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1 Groups

1.1 Basic Concepts

Definition 1.1. A group is a triple (G, · , e) of a set G, a function · : G×G→ G and an element
e ∈ G such that

(G1) Associativity. ∀a, b, c ∈ G, a · (b · c) = (a · b) · c.

(G2) Identity. ∀a ∈ G, a · e = e · a = a.

(G3) Inverse. For each a ∈ G, ∃a−1 ∈ G such that a · a−1 = a−1 · a = e.

Definition 1.2. If (G, · , e) is a group and H ⊆ G is a subset, then H is a subgroup of G, denoted
H ≤ G if

(i) If a, b ∈ H, then a · b ∈ H.

(ii) e ∈ H.

(iii) (H, · , e) is a group.

Lemma 1.3. ∅ 6= H ⊆ G is a subgroup ⇐⇒ ∀h1, h2 ∈ H, h1 · h−1
2 ∈ H.

Examples.

(i) Additive groups. (Z,+, 0), (Q,+, 0), (R,+, 0), (C,+, 0)…

(ii) Groups of symmetry.

• Sn symmetry groups = bijections of {1, 2, . . . , n} to itself.
• D2n dihedral group = symmetry of the regular n-gon.
• GLn(R) general linear group = symmetry of the vector space Rn.

(iii) Subgroups of these.

• Alternating groups An ≤ Sn, the even permutations.
• Cyclic groups Cn ≤ D2n, rotational symmetry of n-gon.
• Special linear groups SLn(R) ≤ GLn(R), {A ∈ GLn(R) | detA = 1}.

(iv) Abelian groups G such that a · b = b · a ∀a, b ∈ G, e.g. C2 × C2
∼= V4.

(v) Quaternion group Q = {±1,±i,±j,±k}.

Definition 1.4. For a subgroup, the left coset

gH := {x ∈ G | x = g · h for some h ∈ H} .

The collection of all left cosets of H, written G : H, gives a partition of G. Each H-coset is in
bijection with H (and also with each other).

Theorem 1.5 (Lagrange’s theorem). If G is a finite group and H ≤ G, then

|G| = |H| |G : H| ,

where |G : H| is the number of H-cosets in G, known as the index of H in G.

Definition 1.6. The order of g ∈ G is the least n ∈ N∪ {∞} such that gn = e. Write ord(g) for the
number.
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If gm = e, then ord(g) | m.

Lemma 1.7. Let G be a finite group. ord(g) | |G| ∀g ∈ G.

Proof. If n = ord(g), then H = {e, g, g2, . . . , gn−1}. Claim that H is a subgroup of G. If gi, gj ∈ H,
then gi · (gj)−1 = gi−j , write i− j = p · n+ r, with 0 ≤ r < n.

gi−j = gpn+r = (gn)p · gr = gr ∈ H ,

so H is indeed a subgroup. By Lagrange’s theorem, n = |H| divides |G|. �

1.2 Normal Subgroups, Quotient, Homomorphism and Isomorphism

If gH = g′H, then g−1g′ ∈ H and the converse holds. Let G/H be the set of the left H-cosets in G,
try to define

(g1H) · (g2H) = g1g2H .

This is well-defined only if the result is consistent for different choices of coset representatives. If
g2H = g2hH is another coset representative, then

(g1H) · (g2hH) = g1g2hH = g1g2H .

If g1H = g1hH, then
(g1hH) · (g2H) = g1hg2H ,

which is equal to g1g2H if and only if

(g1g2)
−1g1hg2 = g−1

2 hg2 ∈ H .

Hence this definition is legal if and only if g−1hg ∈ H for all g ∈ G, h ∈ H.

Definition 1.8. A subgroup H ≤ G is normal, denoted H CG, if

g−1hg ∈ H

∀h ∈ H, g ∈ G.

Proposition 1.9. If H C G, then the set G/H of left H-cosets form a group under the operation
(g1H) · (g2H) = g1g2H, with eG/H = eH. This is the quotient group of G by H.

Proof. The discussions show that this well-defines a binary operation on G/H. All the axioms follow
from the fact that they hold in G. �

Definition 1.10. If (G, ·G, eG) and (H, ·H , eH) are groups, then a function φ : G → H is a
homomorphism if

(i) φ(g1 ·G g2) = φ(g1) ·H φ(g2)

(ii) φ(eG) = eH

The kernel of φ is ker(φ) := {g ∈ G | φ(g) = eH}, and the image of φ is im(φ) := {h ∈ H | h =
φ(g) for some g ∈ G}.

Lemma 1.11. If φ : G→ H is a homomorphism, then φ(g−1) = φ(g)−1.

Proof.

φ(g ·G g−1) = φ(eG) = eH

= φ(g) ·H φ(g)−1 .

By the uniqueness of inverse, we must have φ(g−1) = φ(g)−1. �
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Lemma 1.12. For a homomorphism φ : G → H, the kernel ker(φ) is a normal subgroup of G, and
the image im(φ) is a subgroup of H.

Proof. Let g, h ∈ ker(φ), then

φ(g · h−1) = φ(g) ∗ φ(h)−1 = eH ∗ e−1
H = eH ,

so gh−1 ∈ ker(φ). Also φ(eG) = eH so it is a subgroup. Let x ∈ G, we have

φ(x−1gx) = φ(x−1) ∗ φ(g) ∗ φ(x) = φ(x−1) ∗ φ(x)
= φ(x−1x) = φ(eG) = eH ,

so x−1gx ∈ ker(φ) and hence kerφ is normal.

Let φ(g), φ(h) ∈ im(φ), then

φ(g) ∗ φ(h)−1 = φ(gh−1) ∈ im(φ) .

Furthermore, eH = φ(eG) ∈ im(φ), so im(φ) is non-empty, and is a subgroup of H. �

Definition 1.13. An isomorphism is a homomorphism which is also a bijection.

If a function φ : G→ H is an isomorphism, then the inverse function φ−1 : H → G is too.

Definition 1.14. Two groups are isomorphic if there is an isomorphism between them. We write
G ∼= H.

We often consider isomorphic groups to be “the same”, and do not distinguish between them. We
should be aware that we are careless when doing this.

It is helpful to be able to break groups apart into smaller pieces. The following three isomorphism
theorems allow us to do this in various ways. The first relates the kernel and image of an isomorphism.

Theorem 1.15. Let φ : G→ H be a homomorphism, then

G/ ker(φ) ∼= im(φ) .

Proof. Let

f : G/ ker(φ) −→ im(φ)

g ker(φ) 7−→ φ(g) .

First let us prove f is well-defined since it uses a coset representative. If g ker(φ) = g′ ker(φ), then
g−1g′ ∈ ker(φ) and so φ(g−1g′) = eH . Thus

eH = φ(g−1g′) = φ(g−1) ∗ φ(g′) ,

and so multiplying by φ(g) gives φ(g) = φ(g′), so the function is well-defined.

f is a homomorphism since

f(g ker(φ) · g′ ker(φ)) = f(gg′ kerφ)

= φ(gg′)

= φ(g) ∗ φ(g′)
= f(g ker(φ)) ∗ f(g′ ker(φ)) .

Let h ∈ im(φ), then h = φ(g) for some g, so h = f(g kerφ) is in the image of f . Therefore, f is
surjective. Suppose that f(g ker(φ)) = f(g′ ker(φ)), then φ(g) = φ(g′), so φ(g−1g′) = eH . Hence,
g−1g′ ∈ ker(φ) and g ker(φ) = g′ ker(φ), so f is injective. Therefore, f is an isomorphism. �
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Example. Consider the function φ : C → C \ {0} by z 7→ ez. As ez+w = ez · ew, φ defines a
homomorphism

φ : (C,+, 0)→ (C \ {0},×, 1) .

The existence of log shows that φ is surjective, and so im(φ) = C \ {0}. The kernel is given by

kerφ = {z ∈ C | ez = 1} = 2πiZ .

The conclusion is that
(C/(2πiZ),+, 0) ∼= (C \ {0},×, 1) .

Theorem 1.16 (Second isomorphism theorem). Let H ≤ G and K C G. Then HK := {h · k |
h ∈ H, k ∈ K} is a subgroup of G, and H ∩K is a normal subgroup of G. Moreover,

HK

K
∼=

H

H ∩K
.

Proof. Let hk, h′k′ ∈ HK, then

h′k′(hk)−1 = h′k′k−1h−1 = (h′h−1)(hk′k−1h−1) .

The first term is in H, and the second term is k′k−1 ∈ K conjugated by h, which is also in K.
Therefore, h′k′(hk)−1 lies in HK, and HK also contains eG, so it is a subgroup.

Define

φ : H −→ G/K

h 7−→ hK .

This is a homomorphism. The image of φ is the set of K-cosets which may be represented by an
element of H, i.e.

im(φ) =
HK

K
.

The kernel of φ is

ker(φ) = {h ∈ H | hK = eK} = {h ∈ H | h ∈ K} = H ∩K .

As H ∩K is the kernel of a homomorphism, it is normal in H. By the first isomorphism theorem,

H

H ∩K
∼=

HK

K
.

Note that if K C G, then there is a bijection between subgroups of G/K and subgroups of G
containing K, given by

{subgroups of G/K} ←→ {subgroups of G which contains K}

X ≤ G

K
7−→ {g ∈ G | gK ∈ X}

L

K
≤ G

K
7−→K C L ≤ G .

This specialises to a bijection between normal subgroups as well.

{normal subgroups of G/K} ←→ {normal subgroups of G which contains K} .

Theorem 1.17 (Third isomorphism theorem). Let K ≤ L ≤ G be normal subgroups of G, then

G/K

L/K
∼=

G

L
.
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Proof. Let

φ : G/K −→ G/L

gK 7−→ gL .

If gK = g′K, then g−1g′ ∈ K ∈ L so gL = g′L, so well-defined. It is a homomorphism, and onto.

ker(φ) = {gK ∈ G/K | gL = eL} = L/K ,

m
g ∈ L

so done by 1st isomorphism theorem. �

Definition 1.18. A non-trivial group G is simple if its only normal subgroups are {e} or G.

Lemma 1.19. An abelian group is simple ⇐⇒ it is Cp for some prime number p.

Proof.

(⇐) If H ≤ Cp, then |H| | |Cp| = p by Lagrange’s theorem, so |H| = 1 or p, so H = {e} or Cp.

(⇒) Let G be a simple abelian group. All subgroups of G are normal since

g−1hg = g−1gh = h ∀h ∈ H CG .

Let e 6= g ∈ G, and H = {. . . , e, g, g2, . . . } is a normal subgroup. As g 6= e, H 6= {e} so H = G
as G is simple, so G is cyclic. Then G ∼= (Z,+, 0) or G ∼= Cn. But 2ZC Z, so Z is not simple.
If m | n, then gn/m generates a subgroup of Cn of order m, and it is normal. Therefore for Cn

to be simple, only 1 and n can divide n. �

Theorem 1.20. If G is a finite group, then there are subgroups

G = H1 > H2 > · · · > Hs = {e} .

Proof. If G is simple, let H2 = {e} and done.

If not, let H2 C G be a proper normal subgroup of the largest order among all proper normal
subgroups. Then claim G/H2 is simple: if not, it has a proper K C G/H2. However, by the
correspondence between normal subgroups of G/H2 and normal subgroups of G containing H2,
K ∼= L/H2 for some L C G such that H2 C L. We find a proper normal subgroup of G with order
strictly large than H2, so contradiction.

So we found an H2 C G with G/H2 simple. Repeat this process to get the required sequence of
normal subgroups. This process eventually stops as |G| is finite. �

1.3 Actions and Permutations

Recall permutation groups

Sn := symmetry group on {1, 2, . . . , n}
≡ group of bijections from {1, 2, . . . , n} to itself.

Can define the sign function on Sn

sign : Sn −→ ({±1},×,+1)

σ 7−→

{
+1 σ = even # permutations
−1 σ = odd # permutations.

5
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It is a homomorphism, so Sn has a normal subgroup

An := ker(sign)C Sn

called the alternating group, and it has an index 2. More generally, for a set X, the symmetry group
is

Sym(X) := {σ : X → X | σ is a bijection} .

Definition 1.21. A group is a permutation group on X if it is a subgroup of Sym(X). Say it is a
permutation group of degree n if |X| = n.

Examples.

(i) Sn = Sym({1, 2, . . . , n}) is a permutation group of degree n.

(ii) D2n = Sym(vertices of a regular n-gon).

Definition 1.22. An action of a group G on a set X is a function

− ∗ − : G×X → X

such that

(i) ∀x ∈ X, gi ∈ G, g1 ∗ (g2 ∗ x) = (g1g2) ∗ x

(ii) ∀x ∈ X, e ∗ x = x.

Lemma 1.23. An action G on X is the same as a homomorphism φ : G→ Sym(X).

Proof. Let − ∗ − : G×X → X be a function. Define φ(g) = g ∗ − : X → X be a function. Note

φ(g−1) ◦ φ(g)(x) = g−1 ∗ (g ∗ x)
= (g−1g) ∗ x
= x

∀x, so φ(g−1) is inverse to φ(g), so φ(g) is a bijection. This defines a function φ : G→ Sym(X). Note

(φ(h) ◦ φ(g))(x) = φ(hg)(x) ∀x ∈ X,h, g ∈ G ,

so φ is a homomorphism.

Conversely, let φ : G→ Sym(X) be a homomorphism. Let g ∗ x = φ(g)(x), then

g ∗ (h ∗ x) = φ(g)(φ(h)(x))

= (φ(g) ◦ φ(h))(x)
= φ(gh)(x)

= (gh) ∗ x ,

so it defines a group action. �

Definition 1.24. A permutation representation of a group G is a homomorphism G→ Sym(X).

The lemma above has shown that a permutation representation is the same as a group action. The
good thing about thinking of group actions as homomorphisms is that we can use all we know about
homomorphisms on them.

Definition 1.25. For an action of G on X, we write

GX := im(φ : G→ Sym(X))

GX := ker(φ : G→ Sym(X)) .

6
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Proposition 1.26. GX ∼= G/GX .

Proof. 1st isomorphism theorem. �

Examples.

(i)

G = symmetries of the cube
X = {diagonals of the cube}

GX = Sym(X) ∼= S4

GX = {id, sending each vertex to its opposite} .

Have
∣∣GX

∣∣ = 4! = 24 and |GX | = 2, so |G| = 48.

(ii) The group G acts on itself via g ∗ g′ = g · g′. This corresponds to a φ : G→ Sym(G).

GX = {g ∈ G | g ∗ g′ = g′ ∀g′ ∈ G} = {e} ,

so G = G/{e} ∼= CX ≤ Sym(G). This gives the Cayley’s theorem. Every group is (isomorphic
to) a subgroup of a symmetric group.

(iii) For H ⊆ G. Let X = G/H set of left H-cosets. G acts on X = G/H via g ∗ g′H = (gg′)H.
This is well defined so we get φ : G→ Sym(X).
Now consider GX = ker(φ). If g ∈ GX , then for every g1 ∈ G, we have g ∗ g1H = g1H. This
means g−1

1 gg1 ∈ H. In other words, we have g ∈ g1Hg−1
1 . This has to hold for all g1 ∈ G, so

GX ⊆
⋂

g1∈G

g1Hg−1
1 .

This argument is completely reversible: if g ∈
⋂

g1∈G g1Hg−1
1 , then for each g1 ∈ G, we know

that g−1
1 gg1 ∈ H and hence gg1H = g1H. So g ∗ g1H = g1H and hence g ∈ GX . Thus we have

ker(φ) = GX =
⋂

g1∈G

g1Hg−1
1 .

Since this is a kernel, it is a normal subgroup of G, and is contained in H. Starting with an
arbitrary subgroup H, this allows us to generate a normal subgroup. (If we think about the
construction, we see that this is the largest normal subgroup of G that is contained in H.)

Theorem 1.27. Let G be a finite group, H ≤ G be a subgroup of index n. Then there is a K CG
with K ≤ H such that |G/K| | n! and n | |G/K|.

Proof. We apply the previous example. Act by G on G/H, set K = GX C G. Then G/GX
∼=

GX ≤ Sym(G/H) ∼= Sn , so by Lagrange’s theorem, |G/K| | |Sn| = n!. We also have K ≤ H, so
|G/K| ≥ |G : H| = n. �

Corollary. Let G be a non-abelian simple group, and H a proper subgroup of index n > 1. Then G
is isomorphic to a subgroup of An, with n ≥ 5.

7
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Proof. Act by G on the set G/H gives a homomorphism φ : G → Sym(G/H). Then GX C G is
normal, so as G is simple, GX = {e} or GX = G. As g ∗ (eH) 6= eH for g /∈ H, which exists since the
subgroup H is proper, the kernel of this action is not G, so GX = {e}. Therefore, φ is injective, so
G = G/GX

∼= GX ≤ Sym(G/H) ∼= Sn.

Now An C Sn, so G ∩An CG, so as G is simple, G ∩An = {e} or G ∩An = G. If G ∩An = {e},
then

G =
G

G ∩An

∼=
G ·An

An
≤ Sn

An

∼= C2

by the second isomorphism theorem. Hence, |G| ≤ 2. This is a contradiction as G is non-abelian.
Therefore, we have

G ∩An = G =⇒ G ≤ An .

A1, A2, A3, A4 have no non-abelian simple subgroups. �

Definition 1.28. Let G act on X. The orbit of x ∈ X is

G · x := {x′ ∈ X | x′ = g ∗ x for some g ∈ G} .

The stabiliser of x ∈ X is
Gx := {g ∈ G | g ∗ x = x} .

Lemma 1.29. Gx is a subgroup of G.

Proof. e(x) = x by definition. For g, h ∈ Gx, gh−1(x) = g(h−1 ∗ (x)) = g(x) = x. �

Lemma 1.30. The orbits of an action partition X.

Proof. ∀x ∈ X, x ∈ G · x as e ∗ x = x. So every x is in some orbit.

Then suppose z ∈ G · x and z ∈ G · y, we have to show that G · x = G · y. We know that
z = g1 ∗ x = g2 ∗ y for some g1, g2 ∈ G, so y = (g−1

2 g1) ∗ x. For any w = g3(y) ∈ G · y, we have
w = (g3g

−1
2 g1) ∗x, so w is also in G ·x. Thus G · y ⊆ G ·x and similarly G ·x ⊆ G · y, so G ·x = G · y.

�

Let g ∈ G, x ∈ X. Each g ∈ G gives us a member g ∗ x ∈ G · x, and conversely, every object in G · x
arises this way. However, different elements in G can give us the same orbit. In particular, if g ∈ Gx,
then hg and h give us the same object in G · x. So we have a correspondence between things in G · x
and members of G, up to Gx.

Theorem 1.31 (Orbit-stabiliser theorem). Let G act on X. Then for any x ∈ X, there is a
bijection

φ : G · x←→ G : Gx

g ∗ x 7−→7−→gGx ,

and in particular, if G is finite, then |G · x| = |G : Gx|.

Proof. φ is well-defined since if g ·Gx = h·Gx, then h = gk for some k ∈ Gx, so h∗x = g∗(k∗x) = g∗x.

This map is injective because if gGx = hGx, then Gx = g−1hGx so g−1h ∈ Gx, then g−1h ∗ x =
x =⇒ g ∗ x = h ∗ x, and this map is clearly surjective. The rest follows from Lagrange’s theorem.�

8



1 Groups IB Groups, Rings and Modules

1.4 Conjugacy Classes, Centralisers, Normalisers

Can define an action of G on the set G via

g ∗ h = ghg−1 .

The function φ(g) : G→ G satisfies

φ(g)(ab) = gabg−1 = (gag−1)(gbg−1)

= φ(a)φ(b) ,

so φ(g) is a homomorphism. It is also a bijection, with inverse φ(g−1). We can take the collection of
all isomorphisms of G, and form a new group out of it.

Definition 1.32. The automorphism group of a group G is

Aut(G) := {f ∈ Sym(G) | f is a group isomorphism} .

This is a group under composition, with the identity map as the identity element.

It is a subgroup of Sym(G).

Definition 1.33. The conjugacy class of g ∈ G is

ClG(g) := G · g = {h ∈ G | h = xgx−1, x ∈ G} .

The centraliser of g ∈ G is

CG(g) := Gg = {x ∈ G | xgx−1 = g} ,

i.e. the set of all x ∈ G which commute with g.

The centre of G is

Z(G) := ker(φ) = {x ∈ G | xgx−1 = g ∀g ∈ G} =
⋂
g∈G

CG(g) ,

i.e. the set of all x ∈ G which commute with all g ∈ G.

Proposition 1.34.

|ClG(x)| = |G : CG(x)| =
|G|
|CG(x)|

.

Proof. Orbit-stabiliser. �

Definition 1.35. The normaliser of H ≤ G is

NG(H) := {g ∈ G | gHg−1 = H} ,

i.e. the largest subgroup of G inside which H is normal.

Theorem 1.36. An is simple for all n ≥ 5.

Proof.

• Claim 1. An is generated by 3-cycles.

Proof. Every element of An is a product of evenly-many transpositions, so need to show
that the product of two transpositions can be written in terms of 3-cycles.

Let a, b, c, d be distinct.

9
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– (a b)(a b) = e.
– (a b)(b c) = (a b c)

– (a b)(c d) = (a c b)(a c d). �

• Claim 2. If H CAn contains a 3-cycle, then it is An.

Proof. We will show that if H contains a 3-cycle, it contains every 3-cycle, then done since
An is generated by 3-cycles. Suppose (a b c) ∈ H and want to show that (1 2 3) ∈ H. Since
they have the same cycle shape, there is some σ ∈ Sn such that (a b c) = σ−1(1 2 3)σ.

If σ is even, then σ ∈ An, so since HCAn, we have (1 2 3) ∈ H and done. If σ is odd, take
σ = σ(4 5) ∈ An (here comes the condition n ≥ 5), then σ−1(1 2 3)σ = σ−1(1 2 3)σ = (a b c)
so done. �

Let H CAn. We want to show that H contains a 3-cycle, so it is An itself. We split into different
cases.

(i) Claim 3. If H contains a σ which can be written as

σ = (1 2 3 dots r) · τ

for r ≥ 4 and τ arbitrary, then H contains a 3-cycle.

Proof. Let δ = (1 2 3) and consider

σ−1︸︷︷︸
∈H

· δ−1 · σ · δ︸ ︷︷ ︸
∈H︸ ︷︷ ︸

∈H

= (r . . . 2 1)(1 3 2)(1 2 . . . r)(1 2 3)

= (2 3 r) ,

where we used the assumption that (1 2 . . . r)τ are disjoint so τ commute with (1 2 . . . r)
and δ. �

(ii) Claim 4. If H contains a σ = (1 2 3)(4 5 6) · τ disjoint, then it contains a 3-cycle.

Proof. Let δ = (1 2 4). Then

σ−1δ−1σδ = (1 3 2)(4 6 5)(1 4 2)(1 3 2)(4 5 6)(1 2 4)

= (1 2 4 3 6) ∈ H .

This is a 5-cycle, so the previous case applies. �

(iii) Claim 5. If H contains a σ = (1 2 3) · τ disjoint, then it contains a 3-cycle.

Proof. If τ is a product of 2-cycles, then

σ2 = (1 2 3)2 = (1 3 2)

is a three cycle. If τ is anything longer, then it falls into one of the previous cases. �

(iv) Claim 6. If H contains σ = (1 2)(3 4)τ disjoint, then it contains a 3-cycle.

Proof. If τ is a product of 2-cycles, let δ = (1 2 3) then

u = σ−1δ−1σδ

= (1 2)(3 4)(1 3 2)(1 2)(3 4)(1 2 3)

= (1 4)(2 3) ∈ H .

10
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Then let
v = (1 5 2)u(1 2 5) = (1 3)(4 5) ∈ H ,

where we used n ≥ 5 again. Consider

uv = (1 4)(2 3)(1 3)(4 5) = (1 2 3 4 5) ∈ H .

This is the first case so done.

If τ is longer, it fits in one of the previous cases. �

Combining these results, we are done. �

1.5 Finite p-groups.

We never seem to talk about things like the sum of orders of two subgroups. From this point of view,
the simplest groups are those of prime orders, but they are all cyclic. The next simplest groups are
those whose order is a power of prime.

Definition 1.37. A finite group is a p-group if |G| = pn for some prime number p and n ≥ 1.

Theorem 1.38. If G is a finite p-group, then its centre Z(G) = {x ∈ G | xg = gx ∀g ∈ G} is
non-trivial.

Proof. Let G act on itself by conjugation. Each orbit of this action (which are precisely the conjugacy
classes) has size dividing |G| = pn, so is either a singleton, or has size divisible by p.

Since the conjugacy classes partition G, the sum of the sizes of the conjugacy classes is |G|. In
particular,

|G| = #{conjugacy classes of size 1}+
∑

orders of all other conjugacy classes .

By the above discussion, the second term is divisible by p, as is |G| = pn. Therefore, the
number of conjugacy classes of size 1 is divisible by p. {e} is a conjugacy class of size 1, so
#{conjugacy classes of size 1} ≥ p ≥ 2. There must be a conjugacy class {x} 6= {e}.

Then, g−1xg = x ∀g ∈ G, i.e. x ∈ Z(G), so Z(G) is non-trivial. �

Corollary. Let G be a p-group of order pn, n ≥ 2. G is not simple.

Proof. Z(G)CG. �

This allows us to prove interesting things about p-groups by induction on their orders, by
considering the smaller p-group G/Z(G). One way to do this is via the following lemma.

Lemma 1.39. For any group G, if G/Z(G) is cyclic, then G is abelian.

In other words, if G/Z(G) is cyclic, then it is trivial, since the centre of an abelian group is the abelian
group itself.

Proof. Let the coset gZ(G) be a generator of the cyclic group G/Z(G), so every coset of Z(G) is of
the form grZ(G). It follows that every element x ∈ G must be in the form grz for some z ∈ Z(G),
r ∈ Z.

To show that G is abelian, let x′ = gr
′
z′ another element in G with some z′ ∈ Z(G) and r′ ∈ Z.

As z, z′ ∈ Z(G), they commute with every element in G, so

xx′ = grzgr
′
z′ = gr

′
grz′z = gr

′
z′grz = x′x ,

and hence G is abelian. �

11
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This lemma is particularly useful when applied to p-groups.

Corollary. If p is prime and |G| = p2, then G is abelian.

Proof. Since Z(G) ≤ G, its order must be 1, p or p2. Z(G) is non-trivial, so |Z(G)| = p or p2. If
|Z(G)| = p2, it is the whole group so G is trivially abelian. Otherwise, |G/Z(G)| = p2/p = p must
be cyclic, so it must be cyclic, then G is again abelian. �

Theorem 1.40. Let G be a group of order pa, where p is prime. Then G has a subgroup of order pb
for any 0 ≤ b ≤ a.

Remark. This means that G has a subgroup of every possible order. This is not true for general
groups, e.g. A5 has an order of 60, but it has no subgroup of order 30 (as a subgroup of index 2 has
to be normal, but A5 is simple).

Proof. We induct on a. If a = 1, then {e} and G are subgroups of order p0 and p1 so done.

Suppose a > 1 and we want to construct a subgroup of order pb. If b = 0 then trivial. Otherwise,
Z(G) is non-trivial, so let x ∈ Z(G), x 6= e. Since ord(x) | |G|, its order is a power of p. If it has
an order pc, then xpc−1 has order p. By renaming, suppose that x has order p, we have generated a
subgroup 〈x〉 of order p. Since x ∈ Z(G), 〈x〉 commutes with every g ∈ G, so 〈x〉 C G. Therefore,
G/〈x〉 is a group of order pa−1.

Since this is a strictly smaller group, we may suppose by induction that G/〈x〉 has a subgroup of
any possible order. In particular, it has a subgroup L of order pb−1. By the subgroup correspondence,
there is some K ≤ G such that 〈x〉CK and L = K/〈x〉. Then K has an order pb. �

1.6 Finite Abelian Groups

Theorem 1.41 (Classification of finite abelian groups). Let G be a finite abelian group. Then
there exists some d1, . . . , dr such that

G ∼= Cd1 × Cd2 × . . . Cdr .

Moreover, we can choose the di such that di+1 | di for each i, in which case this expression is unique.

We will prove this in chapter 3 as a special case of the classification of modules over certain rings.

Example. The abelian groups of order 8 are C8, C4 × C2, C2 × C2 × C2.

Sometimes the decomposition given by this theorem is not the most useful form. To get a nicer
decomposition, we can use the following lemma.

Lemma 1.42. If n and m are coprime, then Cmn
∼= Cm × Cn.

Remark. This is essentially the Chinese remainder theorem, and this formulation is how you should
think of that theorem.

Proof. It suffices to find an element of order nm in Cm × Cn, then since Cm × Cn has order mn, it
must be cyclic and hence isomorphic to Cmn.

Let g ∈ Cm have order m and h ∈ Cn have order n, and consider the element (g, h) ∈ Cm × Cn.
Suppose the order of (g, h) is k, then (g, h)k = (e, e). Hence (gk, hk) = (e, e). So m | k and n | k. As
m,n are coprime, this means that mn | k. As k = ord(g, h) and (g, h) ∈ Cm ×Cn is a group of order
mn, we must have k | mn. So k = mn. �

12
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Corollary. For any finite abelian group G, we have

G ∼= Cd1 × Cd2 × · · · × Cdr ,

where each di is a prime power.

Proof. From the classification theorem, iteratively apply the previous lemma to break down each
component up into prime powers. �

1.7 Sylow’s Theorems

Definition 1.43. Let G be a finite group of order pa ·m, with p prime and p - m. A Sylow p-subgroup
of G is a subgroup P ≤ G of order pa.

Theorem 1.44 (Sylow’s theorems). Let G be a finite group of order pa · m, with p prime and
p - m.

(i) The set
Sylp(G) := {P ≤ G | |P | = pa}

of Sylow p-subgroups of G is non-empty.

(ii) All elements of Sylp(G) are conjugate in G.

(iii) The number np =
∣∣Sylp(G)

∣∣ of Sylow p-subgroups satisfies np ≡ 1 (mod p) and np | |G|, and
hence np | m.

These are sometimes known as Sylow’s first/second/third theorem respectively.

Proof.

(i) First show that Sylp(G) 6= ∅. Let Ω be the set of subsets of G with pa elements. G acts on this
via

g ∗ {x1, x2, . . . , xpa} = {g · x1, g · x2, . . . , g · xpa} .

Let Σ ⊆ Ω be an orbit of this action.
If {x1, . . . , xpa} ∈ Σ, then for any g ∈ G,

(g · x−1
1 ) ∗ {x1, . . . , xpa} = {g, . . . } ∈ Σ

contains g, so any element of the group lies in some element of Σ, so

|Σ| ≥ |G|
pa

= m.

If |Σ| = m, then by orbit-stabiliser theorem, the stabiliser of any {x1, . . . , xpa} has index m, so
has order pa, and thus is a Sylow p-subgroup.
We would then like to show not every orbit can have size > m. If |Σ| > m, then as |Σ| | |G| =
pam by orbit-stabiliser theorem, we must have p | |Σ|. Our strategy is to show |Ω| 6≡ 0 (mod p),
so since Ω is the disjoint union of all orbits, not every orbit can have size > m.
This is done by calculating

|Ω| =
(
pam
pa

)
=

pa−1∏
j=0

pam− j

pa − j
.

As j < pa, the largest power of p dividing pam−j is the largest power of p dividing j. Similarly,
the largest power of p dividing pa− j is also the largest power of p dividing j. So we have the
same power of p on top and bottom for each term in the product, so they cancel and the result
is not divisible by p.

13
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(ii) We will prove something stronger. Let P be a Sylow p-subgroup, and Q be a p-subgroup (with
order |Q| = pb where b ≤ a). We will show that Q may be conjugated into P , i.e. g−1Qg ≤ P
for some g ∈ G.
Let Q act on the set of left cosets G/P via q ∗ gP = (qg)P . By orbit-stabiliser, the size of each
orbit divides |Q|, so each orbit has size 1 or divisible by p. But |G/P | = pa·m

pa = m is coprime
to p, so some orbit has size 1. Let gP has size 1, then

qgP = gP ∀q ∈ Q ⇐⇒ g−1qg ∈ P ⇐⇒ g−1Qg ≤ P .

(iii) G acts on the set of Sylp(G) by conjugation. By (ii), the action has a single orbit, The orbit-
stabiliser theorem applied to the orbit shows that np =

∣∣Sylp(G)
∣∣ divides |G|. This is the second

claim.
Let P ∈ Sylp(G) and act on Sylp(G) by conjugation. Note {P} is an orbit of this action with
size 1. We will show that the other orbits have sizes divisible by p. By orbit-stabiliser, all orbits
have size either 1 or divisible by p. Need to show that there are no other orbit of size 1. Suppose
{Q} is such an orbit, i.e. ∀p ∈ P , p−1Qp = Q, so

P ≤ NG(Q) = normaliser of Q in G
= {g ∈ G | g−1Qg = Q} .

Now NG(Q) is itself a group, and we can look at its Sylow p-subgroups. We know that Q ≤
NG(Q) ≤ G, so pa | |NG(Q)| | pam. Thus pa is the biggest power of p that divides |NG(Q)|, so
Q is a Sylow p-subgroup of NG(Q).
By (ii), Q is conjugated to P inside NG(Q), but the only conjugate of Q in NG(Q) is Q
tautologically, so Q = P .
So the original action has exactly 1 orbit of size 1, and the other have sizes divisible by p, so
np =

∣∣Sylp(G)
∣∣ ≡ 1 (mod p). �

Lemma 1.45. If there is a unique Sylow p-subgroup, i.e. np = 1, then it is normal in G.

Proof. Let P be the unique Sylow p-subgroup, and let g ∈ G. Then by Sylow’s second theorem,
g−1Pg is P itself, so P is normal. �

Corollary. Let G be a non-abelian simple group and prime number p | |G|. Then |G| | (np)!
2 and

np ≥ 5.

Proof. G acts on the set of Sylow p-subgroups Sylp(G) by conjugation, giving the permutation
representation

φ : G→ Sym(Sylp(G)) ∼= Snp .

We know ker(φ)CG, but G is simple, so kerφ is either {e} or G.

If ker(φ) = G, then all Sylow p-subgroups are normal. This contradicts with G being simple, so
ker(φ) = {e}, and so G is isomorphic to a subgroup of Snp . Now consider

G
φ−−→ Snp

sign−−→ {±1} .

If this is injective, then the kernel is an index 2 normal subgroup of G, again contradicts with G
being simple. Therefore we can only have ker sign ◦φ being the whole G, so G ∼= im(φ) ≤ Anp

, and
|G| | (np)!

2 .

For the final statement, can check that A1, . . . , A4 has no non-abelian simple subgroups. �

Example. Let |G| = 1000 = 23 · 53, then n5 ≡ 1 (mod 5) and n5 | 8 = 23. Then we can only have
n5 = 1, so G has a normal subgroup of order 53, and G is not simple.

14
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Example. Let |G| = 132 = 22 · 3 · 11. Suppose G is simple. Have n11 ≡ 1 (mod 11), n11 | 22 · 3 = 12,
so n11 = 1 or 12. As G is assumed simple, n11 6= 1, so n11 = 12.

Similarly, n3 ≡ 1 (mod 3) and n3 | 22 · 11 = 44, so n3 = 1, 4 or 22. G is simple so n3 6= 1. If
n3 = 4, then the corollary gives |G| = 132 | 4!2 = 12, a contradiction so n3 must be 22.

Every Sylow 11-subgroup is cyclic, so contains 11− 1 = 10 elements of order 11. These subgroups
only intersect at {e}, so there are 11× 10 = 120 elements of G of order 11.

Every Sylow 3-subgroup is cyclic, so contains 2 elements of order 3. They only intersect in {e} so
there are 22× 2 = 44 elements of order 3.

We have found too many elements of G. This cannot happen, so a group of order 132 is never
simple.

Example. GLn(Z/p) = {invertible n× n matrices with entries in Z/p}, p is a prime number. What
is the order of this group? Giving a matrix A ∈ GLn(Z/p) is the same as giving n linearly independent
vectors in the vector space (Z/p)n. We can pick the first vector to be anything except zero, so there
are pn − 1 ways of choosing the first vector. Next, we need to pick the second vector, which can be
anything that is not in the span of the first vector, so there are pn − p ways of choosing the second
vector. Continuing in this way we have

(pn − 1)(pn − p)(pn − p2) . . . (pn − pn−1) = p1+2+···+(n−1)(pn − 1)(pn−1 − 1) . . . (p− 1) .

So p(
n
2) is the largest power of p dividing |GLn(Z/p)|.

To give a Sylow p-subgroup of GLn(Z/p), we consider the subgroup of matrices of the following
form

U :=




1 ∗ ∗ · · · ∗
0 1 ∗ · · · ∗
0 0 1 · · · ∗
...

...
...

. . .
...

0 0 0 · · · 1

 ∈ GLn(Z/p)


.

We have |U | = p(
n
2), so it is a Sylow p-subgroup.

Example. GL2(Z/p) has order p(p2−1)(p−1) = p(p−1)2(p+1). Suppose l | p−1 and l3 - |GL2(Z/p)|.
l 6= p is a prime number, so there must be a subgroup of order l2. Note

(Z/p)× = {x ∈ Z/p | ∃y such that xy ≡ 1 (mod p)} ∼= Cp−1 ,

so as l | p− 1, there is a subgroup Cl ≤ Cp−1
∼= (Z/p)×. We immediately find a subgroup

Cl × Cl ≤ (Z/p)× × (Z/p)× ≤ GL2(Z/p) ,

where the second inclusion is the diagonal matrices, identifying

(a, b)←→
(
a 0
0 b

)
,

so this is a Sylow l-subgroup.

A non-examinable fact:

Theorem 1.46 (Feit–Thompson theorem). If G is a non-abelian finite group of odd order, then
it is not simple.
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2 Rings

2.1 Definitions and Examples

Definition 2.1. A quintuple (R,+, · , 0R, 1R) forms a ring if

(i) (R,+, 0R) is an abelian group.

(ii) the operation − · − : R×R is associative and satisfies

1R · x = x · 1R = x ∀x ∈ R .

(iii) multiplication distributes over addition

(r1 + r2) · r3 = r1 · r3 + r2 · r3
r1 · (r2 + r3) = r1 · r2 + r1 · r3 .

If R is a ring and r ∈ R, we write −r for the inverse to r in the group (R,+, 0R), and we write
r − s to mean r + (−s) and so on.

Some authors do not insist on the existence of the multiplicative identity, but we do.

Since we can add and multiply two elements, by induction, we can add and multiply any finite
number of elements. However, the notions of infinite sum and product are not defined: it does not
make sense to ask if an infinite sum converges.

Definition 2.2. A ring is commutative if a · b = b · a ∀a, b ∈ R.

From now onwards, all the rings in this course are commutative.

Definition 2.3. If (R,+, · , 0R, 1R) is a ring, an S ⊆ R is a subring if 0R, 1R ∈ S and + and ·
make S into a ring.

Example. We have subrings

• Z ≤ Q ≤ R ≤ C.

• Z[i] = {a+ bi ∈ C | a, b ∈ Z} ≤ C, known as Gaussian integers.

• Q[
√
2] = {a+

√
2b ∈ R | a, b ∈ Q} ≤ R.

Definition 2.4. An r ∈ R is called a unit if there is an s ∈ R such that r · s = 1R.

If all non-zero elements in R are units, then R is called a field.

Example. 0R = 0R + 0R, so r · 0R = r · (0R + 0R) = r · 0R + r · 0R, so r · 0R = 0R. Also, r · 1R = r.

Note ({0},+, · , 0, 0) is a ring in which 1R = 0R. It is the only ring in which 1R = 0R. (However,
it is often a counterexample to incautious claims about rings.)

Definition 2.5. Let R,S be rings, the product R× S is a ring via

(r1, s1) + (r2, s2) = (r1 + r2, s1 + s2)

(r1, s1) · (r2, s2) = (r1 · r2, s1 · s2)

The zero element and one element are

0R×S = (0R, 0S) 1R×S = (1R, 1S) .

16
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Note we have
(x, 0S) · (0R, y) = 0R×S .

Definition 2.6. Let R be a ring. A polynomial over R is an expression

f = a0 + a1X + a2X
2 + · · ·+ anX

n

with ai ∈ R and Xi are formal symbols.

Definition 2.7. The degree of the polynomial is the largest k such that ak 6= 0.

If a polynomial of degree k has ak = 1, then the polynomial is called monic.

Definition 2.8. Let R[X] denote the set of all polynomials with coefficients in R. R[X] forms a
polynomial ring: if f = a0 + a1X + · · ·+ anX

n and g = b0 + b1X + · · ·+ bkX
k are polynomials over

R, then

f + g =

max{n,k}∑
r=0

(ar + br)X
r ,

and

f · g =
n+k∑
i=0

 i∑
j=0

ajbi−j

Xi .

0R[X] = 0R and 1R[X] = 1R, both considered as constant polynomials.

Remark. A polynomial with coefficients in R is just a sequence of elements of R, interpreted as the
coefficients of some formal symbols. While it does indeed induce a function from R to R in the obvious
way, we shall not identify the polynomial with the function it induces, since different polynomials can
give rise to the same function.

For example, in Z/2Z[X], f = X2 + X is not the zero polynomial, since its coefficients are not
zero. However, f(0) = 0 and f(1) = 0, so the function induced by f is identically zero.

Definition 2.9. R[[X]] is the ring of formal power series

f = a0 + a1X + a2X
2 + . . .

with coefficients ai ∈ R and the same formulae for addition and multiplication.

We do not ask whether the sum converges or not, because it is not a sum: it is a formal symbol which
can be manipulated similarly to a convergent infinite sum.

Definition 2.10. R[X,X−1] is the ring of Laurent polynomials

fi =
∑
i∈Z

aiX
i ,

where ai ∈ R and there are only finitely non-zero ai. Add and multiply as above, with X ·X−1 = 1.

We can also think of Laurent series, but we have to be careful: we allow infinitely many positive
coefficients, but only finitely many negative ones. Or else, in the formula for multiplication, we will
have an infinite sum of elements in R, which is not defined.

Example. If R is a ring and X is a set, then F = {f : X → R} = all functions X → R is a ring, via

(f +F g)(x) = f(x) +R g(x)

(f ·F g)(x) = f(x) ·R g(x) .

E.g. {all f : R→ R} ⊃ {continuous f : R→ R} ⊃ R[X]
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2.2 Homomorphisms, Ideals, Quotients and Isomorphisms

Definition 2.11. A function φ : R→ S between rings is a homomorphism if

(i) φ(r1 +R r2) = φ(r1) +S φ(r2), φ(0R) = 0S

(⇐⇒ φ : (R,+R, 0R)→ (S,+S , 0S) is a group homomorphism) .

(ii) φ(r1 ·R r2) = φ(r1) ·S φ(r2).

(iii) φ(1R) = 1S .

Definition 2.12. If a homomorphism φ : R→ S is a bijection, then it is called an isomorphism.

Definition 2.13. The kernel of a homomorphism φ : R→ S is

ker(φ) := {r ∈ R | φ(r) = 0S} .

The image of a homomorphism φ : R→ S is

im(φ) := {s ∈ S | s = φ(r) for some r ∈ R} .

Lemma 2.14. A homomorphism φ : R→ S is injective if and only if kerφ = {0R}.

Proof. A ring homomorphism is in particular a group homomorphism φ : (R,+, 0R) → (S,+, 0S) of
abelian groups. �

Definition 2.15. A subset I ⊆ R is called an ideal, I CR, if

(i) I is a subgroup of (R,+, 0R)

(ii) If x ∈ I, r ∈ R, then x · r ∈ I. (strong closure)

We say an ideal I CR is proper if I 6= R.

Lemma 2.16. If φ : R→ S is a ring homomorphism, then ker(φ) is an ideal in R.

Proof. ker(φ) is a subgroup of (R,+R, 0R), showing (i).

If x ∈ ker(φ) and r ∈ R, then

φ(r · x) = φ(r) · φ(x) = φ(r) · 0S
= 0S ,

so r · x ∈ ker(φ) too, showing (ii). �

Examples.

(i) If I CR and 1R ∈ I, then for any r ∈ R, r = r · 1R ∈ I, so I = R. So I is proper ⇐⇒ 1R /∈ I.

(ii) If I C R and u ∈ R is a unit, then there is a v ∈ R such that v · u = 1R, so if u ∈ I, then
1R = u · v ∈ I, so I = R. So I is proper ⇐⇒ all units are outside of I.

(iii) In Z, all ideals have the form nZ = {. . . ,−2n,−n, 0, n, 2n, . . . }.

Proof. Certainly, nZ is an ideal.
Let I C Z be an ideal, and n be the smallest strictly positive element in I (If there isn’t one,
then I = {0} = 0Z). Claim that I = nZ. Certainly, nZ ⊆ I. If they are not equal, pick an
element m ∈ I \ nZ. Using Euclidean algorithm:

m = qn+ r with 0 ≤ r < n .

Then r = m︸︷︷︸
∈I

− q · n︸︷︷︸
∈I

∈ I, but r < n, gives a contradiction. �
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Definition 2.17. For a ∈ R, the ideal generated by a is

(a) := {a · r ∈ R | r ∈ R}CR .

Generally, the ideal generated by a1, . . . ak ∈ R is

(a1, . . . , ak) := {a1r1 + . . . akrk | ri ∈ R}CR .

More generally, the ideal generated by A ⊆ R is

(A) :=

{∑
a∈A

a · ra

∣∣∣∣∣ ra ∈ R, only finitely many non-zero

}
.

Definition 2.18. If an ideal I = (a) for some a ∈ R, then I is called a principal ideal.

Example. Examples of principal ideals:

(i) nZ = (n)C Z.

(ii) (X) = {polynomials with constant term 0}CR[X].

Definition 2.19. Let I be an ideal of R. A quotient ring is the set of cosets {r + I | r ∈ R} with
operations

(r1 + I) + (r2 + I) = (r1 + r2) + I

(r1 + I) · (r2 + I) = r1 · r2 + I ,

and 0R/I = 0R + I, 1R/I = 1R + I.

Proposition 2.20. The quotient ring is a ring, and the function

R −→ R/I

r 7−→ r + I

is a ring homomorphism.

Proof. Already know (R/I,+, 0R/I) is an abelian group, so addition well-defined. Have{
r1 + I = r′1 + I

r2 + I = r′2 + I
=⇒

{
r1 = r′1 + a1 a1 ∈ I

r2 = r′2 + a2 a2 ∈ I .

So r1r2 = (r′1 + a1)(r
′
2 + a2) = r′1r

′
2 + r′1a2︸︷︷︸

∈I

+ a1r
′
2︸︷︷︸

∈I

+ a1a2︸︷︷︸
∈I

, so r1r2 + I = r′1r
′
2 + I. Multiplication is

well defined. The other axioms are inherited from R. �

Examples.

(i) Have ideal nZCZ, so get quotient rings Z/nZ. The elements are 0+nZ, 1+nZ, 2+nZ, · · · , (n−
1) + nZ. Addition and multiplication are arithmetics modulo n.

(ii) (X)C C[X]. Elements of C[X]/(X) are

a0 + a1X︸︷︷︸
∈(X)

+ a2X
2︸ ︷︷ ︸

∈(X)

+ . . . anX
n︸ ︷︷ ︸

∈(X)

+(X) = a0 + (X) .

If a0 + (X) = b0 + (X), then a0 − b0 is divisible by (X), so a0 − b0 = 0. Elements are uniquely
written as a0 + (X).

C[X]/(X)←→ C
p(X) + (X) 7−→ p(0)

a+ (X) 7−→a

is a ring isomorphism.
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Proposition 2.21 (Euclidean algorithm for polynomials). Let F be a field and f, g ∈ F[X].
Then we can write

f(X) = q(X) · g(X) + r(X) ,

with deg r < deg g.

Proof. Let deg f = n, so

f(X) =

n∑
i=0

aiX
i , an 6= 0 .

Let deg g = m, so

g(X) =

m∑
j=0

bjX
j , bm 6= 0 .

If n < m, then can take q(X) = 0, r(X) = f(X) then done.

If n ≥ m, proceed by induction on n. Let

f1(X) = f(X)− an · b−1
m Xn−mg(X) ,

which exists because F is a field. The coefficient of Xn is an − an · b−1
m · bm = 0, so f1(X) has degree

< n. If we had n = m, then

f(X) = (anb
−1
m Xn−m)g(X) + f1(X) ,

then deg f1 < deg f , so done. If n > m, then by induction

f1(X) = q1(X)g(X) + r1(X) , deg r1 < m ,

so
f(X) = (anb

−1
m Xn−m + q1(X))g(X) + r1(X)

as required. �

Example. Consider (X2 + 1)C R[X], R = R[X]/(X2 + 1).

Given f(X) + (X2 + 1), write f(X) = q(X)(X2 + 1) + r(X) using Euclidean algorithm with
deg r < 2, so f(X) + (X2 + 1) = r(X) + (X2 + 1). So all elements have the form a+ bX + (X2 + 1).
If a′ + b′X + (X2 + 1) is the same coset, then

a+ bX − (a′ + b′X) = h(X)(X2 + 1) .

Both sides must vanish considering their degrees. The representation is therefore unique.

What we’ve got is that every element in R is of the form a+ bX, and X2 + 1 = 0, i.e. X2 = −1.
This sounds like the complex numbers, just that we are calling it X instead of i.

Let

φ : R[X]/(X2 + 1)←→ C

a+ bX + (X2 + 1) 7−→7−→a+ ib .

Clear that φ preserves addition. For multiplication,

φ((a+ bX + (X2 + 1))(c+ dX + (X2 + 1))) = φ(ac+ (ad+ bc)X + bdX2 + (X2 + 1))

= φ((ac− bd) + (ad+ bc)X + (X2 + 1))

= (ac− bd) + (ad+ bc)i

= (a+ ib)(c+ id) .

So φ is a ring homomorphism.
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Exercise. Prove R[X]/(X2 − 1) ∼= R× R.

Theorem 2.22 (First isomorphism theorem). Let φ : R → S be a ring homomorphism. Then
ker(φ)CR, imφ ≤ S and φ : R/ ker(φ) ∼= imφ as rings.

Proof. Have seen that kerφ is an ideal. Also, imφ is a subgroup of (S,+S , 0S) by the 1st isomorphism
for groups, and φ(r1) · φ(r2) = φ(r1 · r2) ∈ imφ, and 1S = φ(1R), 0S = φ(0R). im(φ) is a subgroup of
S. Let

Φ : R/ kerφ −→ imφ

r + kerφ 7−→ φ(r) .

Check that it is multiplicative. �

Theorem 2.23 (Second isomorphism theorem). Let R ≤ S, J C S, then J ∩RCR,

R+ J

J
:= {r + J | r ∈ R} ≤ S

J

and
R

J ∩R
∼=

R+ J

J

as rings.

Proof. Let

φ : R −→ S/J

r −→ r + J ,

a ring homomorphism.

ker(φ) = {r ∈ R | r + J = 0 + J i.e. r ∈ J} = R ∩ J

im(φ) = {r + J | r ∈ R} = R+ J

J
≤ S

J .

Apply the first isomorphism theorem. �

Just as for rings, there is a correspondence between

{subrings of R/I} ←→ {subrings of R containing I}
S/I ≤ R/I 7−→I C S ≤ R

L ≤ R/I 7−→ {r ∈ R | r + I ∈ L} .

Similarly,
{ideals of R/I} ←→ {ideals of R containing I} .

Theorem 2.24 (Third isomorphism theorem). Let I CR, J CR, I ⊆ J , then J/I CR/I and

R/I

J/I
∼=

R

J
.

Proof. Consider

φ : R/I −→ R/J

r + I 7−→ r + J ,

a ring homomorphism. It is onto, and kerφ = {r + I ∈ R/I | r + J = 0 + J} = J/I. Apply the first
isomorphism theorem. �
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Example. For any ring R, there is a homomorphism

c : Z −→ R

1 7−→ 1R

n 7−→ 1R + · · ·+ 1R︸ ︷︷ ︸
n times

, n ≥ 0 .

The first isomorphism theorem: ker(c) = nZ for some n, and Z/nZ ∼= im(c) ≤ R. n is called the
characteristic of R.

Z,R,Q,C have characteristic 0. Z/nZ has characteristic n.

2.3 Integral Domains, Field of Fractions, Maximal and Prime Ideals

Many rings can be completely nothing like Z. For example, in Z, we know that if a, b 6= 0, then
a · b 6= 0. We start with the most fundamental property that the product of two nonzero elements is
non-zero. We will almost exclusively work with rings that satisfy this property (except some simple
ones like Z/nZ).

Definition 2.25. A non-zero ring is called an integral domain if whenever a · b = 0, a = 0 or b = 0.

A zero divisor in a non-integral domain is an element that violates this property, i.e. a ∈ R is a
zero divisor if ∃b 6= 0 such that a · b = 0.

Example. All fields are integral domain. a · b = 0 and b 6= 0, then b−1 exists so 0 = (a · b) · b−1 = a.
So Q and C are domains.

A subring of an integral domain is again an integral domain. Z ≤ Q and Z[i] ≤ C so Z and Z[i]
are integral domains.

Lemma 2.26. A finite integral domain is a field.

Proof. Let a 6= 0 ∈ R and consider

a · − : (R,+, 0)→ (R,+, 0)

a homomorphism. If a · r = a · r′, then a · (r − r′) = 0, so as R is an integral domain, r − r′ = 0, so
r = r′. That is, a ·− is injective. As R is finite, it must be a bijection. So ∃b ∈ R such that a · b = 1R,
so a is a unit, so R is a field. �

Lemma 2.27. If R is an integral domain, then so is R[X].

Proof. If f, g 6= 0 ∈ R[X], i.e.

f =

n∑
i=0

aiX
i , an 6= 0

g =

m∑
j=0

bjX
j , bm 6= 0 ,

then

f · g = a0b0 + (a1b0 + a0b1)X + · · ·+ anbm︸ ︷︷ ︸
6= 0 as R integral domain

Xm+n

6= 0 ,

so R[X] is an integral domain. �
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This implies that R[X1, X2, . . . , Xn] = ((R[X1])[X2] . . . )[Xn] is also an integral domain.

Definition 2.28. Let R be an integral domain. A field of fractions F of R is a field with the
properties

(i) R ≤ F

(ii) Every element of F may be written as a · b−1 for a, b ∈ R, where b−1 means the multiplicative
inverse to b 6= 0 in F .

Recall that a subring of any field is an integral domain. The converse is also true.

Theorem 2.29. Every integral domain has a field of fractions.

Proof. Consider the set
S = {(a, b) ∈ R×R | b 6= 0}

and the relation (a, b) ∼ (c, d) ⇐⇒ ad = bc ∈ R.

Check that it is an equivalence relation: symmetry and reflexivity are obvious, need to check
transitivity. If (a, b) ∼ (c, d), (c, d) ∼ (e, f), then ad = bc, cf = de, so

(ad)f = (bc)f = b(cf) = b(de) ,

so d(af − be) = 0, d 6= 0 ⇐⇒ af = be as R is an integral domain ⇐⇒ (a, b) ∼ (e, f).

Let F = S/ ∼ be the set of equivalent classes, and a
b = [(a, b)]. Define

a

b
+

c

d
=

ad+ bc

bd
a

b
· c
d
=

ac

bd
.

These are well defined, and make (F,+, , 0
1 ,

1
1 ) into a ring. Need to check that every non-zero

element is a unit so that it is a field. If a
b 6= 0F , then a

b 6=
0
1 , so (a, b) 6∼ (0, 1), so a · 1 6= b · 0 = 0, i.e.

a 6= 0. Then a
b ·

b
a = ab

ab = 1
1 = 1F , so a

b is a unit.

Need to check the two conditions of F being a field of fractions of R.

(i) Need to show that R is isomorphic to a subring of F . Define

c : R −→ F

a 7−→ a

1
.

It is a homomorphism and it is injective, so by the first isomorphism theorem,R ∼= im c ≤ F .

(ii) True by construction. �

Example. The field of fractions of Z is Q.

Lemma 2.30. A non-zero ring is a field ⇐⇒ the ideals are {0} and R.

Proof.

(⇒) If R 6= {0} is a field, {0} 6= I CR, and let x ∈ I be non-zero. Then 1 = x · x−1 ∈ I, so I = R.

(⇐) Let non-zero x ∈ R, and consider the ideal (x). It contains x 6= 0, so it is non-zero, so (x) = R,
so 1 ∈ (x), so ∃y ∈ R such that x · y = 1, so x is a unit, so R is a field. �

This is another reason why fields are special. They have the simplest possible ideal structure. This
motivates the following definition:
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Definition 2.31. An ideal I of a ring R is maximal if I 6= R, and if I ≤ JCR, then J = I or J = R.

Lemma 2.32. An ideal I CR is maximal ⇐⇒ R/I is a field.

Proof. R/I is a field ⇐⇒ I/I and R/I are the only ideals of R/I ⇐⇒ I and R are the only ideals
of I which contain I ⇐⇒ I is maximal. �

Definition 2.33. An ideal I C R is prime if I 6= R and if a, b ∈ R such that a · b ∈ I =⇒ a ∈ I or
b ∈ I.

Example. nZ C Z is a prime ideal ⇐⇒ n = 0 or n is a prime number. If p is a prime or 0 and
a · b ∈ pZ, so p | a · b, so p | a or p | b, i.e. a ∈ pZ or b ∈ pZ.

If n = u · v is a composite number (u, v 6= ±1) then u · v ∈ nZ but u, v 6= nZ.

Lemma 2.34. I CR is prime ⇐⇒ R/I is an integral domain.

Proof.

(⇒) Let I be prime. Let a+ I, b+ I ∈ R/I and suppose

0R/I = (a+ I)(b+ I) = ab+ I ,

so ab ∈ I. As I is prime, either a ∈ I or b ∈ I, so a + I = 0R/I or b + I = 0R/I , so R/I an
integral domain.

(⇐) Suppose R/I an integral domain. Let a, b ∈ R such that ab ∈ I. Then (a+ I)(b+ I) = ab+ I =
0R/I . As R/I an integral domain, a+ I = 0R/I or b+ I = 0R/I , i.e. a ∈ I or b ∈ I, so I prime.
�

Proposition 2.35. Every maximal ideal is a prime ideal.

Proof. I CR is maximal =⇒ R/I is a field =⇒ R/I an integral domain =⇒ I is prime. �

The converse is clearly not true.

Proposition 2.36. Let R be an integral domain, then the characteristic of R is 0 or a prime number.

Proof. Consider the map c : Z→ R and ker c = nZ, where n is the characteristic. Z/ ker c = Z/nZ ∼=
im c ≤ R. Then R is an integral domain =⇒ Z/nZ is an integral domain =⇒ nZ C Z is a prime
ideal =⇒ n = 0 or n is a prime number. �

2.4 Factorisation in Integral Domains — Units, Primes and Irreducibles

In this section, R is always an integral domain.

Definition 2.37. Let R be an integral domain.

(i) a ∈ R is a unit if ∃b ∈ R with a · b = 1. Equivalently, (a) = R.

(ii) a ∈ R divides b ∈ R if there is a c ∈ R with b = a · c, written a | b. Equivalently, (b) ⊆ (a).

(iii) a, b ∈ R are associates if a = b · c for some unit c. Equivalently, (a) = (b). Equivalently, a | b
and b | a.

When considering division in rings, we often consider two associates to be “the same”. For example,
in Z, we can factorize 6 as 6 = 2 ·3 = (−2) · (−3), but this does not violate unique factorization, since
2 and −2 are associates (and so are 3 and −3), and we consider these two factorizations to be “the
same”.
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Definition 2.38. r ∈ R is irreducible if it is not zero, not a unit, and if r = a · b, then a or b is a
unit.

For integers, being irreducible is the same as being a prime number. However, “prime” means
something different in general rings.

Definition 2.39. r ∈ R is prime if it is not zero, not a unit, and if r divides a · b, then r divides a
or r divides b.

Lemma 2.40. (r) is a prime ideal ⇐⇒ r = 0 or r is prime.

Proof.

(i) a ∈ R Suppose (r) is prime and r 6= 0. As prime ideals are proper, r is not a unit. If r | a · b,
then a · b ∈ (r). So as (r) is prime, a ∈ (r) or b ∈ (r) so r | a or r | b.

(ii) (0)C R as R = R/(0) is an integral domain. Let r ∈ R be prime and a · b ∈ (r), so r | a · b, so
r | a or r | b, so a ∈ (r) or b ∈ (r). �

Lemma 2.41. If r ∈ R is prime, then it is irreducible.

Proof. By the definition of a prime, r is not 0 and is not a unit. Let r = a · b, so as r is prime, r | a
or r | b. WLOG, let r | a, then a = r · c. Thus r = a · b = r · c · b, so r(1− bc) = 0. As R is an integral
domain and r 6= 0, bc = 1 so b is a unit. �

The converse in not true in general.

Example. Let R = Z[
√
−5] = {a+ b

√
−5 | a, b ∈ Z} ≤ C. It is a subring of a field, so it is an integral

domain.

We would like to find out the units of the ring. A useful trick is to define a function called norm:

N : R −→ Z≥0

a+ b
√
−5 7−→ a2 + 5b2 .

So N(z) = z · z for z ∈ R thought as an element of C. This satisfies N(z1z2) = N(z1)N(z2). If r ∈ R
is a unit with inverse s ∈ R, then

1 = N(1) = N(r · s) = N(r)N(s) ,

so N(r) = N(s) = 1. If r = a + b
√
−5, then a2 + 5b2 = 1, so the only solutions are ±1. The only

units in R are ±1.

More generally, if N(x) = 1, then x is a unit.

Our next claim is that 2 ∈ R is irreducible. Suppose 2 = a · b ∈ R, then

4 = N(2) = N(a · b) = N(a) ·N(b) .

Note that N(x) = a2 + 5b2 = 2 has no integer solutions, so we can only have WLOG N(a) = 1 and
N(b) = 4, then a is a unit so 2 ∈ R is irreducible.

Similarly, we can show that 3, 1 +
√
−5 and 1−

√
−5 are irreducible.

Also, (1 +
√
−5)(1−

√
−5) = 1 + 5 = 2 · 3, so 2 | (1 +

√
−5)(1−

√
−5). However, N(2) = 4 does

not divide N(1±
√
−5) = 6, so 2 - 1±

√
−5, so 2 ∈ R is not a prime.

Two lessons:

(i) irreducible ; prime.
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(ii) An element can have multiple ways of factorising into irreducibles, e.g. 6 = 2 × 3 = (1 −√
−5)(1 +

√
−5).

However, there is one situation when unique factorizations holds. This is when we have a Euclidean
algorithm available.

Definition 2.42. An integral domain R is an Euclidean domain (ED) if there is a function φ :
R \ {0} → Z≥0 such that

(i) φ(a · b) ≥ φ(a)

(ii) given a, b ∈ R, b 6= 0, then there are p, r ∈ R with a = p · b+ r and φ(r) < φ(b) or r = 0.

Every time in this course when we say “Euclidean algorithm”, it is an example.

Examples.

(i) Z is an ED with φ(n) = |n|.

(ii) Let F be a field, then F [X] is an ED with φ(f) = deg f .

(iii) Z[i] ≤ C is an ED, with
φ(a+ ib) = a2 + b2 = |a+ ib|2 .

Note φ(z1z2) = |z1z2|2 = |z1|2 |z2|2 ≥ |z1|2 = φ(z1), a2 + b2 ≥ 1 for a+ ib 6= 0.

Consider z1 ∈ R, z2 6= 0 ∈ R. Have z1
z2
∈ C, so there is a q ∈ R such that

∣∣∣ z1z2 − q
∣∣∣ < 1. So

z1
z2

= q + z3 for some z3 ∈ C with |z|3 < 1, then

z1 = z2 · q + z2z3 .

Let z2z3 = r ∈ R, then |r| = |z2| |z3| < |z2| and r = z1 − z2 · q as required.

Definition 2.43. A ring R is a principal ideal domain (PID) if it is an integral domain, and every
ideal is principal.

Example. All ideals of Z are nZ = (n) so Z is a PID.

Proposition 2.44. If R is a Euclidean domain, then it is a principal ideal domain.

Proof. Let R be an ED with Euclidean function φ. Let I be an ideal of R. Choose b ∈ I \ {0} with
φ(b) minimal. For a ∈ I, use ED to divide a: a = b ·q+r with φ(r) < φ(b). Then r = a︸︷︷︸

∈I

− b · q︸︷︷︸
∈I

∈ I,

so φ(b) was a minimal in I \ {0}, must have r = 0. So a = b · q ∈ (b), so I ⊆ (b), so I = (b). �

Example. Z, Z[i] and F[X] for a field F are EDs, so they are PIDs.

Non-Example. Z[X] is not a PID. Consider (2, X)C Z[X]. If this were (f) for some f ∈ Z[X], then
2 = f · g for some g, so f must be constant, and it must divide 2, so f = ±1,±2. If f = ±2, then
X = f · h for some h, but 2 - X. If f = ±1, then (f) = (2, X) = Z[X]. But by the third isomorphism
theorem,

Z[X]

(2, X)
=

Z[X]/(X)

(2, X)/(X)

=
Z
2
6= 0Z[X]/[2,X] ,

so (2, X) 6= Z[X]. Therefore, (2, X) is not principal. �
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Example. Let F be a field. A ∈ Mn×n(F) be an n × n matrix with entries in F. Let I = {f ∈
F[X] | f(A) = 0}. Note that this is an ideal in F[X] — if f, g ∈ I and h ∈ F[X], then (f + g)(A) =
f(A) + g(A) = 0 and (fg)(A) = f(A)g(A) = 0.

As F[X] is a PID, I = (fA) for some fA ∈ F[X]. This satisfies

(i) fA(A) = 0

(ii) If g ∈ F[X] satisfies g(A) = 0, then fA | g.

fA is the minimal polynomial of A.

Definition 2.45. An integral domain is a unique factorisation domain (UFD) if

(i) every non-zero, non-unit element is a product of irreducibles.

(ii) if p1p2 . . . pn = q1q2 . . . qm with all pi, pj irreducibles, then n = m and up to reordering, pi and
qi are associates.

Our next goal is to show PID implies UFD.

Lemma 2.46. Let R be a principal ideal domain. If r ∈ R is irreducible then it is prime.

Note that this is also true in for general unique factorization domains, which we can prove directly
by unique factorization. Note also the converse is always true in any integral domain.

Proof. Let p be a irreducible and p | a · b. Need p | a or p | b, so suppose p - a. Consider (p, a)CR. As
R is a PID, (p, a) = (d) for some d ∈ R, so p = q1d, a = q2d for some q1, q2 ∈ R. As p is irreducible,
either q1 or d is a unit.

Suppose q1 is a unit, then a = q2q
−1
1 p so p | a. Contradiction. So d is a unit, then (p, a) = (d) = R,

and in particular, 1R ∈ (p, a). Let 1R = rp+ sa, then

b = r · p · b︸ ︷︷ ︸
p|r·p·b

+s · a · b︸︷︷︸
p|a·b

,

so p | b. �

Definition 2.47. A ring R is Noetherian if it satisfies the ascending chain condition, meaning for
any chain of ideals of R

I1 ⊆ I2 ⊆ I3 ⊆ . . .

there is some N > 0 such that In = In+1 for all n ≥ N

In a Noetherian ring, we cannot have an infinite chain of bigger and bigger ideals.

Lemma 2.48. A principal ideal domain is Noetherian.

Proof. Let
I =

⋃
n≥1

In ,

then I is also an ideal. As R is a PID, I = (a) for some a, so a ∈
⋃

n≥1 In, so a ∈ IN for some N .
But then (a) ⊆ IN ⊆ IN+1 ⊆ · · · ⊆ I. As I = (a), all these must be equalities. �

Proposition 2.49. If R is a principal ideal domain, then it is a unique factorisation domain.

Proof. We need to check the two conditions of UFD.

27



2 Rings IB Groups, Rings and Modules

(i) Let a ∈ R be non-zero, non-unit. Suppose it is not a product of irreducibles, so a = a1 · b1,
with a1, b1 both non-unit. As a is not a product of irreducibles, at least one of a1 and b2 is not
a product of irreducibles. WLOG, say a1 is not, so a1 = a2 · b2. Again, suppose a2 is not a
product of irreducibles, etc. By the assumption, the process does not end, and we have

(a) ⊆ (a1) ⊆ (a2) . . .

R is a PID, so it is Noetherian, so (an) = (an+1) for some n > 0, i.e.

an = an+1 · u

for some u. Have an = an+1 · bn+1, so as R is an integral domain, get bn+1 = u. Contradiction
as all bi are assumed to be non-unit. So a is a product of irreducibles.

(ii) Let p1p2 . . . pn = q1q2 . . . qm, n ≤ m be a product of irreducibles. Then p1 | q1 . . . qm, and as
irreducible =⇒ prime in PID, p1 is prime, so p1 | qi for some i. By reordering, p1 | q1.
As p1 | q1, q1 = p1c, but q1 is irreducible, and p1 is not a unit, then c is a unit, so p1 and q1 are
associates.
Now get

p2 · · · pn = (c · q2) · q3 . . . qm
a product of irreducibles. Carry on going, in the end get

1 = c′qn+1 . . . qm .

As qi are not units, we must have n = m. �

Definition 2.50. d is the greatest common divisor of a1, . . . an, d = gcd(a1, . . . , an), if d | ai for each
i and if d′ | ai for each i, then d′ | d.

m is the least common multiple of a1, a2, . . . an, m = lcm(a1, . . . , am), if ai | m for each i, and if
ai | m′ for each i, then m | m′.

Note that gcd and lcm are unique up to associates.

Proposition 2.51. If R is a unique factorisation domain, then the gcd’s and lcm’s exist.

Proof. We write each ai as
ai = ui

∏
j

p
nij

j

with ui a unit, and pj irreducibles which are not associates of each other. Claim that

d =
∏
j

p
mj

j , where mj = min
i
(nij)

is a gcd of a1, . . . , an. As mj ≤ nij for each i, certainly d | ai. If d′ | ai for each ai, write d′ = u
∏

j p
tj
j

and observe that tj ≤ nij for all i, so tj ≤ mj , so d′ | d.

Similar for lcm. �

2.5 Factorisations in Polynomial Rings

For a field F, we know that F[X] is an ED, so a PID, so a UFD.

(i) Every I C F[X] is principal. I = (f), f ∈ F[X].

(ii) f ∈ F[X] is irreducible ⇐⇒ f is prime.
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(iii) Let f be irreducible, and (f) ≤ J C F[X]. Then J = (g) for some (g), so f = g · h. But f is
irreducible, so g or h is a unit.
• if g is a unit, then (g) = F[X].
• if h is a unit then (g) = (f).

So J = (f) is a maximal ideal.
Note this argument is valid for all PIDs.

(iv) (f) prime ideal =⇒ f prime =⇒ f irreducible =⇒ f maximal.
So {prime ideals of F[X]} = {maximal ideals of F[X]}.

(v) f ∈ F[X] is irreducible ⇐⇒ F[X]
(f) is a field.

Definition 2.52. Let R be a UFD and

f = a0 + a1X + · · ·+ anX
n ∈ R[X]

with an 6= 0. The content of f is

c(f) := gcd(a0, . . . , an) ∈ R .

Say f is primitive if c(f) is a unit, i.e. the ai are coprime.

Next, we want to prove Gauss’ lemma.

Lemma (Gauss’ Lemma). Let R be a unique factorisation domain, F be its field of fractions.
Suppose f ∈ R[X] is primitive, then

f irreducible in R[X] ⇐⇒ f is irreducible in F [X] .

We can’t do this right away. We first need some preparation. Before that, we do some examples.

Example. Consider f = X3 + X + 1 ∈ Z[X]. We show it is not reducible in Z[X], and hence not
reducible in Q[X].

This has content 1, so primitive. If f has a proper factorisation f = g · h, then write

g = b0 + b1X

h = c0 + c1X + c2X
2 .

See b0c0 = 1, b1c2 = 1 ∈ Z, so b0, b1 = ±1, so g = ±(1 ±X), so ±1 is a root of f . But ±1 are not
roots of X3 +X + 1, so f is not reducible in Z[X].

By Gauss’ lemma, f is also irreducible in Q[X]. In particular, f has no root in Q, and Q[X]/(X3+
X + 1) is a field.

Lemma 2.53. Let R be a unique factorisation domain. If f, g ∈ R[X] are primitive, then so is f · g.

Proof. Let

f = a0 + a1X + a2X
2 + · · ·+ anX

n

g = b0 + b1X + b2X
2 + · · ·+ bmXm .

Suppose f ·g is not primitive, then c(f ·g) ∈ R is not a unit, so as R is an UFD, can find an irreducible
p that divides c(f · g). But f and g are primitive so p - c(f) and p - c(g).

Suppose
p | a0 p | a1 . . . p | ak−1 p - ak
p | b0 p | b1 . . . p | bl−1 p - bl

.
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The coefficient of Xk+l in f · g is∑
i+j=k+l

aibj︸ ︷︷ ︸
divisible by p
as p | c(f · g)

= · · ·+ ak+1bl−1︸ ︷︷ ︸
divisible by p

as p | b0, . . . , p | bl−1

+akbl + ak−1bl+1 + . . .︸ ︷︷ ︸
divisible by p

as p | a0, . . . , p | ak−1

So p | ak · bl. As p is irreducible, so prime, p | ak or p | bl. Contradiction. So f · g is primitive. �

Corollary. Let R be a unique factorisation domain, f, g ∈ R[X], then c(f · g) is an associate of
c(f) · c(g).

Proof. Write

f = c(f) · f0 , f0 primitive,
g = c(g) · g0 , g0 primitive.

So f · g = c(f) · c(g) · f0g0, where f0g0 is primitive by the previous lemma. Then c(f) · c(g) is a gcd
of the coefficients of f · g, i.e. is c(f · g). �

Finally, we can prove Gauss’ Lemma.

Lemma 2.54 (Gauss’ Lemma). Let R be a unique factorisation domain, F be its field of fractions.
Suppose f ∈ R[X] is primitive, then

f irreducible in R[X] ⇐⇒ f is irreducible in F [X] .

Proof. We will show that a primitive f ∈ R[X] is reducible in R[X] if and only if f is reducible in
F [X].

If f is reducible in R[X], it factors as f = g · h, with g, h non-units. If g or h is a constant
polynomial, then f is not primitive, leading to a contradiction. So f = g · h is also a factorisation
into non-units in F [X].

Suppose f is reducible in F [X], so f = g·h with g, h non-units in F [X], in particular non-constants.
We may find a, b 6= 0 ∈ R such that

a · g ∈ R[X] , b · h ∈ R[X] .

Then a · b · f = (a · g) · (b · h) ∈ R[X]. Write

a · g = c(a · g) · g1 , g1 primitive, non-constant,
b · h = c(b · h) · h1 , h1 primitive, non-constant.

By the above corollary, a · b is an associate of c(a · g) · c(b · h), so a · b = uc(a · f)c(b · h) for some unit
u. So

a · b · f = c(a · g) · c(b · h) · g1h1

= a · b · u−1 · g1 · h1 .

R is an integral domain, so f = (u−1g1) · h1 with u−1g1, h1 ∈ R non-units, so f is reducible in R[X].
�

Proposition 2.55. Let R be a unique factorisation domain, F be its field of fractions, g ∈ R[X] be
primitive. Let I = (g)C F [X] and J = (g)CR[X]. Then J = I ∩R[X].

In other words, if f ∈ R[X] is divisible by g in F [X], then it is divisible by it in R[X].
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Proof. Suppose g primitive, f = g ·h, h ∈ F [X]. Let b ∈ R be such that b ·h ∈ R[X], so b ·f = g ·(bh),
a factorisation in R[X].

Let b · h = c(b · h) · h1, h1 primitive, so

b · f = c(b · h) · g · h1︸ ︷︷ ︸
primitive

.

Thus b | c(b · h), so c(b · h) = b · c for some c ∈ R. Then b · f = b · c · g · h1, so f = g(c · h1), with
ch1 ∈ R[X], i.e. g | f in R[X]. �

Theorem 2.56. Let R be a unique factorisation domain, then R[X] is a unique factorisation domain.

Proof. Let f ∈ R[X], write f = c(f) · f1 with f1 primitive. As R is an UFD, have c(f) = p1 . . . pn
product of irreducibles in R.

If f1 is reducible, then write it as f1 = f2 · f3, where f2, f3 are non-units, then deg f2,deg f3 <
deg f1. Iterating this gives

f1 = q1 . . . qm ,

with qi irreducible and m ≤ deg f . So f = p1 . . . pn . . . q1 . . . qn is a product of irreducibles in R[X].

The pi’s are unique up to reordering and associates as R is a UFD. Need to show that the qi’s are
also unique up to reordering and associates. Divide by c(f). Suppose q1 . . . qn = r1 . . . rl is primitive,
so all qi, ri are primitive too.

Let F be the field of fractions of R, and consider qi, ri ∈ F [X]. Since F is a field, F [X] is a
Euclidean domain, hence a principal ideal domain, hence a unique factorization domain. By Gauss’
lemma, the qi and ri are also irreducible in F [X]. As F [X] is a UFD, deduce that m = l and up
reordering, qi is an associate to ri in F [X], i.e. qi = ri · ai for some units ai ∈ F . We have ai =

yi

xi
,

yi, xi ∈ R, so xiqi = yiri in R[X]. Taking contents, since qi, ri are primitive, xi and yi are associates:
yi = xi · ui for ui units. qi = uiri so qi and ri are associates in R[X]. �

Example. Z[X] is a UFD, R[X] is a UFD, R[X1, X2, . . . ] is a UFD.

This is a useful thing to know. In particular, it gives us examples of UFDs that are not PIDs.
However, in such rings, we would also like to have an easy to determine whether something is reducible.
Fortunately, we have the following criterion.

Proposition 2.57 (Eisenstein’s Criterion). Let R be a unique factorisation domain, and

f = a0 + a1X + · · ·+ anX
n ∈ R[X]

with an 6= 0 and f primitive. Suppose there is a prime such that

(i) p - an

(ii) p | ai, 0 ≤ i ≤ n− 1

(iii) p2 - a0

then f is irreducible in R[X] and also in F [X] by Gauss’ lemma.

Proof. Suppose we have f = g · h with

g = r0 + r1X + · · ·+ rkX
k

h = s0 + s1X + · · ·+ slX
l

with rk, sl 6= 0, k + l = n, and an = rk · sl. As p - an, p - rk and p - sl. As p2 - a0 = r0s0 but p | r0s0,
must have p | r0 and p - s0.
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Choose j such that p | r0, p | r1, . . . , p | rj−1, p - rj . Then

aj = r0sj︸︷︷︸
p|

+ r1sj−1︸ ︷︷ ︸
p|

+ . . .︸︷︷︸
p|

+ rjs0︸︷︷︸
p-

,

as p is prime, so p - aj . So deduce that j = n. On the other hand, j ≤ k ≤ n, so k = n, so l = 0.
The polynomial h is a constant. But f is primitive, so h must be a unit, so f irreducible in R[X] and
hence in F [X].

Example. Let p be a prime number, and consider Xn−p ∈ Z[X], n > 1. Eisenstein’s criterion applies
with p, so this is irreducible, even in Q[X].

This implies that n
√
p /∈ Q.

Example. Consider
f = Xp−1 +Xp−2 + ·+ 1 ∈ Z[X]

with p a prime number. Note
f =

Xp − 1

X − 1
.

Let Y be X − 1 and

f̄ =
(1− Y )p − 1

Y
= Y p−1 +

(
p

1

)
︸︷︷︸
=p

Y p−2 +

(
p

2

)
︸︷︷︸
p|

Y p−3 + · · ·+
(

p

p− 1

)
︸ ︷︷ ︸

=p

Y 0 .

Eisenstein’s criterion applies to f̄ , so f̄ is irreducible in Z[Y ]. If f = g · h is reducible, then

f̄(Y ) = f(1 + Y )

= g(1 + Y )h(1 + Y )

is also reducible, leading to a contradiction. So f must be irreducible.

Hence none of the roots of f are rational (and we know that in fact they are not even real).

2.6 Gaussian Integers

Recall
Z[i] = {a+ bi | a, b ∈ Z} ≤ C

has a norm
N(a+ ib) = (a+ ib)(a+ ib) ,

which is a Euclidean function, so Z[i] is an ED, so a PID, so a UFD.

The units in Z[i] are ±1, ±i, and are the only elements of norm 1.

(i) N(3) = 9, so if 3 = a · b, then N(a) ·N(b) = 9, so either
• N(a) or N(b) = 1, then a and b are units.
• N(a) = N(b) = 3, but 3 is not a sum of two squares, so cannot be a norm. So 3 is a prime,

so cannot be a norm.
So 3 is irreducible, so it is a prime.

(ii) 5 = (1 + 2i)(1− 2i) is not a prime.

(iii) 7 is not a sum of squares, so is a prime in Z[i].

Proposition 2.58. A prime number p ∈ Z ≤ Z[i] is a prime in Z[i] ⇐⇒ p 6= a2 + b2 for a, b ∈ Z.
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Proof. If p = a2 + b2, then p = (a+ ib)(a− ib) not prime.

Otherwise, have N(p) = p2, so if p factors into non-units, then they each have a norm p, so p is a
norm, so is a sum of two squares. �

Next, we want to classify all primes in Z[i].

Lemma 2.59. Let p be a prime number and Fp = Z/pZ be a field. Let F×
p = Fp − {0Fp

} be the
group of invertible elements under multiplication. Then F×

p
∼= Cp−1.

Proof. Certainly, F×
p has order p−1, and is abelian. We know from the classification of finite abelian

groups that if F×
p is not cyclic, then it must contain a subgroup Cm × Cm for some m ≥ 2.

Consider the polynomial Xm − 1 ∈ Fp[X].

{elements of F×
p of order m} = {roots of xm − 1 ∈ Fp[X]} .

This polynomial has at most m roots, as Fp[X] is a UFD. So F×
p has at most m elements of order m.

But Cm × Cm has m2 elements of order m. So F×
p does not contain such a group, so it is cyclic. �

Proposition 2.60. The primes in Z[i], up to associates, are

(i) prime numbers p ∈ Z ≤ Z[i] with p ≡ 3 (mod 4), or

(ii) z ∈ Z[i] with N(z) = p a prime number in Z with p ≡ 1 (mod 4) or p = 2.

Proof. First show that they are prime.

(i) If p ≡ 3 (mod 4), then it is not a sum of two squares (squares are ≡ 0, 1 (mod 4)), so p ∈ Z[i]
by the previous proposition.

(ii) Let z be such that N(z) = p, a prime number ≡ 1 or ≡ 2 (mod 4). Suppose z = u · v, then
p = N(z) = N(u) ·N(v), so N(u) = 1 or N(v) = 1, so u or v is a unit.
Note that we did not use the condition that p ≡ 3 (mod 4). This is not needed, since N(z) is
always a sum of two squares, and hence N(z) cannot be a prime that is 3 mod 4.

Let z ∈ Z[i] be prime. Then z is also prime, so N(z) = z · z is a factorisation into irreducibles.
Let p be a prime which divides N(z).

(i) p ≡ 3 (mod 4).
The p is a prime in Z[i], so p | zz =⇒ p | z or p | z. If p | z, then p | z by taking conjugate, so
p | z. Since p and z are both irreducible, they must be associates.

(ii) p = 2 = (1 + i)(1− i) or p ≡ 1 (mod 4).
If p ≡ 1 (mod 4), consider F×

p , a cyclic group of order p − 1 = 4k. It has a unique element
of order 2, [−1] ∈ F×

p . It also has an element a ∈ F×
p of order 4 (e.g. the kth power of the

generator). Thus a2 has order exactly 2, so a2 = −1 ∈ F×
p . Fp = Z/pZ, so a = [A] for some

A ∈ Z, and A2 + 1 ≡ 0 (mod p), i.e.

p | A2 + 1 = (A+ i)(A− i) .

However, p does not divide A + i or A − i, so p is not a prime in Z[i] (also for p = 2), so also
not irreducible.
Therefore, we can write p = z1 · z2, a product of non-units. Then p2 = N(p) = N(z1)N(z2), so
N(z1) = N(z2) = p, so z1 = z2. So p = z1z1, so z1z1 = p | N(z) = zz. Since N(z) = p and z, z
irreducible, z1 is irreducible and is an associate of z or z. So N(z) = N(z1) = p as required. �

Corollary. An n ∈ Z≥0 can be written as x2+y2, x, y ∈ Z ⇐⇒ when we can write n = pa1
1 pa2

2 . . . pak

k

as a factorisation into primes, if pi ≡ 3 (mod 4), then ai is even.
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Proof. Let n = x2 + y2 = N(x+ iy). Let z = x+ iy. Let z = α1α2 . . . αs a product of irreducibles in
Z[i], so n = N(z) = N(α1)N(α2) . . . N(αs).

Each α is either a prime ≡ 3 (mod 4), or is such that N(α) = 2 or prime ≡ 1 (mod 4). In the
first case, N(α) = (a prime ≡ 3 (mod 4))2. In the second case, N(α) = 2 or a prime ≡ 1 (mod 4).

Conversely, let n = pa1
1 . . . pak

k have the given form. For each i, if p1 ≡ 3 (mod 4), then ai is even,
so pαi

i = N(pi)
αi/2 = N(p

αi/2
i ). If pi = 2 or ≡ 1 (mod 4), then there is an αi with N(αi) = pi. So

we see that n = pa1
1 . . . pak

k is a norm, so it is a sum of two squares. �

Example. Consider 65 = 5 · 13.

Then

5 = (2 + i)(2− i) , 13 = (2 + 3i)(2− 3i) ,

so 65 = (2 + i)(2− i)(2 + 3i)(2− 3i) is a prime factorisation in Z[i]. So

65 = N((2 + i)(2 + 3i)) = N(1 + 8i) = 12 + 82

= N((2 + i)(2− 3i)) = N(7− 4i) = 72 + 42 .

Remark. Can check whether p = x2 +2y2 by working in Z[
√
−2], and check whether p = x2 +3y2 by

working in Z[
√
−3].

However, cannot do p = x2 + 5y2 since Z[
√
−5] is not a UFD.

2.7 Algebraic Integer

Definition 2.61. An α ∈ C is called an algebraic integer if it is a root of a monic polynomial
f ∈ Z[X].

We can immediately check that this is a sensible definition — not all complex numbers are algebraic
integers, since there are only countably many polynomials with integer coefficients, hence only
countably many algebraic integers, but there are uncountably many complex numbers.

Notation. For an algebraic integer α, write Z[α] ≤ C for the smallest subring of C containing α.

We can construct Z[α] by considering the map

φ : Z[X] −→ C
X 7−→ α .

Then Z[α] = im(φ). So we can also write

Z[α] ∼=
Z[X]

ker(φ)
,

where I = ker(φ) is non-zero by the definition of an algebraic integer.

Proposition 2.62. If α is an algebraic integer, and

φ : Z[X] −→ C
X 7−→ α .

Then I = ker(φ) is a principal ideal generated by a monic irreducible polynomial fα ∈ Z[X].
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This is a non-trivial theorem, since Z[X] is not a principal ideal domain so there is no immediate
guarantee that I is generated by one polynomial.

Definition 2.63. Let α ∈ C be an algebraic integer. Then the minimal polynomial of α is the
irreducible monic polynomial fα such that I = ker(φ) = (fα).

Proof. By definition, there is a monic f ∈ Z[X] such that f(α) = 0, i.e. f ∈ I. Let fα ∈ I be a
non-zero polynomial of minimal degree: we can assume it is primitive. We want to show I = (fα).
Let h ∈ I. As Q[X] is an ED, we can write

h = q · fα + r ∈ Q[X]

with r = 0 or deg r < deg fα. Clearing denominators, get

a · h = (aq)fα + (a · r) ∈ Z[X] .

Evaluate these polynomials at α gives

ah(α)︸ ︷︷ ︸
h(α)=0

= aq(α)fα(α)︸ ︷︷ ︸
fα(α)=0

+ar(α) .

Now α is a root of a ·r. If r 6= 0, then we have found an element in I with degree smaller than deg fα,
giving contradiction.

So r = 0, so
a · h = (a · q)fα ∈ Z[X] .

Taking constants a · c(h) = c(a ·h) = c(a · q) as fα primitive, so a | c(a · q), so q ∈ Z[X]. So h = q · fα,
so h ∈ (fα)C Z[X].

Finally, show fα is irreducible. Notice that

Z[X]/I ∼= Z[α] ≤ C ,

so is an integral domain. So I = (fα) is a prime ideal, so f(α) ∈ Z[X] is prime, so irreducible. �

Examples.

• α = i has fα = X2 + 1.

• α =
√
2 has fα = X2 − 2.

• α = 1
2 (1−

√
3) has fα = X2 −X + 1.

Example. For d ∈ Z the polynomial
X5 −X + d ∈ Z[X]

has 1 real root, α, an algebraic integer. It cannot be expressed in the language (Z,+, · , n
√

). This
is the subject of Galois theory.

Lemma 2.64. If α is an algebraic integer and α ∈ Q, then α ∈ Z.

Proof. Let fα ∈ Z[X] be its minimal polynomial, which is irreducible and monic, so primitive. By
Gauss’ lemma, it is also irreducible in Q[X]. But (x − α) divides fα in Q[X]. As it is irreducible,
fα = x− α. But fα ∈ Z[X], so α ∈ Z. �

2.8 Hilbert Basis Theorem

Recall a PID satisfies the ascending chain condition: if

I1 ⊆ I2 ⊆ . . .

is a chain of ideals of R, then In = In+1 for all n ≥ N for some N . Rings satisfying ACC are called
Noetherian.
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Definition 2.65. An ideal I is finitely generated if it can be written as I = (r1, . . . , rn) for some
r1, . . . , rn ∈ R.

Lemma 2.66. R is Noetherian ⇐⇒ all ideals of R are finitely generated.

Proof.

(⇐) Let I1 ⊆ I2 ⊆ . . . be a chain of ideals, and I =
⋃

n≥1 In, again an ideal. This is finitely
generated, so I = (a1, . . . , as). Each ai lies in some Ini

, so they all lie in IN if N = max{ni}.
So (a1, . . . , as) ⊆ IN ⊆ I are equalities, so IN = IN+1 + · · · = I.

(⇒) Suppose R satisfies ACC. Let J be an ideal. Choose 0 6= a1 ∈ J . If (a1) = J then done. Else,
choose a2 ∈ J \ (a1). If (a1, a2) = J then done. If not, choose a3 ∈ J \ (a1, a2, . . . ).
If this process does not stop, get

(a1) ( (a1, a2) ( (a1, a2, a3) ( . . .

This contradicts ACC, so must have J = (a1, . . . , as). �

Theorem 2.67 (Hilbert basis theorem). If R is Noetherian, then R[X] is Noetherian.

Proof. Let J be an ideal of R[X]. Let f1 ∈ J be a polynomial of minimal degree in J . In J 6= (f1),
choose f2 ∈ J \ (f1), of minimal degree. If at any point, J = (f1, . . . , fr), then J is finitely generated,
so we are done.

Suppose not. Let ai be the top non-zero coefficient in fi, and consider the ideals

(a1) ⊆ (a1, a2) ⊆ (a1, a2, a3) ⊆ · · · ⊆ R .

As R is Noetherian, these stabilise, so

(a1, a2, . . . ) = (a1, a2, . . . , am)

for some m. So am+1 ∈ (a1, . . . , am), so

am+1 =

m∑
i=1

aibi

for some bi ∈ R. Let

g =

m∑
i=1

bifiX
deg(fm+1)−deg(fi) .

This has the same degree as fm+1 and the same top coefficient am+1. So fm+1− g has degree strictly
smaller than fm+1. But g ∈ (f1, . . . , fm) and fm+1 /∈ (f1, . . . , fm), so fm+1 − g /∈ (f1, . . . , fm). This
contradicts our choice that fi+1 has minimal degree among polynomials in J \ (f1, . . . , fi). �

Corollary. Z[X1, . . . , Xn] is Noetherian. F[X1, . . . , Xn] is Noetherian for a field F.

Lemma 2.68. A quotient of a Noetherian ring is Noetherian.

Proof. Let R be Noetherian, I CR, and J1 ⊆ J2 ⊆ . . . be ideals of R/I. This corresponds to a chain

I ⊆ J ′
1 ⊆ J ′

2 ⊆ . . .

of ideals of R which contain I. As R is Noetherian, J ′
n = J ′

n+1 ∀n ≥ N for some N . So Jm = J ′
n/I =

Jm+1 = J ′
n+1/I. �

Corollary. Any finitely-generated ring is Noetherian.

36



2 Rings IB Groups, Rings and Modules

An aside. If F is a field and f ∈ F[X1, . . . , Xn]. Given (α1, . . . , αn) ∈ Fn, consider the ring
homomorphism

φ : F[X1, . . . , Xn] −→ F
Xi 7−→ αi .

We know that (α1, . . . , αn) is a solution to f = 0 if and only if (f) is the kernel of the homomorphism
φ. By the first isomorphism theorem, we get the correspondence

{solutions of f over F} =

ring homomorphisms
F[X1, . . . , Xn]

(f)
−→ F

xi 7−→ αi


Now suppose we have a possibly infinite collection of polynomials {fi}i∈I that we want to solve.

Then a simultaneous solution is a homomorphism

φ :
F[X1, . . . , Xn]

(fi)i∈I
→ F .

But by the Hilbert basis theorem, F[X] is Noetherian, so finitely generated, so

(fi)i∈I = (g1, . . . , gr)

for a finite set of polynomials {gi}ri=1 ⊆ F[X1, . . . , Xn]. So{
simultaneous solutions

to all {fi}i∈I

}
=

{
simultaneous solutions

to g1, . . . , gr

}
.

Now we only need to solve a finite set of polynomials!
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3 Modules

Recall that when we define vector space, we first pick some base field F. We then define the vector
space to be an abelian group V with an action of F on V (scalar multiplication) that is compatible
with the multiplicative and additive structure of F.

3.1 Definitions and Examples

Definition 3.1. Let R be a commutative ring. A quadruple (M,+, 0M , · ) is called an R-module if

(i) (M,+, 0M ) is an abelian group.

(ii) The operation − · − : R×M →M satisfies
• (r1 +R r2) ·m = r1 ·m+M r2 ·m
• r · (m1 +M m2) = r ·m1 +M r ·m2

• r1 · (r2 ·m) = (r1 ·R r2) ·m
• 1R ·m = m

for all r, r1, r2 ∈ R and m,m1,m2 ∈M .

Examples.

(i) Let F be a field. An F-module is exactly a vector space.

(ii) For any ring R, Rn = R×R× · · · ×R︸ ︷︷ ︸
n times

is an R-module via

r ·M (r1, r2, . . . , rn) = (r ·R r1, r ·R r2, . . . , r ·R rn) .

When n = 1, we can see that R itself is an R-module.

(iii) If I is an ideal of R, then it is an R-module via

r ·M x = r ·R x .

Also, R/I is an R-module via

r ·M (r1 + I) = r ·R r1 + I .

(iv) For R = Z, a Z-module is precisely the same as an abelian group.

− · − : Z×A −→ A

(n, a) 7−→


a+ a+ . . .︸ ︷︷ ︸

n times

n ≥ 0

−a− a− . . .︸ ︷︷ ︸
|n| times

n ≤ 0

This is forced by axioms. If we send (1, a) 7→ a, then we must send (2, a) = (1 + 1, a) 7→ a+ a.

(v) Let F be a field, V an F-module (i.e. an F-vector space) and α : V → V a linear map. Then V
has the structure of an F[X]-module via

− · − : F [X]× V −→ V

(f, v) 7−→ f(α)(v) .

Different α’s make V into different F-modules.
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(vi) If φ : R → S is a ring homomorphism, and M is an S-module, then we can make it into an
R-module via φ(r) · −.

Definition 3.2. IfM is anR-module, a subsetN ⊆M is a submodule if it is a subgroup of (M,+, 0M )
and r · n ∈ N for all r ∈ R, n ∈ N . Write N ≤M .

Example. An R-submodule of R as an R-module is exactly the same as an ideal of R. An F-submodule
of an F-module (vector space) is exactly a vector subspace.

Definition 3.3. If N ≤M is an R-submodule, then the quotient module M/N is the set of N -cosets
in M,+, 0M , i.e. elements have the form m+N , equipped with

r(m+N) = rm+N .

It is an R-module.

Note that modules are different from groups and rings: we are allowed to take quotients by any
submodules.

Definition 3.4. If M and N are R-modules, a function f : M → N is a homomorphism if

(i) it is a homomorphism as abelian groups

(ii) it is R-linear: f(r ·M m) = r ·N f(m).

An isomorphism is a bijective homomorphism.

Example. If F is a field and V,W are F-modules, then an F-module homomorphism is exactly an
F-linear map of vector spaces.

Theorem 3.5 (First isomorphism theorem). Let f : M → N be an R-module homomorphism.
Then

ker(f) = {m ∈M | f(m) = 0N} ≤M

im(f) = {n ∈ N | n = f(m) for some m ∈M} ≤ N ,

and

M

ker(f)
−→ im(f)

m+ ker(f) 7−→ f(m)

is an isomorphism of R-modules.

Theorem 3.6 (Second isomorphism theorem). Let A,B ≤M , then

A+B = {m ∈M | m = a+ b for some a ∈ A, b ∈ B} ,

and A ∩B ≤M , and
A+B

A
∼=

B

A ∩B

as R-modules.

As usual, we have a bijection

{submodules of M/N} ←→ {submodules of M containing N}

X/N 7−→7−→X .
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Theorem 3.7 (Third isomorphism theorem). Let N ≤ L ≤M , then

M/N

L/N
∼=

M

L

as R-modules.

We won’t prove the above theorems as they are exactly the same as for groups and rings.

Definition 3.8. If M is an R-module and m ∈M , the annihilator of m is

Ann(m) := {r ∈ R | r ·m = 0} .

For a set S ⊆M , the annihilator of S is

Ann(S) := {r ∈ R | r · s = 0 ∀s ∈ S} =
⋂
s∈S

Ann(s) ,

and in particular, the annihilator of M itself is

Ann(M) := {r ∈ R | r ·m = 0 ∀m ∈M} =
⋂

m∈M

Ann(m) ,

Note that the annihilator is an ideal of R — if r ·m = 0 and s ·m = 0, then (r + s) ·m = 0 and
(tr) ·m = 0 for any t.

Definition 3.9. Let M be an R-module and m ∈M . The submodule generated by m is

Rm := {r ·m ∈M | r ∈ R} .

Consider the homomorphism

φ : R −→M

r 7−→ rm .

This is clearly a homomorphism. Then we have

Rm = imφ

Ann(m) = kerφ ,

so by the first isomorphism theorem,
Rm ∼=

R

Ann(m)
.

Rings acting on modules is like groups acting on sets. We can think of this as the analogue of the
orbit-stabilizer theorem.

Definition 3.10. Say an R-module is finitely generated if there are m1, . . .mn ∈M such that

Rm1 +Rm2 + · · ·+Rmn = M .

Lemma 3.11. An R-module M is finitely generated ⇐⇒ there is a surjective R-module
homomorphism f : Rn →M for some n.

Proof. If M = Rm1 + · · ·+Rmn, define f by

f(r1, . . . , rn) =
∑
i

rimi .

This is a surjective R-module homomorphism.
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Conversely, given f : Rn →M , let

m1 = f(1, 0, . . . , 0)

m2 = f(0, 1, . . . , 0)

. . . .

Given m ∈M , have m = f(r1, . . . , rn) as f is surjective. Note in the R-module Rn,

(r1, . . . , rn) = r1 · (1, 0, . . . , 0) + r2 · (0, 1, . . . , 0) + · · ·+ rn · (0, 0, . . . , 1) ,

so

m = f(r1, r2, . . . , rn)

= r1f(1, 0, . . . , 0) + r2f(0, 1, . . . , 0) + · · ·+ rnf(0, 0, . . . , 1)

= r1m1 + r2m2 + · · ·+ rnmn ,

so M = Rm1 +Rm2 + · · ·+Rmn. �

Proposition 3.12. If M is a finitely generated R-module and N ≤ M , then M/N is finitely
generated.

Proof. Have

Rn f−−−→
surj.

M
surj.−−−→M/N

m 7−→ m+N

composition surjective, so M/N is finitely generated. �

Example. A counterexample: A submodule of a finitely generated module need not be finitely
generated.

Let R = C[X1, X2, . . . ]. R is an R-module generated by a single element 1R ∈ R. The ideal
I = (X1, X2, . . . ) is a submodule. This is not finitely generated.

Suppose I = (p1, . . . , pr), and each pi uses only finitely many Xj . So in fact, (p1, . . . , pr) ⊆
(X1, . . . , Xs) for some s. To see Xs+1 /∈ (X1, . . . , Xs), observe that

C[X1, . . . , Xs, . . . ]

(X1, . . . , Xs)
∼= C[Xs+1, Xs+2, . . . ]

Xs+1 6= 0 in this quotient, so Xs+1 /∈ (X1, . . . , Xs).

3.2 Direct Sums and Free Modules

Definition 3.13. If M1, . . . ,Mk are R-modules, then M1⊕M2⊕ · · · ⊕Mk is the R-module given by
M1 ×M2 × · · · ×Mk, with

(m1,m2, . . . ,mk) + (m′
1,m

′
2, . . . ,m

′
k) = (m1 +m′

1,m2 +m′
2, . . . ,mk +m′

k)

r(m1, . . . ,mk) = (r ·m1, . . . , r ·mk) .

Example. Rn = R⊕R⊕ · · · ⊕R︸ ︷︷ ︸
n times

.

Definition 3.14. Let m1, . . . ,mk ∈M . The set {m1, . . . ,mk} is called independent if

k∑
i=1

rimi = 0 =⇒ r1 = · · · = rk = 0 .
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Definition 3.15. A subset S ⊆M generates M freely if

(i) S generates M

(ii) Any function Ψ : S → N , where N is an R-module, extends to an R-module homomorphism
Θ : M → N .

Note that if Θ1,Θ2 are two such extensions, consider Θ1 − Θ2 : M → N . Then Θ1 − Θ2 sends
everything in S to 0, so S ⊆ ker(Θ1−Θ2) ≤M . So the submodule generated by S lies in ker(Θ1−Θ2)
too. This is the definition of M , so M ≤ ker(Θ1 −Θ2) ≤M , i.e. equality holds. So Θ1 −Θ2 = 0, so
Θ1 = Θ2, i.e. any such extension is unique.

Definition 3.16. A module which is freely generated by some subset is called free, and the subset
is called a basis.

Proposition 3.17. For S = {m1,m2, . . . ,mk} ⊆M , the following are equivalent:

(i) S generates M freely.

(ii) S generates M and S is independent.

(iii) Each element of M is uniquely expressible as r1m1 + · · ·+ rkmk.

Proof. The fact that (ii) and (iii) are equivalent is something we would expect from what we know
from linear algebra — and in fact the proof is the same. So we only show that (i) and (ii) are
equivalent.

Let S generate M freely. If S is not independent, there is a

k∑
i=1

rimi = 0

with rj 6= 0. Define

Ψ : S −→ R

mj 7−→ 1R

mi 7−→ 0R i 6= j .

There exists an R-module homomorphism Φ : M → R extending Ψ. Then

0 = Φ(0)

= Φ

(
k∑

i=1

rimi

)

=

k∑
i=1

ri · Φ(mi)

= rj ,

giving a contradiction. So S is independent.

Suppose every element can be uniquely written as

r1m1 + · · ·+ rkmk .

Given any set function Ψ : S → N , define Φ : M → N by

Φ(r1m1 + · · ·+ rkmk) = r1Ψ(m1) + · · ·+ rkΨ(mk) .

This is well defined by uniqueness, and is clearly a homomorphism, so S generates M freely. �
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Example. The set {2, 3} ⊂ Z generates Z. However, they do not generate Z freely, since 3·2+(−2)·3 =
0. Recall from linear algebra that if a set S spans a vector space V , and it is not independent, then
we can just pick some useless vectors and throw them away in order to get a basis. However, this is
no longer the case in modules. Neither 2 nor 3 generate Z.

Definition 3.18. If M is a finitely generated R-module generated by {m1, . . . ,mk}, we have the
surjection

f : Rk −→M

(r1, . . . , rk) 7−→
∑
i

rimi .

The relation module for these generators is ker(f) ≤ Rk.

Definition 3.19. We say an R-module M is finitely presented if there is a finitely generating set
{m1, . . . ,mk} such that the associated relation module is also finitely generated.

Being finitely presented means I can tell you everything about the module with a finite amount
of paper.

More precisely, if {m1, . . . ,mk} generate M and {n1, . . . , nl} generate the relation module ker f ,
then each

ni = (ri1, . . . , rik)

corresponds to a relation
ri1m1 + ri2m2 + · · ·+ rikmk = 0 ∈M .

So M is the module generated by writing down R-linear combinations of {m1, . . . ,mk}, and saying
two elements are the same if they are related to one another by these relations. Since there are only
finitely many generators and finitely many such relations, we can specify the module with a finite
amount of information via

M ∼=
Rk

ker(f)
.

A question is, if n 6= m, then are Rn and Rm the same? They must be different if R is a field,
because vector spaces have well-defined basis and dimensions. To show that this is true for a general
ring, we need a few constructions.

Proposition 3.20. If I CR an ideal and M is an R-module, and

IM =

{∑
i

aimi ∈M | ai ∈ I , mi ∈M

}
≤M ,

then M/IM is an R/I-module.

Proof. We know M/IM is an R-module. If b ∈ I then

b · (m+ Im) = b ·m+ Im = 0 + Im ,

so we can make M/IM into an R/I-module via

(r + I)(m+ IM) = rm+ Im .

Proposition 3.21. Every non-zero ring has a maximal ideal.

Proof. An ideal of R is proper ⇐⇒ 1R /∈ I, so a union of proper ideals is proper. It follows from
Zorn’s lemma that there is a maximal proper ideal. (Zorn’s lemma says if an arbitrary union of
increasing things is still a thing, then there is a maximal such thing, roughly. We are not going to
prove it.) �
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Proposition 3.22 (Invariance of dimension). If R 6= 0, Rk ∼= Rl, then k = l.

Proof. Let I be a maximal ideal of R (exists by the previous proposition). If Rk ∼= Rl, then(
R

I

)k

=
Rk

IRk
∼=

Rl

IRl
=

(
R

I

)l

as R-modules. As I is maximal, R/I is a field. So this is a vector space isomorphism. By linear
algebra, k = l. �

3.3 Matrices over Euclidean Domains

Until further notice, R is a Euclidean domain, with a Euclidean function φ : R \ {0} → Z≥0. We
know that in a Euclidean domain, gcd(a, b) exists for all a, b ∈ R and there are x, y ∈ R such that
ax+ by = gcd(a, b).

Definition 3.23. Elementary row operations on an m× n matrix A with entries in R are

(ER1) Add c times the ith row to the jth row, i 6= j.
This can be done by left multiplication of

1
. . .

1 c
. . .

1
. . .

1


,

where c is at the ith column of the jth row.

(ER2) Swap the ith and the jth row, i 6= j.
This can be done by the left multiplication of

1
. . .

1
0 1

1
. . .

1
1 0

1
. . .

1



,

where we changed the 0’s and 1’s at the ith and jth rows/columns.

(ER3) Multiply the ith row by a unit c ∈ R.
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This is the left multiplication of

1
. . .

1
c

1
. . .

1


.

Notice that if R is a field, then we can multiply any row by any non-zero number, since they
are all units.

Similarly we have elementary column operations (EC1)-(EC3), all given by right multiplication
by analogous matrices.

Definition 3.24. Two m × n matrices A,B are equivalent if there is a sequence of elementary row
and column operations getting between them. These are invertible P,Q such that

B = QAP−1

Our goal is to find, for each matrix, a matrix equivalent to it that is as simple as possible. Recall
from Linear Algebra that if R is a field, then we can put any matrix into the form(

Ir 0
0 0

)
via elementary row and column operations. This is no longer true when working with rings. For
example, over Z, we cannot put the matrix (

2 0
0 2

)
into that form, since no operation can turn 2 into 1.

Theorem 3.25 (Smith normal form). Anm×nmatrix A over a Euclidean domainR is equivalent
to 

d1
d2

. . .
dr

0
. . .

0


with di 6= 0 and d1 | d2 | d3 | · · · | dr. This is known as the Smith normal form of the matrix, and the
di are the invariant factors of A. They are unique up to associates.

Proof. If A is zero then done.

If not, then A has some non-zero entry. By permuting rows and columns, can suppose A11 6= 0.
Our strategy is to reduce A11 as much as possible.

(i) If there is an A1j not divisible by A11, then we have

A1j = q ·A11 + r

with φ(r) < φ(A11). Subtracting q times the first column from the jth column leaves r in the
position (1, j), so permute the 1st and the jth column to put r in position (1, 1). This has
strictly reduced φ(A11).
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(ii) If there is an Ai1 not divisible by A11, can do the analogous thing to strictly reduce the value
of φ.

Repeatedly doing so, we can arrange so that all A1j and Ail are divisible by A11. Subtracting
appropriate multiples of the first row/columns from the others, we can arrange that

A =


d 0 0 . . . 0
0
0

...
0

C


for some d 6= 0 and (n− 1)× (m− 1) matrix C.

(iii) If there is an entry of C not divisible by d, say d - Aij , then write Aij = q · d + r, r 6= 0 and
φ(r) < φ(d).
Add column 1 to column j, subtract q times first row from ith row: this makes r in (i, j)
position. Permute rows and columns to put r in the (1, 1) position. This has again strictly
reduced φ(A11). Repeat (i) and (ii) to make the rest of the 1st row/column to be 0. As it
strictly reduces the φ value, this can only happen finitely many times. So can assume that d
divides all entries of C.

Now apply the same algorithm to the matrix C. By induction,

C ∼



d2
. . .

dr
0

. . .
0


.

As d | all entries of C, it also divides all R-linear combinations of the entries of C, so it divides all
di. So d ≡ d1 and d1 | d2 | · · · | dr by induction. �

Recall that the di are called the invariant factors. So it would be nice if we can prove that the di are
indeed invariant. It is not clear from the algorithm that we will always end up with the same di.

To study the uniqueness of the invariant factors of a matrix A, we relate them to other invariants,
which involves minors.

Definition 3.26. A k × k minor of a matrix A is the determinant of a k × k submatrix of A, i.e.
matrix removed entries in all but k rows and k columns.

Any given matrix has many minors, since we get to decide which rows and columns we can throw
away. The idea is to consider the ideal generated by all the minors of the matrix.

Definition 3.27. For a matrix A with entries in R, the kth Fitting ideal is

Fitk(A) = (All k × k minors of A)CR .

Lemma 3.28. If A is equivalent to B, then

Fitk(A) = Fitk(B)

for all k.
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Proof. Need to check that (ER1)–(ER3), (EC1)–(EC3) do not change the Fitting ideal. We will only
prove for (ER1) since the situation for (EC1) is the same, and the other four cases are much easier.

Fix a k × k submatrix C of A. Consider (ER1) by adding c times the ith row to the jth row.

If the jth row of A is not in C, then C is trivially unchanged by this move.

If both the ith and jth rows of A are in C, then C is changed to C ′, with C ′ is obtained from C
by a row operation, so detC = detC ′.

If the jth row is in C but the ith row is not, then C is changed to C ′ with jth row

(cj1 + cf1, cj2 + cf2, . . . , cjk + cfk) , c ∈ R .
f1 · · · fk

C


Expanding detC ′ using this row, we see

det(C ′) = detC ± c · det
(

matrix obtained by replacing
the jth row of C by (f1 . . . fk)

)
︸ ︷︷ ︸

up to permuting rows, a submatrix of A

.

Therefore, detC ′ ∈ Fitk(A).

Hence, Fitk(A′) ⊆ Fitk(A). This is in fact an equality as (ER1) is invertible. �

If A has the Smith normal form 

d1
d2

. . .
dr

0
. . .

0


,

then
Fitk(A) = (d1d2 . . . dk) .

This is clear once we notice that the only possible contributing minors are from the diagonal
submatrices, and the minor from the top left square submatrix divides all other diagonal ones.

This shows the product d1 . . . dk depends (up to associates) only on A, so the dk depend (up to
associates) only on A too.

Example. Consider

A =

(
2 −1
1 2

)
over Z.

Fit1(A) = (2,−1, 2, 1) = (1) so d1 = ±1
Fit2(A) = (5) so d1d2 = ±5 =⇒ d2 = ±5 .

So A has a Smith normal form (
1 0
0 5

)
.

47



3 Modules IB Groups, Rings and Modules

Lemma 3.29. Let R be a principal ideal domain. Any submodule of Rm is generated by at most m
elements.

Proof. Let N ≤ Rm be a submodule. Consider the ideal

I = {r ∈ R | ∃r2, . . . , rm such that (r, r2, . . . , rm) ∈ N}CR .

As R is a PID, I = (a) for some a ∈ I. Choose n1 = (a, a2, . . . , am) ∈ N . If (r1, . . . , rm) ∈ N , then
r1 = r · a for some r ∈ R. Consider

(r1, r2, . . . , rm)− r(a, a2, . . . , am) = (0, r2 − a2, . . . , rm − am) ∈ N .

This lies in N ′ = N ∩ ({0}×Rm−1) ≤ Rm−1. Therefore, everything in N can be written as a multiple
of n1 plus something in N ′. By induction can suppose N ′ is generated by at most m − 1 elements,
so there are n2, . . . , nm ∈ N ′ generating N ′, so {n1, n2, . . . , nm} generate N . �

This only tells us if we have a submodule of Rm, then it can be generated by at most m generators,
but it did not tell us how to find them — and those generators may generate the submodule in some
horrible ways.

The next theorem tells us a good way of finding them.

Theorem 3.30. Let R be an ED, N ≤ Rm a submodule. Then there is a basis v1, . . . , vm of Rm

such that N is generated by d1v1, . . . , drvr for some 0 ≤ r ≤ m and d1 | d2 | · · · | dr.

Proof. By the above lemma, there are x1, . . . , xn ∈ N generating it, with n ≤ m. Each xi is an
element of Rm, so they can be assembled as an m× n matrix | | |

x1 x2 . . . xn

| | |

 = A .

Then we can reduce it into a Smith normal form

d1
d2

. . .
dr

0
. . .

0
0
...
0



.

This can be obtained by elementary row and column operations P−1AQ. Each row operation
corresponds to a change of basis of Rm, and each column operation is a change in generators of
N . In the new basis for Rm, N is generated by d1v1, . . . , drvr as required. �

Corollary. Let R be a Euclidean domain. A submodule of Rm is free of rank ≤ m. In other words,
the submodule of a free module is free, and of a smaller (or equal) rank.

Proof. Continuing with the notation above. If d1v1, . . . , drvr are linearly dependent, then so do
v1, . . . , vr, but vi are the basis so they don’t. Therefore, d1v1, . . . , drvr are linearly independent, so
they generate the submodule freely. So

N ∼= Rr .

�
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Note that this is not true for all rings. For example, (2, X) C Z[X] is a submodule of Z[X], but
because it is not a principal ideal it cannot be isomorphic to Z[X].

Theorem 3.31 (Classification of finitely-generated modules over ED). Let R be a Eu-
clidean domain, M a finitely-generated R-module. Then

M ∼=
R

(d1)
⊕ R

(d2)
⊕ · · · ⊕ R

(dr)
⊕R⊕ · · · ⊕R

for some di 6= 0 and d1 | d2 | · · · | dr.

Proof. As M is finitely generated, we have a surjection φ : Rm → M . So by the first isomorphism
theorem,

M ∼=
Rm

kerφ
.

By the last theorem, we can choose a new basis of Rm, v1, . . . , vm such that kerφ is generated by
d1v1, . . . , drvr, 0 ≤ r ≤ m, d1 6= 0 and d1 | · · · | dr. So

M ∼=
Rm

((d1, 0, · · · , 0), (0, d2, · · · , 0), · · · , (0, 0, · · · , dr, 0, · · · , 0))

=
R

(d1)
⊕ R

(d2)
⊕ · · · ⊕ R

(dr)
⊕R⊕ · · · ⊕R︸ ︷︷ ︸

(m−r) copies

.

�

This is particularly useful in the case where R = Z, where R-modules are abelian groups.

Example. Let R = Z, a Euclidean domain. Let A be the abelian group generated by a, b, c subjected
to

2a+ 3b+ c = 0

a+ 2b = 0

5a+ 6b+ 7c = 0 .

Then we have
A =

Z3

((2, 3, 1), (1, 2, 0), (5, 6, 7))
.

To determine A up to isomorphism, we can put2 1 5
3 2 6
1 0 7


into Smith normal form. Have

Fit1(M) = (1, . . . ) = (1) d1 = 1

Fit2(M) = (1, . . . ) = (1) d2 = 1

Fit3(M) = (detM) = (3) d3 = 3 .

Therefore,
A ∼=

Z
(1)
⊕ Z

(1)
⊕ Z

(3)
=

Z
(3)

.

Corollary (Structure theorem for finitely generated abelian groups). Any finitely gener-
ated abelian group is isomorphic to

Cd1 × Cd2 × · · · × Cdr × C∞ × · · · × C∞ ,

with di 6= 0, d1 | d2 | · · · | dr.
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Proof. Abelian groups are Z-modules. Z is an ED, so apply the classification and use

Z
(d)

= Cd ,
Z
(0)

= C∞ .

�

Corollary (Classification of finite abelian groups). Any finite abelian group is isomorphic to

Cd1
× Cd2

× · · · × Cdr

with di 6= 0 and d1 | d2 | · · · | dr.

Recall that we were also to decompose a finite abelian group into products of the form Cpk , where p
is a prime, and we said it was just the Chinese remainder theorem. This is true for modules as well.

Lemma 3.32 (Chinese remainder theorem). Let R be a Euclidean domain, a, b ∈ R such that
gcd(a, b) is a unit, then

R

(ab)
∼=

R

(a)
⊕ R

(b)
.

Proof. Consider

φ :
R

(a)
⊕ R

(b)
−→ R

(ab)

(r1 + (a), r2 + (b)) 7−→ br1 + ar2 + (ab) .

This is an R-module homomorphism as long as it is well-defined, so we need to check that. Suppose
(r1 + (a), r2 + (b)) = (r′1 + (a), r′2 + (b)), i.e.

r1 = r′1 + ax x ∈ (a) ,

r2 = r′2 + by y ∈ (b) .

Then

br1 + ar2 = b(r′1 + ax) + a(r′2 + by)

= br′1 + ar′2 + ab(x+ y)

= br′1 + ar′2 (mod (ab)) ,

so well defined.

Now show that it is surjective. As gcd(a, b) is a unit, there exist x and y with ax + by = 1 by
Euclidean algorithm. Then

φ(y + (a), x+ (b)) = by + ax+ (ab)

= 1 + (ab) ,

and so

φ(ry + (a), rx+ (b)) = r(1 + (ab))

= r + (ab)

for any r ∈ R, so surjective.

Finally need to show that it is injective. Suppose φ(r1+(a), r2+(b)) = 0, i.e. br1+ar2+(ab) = 0,
i.e. br1 + ar2 ∈ (ab), then br1 + ar2 = abx for some x. So a | br1 and b | ar2. As a, b are coprime, can
only have a | r1 and b | r2, so

(r1 + (a), r2 + (b)) = (0 + (a), 0 + (b)) .

The kernel is trivial, so injective. �
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Theorem 3.33 (Primary decomposition theorem). Let R be a Euclidean domain, M a finitely
generated R-module, then

M ∼= N1 ⊕N2 ⊕ · · · ⊕Nt ,

where each Ni is either R or is R/(pn) for some n ≥ 1 and prime p ∈ R.

Proof. Already know
M ∼=

R

(d1)
⊕ R

(d2)
⊕ · · · ⊕ R

(dr)
⊕R⊕ · · · ⊕R

with di 6= 0, d1 | d2 | · · · | dr. Enough to know each R/(di) is a sum of R/(pn)’s.

Let di = pn1
1 pn2

2 . . . pnk

k with pi distinct primes. The lemma shows

R

(di)
=

R

(pn1
1 )
⊕ R

(pn2
2 )
⊕ · · · ⊕ R

(pnk

k )
.

�

3.4 Modules over F[X] and Normal Forms for Matrices

We next want to consider the Jordan normal form. This is less straightforward, since considering
V directly as an F module would not be too helpful (since that would just be pure linear algebra).
Instead, we use the following trick.

For a field F, F[X] is an ED so the last section applies. Recall if V is an F-vector space, and
α : V → V is a linear endomorphism, we can consider V as an F[X]-module via

F[X]× V −→ V

(f, v) 7−→ f(α)(v) .

Call this F[X]-module Vα.

Lemma 3.34. If V is a finite dimensional F-vector space, then Vα is a finitely generated F[X]-module.

Proof. V finite dimensional ⇐⇒ V finitely generated F-module, and an F-generating set is also an
F[X]-generating set, since F ≤ F[X]. �

Examples.

(i) Suppose Vα
∼= F[X]/(Xr) as an F[X]-modules. Then in particular they are isomorphic as

F-modules (since being a map of F-modules has fewer requirements than being a map of F[X]-
modules).
Under this bijection, the elements 1, X, . . .Xr−1 ∈ F[X]/(Xr) form a vector space basis for Vα.
Viewing F[X]/(Xr) as an F-vector space, the action of X has the matrix

0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 .

We also know that in Vα, the action of X is by definition the linear map α, so under this basis,
α also has the matrix 

0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 .

It is a Jordan normal block of size r with eigenvalue 0.
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(ii) Suppose
Vα
∼= F[X]/((X − λ)r)

for some λ ∈ F. Then the linear map β = α− λ id : V → V has Vβ
∼= F[X]/(Xr), i.e. there is a

basis where α is represented as 
λ 0 · · · 0 0
1 λ · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 λ

 .

This is a Jordan normal block of size r with eigenvalue λ.

(iii) Suppose Vα
∼= F[X]/(f) with f = a0 + a1X

1 + · · · + ar−1X
r−1 +Xr. We still have the basis

1, X, . . . ,Xr−1. In this basis, α is represented as

c(f) =


0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
. . .

...
...

0 0 · · · 1 −ar−1

 .

This is called the companion matrix for the monic polynomial f .

Theorem 3.35 (Rational canonical form). Let α : V → V be an endomorphism of a finite
dimensional F-vector space V . Then

Vα
∼=

F[X]

(f1)
⊕ · · · ⊕ F[X]

(fr)

with fi 6= 0, f1 | · · · | fr. So there is a basis for V such that α is given by
c(f1) 0 · · · 0
0 c(f2) · · · 0
...

...
. . .

...
0 0 · · · c(fs)

 .

Proof. Use classification of finitely generated modules over ED. No F[X] arises in this sum as F[X]
is infinite dimensional over F while V is finite dimensional. �

Observations.

(i) This is really a canonical form. The Jordan normal form is not canonical, since we can move
the blocks around. The structure theorem determines the factors fi up to units, and once we
require them to be monic, there is no choice left.

(ii) If α was given by a square matrix A, this says A is conjugate to the above matrix
diag(c(f1), c(f2), . . . , c(fr)).

(iii) The minimal polynomial of α is fr.

(iv) The characteristic polynomial of α is
∏r

i=1 fi.

Recall we had a different way of decomposing a module over a Euclidean domain, namely the prime
decomposition, and this gives us the Jordan normal form.

Before we can use that, we need to know what the primes are. This is why we need to work over
C.
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Lemma 3.36. The primes in C[X] are X − λ.

Proof. Constants in C are all units, so they are not prime. For polynomials, only ones of the form
X − λ are irreducible by the fundamental theorem of algebra. �

Theorem 3.37 (Jordan normal form). Let α : V → V be an endomorphism of a C-vector space.
Then

Vα
∼=

C[X]

((X − λ1)a1)
⊕ C[X]

((X − λ2)a2)
⊕ · · · ⊕ C[X]

((X − λs)as)

as C[X]-modules, where λi ∈ C do not have to be distinct. So there is a basis of V in which α is
represented by 

Ja1
(λ1)

Ja2(λ2)
. . .

Jas
(λs)

 ,

where

Jm(λ) :=


λ 0 · · · 0
1 λ · · · 0
...

. . . . . .
...

0 · · · 1 λ


is an m×m matrix known as the Jordan normal block.

Proof. Apply the prime decomposition theorem to Vα. Then all primes are of the form X − λ.

Observations.

(i) They are unique up to reordering of blocks.

(ii) The minimal polynomial is ∏
λ

(X − λ)aλ ,

where aλ is the size of the largest λ-block.

(iii) The characteristic polynomial is ∏
i

(X − λi)
ai .

(iv) The number of λ-blocks is the size of the λ-eigenspace.

3.5 *Conjugacy

Again, for a vector space V and an endomorphism α : V → V , write Vα for the corresponding
F[X]-module.

Lemma 3.38. If α : V → V and β : W → W are two endomorphisms of two vector spaces, then
Vα
∼= Wβ as F[X]-modules ⇐⇒ there is an isomorphism γ : V →W such that γ−1βγ = α.

Proof. Let φ : Vα →Wβ be the F[X]-module isomorphism. Let v ∈ V .

φ(α(v)) = φ(X · v) = X · φ(v) = β(φ(v))

∀v ∈ V . Writing γ : V →W for the underlying linear map of φ, this says γα = βγ, so α = γ−1βγ.
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Conversely, let γ : V →W be a linear isomorphism such that γ−1βγ = α. We now claim that the
corresponding φ : Vα → Vβ is an F[X]-module isomorphism. We just need to check

φ(f · v) = γ(f(α)v)

= γ(a0 + a1α+ · · ·+ anα
n)(v)

= γ(a0v) + γ(a1αv) + · · ·+ γ(anα
nv)

= (a0 + a1β + · · ·+ anβ
n)(γ(v))

= f · φ(v) .

�

In particular, if W = V , α and β are conjugate ⇐⇒ Vα
∼= Vβ as F[X]-modules.

So classifying linear maps up to conjugation is the same as classifying modules. We can re-interpret
this a little bit, using the classification of finitely-generated modules.

Corollary. There is a bijection
conjugacy classes of

n× n matrices
over F

 ←→


sequences of monic polynomials

d1, . . . , dr ∈ F[X] such that d1 | · · · | dr
deg(d1 . . . dr) = n


m

F[X]

(d1)
⊕ F[X]

(d2)
⊕ · · · ⊕ F[X]

(dr)

has dimension n over F

Example. Suppose we want to study the conjugacy classes in the group GL2(F), i.e. 2× 2 invertible
matrices. Need polynomials d1, . . . , dr with d1 | · · · | dr and d1 . . . dr has degree 2.

So, either

(i) deg(d1) = 2.
F[X]

(d1)
∼=

F[X]

(X2 + a1X + a2)
,

or

(ii) deg(d1) = deg(d2) = 1, and d1 | d2, so d1 = d2 = X − λ.

F[X]

(X − λ)
⊕ F[X]

(X − λ)
.

Therefore, any A ∈ GL2(F) is conjugate to either

(
0 −a2
1 −a1

)
or

(
λ 0

0 λ

)
a2 = det(A) det(A) = λ2

a1 = − tr(A) tr(A) = 2λ .

How unique are these? If (
0 −a2
1 −a1

)
∼
(
λ 0
0 λ

)
,
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then they have the same determinant and same trace, so a2 = λ2 and a1 = −2λ, so

X2 + a1X + a2 = X2 − 2λX + λ2 = (X − λ)2 .

This is the polynomial of a Jordan normal block — F[X]/(X − λ)2(
λ 0
1 λ

)
6∼
(
λ 0
0 λ

)
,

so the two cases are disjoint.

Let us look at the first case in more detail. If d1 = X2 + a1X + a2 is reducible, so factors as

(X − λ)(X − λ) or (X − λ)(X − λ) , λ 6= µ ,

giving (
λ 0
1 λ

) (
λ 0
0 µ

)
.

Therefore, any A ∈ GL2(F) is conjugated to one of(
0 −a2
1 −a1

) (
λ 0

0 λ

) (
λ 0

0 µ

)
X2 + a1X + a2 irreducible λ ∈ F \ {0} λ, µ ∈ F \ {0} .

Example. Let F = Z/3. Let’s work out the conjugacy classes in the finite group GL2(Z/3).

What X2 + a1X + a2 ∈ Z/3[X] are irreducible? There are 3× 3 = 9 in total. The reducible ones
have either repeated roots (3 choices) or 2 distinct roots (

(
3
2

)
= 3 choices), so there are 3 irreducible

polynomials. Have X2 + 1, X2 + X + 2, X2 + 2X + 2 irreducible. These do not have roots in
Z/3 = {0, 1, 2}. So the conjugacy classes are represented by(

0 −1
1 0

) (
0 −2
1 −1

) (
0 −2
1 −2

) (
λ 0

1 λ

) (
λ 0

0 µ

)
λ 6= 0 λ, µ 6= 0

# of conj. classes 1 1 1 2 3

There are 8 conjugacy classes in total.

Recall |GL2(Z/3)| = (32 − 1)(32 − 3) = 48 = 24 · 3. By Sylow’s theorem there is a subgroup of
order 24 = 16. Looking at the conjugacy classes, see the first three classes have elements of order 4,
8, 8 respectively. The elements in the fourth conjugacy class have order 3. The element in the third
conjugacy class have order 2, except for the identity matrix (λ = µ = 1), which has order 1. There
is no element of order 16, so the Sylow 2-subgroup is not cyclic.

To construct the Sylow 2-subgroup, we start by choosing an element of order 8, say

B =

(
0 1
1 2

)
.

To make a subgroup of order 16, a sensible guess would be to take an element of order 2, but that
doesn’t work, since B4 will give you the element of order 2. Instead, we pick

A =

(
0 2
1 0

)
.

We notice

A−1BA =

(
0 1
2 0

)(
0 1
1 2

)(
0 2
1 0

)
=

(
1 2
0 2

)(
0 2
1 0

)
=

(
2 2
2 0

)
= B3 .
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So this is a bit like the dihedral group.

We know that
〈B〉C 〈A,B〉 .

Also, we know |〈B〉| = 8. So if we can show that 〈B〉 has index 2 in 〈A,B〉, then this is the Sylow
2-subgroup. By the second isomorphism theorem, we have

〈A,B〉
〈B〉

∼=
〈A〉

〈A〉 ∩ 〈B〉
.

Note
〈A〉 ∩ 〈B〉 =

〈(
2 0
0 2

)〉
∼= C2 .

We also know 〈A〉 ∼= C4. So we know
|〈A,B〉|
|〈B〉|

= 2 .

So |〈A,B〉| = 16. So this is the Sylow 2-subgroup we want. In fact, it is

〈A,B | A4 = B8 = e , A−1BA = B3〉 .

We call this the semi-dihedral group of order 16, because it is a bit like a dihedral group.

Note that finding this subgroup was purely guesswork. There is no method to know that A and
B are the right choices.
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