution of the states. Note that we have added a superscript S to explicitly denote the
Schrödinger picture.

However, we know that ψ(t) = Û(t, t0) |ψ(t0)〉, and so we may write

〈A〉 (t) =
〈
ψ(t0)

∣∣∣Û†(t, t0)ÂS(t)Û(t, t0)
∣∣∣ψ(t0)〉 . (E.22)

If we define the operator in Heisenberg’s picture to be

ÂH(t) = Û†(t, t0)Â
S(t)Û(t, t0) , (E.23)

then we may write
〈A〉 (t) =

〈
ψ(t0)

∣∣∣ÂH(t)
∣∣∣ψ(t0)〉 . (E.24)

As we promised, this gives an alternative view of quantum mechanics. The quantum state itself
is not changing — it is always |ψ(t0)〉, and it is the operator that is evolving in time.58

Note that the two pictures coincide at t = t0 because Û(t0, t0) = 1.

Operators in the Heisenberg picture satisfy a differential equation. Consider

dÂH

dt
=

d

dt
Û †ÂSÛ =

dÛ †

dt
ÂSÛ + Û†

dÂS

dt
Û + Û †ÂS dÛ

dt
. (E.25)

Since iℏ d
dt Û = ĤÛ ,

iℏ
dÂH

dt
= −Û†Ĥ†ÂSÛ + iℏÛ†

dÂS

dt
Û + Û†ÂSĤÛ

= −Û†Ĥ†Û Û†ÂSÛ + iℏÛ†
dÂS

dt
Û + Û†ÂSÛ Û†ĤÛ

=
[
ÂH, ĤH

]
+ iℏÛ †

dÂS

dt
Û . (E.26)

If the operator ÂS is time independent in Schrödinger picture, then the third term vanishes. If further
the Hamiltonian is time independent, Ĥ and Û commute so that ĤH(t) = Ĥ, giving

iℏ
dÂH

dt
=
[
ÂH, Ĥ

]
. (E.27)

This is the Heisenberg’s equation. It neatly shows that any operator that commutes with Ĥ is a
constant of motion.

E.4 The Interaction Picture

We now come to a particularly valuable tool: the interaction picture. It is called so because it was
originally devised to handle scattering, but now it is used widely.

58In fact, all this has a precise analogue in classical mechanics. Classically, there are also two ways of thinking
about time evolution. On the one hand, we can think of a particle moving in some way through phase space M . If
we know it’s location (x(t),p(t)) ∈ M for every time t by solving Newton’s second law dp

dt
= F (x(t)) from a initial

condition (x(t0),p(t0)), we can compute any physical quantity we wish, represented by some function f : M → R, by
evaluating f(x(t),p(t)). This also suggests a perspective in which the “state” of our particle is simply a choice of initial
conditions. These initial conditions do not themselves evolve, rather, it is the quantities we measure that vary in time.
Thus, instead of thinking of a physical quantity f as a map from phase space, we treat it just as a map from time, so
f : [t0,∞) → R. You’ll examine these classical pictures further if you study classical Hamiltonian mechanics.
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Let’s write the Hamiltonian in the form

ĤS(t) = ĤS
0 + V̂ S(t) . (E.28)

This would occur, for example, in a system where a collection of particle is subjected to a time-
dependent external force V̂ S(t). ĤS

0 would then be the Hamiltonian of the free system, so it is called
the free Hamiltonian.

We know that
∣∣ψS(t)

〉
= Û(t, t0)

∣∣ψS(t0)
〉
. We can unwrap the time-independent phase factor

caused by Ĥ0 from the fully evolved state to define the state in the Interaction picture to be∣∣ψI(t)
〉
= e+iĤ0(t−t0)/ℏ

∣∣ψS(t)
〉

= e+iĤ0(t−t0)/ℏÛ(t, t0)
∣∣ψS(t0)

〉
. (E.29)

We evolve the state from t0 to t by the full Hamiltonian, and then evolve back from t to t0 using the
free Hamiltonian. Now the expectation value is

〈A〉 (t) =
〈
ψS(t)

∣∣∣ÂS(t)
∣∣∣ψS(t)

〉
=
〈
ψI(t)

∣∣∣e+iĤ0(t−t0)/ℏÂS(t)e−iĤ0(t−t0)/ℏ
∣∣∣ψI(t)

〉
=
〈
ψI(t)

∣∣∣ÂI(t)
∣∣∣ψI(t)

〉
, (E.30)

where the operator in the interaction picture is

ÂI(t) = e+iĤ0(t−t0)/ℏÂS(t)e−iĤ0(t−t0)/ℏ . (E.31)

Moreover, we have

iℏ
∂

∂t

∣∣ψI(t)
〉
= iℏ

∂

∂t
e+iĤ0(t−t0)/ℏ

∣∣ψS(t)
〉

= e+iĤ0(t−t0)/ℏ
[
−Ĥ0 + iℏ

∂

∂t

] ∣∣ψS(t)
〉

= e+iĤ0(t−t0)/ℏ
[
−Ĥ0 + ĤS(t)

] ∣∣ψS(t)
〉

= e+iĤ0(t−t0)/ℏV̂ S(t)e−iĤ0(t−t0)/ℏ
∣∣ψI(t)

〉
= V̂ I(t)

∣∣ψI(t)
〉
. (E.32)

Therefore, in the interaction picture, the operators evolve according to the time-independent free
part of the Hamiltonian, whereas states evolve according to the time-dependent interaction part of
the Hamiltonian.

The solution to (E.32) can be written as∣∣ψI(t)
〉
= Ŝ(t, t0)

∣∣ψI(t0)
〉
, (E.33)

where Ŝ(t, t0) is the scattering operator given by

Ŝ(t, t0) =
←−
T exp

[
−i
ℏ

ˆ t

t0

dt′ V̂ I(t′)

]
, (E.34)

for t ≥ t0, while for t < t0,

Ŝ(t, t0) =
−→
T exp

[
−i
ℏ

ˆ t

t0

dt′ V̂ I(t′)

]
. (E.35)

This is known as the Dyson’s formula, which also plays an important role in quantum field theory.
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F Time-Dependent Perturbation in the Interaction Picture

The formalism of the Interaction Picture makes the treatment of time-dependent perturbation
theory particularly easy, because the Hamiltonian considered (E.28) is essentially a time-dependent
perturbation theory Hamiltonian

Ĥ = Ĥ(0) + Ĥ(1)(t) (F.1)

time-independent Hamiltonian Ĥ(0) ≡ Ĥ0 with a time-dependent perturbation Ĥ(1)(t) ≡ V̂ (t). All
we have to do is to ensure that the perturbing Hamiltonian is small so everything in our expansions
later will converge.

We expand the perturbed state in the interaction picture using the eigenstates of the unperturbed
system, ∣∣ψI(t)

〉
=
∑
n

an(t) |n〉 , (F.2)

and substitution into the (E.32) gives

iℏ
dam(t)

dt
=
∑
n

V I
mn(t)an(t) , (F.3)

where the matrix elements of the perturbation are

V I
mn(t) =

〈
m
∣∣∣V̂ I(t)

∣∣∣n〉
=
〈
m
∣∣∣e+iĤ0t/ℏV̂ S(t)e−iĤ0t/ℏ

∣∣∣n〉
= eiωmntV S

mn(t) , (F.4)

where ωmn = ωm − ωn, and V S
mn is H(1)

mn using the notation in the main text. Therefore, we have

iℏ
dam(t)

dt
=
∑
n

eiωmntV Smn(t)an(t) , (F.5)

or equivalently in matrix form
iℏ
da

dt
= WVSW†a , (F.6)

where W is the diagonal matrix of phase factors. Although this equation is exact, it is a coupled
differential equation (of possibly infinite-dimensional), so it is rarely used.

Rather, we use the scattering operator

Ŝ(t) =
←−
T exp

[
−i
ℏ

ˆ t

0

dt′ V̂ I(t′)

]
=
←−
T

[ ∞∑
n=0

(
− i

ℏ

)n
1

n!

ˆ t

0

dt1 . . .

ˆ t

0

dtn V̂
I(t1) . . . V̂

I(tn)

]
. (F.7)

Recall how we interpret this time-ordered exponential. It treats the effect of the perturbation as a
sequence of impulses: we evolve according to Ĥ(0) for some time tn ≥ 0 then feel the effect V̂ (tn) of
the perturbation just at this time, before evolving according to H0 for a further time tn−tn−1 ≥ 0 and
feeling the next impulse from the perturbation, and so on. Finally, we integrate over all the possible
intermediate times at which the effects of the perturbation were felt, and sum over how many times
it acted. This method, closely related to Green’s functions for ODEs and PDEs, is also the basis for
Feynman diagrams in QFT when we perturbatively add interactions between particles in quantum
fields.
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Since the perturbation is ‘small’, the more times that the perturbation has acted on our system,
the smaller the weight it should contribute to the time evolution of the system. Hence, to the first
order, we can consider only the first term in the expansion of the scattering operator

Ŝ = Î +
−i
ℏ

ˆ t

0

dt1 V̂
I(t1) . (F.8)

Now suppose at t = 0 we’re in the state

|ψ(0)〉 =
∑
n

an(0) |n〉 , (F.9)

then at a later time t the interaction picture state will be∣∣ψI(t)
〉
= Ŝ(t) |ψ(0)〉 (F.10)

and can again be described by a superposition
∑
n an(t) |n〉. Contracting with a state 〈j| gives

aj(t) =
〈
j
∣∣∣Ŝ(t)∣∣∣ψI(0)

〉
(F.11)

in the interaction picture. Thus, using the scattering operator expanded to the first order (F.8), we
have

aj(t) ≈ aj(0) +
−i
ℏ
∑
n

an(0)

ˆ t

0

dt′
〈
j
∣∣∣V̂ I(t)

∣∣∣n〉
= aj(0) +

−i
ℏ
∑
n

an(0)

ˆ t

0

dt′
〈
j
∣∣∣e+iĤ0t/ℏV̂ S(t)e−iĤ0t/ℏ

∣∣∣n〉
= aj(0)︸ ︷︷ ︸
a
(0)
j (t)

+
−i
ℏ
∑
n

an(0)

ˆ t

0

dt′ ei(Ej−En)t
′/ℏH

(1)
jn (t′)︸ ︷︷ ︸

a
(1)
j (t)

. (F.12)

to the first non-trivial order. The first term is the unperturbed free evolution, and the second term
is the first order perturbation we derived in the main text.

This can be trivially generalised to give the second-order time-dependent perturbation theory —
we just need to expand the scattering operator by one more term.

Ŝ = Î − i

ℏ

ˆ t

0

dt1 V̂
I(t1)−

1

ℏ2

ˆ t

0

dt1

ˆ t1

0

dt2 V̂
I(t1)V̂

I(t2) . (F.13)

This will give an extra second order coefficient in our aj(t)

aj(t) ≈ a(0)j (t) + a
(1)
j (t) + a

(2)
j (t) , (F.14)

where

a
(2)
j (t) = − 1

ℏ2
∑
n

an(0)

ˆ t

0

dt1

ˆ t1

0

dt2

〈
j
∣∣∣V̂ I(t1)V̂

I(t2)
∣∣∣n〉

= − 1

ℏ2
∑
n

∑
k

an(0)

ˆ t

0

dt1

ˆ t1

0

dt2

〈
j
∣∣∣V̂ I(t1)

∣∣∣k〉〈k∣∣∣V̂ I(t2)
∣∣∣n〉

= − 1

ℏ2
∑
n

∑
k

an(0)

ˆ t

0

dt1

ˆ t1

0

dt2 e
iωjkt1eiωknt2H

(1)
jk (t1)H

(1)
kn (t2) , (F.15)

where we have inserted an identity operator. If we have an(0) = 1 for some particular n, and
am(0) = 0 for all other m 6= n, i.e. we are initially at |n〉 at t = 0, then the above second order
coefficient simplifies to

a
(2)
j (t) = − 1

ℏ2
∑
k

ˆ t

0

dt′′
ˆ t′′

0

dt′ eiωjkt
′′
eiωknt

′
H

(1)
jk (t′′)H

(1)
kn (t

′) . (F.16)
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Under this framework, generalisations to higher order perturbations are trivial, although the
integrals will be harder and harder to evaluate.

F.1 Raman Activity

Now we will use this to investigate Raman scattering. We do have the added complication that there
are two interactions, corresponding to the ‘first’ photon and the ‘second’ photon (although thinking of
these events happening sequentially is not very ‘quantum’) and the key feature of Raman scattering
is that these two photons have different frequencies. Therefore we will write our perturbation matrix
elements as

Ĥ
(1)
kn (t

′) = Vkn

(
eiω

′t′ + e−iω
′t′
)

Ĥ
(1)
jk (t′′) = Vjk

(
eiω

′′t′′ + e−iω
′′t′′
)
, (F.17)

where ω′ is the frequency of the first photon and ω′′ is the frequency of the second photon, and as
previously59

Vkn = −1

2
E 〈k|µ̂|n〉 . (F.18)

With these definitions, we can perform the integrations directly, and we will get a large number of
terms

a
(2)
j (t) = −

∑
k

VjkVkn

[
ei(ωjn+ω

′+ω′′)t − 1

(ωjn + ω′ + ω′′)(ωkn + ω′)
− ei(ωjk+ω

′′)t − 1

(ωjk + ω′′)(ωkn + ω′)

+
ei(ωjn+ω

′−ω′′)t − 1

(ωjn + ω′ − ω′′)(ωkn + ω′)
− ei(ωjk−ω′′)t − 1

(ωjk − ω′′)(ωkn + ω′)

+
ei(ωjn−ω′+ω′′)t − 1

(ωjn − ω′ + ω′′)(ωkn − ω′)
− ei(ωjk+ω

′′)t − 1

(ωjk + ω′′)(ωkn − ω′)

+
ei(ωjn−ω′−ω′′)t − 1

(ωjn − ω′ − ω′′)(ωkn − ω′)
− ei(ωjk−ω′′)t − 1

(ωjk − ω′′)(ωkn − ω′)

]
. (F.19)

Various of these terms correspond to interesting second-order effects, some of which are used in
spectroscopic experiments, but if we are interested in non-resonant Raman scattering, we require
ωjn ≈ ±(ω′−ω′′), so that the difference in energy between the initial and excited state is comparable
to the difference in energy of the two photons, but there is no state at energy E(0)

n ± ω′.60 The plus
corresponds roughly to absorption of the first photon and emission of the second photon. The less
intuitive minus corresponds to stimulated emission caused by the first photon and absorption of the
second photon.

However, note that this does not imply a sequential two-step transition in the classical sense!
The time ordering operators we introduced are a bookkeeping tool in the perturbative expansion.
The intermediate state |k〉 is never physically occupied. Instead, all possible paths, including all
intermediate states and time orderings, contribute coherently to the amplitude — this is the essence
of the superposition principle, and is what the perturbative expansion truly means.61

With the non-resonant Raman condition, of the eight terms present in (F.19), it is the third and
fifth that will dominate. Noting that ωjn, ω′ and ω′′ do not depend on k, so can be taken outside the
sums, we have

a
(2)
j = − ei(ωjn+ω

′−ω′′)t − 1

(ωjn + ω′ − ω′′)(ωkn + ω′)

∑
k

VjkVkn
ωkn + ω′

− ei(ωjn−ω′+ω′′)t − 1

(ωjn − ω′ + ω′′)(ωkn − ω′)
∑
l

VjlVln
ωln − ω′

. (F.20)

59In the actual Raman, the only external photon source is the laser beam, so the second photon is actually emitted
by spontaneous emission. However, we can’t treat spontaneous emission without quantising the field, so we will model
this as a stimulated process here.

60The case of resonant Raman scattering, where there does exist a state close in energy to the initial state plus or
minus the laser energy, such that ωkn ≈ ±ω′ and ωjk ≈ ±ω′′, is more complicated and is not considered here.

61See Feynman’s path integral formulation of quantum mechanics.
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Once again, we must take the square modulus of this expression to generate a transition probability.
The resulting probability has four terms, but we can note that the cross terms, which can only
simultaneously satisfy one of the plus or minus in the non-resonant Raman condition, will be much
smaller than the diagonal terms and we will drop them, giving

Pj(t) = 4t
sin2[ 12 (ωjn + ω′ − ω′′)t]

(ωjn + ω′ − ω′′)2t

∣∣∣∣∣∑
k

VjkVkn
ωkn + ω′

∣∣∣∣∣
2

+ 4t
sin2[ 12 (ωjn − ω

′ + ω′′)t]

(ωjn − ω′ + ω′′)2t

∣∣∣∣∣∑
l

VjlVln
ωln − ω′

∣∣∣∣∣
2

.

(F.21)
Deploying the same tricks concerning integrating over a frequency distribution and tending to a δ
function as we did with Fermi’s golden rule, we obtain

Rnj = 2πρ(ω′)

∣∣∣∣∣∑
k

VjkVkn
ωkn + ω′

∣∣∣∣∣
2

+

∣∣∣∣∣∑
l

VjlVln
ωln − ω′

∣∣∣∣∣
2
 . (F.22)

If we again assume that the cross terms being negligible, effectively undoing our previous approxima-
tion, we can rewrite Rnj as

Rnj = 2πρ(ω′)

∣∣∣∣∣∑
k

VjkVkn
ωkn + ω′

+
VjkVkn
ωkn − ω′

∣∣∣∣∣
2

= 2πρ(ω′)

∣∣∣∣∣∑
k

(ωkn − ω′)VjkVkn + (ωkn + ω′)VjkVkn
ω2
kn − ω′2

∣∣∣∣∣
2

. (F.23)

This sum is related to (5.57) for the dynamic polarisability. The difference is that (5.57) refers
specifically to the polarisability evaluated for a single quantum state, 〈n|α̂|n〉, whereas here it is the
extension to a transition polarisability 〈j|α̂|n〉.

〈j|α̂βγ(ω′)|n〉 =
∑
k

(ωkn − ω′) 〈j|µ̂β |k〉 〈k|µ̂γ |n〉+ (ωkn + ω′) 〈j|µ̂γ |k〉 〈k|µ̂β |n〉
ω2
kn − ω′2

. (F.24)

We can see that this reduces to (5.57) in the case of |j〉 = |n〉. Thus, we can write

Rnj ∝ |〈j|α̂(ω′)|n〉|
2
. (F.25)

Note that while we normally think about the static polarisability for Raman activity, it is in fact
the dynamic polarisability at the laser frequency that matters, although the distinction has no
consequences if we are only interested in the symmetry argument of whether or not the integral
is non-zero.

The inclusion of the intermediate states |k〉 is what gives the common interpretation that there
existing a transitory virtual state in Raman scattering, although we see that interpretation is only
loosely correct. It is not that the system moves to one virtual state, but rather that it includes all
possible states, although with a greater contribution from those with energies closer to the initial
energy plus or minus the laser energy.

G Dirac Equation

Let’s have a look at the non-relativistic Schrödinger equation

Ĥ |ψ〉 = iℏ
∂

∂t
|ψ〉 . (G.1)

For a free, non-relativistic particle, the classical Hamiltonian is

H =
p2

2m
, (G.2)
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and promoting p to operator, we get the usual non-relativistic Schrödinger equation for a free particle.

If we want to put relativity into consideration, a natural starting point is to instead use the
relativistic energy

H =
√
c2p2 +m2c4 (G.3)

as Hamiltonian. Promoting p to operators and substituting into the Schrödinger equation, we get

iℏ
∂ |ψ〉
∂t

= (c2p̂2 +m2c4)1/2 |ψ〉 . (G.4)

We all know that an important and fundamental characteristic of relativity is that space and time
are almost put at an equal footing. We want to preserve the symmetry between space and time, but
this equation clearly fails to do so. This is clearer if we expand it in the coordinate basis

iℏ
∂ψ(x, t)

∂t
= mc2

(
1 +

p̂2

2m2c2
− p̂4

8m4c4
+ . . .

)
ψ(x, t)

= mc2
(
1− ℏ2

2m2c2
∇2 − ℏ4

8m4c4
∇4 + . . .

)
ψ(x, t) . (G.5)

The time derivative is in first order while the order of the coordinate derivatives (gradients) extend
to infinity.

There are two ways to resolve this. The first and most obvious way to remove a square root is to
square it. We apply operators on both sides of the Schrödinger equation twice:

Ĥ2 |ψ〉 = −ℏ2 ∂
2

∂t2
|ψ〉 (G.6)

and use the squared relativistic Hamiltonian H2 = c2p2 +m2c4 to get

−ℏ2 ∂
2 |ψ〉
∂t2

=
(
c2p2 +m2c4

)
|ψ〉 . (G.7)

In coordinate basis, this is [
1

c2
∂2

∂t2
−∇2 +

(mc
ℏ

)2]
ψ = 0 . (G.8)

You should be really satisfied with this equation because it nicely reflects the symmetry between
space and time by identifying x0 = ct. This can be emphasised by defining the wave operator

□ =
∂2

∂(x0)
2 −

∂2

∂(x1)
2 −

∂2

∂(x2)
2 −

∂2

∂(x3)
2 = ηµν∂µ∂ν , (G.9)

where

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (G.10)

is the Minkowski metric and we use Einstein summation convention to sum over all the spacetime
components. Then we have

(□+ µ2)ψ = 0 , (G.11)
where µ = mc/ℏ. This is the Klein–Gordon equation. However, in this equation, ψ are scalar
functions, and it can be shown in quantum field theory that particles described by scalars carry no
intrinsic angular momentum. Therefore, this equation only describes the spin-0 particles.

The second alternative method due to Dirac is the following. Let’s suppose that the quantity in
the square root in relativistic Hamiltonian (G.3) can be written as a perfect square of some quantity
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linear in p. Then by taking the square root, we have an equation first order in both space and time
derivatives. So, let’s suppose we can write

c2p2 +m2c4 = (cαxpx + cαypy + cαzpz + βmc2)2

= (cα · p+ βmc2)2 , (G.12)
where α and β are to be determined by matching both sides:

c2(p2x + p2y + p2z) +m2c4 = [c2(α2
xp

2
x + α2

yp
2
y + α2

zp
2
z) + β2m2c4]

+ [c2pxpy(αxαy + αyαx) + cyclic permutations]
+ [mc3px(αxβ + βαx) + similar for y and z] . (G.13)

For both sides to match, we must have62

α2
i = β2 = 1 (G.14)

αiαj + αjαi ≡ {αi, αj} = 0 i 6= j (G.15)
αiβ + βαi ≡ {αi, β} = 0 . (G.16)

Obviously complex numbers can’t satisfy these conditions, so we need to look for matrices. It can
be shown that they must be even dimensional for the last two conditions to be compatible. For two
dimensional matrices, the Pauli matrices satisfy these conditions, but there are only three of them,
and we can’t extend this set to include a fourth. So we must look for 4 × 4 matrices (or larger).
Luckily, we can find 4 × 4 matrices satisfying this set of conditions, and they are not unique (by
unitary transformations). The commonly used ones are

αi =

(
0 σi
σi 0

)
, β =

(
I 0
0 −I

)
, (G.17)

where σi and I are the 2 × 2 Pauli matrices and identity matrix, respectively. This now gives the
Dirac equation claimed in the main text

iℏ
∂ |ψ〉
∂t

= (cα · p̂+ βmc2) |ψ〉 . (G.18)

The fact that α and β are 4 × 4 matrices requires ψ to be a four dimensional object as well. It is
known as a spinor, and it is subtly different from a vector.

We can recast this equation into a more compact form. Moving all the terms to the left gives

c

[
iℏ
(

∂

∂x0
+ α1

∂

∂x1
+ α2

∂

∂x2
+ α3

∂

∂x3

)
− βmc

]
ψ = 0 , (G.19)

where (x0, x1, x2, x3) ≡ (ct, x, y, z) are the spacetime components. Since β matrix has the nice
property β = β−1, we multiply the equation by β and by defining the gamma matrices

γ0 = β =

(
I 0
0 −I

)
, γi = βαi =

(
0 σi
−σi 0

)
(G.20)

for i = 1, 2, 3, we get (
iℏγµ

∂

∂xµ
−mc

)
ψ = 0 (G.21)

using summation convention. One often writes contraction with gamma matrices as a slash: γµAµ =:
/A. We can also move to natural units in which ℏ = c = 1 to eliminate the constants. This gives Dirac
equation its most compact form

(i/∂ −m)ψ = 0 . (G.22)

You can find a more detailed discussion about Dirac equation in Prof. David Tong’s lecture notes
on Quantum Field Theory.

62These are the Clifford algebra relations Cl1,3(R) for Minkowski spacetime. The minimal non-trivial representation of
this algebra has dimension 4, and that’s why the αi and β matrices are 4-dimensional. We can go to higher dimensions,
and in general, any multiple of 4 will also work, but all such equations are reducible: they don’t give a genuinely new
theory, just multiple copies of the usual Dirac fermion.
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