
1 Free Particle Quantum Mechanical Systems in IB

Here are some important quantum mechanical systems that you should already be familiar with
from Part IB Chemistry A. These serve as good reference systems that we develop further techniques
upon in the C7: Further Quantum Mechanics course.

1 Free Particle

The first system we will look at is a particle of mass m moving in a 1D space freely without external
potential, described by classical Hamiltonian

H =
p2

2m
. (1.1)

Quantisation promotes the classical momentum p into the momentum operator p̂ so the time-
independent Schrödinger equation Ĥ |ψ⟩ = E |ψ⟩ reads

p̂2

2m
|ψ⟩ = E |ψ⟩ . (1.2)

We will use the position representation so p̂ = −iℏ d
dx , and the Schrödinger equation becomes a second

order linear homogeneous equation, which can be easily solved. However, we can make the problem
easier if we realise that since Ĥ only involves p̂, the eigenstates of Ĥ are also the eigenstates of p̂, so
we can instead solve for

p̂ |p⟩ = p |p⟩ , (1.3)
where |p⟩ is the eigenstate of p̂ and Ĥ with momentum p and energy

E =
p2

2m
. (1.4)

This time, moving into the position representation yields a first order differential equation

−iℏ
dψp(x)

dx
= pψp(x) , (1.5)

for which solution is given by
ψp(x) ≡ ⟨x|p⟩ = Aeipx/ℏ , (1.6)

for some normalisation constant A. It is conventional to normalise the state with A = 1/
√
2πℏ so

that ⟨p|p′⟩ = δ(p− p′). Notice that since we do not impose any boundary condition, p can take any
real value, and the energies are non-negative. It is also common to label the state by its wavenumber
k = p/ℏ.

Notice that only the ground-state with zero energy is non-degenerate, with p = 0. Any other
states with positive energy are doubly degenerate as states with momenta ±p have the same energy.
Therefore, a general expression of an energy eigenstate is

|E⟩ = a |p⟩+ b |−p⟩ (1.7)

for any a, b ∈ C.

The 3D case is similar, with wavefunction

⟨x|p⟩ = 1

(2πℏ)3/2
eip·x/ℏ (1.8)

and energy spectrum

E =
p2

2m
(1.9)

for any p ∈ R3.
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2 Potential Well

2.1 Infinite Well

Next, we consider a particle moving in a infinitely deep 1D potential well of length L, defined by the
potential

V (x) =

{
0 x ∈ [0, L]

∞ otherwise.
(2.1)

Notice that inside the well (0 ≤ x ≤ L), V = 0 so the particle is again free, with

⟨x|E⟩ = aeikx + be−ikx

= c sin kx+ d cos kx (2.2)

and energy

E =
ℏ2k2

2m
. (2.3)

The out-of-well situation (x < 0 or x > L) is a bit more subtle. The Schrödinger equation reads

− ℏ2

2m

d2ψ

dx2
+∞ψ = Eψ . (2.4)

For a state to have finite energy, we are forced to take ψ(x) = 0 outside the well.

The wavefunction has to be continuous, and this puts important constraint on the wavefunction
allowed inside the well. For the wavefunctions to be continuous at x = 0 and x = L, we must have

ψ(0) = d = 0

ψ(L) = c sin kL+ d cos kL = 0 . (2.5)

These conditions give d = 0 and kL = nπ for n ∈ Z. Note that kL = nπ and kL = −nπ are physically
equivalent and n = 0 gives vanishing wavefunction, we reduce the range of n to n ∈ N. In conclusion,
the normalised wavefunctions and energy spectrum are

En =
n2π2ℏ2

2mL2
(2.6)

ψn(x) =

{√
2
L sin nπx

L x ∈ [0, L]

0 otherwise.
(2.7)
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3 Quantum Harmonic Oscillator

Here we will solve the Quantum Harmonic Oscillator in the same way as you have seen in Part IB.
A much more elegant way using ladder operators will be introduced in the main text.

Now consider a particle of mass m moving in a quadratic potential

V (x) =
1

2
kx2 . (3.1)

It proves useful to rewrite this as
V (x) =

1

2
mω2x2 (3.2)

so that the Hamiltonian is
Ĥ = − ℏ2

2m

d2

dx2
+

1

2
mω2x2 . (3.3)

We observe that s = (ℏ/mω)1/2 has dimension [L], so we introduce a dimensionless quantity scaled
coordinate q = x/s. Under these changes of variables, the Hamiltonian becomes

Ĥ = ℏω
(
−1

2

d2

dq2
+

1

2
q2
)
. (3.4)

Solving the Schrödinger equation is therefore equivalent to finding the eigenfunctions of the operator

L̂ = −1

2

d2

dq2
+

1

2
q2 . (3.5)

We will try the ansatz
ψ(q) = p(q)e−q2/2 . (3.6)

Substitution into the eigenvalue equation

L̂ψ = λψ (3.7)

yields
[p′′ − 2p′q + (2λ− 1)p]e−q2/2 = 0 . (3.8)

We hence need to solve for the solution of the differential equation

p′′ − 2p′q + (2λ− 1)p = 0 . (3.9)

To solve this type of equations, one can try to expand the solution in an infinite series

p(q) =
∑
k=0

akq
k . (3.10)

If we substitute this into the Hermite equation, and requiring the coefficients of all powers of q to be
zero, we get the recursion relation

ak+2 =
2k − 2n

(k + 2)(k + 1)
ak . (3.11)

First, note that the recursion relation involves two independent sets of coefficients: ak with k even,
and ak with k odd. These two sets don’t talk to each other and so we have two classes of solutions.

peven(q) = a0

[
1− nq2 +

n(n− 2)

6
q4 + . . .

]
(3.12)

podd(q) = a1

[
q − n− 1

3
q3 +

(n− 1)(n− 3)

30
q5 + . . .

]
(3.13)
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We may focus on either class of the solution and consider what happens for large k. There are
two options: either the recursion relation terminates, so that ak = 0 for all k > N after some N . Or
the recursion relation doesn’t terminate and ak ̸= 0 for all k. We’re going to argue that only the first
option is allowed because if we have infinite terms in the expansion of p(q), then ψ = p(q)e−q2/2 will
be non-normalisable.

To see this, we observe that if the recursion relation doesn’t terminate then, for large k, we have
ak+2 ∼ 2ak/k. This will give us an exponentially growing function: if we expand

eq
2

=

∞∑
k=0

q2k

k!
=

∞∑
k=0

bkq
k (3.14)

with

bk =

{
1

(k/2)! if k is even
0 if k is odd,

(3.15)

which also gives bk+2 = 2bk/k as k → ∞. Therefore for large q, the wavefunction will scale as

ψ(q) ∼ eq
2

e−q2/2 = e+q2/2 , (3.16)

which is clearly not normalisable.

Therefore, we must require the expansion somehow terminates at some value of k, i.e. p(q) is a
polynomial. This would require 2k−2n = 0 at some k, meaning that n is an integer.1 The polynomial
solution of the Hermite equation

p′′ − 2qp′ + 2np = 0 , n ∈ Z (3.17)

are known as the Hermite polynomials, Hn. This gives the wavefunctions and energy spectrum

ψn(q) = Hn(q)e
− 1

2 q
2

, (3.18)

En =

(
n+

1

2

)
ℏω . (3.19)

1Alternatively, this can be understood by Sturm–Liouville theory. See my notes on IB Mathematical Methods.
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4 Rigid Rotor

Suppose we have two masses m1 and m2 connected by a rigid rod of length r with no external
potentials or inter-particle interactions. We will ignore the overall translation of the system and
set the centre of mass coordinate to be 0 (i.e. we are in the centre-of-mass frame). This adds the
constraint

rCoM =
m1r1 +m2r2
m1 +m2

= 0 (4.1)

We denote the inter-particle vector r = r2 − r1 with ∥r∥ = r confined by the length of the rod. It
can then be shown that the energy of the particles in this frame is

H =
1

2
m1ṙ

2
1 +

1

2
m2ṙ

2
2 =

1

2
µṙ2 , (4.2)

where µ = m1m2/(m1 +m2) is the reduced mass of this system. This shows that we can view the
rotation of this rotor as the movement of a single particle of mass µ on a sphere of radius r. Defining
ω = r× ṙ/r2 the angular velocity and I = µr2 the moment of inertia, this is

H =
1

2
Iω2 . (4.3)

The angular momentum is defined as L = r × p = Iω. This allows us to write the classical
Hamiltonian as

H =
L2

2I
. (4.4)

Quantum Mechanically, this is

Ĥ =
L̂
2

2I
. (4.5)

We need to find the eigenvalues and eigenfunctions of L̂2.

4.1 Angular Momentum

Following the definition L̂ = x̂× p, it is easy to check that the components of L̂ are defined by

L̂i = −iℏ
∑
j,k

εijkxj
∂

∂xk
, (4.6)

where ϵijk is the Levi-Civita symbol defined by

εijk =


1 if ijk is an even permutation of 123
−1 if ijk is an odd permutation of 123
0 otherwise.

(4.7)

One can also check the commutator relationship

[L̂i, L̂j ] = iℏ
∑
k

ϵijkL̂k . (4.8)

This is not zero, so one cannot find a state that is simultaneously the eigenstates of two components
of angular momentum.

The squared magnitude of angular momentum can be calculated by L̂
2
=

∑
i L̂

2
i . The expression

is simpler if we switch to the spherical polar coordinate

L̂
2
= −ℏ2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
. (4.9)
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We can also check the commutator
[L̂

2
, L̂i] = 0 , (4.10)

so one can work out the simultaneous eigenstate of L̂2 and one component of L — it is conventional
to choose L̂z due to its simple form in spherical polar coordinate:

L̂z = −iℏ
∂

∂φ
. (4.11)

We will first work out the eigenfunction of L̂z. The eigenvalue equation L̂z |λ⟩ = λ |λ⟩ in spherical
polar coordinate is

−iℏ
∂Φ(φ)

∂φ
= λΦ(φ) . (4.12)

This has solution
Φ(φ) = eiλφ/ℏ , (4.13)

while the single-valuedness of the wavefunction requires Φ(φ+ 2π) = Φ(φ), so

iλ(φ+ 2π)

ℏ
=

iλφ

ℏ
+ 2mπ (4.14)

for m ∈ Z, which simplifies to λ = mℏ. We again see that the boundary condition requires L̂z to
have a discrete spectrum. Labelling the eigenstates by |m⟩, we have eigenfunctions and spectrum

Φm(φ) ≡ ⟨φ|m⟩ = eimφ (4.15)
L̂z |m⟩ = ℏm |m⟩ (4.16)

for m ∈ Z.

Next we find the eigenfunction of the angular momentum squared operator (4.9). Since L̂
2

commutes with L̂z, we can find the simultaneous eigenfunction of them. Therefore we can label
a state by |χ,m⟩, with eigenvalue equations

L̂z |χ,m⟩ = ℏm |χ,m⟩ (4.17)

L̂
2
|χ,m⟩ = χ |χ,m⟩ . (4.18)

Working in the spherical polar coordinates, we must have

⟨θ, φ|χ,m⟩ = Θχ(θ)Φm(φ) (4.19)

with Φm(φ) = eimφ for some function Θχ(θ). If we substitute this into the eigenvalue equation in
spherical polar coordinate, we get

− ℏ2

sin2 θ

[
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
−m2

]
Θ(θ) = χΘ(θ) . (4.20)

Solutions to this equation are a well-studied class of mathematical functions called associated Legendre
Polynomials. We are not solving them right here, but the essence is the same as how we solved the
Hermite equation — just with an extra first step of substitution x = cos θ. We will directly state
the solution here. Their construction comes in two steps. First, we introduce an associated set of
functions known as (ordinary) Legendre Polynomials, Pℓ(x). These obey the differential equation

d

dx

[
(1− x2)

dPℓ

dx

]
+ ℓ(ℓ+ 1)Pℓ(x) = 0 , ℓ ∈ N0 . (4.21)

The Pℓ(x), with ℓ ∈ N0, are polynomials of degree ℓ. The eigenfunction solutions (4.20) are then
associated Legendre polynomials Pℓ,m(cos θ), defined by

Θ(θ) = Pℓ,m(cos θ) = (sin θ)|m| d|m|

d(cos θ)
|m|Pℓ(cos θ) . (4.22)
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The corresponding eigenvalue is
χ = ℓ(ℓ+ 1)ℏ2 . (4.23)

Because Pℓ(cos θ) is a polynomial of degree ℓ, you only get to differentiate it ℓ times before it vanishes.
This means that the L̂z angular momentum is constrained to take values that lie in the range

−ℓ ≤ m ≤ ℓ . (4.24)

The conclusion of the above analysis is that the simultaneous eigenstates of L̂2 and L̂z are given
by quantum state labelled by two integers ℓ and m, with |m| ≤ ℓ

⟨θ, φ|ℓ,m⟩ = Yℓ,m(θ, φ) = Pℓ,m(cos θ)eimφ (4.25)

known as the spherical harmonics. The corresponding eigenvalues are

L̂
2
Yℓ,m(θ, φ) = ℓ(ℓ+ 1)ℏ2Yℓ,m(θ, φ) ,

L̂zYℓ,m(θ, φ) = mℏYℓ,m(θ, φ) .

The integer ℓ is called the total angular momentum quantum number (even though, strictly speaking,
the total angular momentum is really ℓ(ℓ + 1)ℏ.) The integer m is called the azimuthal angular
momentum. For each value of ℓ, there are 2ℓ+ 1 values m can take.

Back to the rigid rotor, the eigenstates can also be labelled by |ℓ,m⟩. The eigenvalues are

Ĥ |ℓ,m⟩ = ℏ2

2I
ℓ(ℓ+ 1) |ℓ,m⟩ . (4.26)

The states with the same ℓ but different m are therefore degenerate, with degeneracy 2ℓ+ 1.
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5 Hydrogen Atom

We will consider the hydrogen atom as an electron of mass m moving in the electric field generated
by a fixed proton. This is a pretty good approximation since the proton is approximately 1836 times
as heavy as the electron, so we can consider the proton to be essentially stationary — but we shall
see that this will come and bite us in the chapter of Relativistic Effects when we are trying to make
really accurate spectroscopic measurement.2

The electronic Hamiltonian is therefore

Ĥ = − ℏ2

2me
∇2 − e2

4πϵ0r
. (5.1)

To respect the spherical symmetry of the system, we should use the spherical polar coordinate system,
in which the Laplacian is

∇2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2 . (5.2)

We see a familiar fragment in the angular part — the squared modulus of the angular momentum
operator:

∇2 =
1

r2

[
∂

∂r

(
r2
∂

∂r

)
− 1

ℏ2
L̂
2
]
. (5.3)

The full Hamiltonian is therefore

Ĥ =
1

r2

[
1

2me
L̂
2
− ℏ2

2me

∂

∂r

(
r2
∂

∂r

)
− e2

4πϵ0
r

]
. (5.4)

This inspires us to try solution of the form R(r)Yℓ,m(θ, φ). Substituting this into the time-independent
Schrödinger equation, we get

ĤR(r)Yℓ,m =
1

r2

[
1

2me
R(r)L̂

2
Yℓ,m − Yℓ,m

ℏ2

2me

∂

∂r

(
r2
∂R

∂r

)
− e2

4πϵ0
rR(r)Yℓ,m

]
=

1

r2

[
ℏ2ℓ(ℓ+ 1)

2me
R(r)− ℏ2

2me

∂

∂r

(
r2
∂R

∂r

)
− e2

4πϵ0
rR(r)

]
Yℓ,m = ER(r)Yℓ,m . (5.5)

This reduces to the eigenvalue equation

− ℏ2

2me

(
d2R

dr2
+

2

r

dR

dr

)
+

(
− e2

4πϵ0r
+

ℏ2ℓ(ℓ+ 1)

2mer2

)
R = ER . (5.6)

Before going any further, we would like to define the following quantities to reduce the constants we
have to write:

1

a2
= −2meE

ℏ2
, β =

e2me

2πϵ0ℏ2
. (5.7)

You can check that a has the dimension of length. This cleans up our equation a little:

d2R

dr2
+

2

r

dR

dr
− ℓ(ℓ+ 1)

r2
R+

β

r
R =

R

a2
. (5.8)

All we have to do now is solve it.

We need some inspiration on what form of solution to try. First, let’s look at the asymptotic
behaviour of solutions as r → ∞. Here the eigenvalue equation (5.8) is dominated by

d2R

dr2
≈ R

a2
. (5.9)

2Long story short: we should really use the reduced mass of the proton-electron system.
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This is solved by R(r) = e±r/a, and we clearly have to discard the e+r/a solution because it is not
normalisable. So, we must have R(r) ∼ e±r/a as r → ∞. We see that a, which recall is related to the
inverse energy of the system, sets the characteristic size of the wavefunction. Meanwhile, near the
origin r = 0 the dominant terms are

d2R

dr2
+

2

r

dR

dr
− ℓ(ℓ+ 1)

r2
R ≈ 0 for r ≪ 1 . (5.10)

If we make the power-law ansatz R ∼ rα, we find

α(α− 1) + 2α− ℓ(ℓ+ 1) = 0 , (5.11)

which has two solutions: α = ℓ and α = −(ℓ+ 1). We have to discarded the second solution because
it results in a wavefunction that diverges at the origin, and so R(r) ∼ rℓ as r → 0.

All of this motivates us to look for solutions of the form

R(r) = rℓf(r)e−r/a , (5.12)

where f(r) is a polynomial

f(r) =

∞∑
k=0

ckr
k , (5.13)

where we must have c0 ̸= 0 so that we get the right behaviour at small r. We can now substitute the
ansatz (5.12) into the equation (5.8), which gives

d2f

dr2
+ 2

(
ℓ+ 1

r
− 1

a

)
df

dr
− 1

ar
(2(ℓ+ 1)− βa) f = 0 . (5.14)

Next, we substitute the power-law expansion of f into this differential equation to find
∞∑
k=0

ck

[
(k(k − 1) + 2k(ℓ+ 1))rk−2 − 1

a
(2k + 2(ℓ+ 1)− βa)rk−1

]
= 0 , (5.15)

which gives the recursion relation

ck =
1

ak

2(k + l)− βa

k + 2ℓ+ 1
ck−1 . (5.16)

Similar to the argument we made when discussing the harmonic oscillator, for a wavefunction to
be normalisable, this recursion relation must terminate at some time — otherwise this brings us back
to the R(r) ∼ e+r/a situation.

This means that there should be a positive integer q for which cq = 0, while ck ̸= 0 for all k < q.
Clearly this holds only if a takes special values,

a =
2

β
(q + ℓ) , q = 1, 2, . . . . (5.17)

Alternatively, since both q and ℓ are integers, we usually define the integer

n = q + ℓ , (5.18)

which obviously obeys n > ℓ. We then have

a =
2

β
n . (5.19)

This then gives

E = − e4me

32π2ϵ20ℏ2
1

n2
(5.20)
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for n ∈ N. This is our final result for the energy spectrum of the hydrogen atom. The integer n is
called the principal quantum number. The full (bound) state of the hydrogen atom can therefore be
labelled by three numbers: |n, ℓ,m⟩, with

Ĥ |n, ℓ,m⟩ = − e4me

32π2ϵ20ℏ2
1

n2
|n, ℓ,m⟩ n ∈ N (5.21)

L̂
2
|n, ℓ,m⟩ = ℏ2ℓ(ℓ+ 1) |n, ℓ,m⟩ 0 ≤ ℓ < n (5.22)

L̂z |n, ℓ,m⟩ = ℏm |n, ℓ,m⟩ − ℓ ≤ m ≤ ℓ . (5.23)

It is common to adopt the atomic units, in which ℏ = 4πϵ0 = me = e = 1. The corresponding
unit of length is Bohr radius

a0 =
4πϵ0ℏ2

e2me
= 1 (5.24)

and unit of energy is Hartree

EH =
ℏ2

mea20
=

e4me

16π2ϵ20ℏ2
= 1 . (5.25)

Therefore, in atomic unit, the hydrogen energy level is simply − 1
2n2 .

There’s actually an extra surprise. The energy spectrum of hydrogen does not depend on the
angular momentum ℓ. This is not generally true for any system — in fact, the are only two 3D
systems where the energy spectrum doesn’t explicitly depend on angular momentum are the harmonic
oscillator and the hydrogen atom!

There is no L̂z involved in the expression of the Hamiltonian, so we are quite happy to accept that
the energy of the hydrogen is independent of m, i.e. the states that differ only by m are degenerate.
This naturally follows from rotational symmetry of hydrogen atom — it should have no preference
on in which direction the angular momentum lies. However, we do have L̂2 appearing explicitly in
the Hamiltonian, so we generally would not expect states with different ℓ’s to be degenerate. In fact,
this is true for any other atom, or indeed for any other central potentials — the degeneracy is 2ℓ+ 1
for the states that differ by mℓ only. However, there is another conserved quantity in hydrogen atom
that arises because the potential is exactly ∼ r−1. It is called the Runge–Lenz vector, which also
appears in many other places like planetary orbits. This enhances the symmetry of a hydrogen atom.
Roughly speaking, aside from simply rotating our system, we can also trade radial kinetic energy and
Coulomb potential for different orbital kinetic energy whilst keeping the total energy constant. This
means that the degeneracy at level of the state at level n is

Total Degeneracy =

n−1∑
ℓ=0

(2ℓ+ 1) = n2 . (5.26)

5.0.1 The Wavefunctions

The recursion relation (5.16) allows us to easily construct the corresponding wavefunctions. For a
state |n, ℓ,m⟩,

ψn,ℓ,m(r, θ, ϕ) = rℓfn,ℓ(r)e
−r/aYℓ,m(θ, ϕ) , (5.27)

where a = na0 = 2n/β and fn,ℓ is a polynomial of degree n− ℓ− 1, defined by

fn,ℓ(r) =

n−ℓ−1∑
k=0

ckr
k , (5.28)

with
ck =

2

ak

k + ℓ− n

k + 2ℓ+ 1
ck−1 . (5.29)
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r

ψ1,0(r)

a0

r

ψ2,0(r)

a0

r

ψ3,0(r)

a0

Figure 1: The (un-normalised) s radial wavefunctions for n = 1, 2 and 3.

r

ψ3,0(r)

a0

x

ψ3,1(r)

a0

x

ψ3,2(r)

a0

Figure 2: The (un-normalised) radial wavefunctions for fixed n = 3 with angular momentum varying
from ℓ = 0 (s) to ℓ = 1 (p) to ℓ = 2 (d).

These are known as the generalised Laguerre polynomials. They are more conventionally written as
fn,ℓ := L2ℓ+1

n−ℓ−1(2r/na0).

The n = 1 ground state wavefunction necessarily has vanishing angular momentum. It is simply

ψ100(r) =

√
1

πa30
e−r/a0 , (5.30)

where the coefficient in front is chosen to normalise the wavefunction. We now see clearly that the
Bohr radius a0 set the size of the ground state of the hydrogen atom.

To get some sense for the higher wavefunctions, we’ve plotted the s radial wavefunctions for n = 1
to n = 3 in figure 1. Note that each successive higher energy state contains an additional ψ = 0 node.
In figure 2 we’ve fixed the energy level to n = 3 and plotted successive higher angular momentum
modes. This time we lose a node each time that ℓ increases.

For any wavefunction in the nth energy level, the peak can be approximated by writing ψ(r) ≈
rn−1e−r/na0 , which corresponds to a probability distribution P (r) ≈ r2(n−1)e−2r/na0 . This has a
maximum when P ′(r) = 0, or

2(n− 1)

r
≈ 2

na0
=⇒ r ≈ n(n− 1)a0 . (5.31)

We see that the spatial extent of the higher energy states grows roughly as n2.
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