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1 Interaction of Molecules with Radiation A3 High Resolution Molecular Spectroscopy

1 Interaction of Molecules with Radiation

The essence of spectroscopy is that a photon of frequency v is absorbed or emitted when there is a
transition between two energy levels separated by AFE, where AE = hv. In this way, we can probe
the energy levels present by measuring the frequencies of the photons which are emitted or absorbed.

1.1 Types of Interactions

There are three types of interactions between matter and radiation.! In all three cases, the energy of
the photon hr matches the energy difference between the two levels AFE.

—e— —e—
2hv
S A | s s
4.7
stimulated stimulated spontaneous
absorption emission emission

(i) Stimulated absorption: a photon is absorbed, and the system moves from a lower to an upper
level.

Examples: IR/UV-Vis spectroscopy.

(ii) Stimulated emission: one photon triggers the generation of another, and the system moves from
an upper to a lower level.

Example: LASER.

(iii) Spontaneous emission: not triggered by a photon, and the system moves from an upper to a
lower level.

Examples: flame test, emission lamp, LED.

These three processes all involve the molecule (or atom) moving from one energy level to another,
and thus leading to a change in the populations of the levels. Therefore, like other processes, we can
sensibly talk about the rate at which these populations change. The rates of these three processes
are influenced by different factors and so, depending on the circumstances, one may dominate over
the other.

1.1.1 The Einstein Coefficients

Consider transitions involving the two levels |i) and |j). Let their populations be n; and nj,
respectively, and let the energy separation between the levels be AE = hv. For the moment we
will assume that both levels are non-degenerate, i.e. g; = g; = 1.

The rate of stimulated absorption can be expressed in terms of the resulting change in the
population of the lower level:

dn,
stimulated absorption: d:i = —B;jp(v)n;, (1.1)

1The stimulated absorption and emission can be derived from time-dependent perturbation theory. See C7: Further
Quantum Mechanics or Mathematical Tripos Part II Principles of Quantum Mechanics. The spontaneous emission is
more subtle — it needs the quantum theory of fields, which is a far deeper subject.
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nj ———— )

n; —— |4)
Figure 1.1: A two level system.

where B;; is the Einstein B coefficient for the transition and p(v) is the energy density of the radiation
at frequency v. The Einstein B coeflicient is analogous to the second order rate constant for a chemical
reaction, and it has the units m® J=! s72 = m kg~ '. p(v) dv is the energy of photons between v and
v + dv per unit volume, which can be thought of as the “concentration of photons”, having units of
Jm~3, so p(v) itself has units J s m~3.
Similarly, the rate of stimulated emission can be expressed in terms of the resulting change in the
upper level:
. - dnj
stimulated emission: —= = —Bj;p(v)n; . (1.2)

dt

It can be shown that the Einstein coefficients for these two processes are related by ¢;B;; = g; B,
where g; and g; are the degeneracies of the levels i and j, respectively. For the present discussion
we assumed both levels to be non-degenerate, so B;; = Bj;. The values of these coeflicients are then
given by

83

Bij = ————— | Ry 1.3
) (47T€0)3h2 | z]| ’ ( )

where ¢ is the permittivity of free space. R;; is the transition moment given by
Ry = (il = [ dr i, (1.4)

in which 1; and 1; are the wavefunctions of the two states, and i is the electric dipole moment
opemtm".2

Often we can say whether a transition moment is zero or not just by directly inspecting the
symmetry of the integrand — this results in the selection rules which you have already come across.
A forbidden transition has R;; = 0, so there is no absorption or emission of radiation, and an allowed
transition has R;; # 0 so transitions can take place.

The rate of spontaneous emission can be written as

dny

dt

spontaneous emission: = —Aynj, (1.5)
where A;; is the Einstein A coefficient. The radiation density is not involved in this expression as
no photon is needed to trigger spontaneous emission. Hence, A;; is analogous to a first order rate
constant, with unit s=1.

1.1.2 Why Spontaneous Emission

A question is: why does spontaneous emission occur at all? This is a tough question. We need
quantum field theory to fully answer it. Instead, we will do a thought experiment to imagine what
will happen without it.

2 All these results stated above come from time-dependent perturbation theory. See C7: Further Quantum Mechanics
or Principles of Quantum Mechanics for details.
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Consider a body of interest surrounded by a large black body radiator being held at constant
temperature Ty, but they are separated by vacuum.

black body come to equilibrium
a‘t TSH!'I'

TSUI’!‘

Figure 1.2: A body of interest held in vacuum, surrounded by a black body of temperature Tgy;;.

From our experience, we know that the body will eventually come to the same temperature as the
black body i.e. the two objects will come to equilibrium. It will do this by gaining or losing energy
by absorbing or emitting photons.

The temperature of the object is reflected in the way in which particles are distributed amongst the
energy levels, as predicted by the Boltzmann distribution. The higher the temperature, the greater
the population of the upper levels.

As a simplification, suppose our object has only two energy levels, 7 and j, and suppose there are
only stimulated absorption and stimulated emission. The rate of change of the population of level i
is

dni
g = ZBurwni+ Bjip(v)n; . (1.6)
—_——— ———
stimulated stimulated
absorption emission

At equilibrium, the population will cease to change, so the derivative will be zero. Thus
=Bijp(¥)nieq + Bjip(v)njeq = 0. (1.7)

But we know that B;; = Bj;, so it follows that, at equilibrium, n; oq = nj,eq. This is impossible as it
predicts the object to have infinite temperature by Boltzmann distribution.

What this thought experiment shows is that, on its own, stimulated emission and stimulated
absorption cannot bring bodies to equilibrium with the surrounding. This is why we need spontaneous
emission: this process leads to a reduction in the population of the upper level. We can also see that,
as the energy separation between the two levels become greater, the population of the upper level
must go down as predicted by Boltzmann distribution. Thus, the rate of spontaneous emission must
also increase as the energy separation between levels increases. We will see this in the next section.

1.1.3 Relationship between the Einstein Coefficients

If spontaneous emission is taken into account, the total rate of change of the population of the lower

level in our two-level system is
dni
dt

= —Bijp(v)ni + Bjip(v)n; + Aijn; . (1.8)
We can use this expression to find the relationship between the Einstein A and B coeflicients.

For a black body at temperature T', the radiation density is given by the Planck law

8mhi3 1
dv = dv . 1.
plv) dv 3 exp(hv/kpgT) —1 g (1.9)
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A derivation of this is shown in the appendix section A. The Boltzmann distribution predicts that,
at equilibrium, the populations of the levels ¢ and j will be

N € N €;
Njeq = o exp <— kBT) and  Njeq = " exp (— kBJT> , (1.10)
where ¢; and ¢; are the energies of the two levels. The ratio of populations is therefore
njyeq Ae
— = - ) 1.11
Mo ( kBT> (L1)

where Ae = €; — ¢; is the energy gap.

At equilibrium the time derivative of population (1.8) is zero. If we substitute Planck’s law and
population ratio into the equation and recognize Ae = hv, then we find

B 8rhv?

Aji
J C3

Bj; . (1.12)

Two remarks:

(i) the Einstein A and B coefficients are related; and

(ii) the rate of spontaneous emission increases dramatically with frequency ~ v/3.

Under typical conditions, spontaneous emission in the microwave is slower than competing
processes, whereas in UV /Vis spontaneous emission is dominant.

1.2 Linewidths

Although we refer to peaks as “lines” in spectra, in fact the absorptions we see are not at precisely
defined frequencies; rather, there is always a spread of frequencies over which the absorption is seen.
If we plot the absorbance against frequency, we typically observe a bell-shaped curve. It is usual to
specify the width of this line by its width at half mazximum, Av.

——————————————————————— peak height

———————————————————————— half height

| )
! !
! !
| |
| |
T T

intensity
——
Av

Figure 1.3: The linewidth is defined as the width for which a peak has a height equal to a half of its
maximum.

Sometimes the linewidth is limited by the spectrometer being used, but it is often found that the
improvements in the spectrometer eventually lead to no further reduction in the linewidth. It is then
assumed that the linewidth seen is a fundamental property of the sample itself.

There are a number of different effects which are responsible for the finite width of lines in the
spectrum. Understanding these is important as, if the source of the linewidth is identified, it may
be possible to alter the experimental conditions so as to reduce the linewidth and hence improve the
resolution.
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The first two types of line broadening we will consider are both associated with the fact that
the molecules spend a finite amount of time in any particular energy level. Molecules are constantly
moving from one energy level to another, which may occur because of the collisions between molecules,
or due to the molecules emitting a photon and so dropping down to a lower level. Whatever mechanism
by which the molecule moves from one energy level to another, we can characterise the process by
saying that a particular energy level has a certain lifetime 7. In quantum mechanics, a finite lifetime
implies an uncertainty in the energy of states — this is the generalised principle of uncertainty, which
states that

TAE =~ h. (1.13)

We see that a shorter-lived state has greater uncertainty in its energy than a longer lived state.
This uncertainty in the energy translates to a non-zero linewidth, as a range of frequencies can now
cause the transition. Equation (1.13) can be re-expressed in frequency as

Av=_L (1.14)

- )
2T

where Av is the uncertainty in the frequency of the line, which we identified as the linewidth.

AE AFE

shorter 7 T

1.2.1 Natural Line Broadening

If a molecule or atom is in anything other than the ground state, it is possible for spontaneous
emission to take place, the rate of which is given by (1.5) in terms of the Einstein A coefficient. As
a result of this, the excited state has a finite lifetime, leading to line broadening.

We see from equation (1.5) that spontaneous emission is a first-order process so, just as in chemical
kinetics, we can use the concept of a half-life to describe its rate. In chemical kinetics the half-life is
In 2/k14 but it is more usual in spectroscopy to define a natural lifetime, 7., according to

1
= 1.15
=g (1.15)
The linewidth due to this process is hence
A s
Ay =", 1.1
V=g (1.16)

This effect is referred to as natural line broadening because it arises from the fundamental lifetime
of the state imposed by the spontaneous emission rate. This is always unavoidable.

Here are some typical values to help you get some sense of it:

i) Electronic excited state: 7, ~ 10 ns gives Av =5 x 10% cm~! or 16 MHz.
(i) g

(ii) Rotational excited state: rate is much slower, and typically get Av ~ 10~* Hz.
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1.2.2 Pressure (Collision) Broadening

Collisions between molecules can result in a change of energy level (translational motion readily
accommodates any deficit or excess of energy) and so the lifetime of a state is determined by the rate
of collisions. If we assume that each collision leads to a change in energy level, then the lifetime, 7, is
the mean time between collisions. The resulting line broadening can then be estimated using (1.14).

The mean time between collisions can be estimated using gas kinetic theory: the collision rate
depends on the size of the molecules (the collision cross-section o), the temperature and the pressure.
As the pressure goes up, the rate of collision increases and so the mean time between collisions (which
we identified as the lifetime) decreases. The linewidth is therefore proportional to the pressure, and
hence the name of pressure broadening. With a full treatment of kinetic theory (derivation in appendix
section B), we can obtain the expression

Avpress = Kp, (1.17)

where 5
K=-—_22 (1.18)

VEgTmem

Pressure broadening tends to be the dominant contribution to the linewidth in microwave
spectroscopy and an important contribution for lines in the infra-red.

1.2.3 Doppler Broadening

Our next source of broadening is unrelated to the lifetime of the states. It originates from the Doppler
effect.

The Doppler shift is familiar to us as the shift in frequency of a siren as a fire engine passes by.
Molecules are moving in random directions relative to the radiation which is passing through the
sample and at a range of speeds so the effect is to generate a spread of frequencies which are absorbed
or emitted by the molecules: this is the origin of the Doppler induced linewidth. Of course, the speed
with which molecules move is only a tiny fraction of the speed of light, so the frequency shifts are
very small compared to the absolute frequency, but nevertheless can be a significant contribution to

the linewidth.
\ e

-
o

L.

Gas kinetic theory can be used to derive an expression for the Doppler broadening linewidth. If
a molecule is moving at a non-relativistic speed s towards a source of radiation of frequency v, the
apparent frequency is shifted to v,pp, and if the molecule is moving away from the source of apparent
frequency is vyec, Where

Vapp = (1 + Z) Yo, Vo = (1 - Z) V. (1.19)

The Maxwell-Boltzmann distribution gives the distribution of speeds which in turn leads to a
distribution of frequencies received by the molecules. The required distribution is that in one
dimension as the Doppler shift depends on the speed along the direction in which the light is passing.
This distribution is

1
m 2 —77’7.52
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where f(s)ds is the fraction of molecules with speeds between s and s + ds along the propagation
direction of the light. This expression can be converted into a distribution of frequencies by rewriting

(1.19) as
s = iyﬁo(yobs — 1), (1.21)

where v,ps includes both the receding and approaching molecules. Hence, we get

m 3 mc? (Vobs — 10)?
f(l/obs) = <27rk‘BT> exp |:2]§B1—‘yg:| . (122)

This distribution is a Gaussian function with its maximum at v, = 1, and drops to a half at

2%pTIn2\*
Vijp = 1o+ 2 (“) . (1.23)
c m
Hence we get the expression of Doppler broadening
2wy (2kpTIn2) ?
AVdoppler = c ( - 7’/77, ) . (124)

The Doppler broadening is proportional to the frequency: this is in contrast to the pressure broadening
which is independent of frequency. Doppler broadening tends to become dominant for transitions in
the visible region. At room temperature, Doppler linewidth in IR is ~ 1073 cm™!, while in visible
region, this increases to ~ 0.1 cm™!.

When more than one source of line broadening is present, it is not correct to simply add the
different linewidths together to obtain an overall linewidth. Rather, the line shapes due to the
different kinds of line broadening must be convoluted with one another: we will often ignore this
complication. When one source of line broadening is dominant then the overall linewidth is, to a
good approximation, equal to that of the dominant source.

1.3 Notations and Conventions

Typically in spectroscopy we identify lines as being associated with transitions between energy levels
(or states), and we then label the transition according to the quantum numbers which characterise
the levels. Selection rules are also expressed in terms of the quantum numbers for the levels involved.

There are conventions about the way in which transitions are labelled and referred to and it is
important to adhere to these. Suppose that we are concerned with the transitions between two levels
A and B, and that A is the lower energy level.

(i) A transition between these levels can be signified by an arrow connecting them: the lower energy
level is always written on the right

e absorption: B < A

e emission: B — A
(ii) Transitions are labelled with the quantum numbers of the lower level.

(iii) The change in any quantum number is given as

(quantum number of upper level) — (quantum number of lower level) . (1.25)

(iv) Where a distinction is to be made, quantum numbers referring to the lower energy level are
denoted with a double prime e.g. J”; quantum numbers referring to the higher energy level are
denoted with a single prime e.g. J'.
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1.4

How to Think about Spectroscopy

When we record a spectrum, all we end up with is a set of lines whose frequencies and intensities we
can measure. What we cannot tell just by looking at the lines is which energy levels are involved in
the transition which leads to each line. To find out anything useful from the spectrum, our first step
has to be to assign the lines.

By assign we usually mean specifying the quantum numbers of the energy levels involved. There
may be more than one quantum number needed to specify the level, depending on the complexity of
the problem.

The way we go about assigning and interpreting a spectrum is as follows:

(i)

(i)

(iii)

(iv)

(v)

We start with a model for the energy levels. Typically, we use the energy levels which are
available from solving the Schrodinger equation for simple systems such as the rigid rotor or
the harmonic oscillator.

We then determine the selection rules which apply to these levels and thus predict the form of
the spectrum, taking into account that the intensities will be affected by the populations of the
energy levels as predicted by the Boltzmann distribution.

Having done this, we can compare the predicted spectrum with the real spectrum, and see if
they can be made to match up. Typically there will be parameters in our model which can be
adjusted, such as rotational constants and vibrational frequencies. The process of matching up
the experimental and predicted spectra is often aided by looking for patterns, such as repeated
spacings of lines.

If there is reasonable agreement between the two spectra, then the assignment process is
complete as we know the assignment for the predicted spectrum. The values of any parameters
needed can then be interpreted, for example to obtain bond lengths.

However, the match between the experimental and predicted spectra is rarely perfect. Usually
we need to refine our model used for the energy levels in order to obtain a better fit — for
example by introducing the effects of anharmonicity or centrifugal distortion.

The process of assigning and understanding a spectrum is thus one of refining the model in order
to obtain the best agreement. Recording the spectrum with higher precision or resolution will often
reveal further features which require more refinement of the model.
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2 Rotational Spectroscopy

As we have already seen before, there are a set of energy levels associated with the overall rotation of
molecules; transitions between these levels give rise to spectra which typically appear in the microwave
part of the spectrum. Such spectra are called microwave or pure rotational spectra.

In this section we will extend the discussion to include non-linear molecules and also look at some
additional effects, such as centrifugal distortion and the influence of electric fields.

2.1 Classification of Rotating Molecules

For the purposes of this discussion we consider a molecule to be a rigid body in which the atoms
occupy fixed positions relative to one another, and in which the nuclei have negligible size.

The moment of inertia of a molecule with respect to a particular axis is defined as
i
where m; is the mass of the atom 4 and r; is the perpendicular distance from the atom to the axis.

We can compute the moment of inertia about any axis, but there will be one such axis which has
the greatest moment of inertia: this axis is labeled ¢ and has moment of inertia I.. There is another
axis, labeled a, which has the minimum moment of inertia I,, and it can be shown that this axis is
perpendicular to the c-axis. A third axis, labeled b, is perpendicular to the other two. These three
axes are called the principal azes. The moments of inertia about these principal axes (the principal
moments of inertia) are related according to

Ic Z Ib 2 Ia . (22)

This is actually because the moment of inertia of a general object is defined as a symmetric
2-tensor, with components

Iij = /dV p(X)(LL'kLL'k(SZ'j — :L‘il'j) . (23)

A real symmetric 2-tensor (matrix) can always be diagonalised by an orthogonal matrix (a change
of basis), with eigenvalues we denote as I,, I, and I., and eigenvectors along the direction of the
corresponding principal axes.

Molecules can be classified according to the relationships of the magnitudes between the principal
moments of inertia.

2.1.1 Spherical Tops

Spherical tops have all three moments of inertia equal. For this to be the case, the molecule must have
a high symmetry. In terms of group theory, the three rotations (R, R,, R.) must transform together
as a three-dimensional (triply degenerate) irreducible representation. Those molecules have no dipole
moments, so they do not show pure rotational (microwave) spectra. Examples include CHy (Ty) and
SFs (Op).

2.1.2 Symmetric Top

Symmetric tops have two of the moments of inertia equal and the third different from the other two.
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I, I

|

|

|

|

|

|
prolate oblate

If the two moments of inertia which are equal are larger than the third moment of inertia, the
molecule is termed a prolate symmetric top:

I.=1,>1,. (2.4)
An example is CH3Cl.

If the two moments of inertia which are equal are smaller than the third moment of inertia, the
molecule is termed an oblate symmetric top:

I.>1,=1,. (2.5)
An example is BF3.

It is evident that symmetric tops must have a certain minimum of symmetry such that two of the
rotations e.g. (R, R,) transform together as a two-dimensional irreducible representation. It can
be shown that this requirement is satisfied by molecules possessing a single C), axis, with n > 2, or
an S, axis. This symmetry test is by far the easiest way of deciding whether or not a molecule is a
symmetric top.

2.1.3 Asymmetric Tops

In an asymmetric top, all three moments of inertia are different. Each of R,, R, and R, transforms
as one-dimensional irreducible representations.

2.1.4 Linear Molecules

If we consider the atoms to be point masses, then the moment of inertia about the internuclear
axis of a linear molecule is zero; the other two moments of inertia, about axes perpendicular to the
internuclear axis, are equal. Thus, a linear molecule is a special case of a prolate symmetric top with
I, =0.

10
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2.2 Rotational Energy Levels

The general Hamiltonian for rotation can be written as

L2 R
H2<Ia+lb+lc>' (2.6)

The expression of the energy levels vary as the relation between I,, I, and I, changes in different
tops.

2.2.1 Symmetric Tops
Prolate Tops

A prolate symmetric top has I. = I, > I, so we can factorise the Hamiltonian as

(I3 /1 1
[P Y] @)

Then the energy levels of a prolate symmetric top can be easily obtained as
Ejx=BJ(J+1)+(A-B)K?, (2.8)

where the quantum numbers have ranges J =0,1,2,... and K = —J,—J+1,...,J. These levels are
sometimes denoted Jx. A and B are the rotational constants associated with the moments of inertia
about the a- and b-axes, respectively. Their values are given in J by

h? h?
A= B=—. 2.
21, 21, (2.9)
Alternatively we can express the energies and rotational constants in wavenumbers:
Ejx=BJ(J+1)+(A-B)K?, (2.10)
where the rotational constants in wavenumbers are
~ h ~ h
A= B = 2.11
8n2el, 8m2ely ( )

As we have seen before, the quantum number J gives the magnitude of total angular momentum
v/ J(J +1)h. The quantum number K gives the component of the angular momentum along the
unique a-axis, which is Kh.

The diagram shows the direction of angular momentum (which is also the rotation axis) of a
symmetric top at J =2 and K =0, 1, 2 states.

11
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(a) prolate (b) oblate
E/cm™! E/cm™! J J
30 1 300 | 5 5 J
J 5
5
25 A 250 f
3
2
20 200 4 4
4
15 ¢ J 150 ¢
3 3
10 J 4 100 | 3
5 3
2 2
5t 4 1 50 f 2 )
3
2 1 1
ol ——o! 0t 0
K=0 K =41 K =42 K=0 K==+1 K=+2

Figure 2.1: The energy levels of (a) CH3l with A =511 cm™', B=0.250 cm~" and (b) NH3 with
C =6.449 cm~!, B = 10.001 cm~!. Each sequence of energy level with the same value of K is known
as a K stack.

Oblate Top

For an oblate top, we have I. > I, = I,, so we factorise the Hamiltonian as

1 [J? 11
H=>-|=— 2= — =], 2.12
152 (7)) 212

The rotational energy levels are therefore

Ejx =BJ(J+1)+(C - B)K?, (2.13)
where as before, J = 0,1,... is the quantum number for the total angular momentum and K =
—J, ..., J is the quantum number for the component of the angular momentum along the unique axis

(c-axis). C' is the rotational constant associated with the c-axis

h2
= . 2.14
As before, we can also express everything in terms of wavenumbers as well
Ejx =BJ(J+1)+(C - B)K?, (2.15)
where
G- (2.16)
- 8wl '

12
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2.2.2 Linear Molecules

As we noted before, linear molecules are a special case of a prolate symmetric top with I, < I, I..
The corresponding rotational constant, A, is thus essentially infinite and so we see from the prolate
top energy (2.10) that only those levels with K = 0 need be considered as for higher values of K the
energy would be too high. Recall that the quantum number K gives the angular momentum about
the a-axis, so K = 0 means that there is no rotation about this axis (which is the internuclear axis).

The energy levels of a linear molecule are thus
E;y=BJ(J+1), (2.17)

where J = 0,1,2,.... This is what we are familiar with from Part IB Introduction to Quantum
Mechanics.

2.2.3 Spherical Tops

The spherical top has I, = I, = I, so the Hamiltonian reduces very nicely into

J2
H=—, 2.18
where I is the moment of inertial about any axis through the centre of mass of the molecule. This
results in the same form of energy expression as linear molecules.

2.2.4 Asymmetric Tops

The energy levels of asymmetric tops do not conform to any simple analytical expression such as
those above for linear molecules or symmetric tops. This does not mean that their energy levels
cannot be calculated, but it is a tedious process involving matrix diagonalisation for each value
of J. However, some molecules can be described as “near prolate top” or “near oblate tops” and
approximate solutions obtained by expanding the asymmetric wavefunction in a basis formed from
symmetric tops functions. However, it is now more common to compute them exactly as required
and a range of programs exist for this purpose.

2.3 Selection Rules and Spectra

In order to predict which transitions are allowed, we need to know the selection rules which apply
to these energy levels. Determining the form of these rules involves the use of advanced concepts in
quantum mechanics; we will therefore simply state the rules.

The gross selection rule is that, for there to be transitions between the rotational levels, the
molecule must possess a permanent dipole moment. We can rationalize this by noting that it is the
electric vector of the electromagnetic wave which interacts with the molecule. For such an interaction
to change the rotational energy, an electric dipole is required as this unsymmetrical charge distribution
can interact with the field as the molecule rotates.

Assuming that there is a permanent dipole, the additional selection rules are
AJ=41 AK=0. (2.19)
The AK = 0 selection rule can be understood by noting that the dipole moment (if there is one)

must lie along the unique (symmetry) axis; rotation about this axis does not lead to a change in the

13
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orientation of the dipole. AJ = +1 because a photon carries a unit of angular momentum. For the
total angular momentum to be conserved, the angular momentum of the molecule must also change
by one unit.

2.3.1 Spectra of Symmetric Tops

Knowing the selection rule, all we need to do is find the separation of two energy levels between which
transitions are allowed to predict the spectrum.

For a prolate symmetric top, the energies of the lower and upper states are
Ejn g =BJ"(J' +1)+ (A - B)K? (2.20)
Epx=DBJ(J +1)+(A-B)K?, (2.21)
where the K is the same because of the AK = 0 selection rule. The energy difference between these
levels is
D(JN) = EL/]’,K - E‘I]I//}K
=BJ'(J'+1)=BJ"(J"+1). (2.22)

The allowed transitions have AJ = J' — J” = +1. For a transition in absorption, AJ = +1,
giving
o(J"y=2B(J" +1). (2.23)
The transition peaks hence occur at 2B , 4B , 6B , SO the spacings are constantly 2B. This is identical
to the pattern seen for linear molecules: the similarity comes about because AK = 0 for the symmetric
top and K is restricted to zero for linear molecules.

However, since AK = 0, we can only determine B and I, from the spectra. No information about
A or I, can be obtained.

2.3.2 Spectra of Linear Molecules

The case of linear molecules has already been covered in Part IB. In fact, as we have already seen,
the spectra are of the same form as for a symmetric top.

Shown below is the pure rotational spectrum of 'H3®Cl. The regular spacing of the lines is evident;
however, closer inspection reveals that the spacing of the lines are actually slowly decreasing — this
is due to centrifugal distortion, which we will consider in detail in later sections.

2.3.3 Isotopic Substitution

From the spectrum of a symmetric top we can only determine one moment of inertia, so for anything
more complex than a diatomic, this is insufficient information to determine all the bond lengths.
The spectra of isotopic species give additional moments of inertia which, if it is assumed that the
(equilibrium) bond lengths do not change on isotopic substitution, may enable us to find bond lengths.

For example, in one of the practical experiments, you will record the spectra of HCN and DCN.
The resulting two moments of inertia are sufficient to determine both the H — C and C — N bond
lengths.

14
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Figure 2.2: Rotational spectroscopy of 'H3°Cl. Figure adapted from official course notes by Prof.
Keeler. Spectrum taken by Prof. Wothers.

2.4 Intensities

The intensity of a transition depends on the details of the three processes by which radiation interacts
with the sample. In the IB Molecular Spectroscopy course we assumed that the intensity of an allowed
transition was simply proportional to the population of the lower energy level. This is often a good
approximation, but in the case of rotational spectroscopy there are further factors which need to be
considered in order to understand fully the intensities of the lines.

(i) as the molecule rotates faster at higher J values, the magnitude of the transition dipole moment
|R;;| also increases, leading to higher intensity.

(ii) the frequency of the transition affects the net absorption rate (the absorption minus the
emission).

A derivation is included in section C for reference. The result is that the intensity of transition
from level J vary as

Ioc (J+ 112 ex ( 6">7 2.24
7+ e~ (224)

where € is the energy of the J™ level, and v is the frequency of transition arising from this level
(vy = 2B(J 4+ 1)). This result is rather a different dependence than one finds by assuming that the
intensity is proportional only to the population of the lower energy level.

2.5 Centrifugal Distortion

So far we have assumed that the rotating molecule is a rigid body, i.e. the bond lengths and angles
are unaffected by the rotation of the molecule. Generally, this is a good approximation but in the
microwave region measurements can be made with such accuracy that even very small effects due to
the lack of rigidity of the molecule can be detected.

Our expectation is that, as the molecule rotates faster and faster (as J increases), the forces on
the atoms will cause bonds to stretch and possibly bond angles to change. Such effects are called
centrifugal distortions. The result of these is that the moments of inertia become dependent on J.
In practice, though, it is easier to assume that the moments of inertia remain the same but that the
energy levels are slightly deviated from the rigid rotor values. Hence, get an energy expression in a
power series expansion.
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2.5.1 Symmetric Tops

In the presence of centrifugal distortion, the energy levels of a prolate symmetric top can be written
as
Ejx=BJ(J+1)+(A-B)K?> - D;J*(J+1)? = Dy J(J + 1)K? — DgK*, (2.25)

where Dy, Dy and Dk are the (positive) centrifugal distortion constants which have the same
dimensions as the rotational constants. This is a two dimensional series expansion in powers of
J(J +1) and K?2. Since the effect of centrifugal distortion is usually small, we only consider the first
order effect and truncate this series at the second order. The effect of these terms is to bring the
levels closer together than they are in the rigid rotor case.

As an example, for CH3l, the measured values are Dy =209 x 1077 em™, Dy = 3.29 x
1076 cm™!, Dg =8.76 x 1075 em™, A =5.1739 cm™ ! and B = 0.25022 cm ™. As you can see, the
centrlfugal dlstortlon parameters are orders of magnitude smaller than the rotational constants, so

centrifugal distortions in rotational spectra are really small effects.

The selection rules remain as AJ = £1 and AK = 0, so the term in DK does not affect the
positions of the lines in the spectrum. However, the terms in Dk and D do affect the positions of
the lines as they depend on J and K. In contrast to the rigid rotor case, transitions with different
values of K have different frequencies.

By simple algebra, the transition frequency is
W(J,K)=E1x — Ep g
=2(B— DyxK*)(J+1)—4D;(J +1)%. (2.26)

Consider, for example, the J = 1 to J = 2 transition which is in fact two transitions, one
with K = 0 and one for K = 41 (as the energy depends on K2 we do not need to distinguish
between positive and negative values of K). In the absence of centrifugal distortion, these transitions
are degenerate, but if centrifugal distortion is taken into account, both transitions move to lower
frequencies, with the K = 41 transition moving by more than the K = 0; the result is that two lines
become visible. In general, for a transition from level J to level J + 1, the presence of centrifugal
distortion results in the line splitting into (J + 1) closely-spaced components.

J:2+1 J: 3+ 2

no distortion J

with distortion [ |
0
|

+1 +2 +1
‘ﬂ—)ﬁ—ﬁ f K
4Dk 32Dy 16D Kk 6Dk 108D

3.4070 3.4072 3.4074 3. 4076 5. 1102 5.1104 5.1106 5.1108
-1

frequency / cm

Figure 2.3: The schematic spectrum showing the effect of centrifugal distortion on the J =2 + 1 and
J = 3 + 2 transitions of CH3F. For this molecule, D; = 1.96x 1076 ¢ ! Dyx =1.48x107° cm ™1
A =5.081 cm™! and B = 0.5815 cm~!. Note the break in the frequency scale — the change in line
positions is very small compared to the separation of the two transitions.

We can also calculate the separation between lines from the same J value but successive K values

(i.e. K and K +1): 5
VW, K)—v(J,K+1)=2D;(J+1)2K +1). (2.27)
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1 Ll | v 1

24220 24240 24260
frequency / MHz

Figure 2.4: The J = 8 < 7 transition of the symmetric top molecule StHsNCS. The scale runs from
0.8076 to 0.8087 cm~!. Intensity alternation is due to nuclear spin effects. Figure adapted from
Hollas.

It is clear that this separation increases with both K and J, as can be seen in the schematic spectrum
above.

2.5.2 Linear Molecules

The effect of centrifugal distortion on the energy levels of a linear molecule is considerably simpler
than for a symmetric top (because it is a one dimensional power series)

E;=DBJ(J+1) = DJ*(J +1)2, (2.28)
where D is the positive centrifugal distortion constant.

Again, the effect of D is to make levels closer together, and the effect increases with J. The
frequency of a transition from J”’ = J to J' = J+ 1 is

7y =Ej—E;
=2B(J +1) —4D(J +1)3. (2.29)

Hence, if we plot #(J)/(J + 1) against (J 4 1), we can obtain a straight line with slope —4D and
y-intercept 2B5.

For a diatomic, it is easy to imagine how the “centrifugal force” due to rotation stretches the bond
thus leading to an increase in the moment of inertia. As commented on above, rather than allowing
the rotational constant to be a function of J, we simply add an extra term in D. The value of D is
clearly related to the ease with which the bond can be stretched, which in turn is related to the force
constant of the bond and its harmonic frequency, @. It can be shown that

D="r. (2.30)

2.6 The Stark Effect

Molecular and atomic energy levels may be modified when an electric or a magnetic field is applied;
as a result the observed spectra will change. These changes may be of help in assigning spectra or
may give access to molecular parameters.
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In this section we are going to consider the effect of an electric field on the spectrum of a symmetric
top molecule possessing a dipole moment. We shall see that the application of the field results in a
splitting of the energy levels, called the Stark effect. From the splitting it is possible to determine a
value for the dipole moment.

2.6.1 Dipole Moment in an Electric Field

In classical physics, an electric dipole p interacts with electric field E with energy
—u-E. (2.31)
The value of this dot product depends on the angle # between them and their magnitudes:
—pEgeq cos b . (2.32)

We use the subscript to avoid confusion between the electric field and energy.

2.6.2 Energy Levels of Symmetric Top in Electric Field

Consider a prolate symmetric top, such as CHsF, in which the molecular dipole lies along the unique
axis a (the principal C5 axis).

(b) Efelq

3 1
v

Recall that a molecule is rotating about its angular momentum vector J, and that in general, this
vector is pointing at some angle to the a-axis. The dipole is thus precessing on a cone at this angle to
the direction of J, as shown in figure (a) below. As a result of this precession, the dipole is averaged
so that only its projection onto J survives; the components perpendicular to J are averaged to zero.
Recall the magnitude of the J vector is fiy/J(J + 1), and its projection on the a-axis is K, so

K

cos = ————. (2.33)
VI +1)
Hence, the averaged dipole moment of the rotating molecule is
o K ~
p=pcosal = e | (2.34)
J(J+1)

Now suppose that an electric field is applied and that the molecule is oriented such that J makes
an angle 3 to the electric field direction, as shown in (b). As we have already discussed, the energy
of interaction is — i Egelq cos 5.

The vector J cannot point in any direction. Since the applied electric field created a distinct
(preferred) direction, the angular momentum must be oriented such that its projection onto the
direction of the electric field is M; where, as usual, M; takes values in integer steps from +J to —J.

Hence, we have

B M,
cos B = 7J(J+ T (2.35)
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Therefore, the energy of interaction is

Estark(J, K, Mj) = —[iEgc1q cos
_ HEgea KM
J(J+1)

(2.36)

The energy shift caused by the electric field is thus proportional to the field and the dipole moment,
and also depends on the three quantum numbers J, K and M.

2.6.3 Effect on the Spectrum

From (2.36), we can see immediately that only energy levels with K # 0 will be affected by an electric
field. Let us consider, as an example, the transition between J =1, K =+1and J =2, K =+1. In
the presence of an electric field the J = 1 level will split into three states, with M; = —1,0,1. The
energy shifts will be

Ffe FEfie
EStark(la ]-7 _1) = % EStark(]-v ]-7 O) =0 EStark(]-v ]-7 +1) = _% . (237)
The J = 2 level will split into five states with My from —2 to +2; the energy shifts are
Efelc E
Bsiark(2,1,42) = F5 B2, 1,£1) = $50 Bgan(2,1,0) = 0. (2.38)

The splitting of the energy levels is shown in the diagram below (to avoid clutter, the size of the
electric field is given the symbol E).

Assuming that the electric field is parallel to the electric vector of the radiation (experimentally
the most convenient arrangement), the selection rule for M; is AM; = 0, so there are three allowed
transitions. The single line, observed in the absence of the field, splits symmetrically into three and,
from the shifts in the energy levels, it can be seen that the splitting of the lines in the spectrum is
1FEqe1q/3h in frequency.

B —2
- — —1
J=2 \E:\ 0
R 5 THE/6
|
1
|
wE/3h
) 1 e
T Fan e
RN ) I“E/Q M, -1 0 +1
_—
M frequency

In general, a transition from a level with quantum numbers J and K will split into (2J 4 1) lines;
the splitting (in frequency units) between adjacent lines is
2uEgaa K
hJ(J+1)(J +2)°

(2.39)

There are two main applications of the Stark effect.

19



2 Rotational Spectroscopy A3 High Resolution Molecular Spectroscopy

(i) Assignment of spectra: assignment means identifying the quantum numbers of the energy levels
involved in each transition. By observing the Stark splittings, information on the value of J
can be found.

(ii) Measurement of dipole moments: if the magnitude of the electric field is known, then the
measured Stark splittings can be used to derive a value for the dipole moment.

2.6.4 Stark Effects for Linear Molecules

As mentioned above, linear molecules have no rotation about the internuclear axis, and so effectively
K =0 at all times. Hence the energy levels will not be split by the application of an electric field to
the first order — there is thus no first order Stark effect. However, linear molecules do show a second
order Stark effect, which is where the splitting of the energy levels goes as the square of the electric
field strength.® The effect described for the symmetric top is first order, as it is linear in the field
strength.

3See, for example, my notes on C7: Further Quantum Mechanics or Principles of Quantum Mechanics.
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3 Vibrational Spectroscopy

Transitions between the set of energy levels associated with molecular vibrations can give rise to
absorptions in the infra-red part of the spectrum. Changes in vibrational energy are accompanied by
simultaneous changes in rotational energy; as rotational energies are much smaller than vibrational
energies, these changes in rotational energy lead to fine structure on the vibrational transitions.

An analysis of these vibrational transitions and their attendant rotational fine structure gives
access to molecular parameters such as vibrational frequencies and rotational constants.

3.1
(i)

(vi)

3.2

Normal Modes and Symmetry: Revision of Part 1B

A normal mode is a motion in which: (1) the centre of mass remains fixed; (2) the atoms all
move in phase at the same frequency; (3) the vibrational potential is harmonic.

A non-linear molecule with NV atoms has 3N —6 normal modes, and a linear molecule has 3N —5
normal modes.

In the harmonic approximation, each normal mode has a set of energy levels
. 1\ _
Evi = v+ 5 Wi (31)

where v; = 0,1,2,..., and @&; is the vibrational wavenumber of the i*" normal mode.
Each normal mode transforms as a particular irreducible representation. For a given normal
mode i that transforms as T'()

(a) The wavefunction of the ground vibrational state (v; = 0) transforms as the totally
symmetric IR, T'tot- sym-

(b) The first excited state, v; = 1, has the same IR as the normal mode T'(),
(¢) For non-degenerate normal modes the even vibrational states (v; = 0,2,4,...) all transform

as [0t sym- “while the odd vibrational states (v; = 1,3,5,...) all transform as e,

A transition is allowed in the infra-red if the transition dipole moment between the two states
v, and v; is non-zero. This will only be so if the following direct product contains the totally
symmetric IR:

IY% @TH @Y%, (3.2)

where I'* is the IR of the dipole moment operator, 4. I'* transforms as the Cartesian functions
Z, Y or z.

A transition will give rise to Raman scattering if, when multiplied out, the following direct
product contains the totally symmetric IR:

% @I* eI, (3.3)
where I'“ is the IR of the polarisability operator, &. I'* transforms as the Cartesian functions

ZTilyj.

Symmetry of the Vibrational Wavefunction

As seen in IB Introduction to Quantum Mechanics, for a diatomic the harmonic oscillator
wavefunctions depend only on the displacement from equilibrium position z = r — r..
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In more complex molecules, a normal mode involves several atoms changing their positions in a
concerted way. For a given normal mode 4 this motion can be described by a normal coordinate Q;,
which is a combination of the displacements of the individual atoms.*

For example, for the symmetric stretch of COs the normal coordinate is

stm.str. = %(QOI - q02) . (34)

The ¢ are mass-weighted coordinates defined as ¢; = m} / 2z¢, where z; is the displacement of atom

i from equilibrium position. In this mode, the oxygen atoms move equally and oppositely along the
long axis, and the carbon atom does not move.

The normal coordinate for the antisymmetric stretch is more complex

1 1/2 1/2 1/2
str. = —mm—m————— | M —2m +m ) 3.5
Qasym str \/m ( C qo1 O qc C qo2 ( )
In this normal coordinate the two oxygen atoms move in the same direction and the carbon moves in
the opposite direction. The amount each atom moves depends on its mass. For the bending mode,
displacements along z and y would also appear in the normal coordinate.

For a given normal mode the potential energy function, and hence the associated wavefunctions,
depends on just this one variable, Q;. It therefore follows that the harmonic oscillator wavefunctions
are also the wavefunctions for any normal mode provided we replace ¢ with the normal coordinate
for mode 7, Q;.

In Part IB Symmetry and Bonding we used direct products to work out the symmetry of the
vibrational wavefunctions for non-degenerate normal modes. Here, we will briefly recap the argument
and then go on to extend it to the more complex case of degenerate normal modes.

3.2.1 Non-degenerate Normal Modes

Suppose the ground state wavefunction of the non-degenerate i'" normal mode, with v; = 0, is
Py = exp(f%Q?). Suppose also normal mode, and hence the normal coordinate @);, transforms as
the one-dimensional irreducible representation I'(Y), then Q? transforms as

I\(l) ® I‘\(z) _ I\tot.sym. . (36)

Since Q? is invariant under any symmetry operation, exp(f%Q?) is invariant as well, so the ground
state wavefunction 1y transforms as the totally symmetric irreducible representation for any non-
degenerate mode.

The first excited state wavefunction is

1
Y1 = 2Q; exp <—2Q?) , (3.7)
so it transforms as
F(i) ® Ttot-sym. _ 1-\(71) ) (38)
The next wavefunction is )
b2 = (102 = o (502 (39

4The way to work out the normal coordinates using molecular Hamiltonian is introduced in C7: Further Quantum
Mechanics. An alternative method using Lagrangian mechanics is in IB Mathematical Methods.
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We have Q7 and the exponential term both transforming as totally symmetric irreducible repre-
sentation, and all the scalars are also totally symmetric. Hence, the doubly excited wavefunction
transforms as ['tot-sym-

Generally, the k*" vibrational wavefunction is

1
(@) = HQexn (-5 | (3.10)
where Hj, is the k" Hermite polynomial. It is easy to see that the odd orders of Q; transforms as
I'® | while the even orders of Q; transforms as T'**t5¥™- Since the odd-order Hermite polynomial only
contain odd powers, while the even order Hermite polynomials only contain even powers, we arrive
at this simple conclusion:

For non-degenerate normal modes the wavefunctions with even v transform as the totally
symmetric irreducible representation, and those with odd v have the same symmetry as the
normal mode.

3.2.2 Degenerate Normal Modes

The symmetries of the wavefunctions of degenerate normal modes are rather more complex to deal
with, and are discussed in appendix section D. Here we state the results.

Suppose that a particular degenerate normal mode transforms as I'(.

(i) the ground state wavefunction transforms as the totally symmetric irreducible representation
]_'\tot.sym..

(ii) the wavefunction of the first excited state, in which there is one quantum of excitation in one
of the degenerate normal modes, transforms as I'(¥),

Now consider the doubly excited states. Consider the doubly degenerate E mode of NHs, point
group Cs,. The direct product of F is

E®QE=(2,-1,00®(2,-1,0) = (4,1,0) = E® Ay B A, . (3.11)

Note the direct product of two two-dimensional irreducible representations necessarily gives a four-
dimensional result.

We can get this result by reading the direct product tables. A selection of those is shown in
section 3.5. We can see that, in the table, F ® F = E @ [A2] & A;. The IR in the bracket arises
from the antisymmetrised square, and the others are from the symmetrised square. The details are
non-examinable, but it turns out that the symmetries of the vibrational wavefunctions are given only
by those IRs arising from the symmetrised square.® For the present case, these IRs are A; @ E.

Therefore, we have the rules

(iii) the irreducible representation spanned by the wavefunction of the doubly excited state is found
by computing the direct product I'® @ I' and then selecting the ones corresponding to the
symmetrised square.

(iv) the IRs of further excited states are computed by taking more direct products and selecting the
symmetrised ones.

As we have seen, the second excited state of the doubly-degenerate E mode in NHj3 transforms
as Ay @ E. The total dimensionality is 3 since this state has two quanta of excitation, which can be

5The detail is too much to fit in the margin, or even in the appendix, so it is in a separate course. See BS: Symmetry.
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arranged amongst the two degenerate normal modes in three different ways:
(1,1), (2,0), or (0,2). (3.12)

Because these vibrations form a degenerate pair, these arrangements all have the same energy. There
are only three possible arrangements of the quanta because there is only one way of assigning one
quantum of excitation to each normal mode.

Note that the direct product of an IR with itself always contains the totally symmetric IR, and
that this is part of the symmetrised square.

3.2.3 Overall Symmetry of the Vibrational Wavefunction

So far we have described how to find the symmetry of the vibrational wavefunctions associated with
a particular normal mode. However, multiple vibrational modes may be excited at the same time in
a molecule. The overall symmetry of the vibrational wavefunction of the molecule is easily calculated
by taking direct products.

Suppose that for the first normal mode the molecule is in the vibrational energy level with quantum
number v, and that the irreducible representation of the corresponding wavefunction is I'V?; likewise
for the second normal mode the quantum number is vs and the IR is I'V2, and so on for all the modes.
We commonly denote such states by

(Ula’UQan}a"'avn)y (313)

provided that we give an order of the vibrational modes. The irreducible representation of the overall
vibrational wavefunction is given by the direct product

1—‘overaull =I'"eI"?g...-I' (314)
This works because, by hypothesis, the normal modes are independent of one another.

Since the ground state wavefunction of any normal mode transforms as the totally symmetric
irreducible representation, it follows that for a molecule in which none of the vibrational modes are
excited — the overall ground state in which all the v; are zero the overall vibrational wavefunction
also transforms as the totally symmetric irreducible representation. Also, if just one normal mode
is excited to the v = 1 state, and all of the other normal modes have v = 0, it follows that the
overall vibrational wavefunction has the same irreducible representation as the normal mode which
is excited.

3.3 Determining Allowed Transitions using Symmetry

Again, assuming the molecule is a harmonic oscillator, the harmonic selection rules apply, which are
(i) The dipole moment must change as the normal coordinate changes about the equilibrium.
(i) Av; = +1.

Note the second condition means the quantum number of only one mode is allowed to change by
one. In the presence of anharmonicity, transitions with higher values of Av are weakly allowed, as
are transitions in which more than one mode changes quantum number.

The intensity of an infra-red transition between vibrational states i and j depends on the transition
moment

Ry = [ dr i, (3.15)
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Figure 3.1: Normal modes of water, Cs,.

This will be non-zero only if the integrand, or some part of it, transforms as the totally symmetric
irreducible representation. All we need to do is compute the direct product

I eT'* T 3.16
J

to see if it contains ['tot-sym,

3.3.1 Fundamental Transition

A fundamental transition is a process in which the molecule goes from the vibrational ground states
of all the normal modes to the first excited state of just one normal mode.

(0,0,...,0,...,0) = (0,0,..., 1 ,...,0). (3.17)

Vi
Since we know that the ground state transforms as I'*°*sY™ and the first excited state of mode i

transforms as I'(¥), the direct product we need to evaluate is
1@ @ r# @ rrotsym. | (3.18)

This will contain the totally symmetric irreducible representation if and only if T'¥) is the same as
(some part of) I'*. Hence the rule:

A fundamental transition is allowed when the symmetry of the activated normal mode
matches that of x, y or z.
If the fundamental is allowed, the normal mode is said to be infra-red active.

As an example, HoO (Cy,) has three normal modes: two of symmetry A; and one of symmetry
Bs. The fundamentals of A; modes are allowed as z transforms like A, and the fundamental of Bs
is also allowed as y transforms like Bs.

For the B; mode, the triple direct product which gives rise to the totally symmetric irreducible
representation is

By ® B @ A . (3.19)
N~ =~ ~—~
@) Ty Ttot.sym.

The y component of the dipole is involved, and so the transition dipole is said to be along y. We can
see that in the By mode, the dipole indeed changes along the y direction. We say such a transition
is perpendicular since the transition dipole is perpendicular to the principal axis (z axis).

For the A; modes, the z component of the dipole is involved, so the transition dipole is along z
and we describe it as parallel.

A useful distinction is made between transitions allowed by harmonic selection rule and other
transitions that are shown to be allowed by symmetry arguments — these are said to be symmetry
allowed. Transitions allowed by selection rules are necessarily symmetry allowed, but there will be
transitions not allowed by harmonic selection rules but are nevertheless symmetry allowed.
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3.3.2 Overtones

Transitions from the overall ground state to a state with v; = 2,3, ... for a particular normal mode
is called an overtone. For example, a first overtone is

(0,0,...,0,...,0) = (0,0,..., 2 ,...,0), (3.20)

and a second overtone is (0,0,...,0,...,0) — (0,0,...,3,...,0) and so on. These transitions
are forbidden by harmonic selection rule but are nevertheless frequently observed as a result of
anharmonicity.

Whether or not a particular overtone is allowed is again determined by evaluating the triple direct
product
[V @ H g protsym | (3.21)

For non-degenerate modes, simple conclusions can be made. The second excited state transforms
as the totally symmetric irreducible representation, so a first overtone will be allowed only if one of
the Cartesian functions (z, y or z) transforms as the totally symmetric irreducible representation.
The third excited state transforms as the same irreducible representation as the first excited state,
so it will be allowed if the fundamental is allowed.

3.3.3 Hot Bands

Hot bands are transitions from states other than the ground state. They are so-called because their
intensity increases as the sample is heated, accounting for the increasing population of the excited
vibrational states. We again use the triple direct product to determine whether they are allowed or
not.

3.3.4 Combination Lines

A combination line is a transition in which the quantum number of more than one normal mode
changes. This is allowed due to anharmonicity.

A Note of Caution

The symmetry argument is simple and powerful, but it needs some care to be applied. It only predicts
whether a transition is possible or not, but it does not predict how strong it will be.

For a transition to be strong, the lower level needs to be significantly occupied. In practice, this
means that for small molecules, only the transitions from the vibrational ground states are easily
observable. Moreover, it is possible for the transition moment integral to vanish even if the transition
is symmetry allowed (and here comes the harmonic selection rule Av = £1).

The vibrations of real molecules are not strictly harmonic and so the Av = +1 rule does not
apply rigidly. Under these circumstances a transition which is allowed in principle by symmetry
considerations, and also comes from a significantly populated lower level, may be visible. For example,
the first overtone is commonly seen although typically with about one tenth of the intensity of the
fundamental (on account of the lower transition moment).
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Figure 3.2: Some fundamentals (black), overtones (red), and combination lines (cyan) for HoO. All
of them are symmetry allowed.

3.3.5 Fermi Resonance

In some spectra an overtone or combination line may appear with an unexpectedly high intensity as
a result of Fermi resonance.

This is best explained with an example. The linear isocyanate anion [NCO]~ (Cu,) has four
normal modes with symmetries X%, IT and ¥*. The first ¥ mode is classified as C — O stretch and
has a frequency of 1240 cm~!. The II mode is a bending mode with frequency 630 cm™1.

Therefore, the (1,0, 0) state has symmetry X7 and the (0, 2, 0) state has symmetry IIQII = XTPA.
In the absence of any special effects, we expect the (1,0,0) state to be 1240 cm~! above the (0,0, 0)
ground state, and the (0,2, 0) state to be 2 x 630 = 1260 cm ™! above the ground state. We therefore
have two levels with similar energies and the same symmetry X+. We therefore expect the two states
to interact and mix. The result is they “push one another apart”, as shown in the diagram below.

stronger
e3](1,0,0),%%) + ¢4 ](0,2,0), 5F)

weak

|(0,2,0),=+)
0,2,0) ' N
0, Lo.0,5t) *
strong e1(1,0,0),2%) +¢2](0,2,0), %)
weaker
(0,0,0) ¥

The transition from (0,0,0) to (1,0, 0) is an allowed fundamental transition and is expected to be
strong. The transition from (0,0,0) to (0,2,0) 7 is symmetry allowed but as this transition is an
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overtone it is expected to be much weaker. The transition intensity is proportional to the square of
the transition moment, so we have

((1,0,0), =+ i

£1/(0,0,0), ) > ((0,2,0),5*

(0,0,0),57) (3.22)

Therefore, when the mixing of states happens, the intensities of transitions are also averaged out,
and as a result, the transition to the (mainly) (0,2,0) state becomes stronger.

(e3((1,0,0), 57| + ¢4 ((0,2,0),5F|) [i

R;; after mixing R;; without mixing

(0,0,0), %) > ((0,2,0), 5

(0,0,0),%%) . (3.23)

Experimentally, we then see two strong lines at 1201 em™! and 1282 cm™!.

This intensity borrowing with level repulsion is known as Fermi resonance.

3.4 Rotational Fine Structure

As for diatomics, the vibrational transitions for more complex molecules are accompanied by
simultaneous changes in rotational energy which lead to fine structure in the spectrum. Analysis
of the fine structure will give structural information in the form of rotational constants. In addition,
the form of the fine structure tells us something about the symmetry of the vibrational levels (and
hence the symmetry of the normal mode) involved; this information can be useful in assigning the
vibrational spectrum.

3.4.1 Linear Molecules

The allowed vibrational transitions in such molecules come in two broad types:

(i) ¥ — X transitions, which are classified as parallel transitions. The transition dipole is along z.
P and R branches are seen.

(ii) ¥ — II transitions, which are classified as perpendicular transitions. The transition dipole is
along (z,y). P, @, and R branches are seen.

Rotational Fine Structure for ¥ — ¥ Transitions

For these transitions the selection rules for the rotational energy levels are
AJ = —1: P branch, AJ =+1: R branch. (3.24)

These are identical to those for heteronuclear diatomics and so the resulting P, R branch structure
is the same. It can be analysed using the method of combination differences to give values for the
rotational constants By and Bj.

Rotational Fine Structure for X — II Transitions

For these transitions the selection rules for the rotational energy levels are
AJ=—-1: P branch, AJ=0: Q branch, AJ =+1: R branch. (3.25)
The frequencies of the lines in the ) branch can easily be shown to be

(J) = o+ J(J +1)(By — By) - (3.26)
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Figure 3.3: An experimental spectrum of the rotational structure associated with the fundamental of
a X1 mode of HCN, adapted from Banwell; the P and R branches are clearly visible.
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Figure 3.4: An experimental spectrum of the rotational structure associated with the fundamental T
bending mode of HCN, adapted from Banwell; the intense @) branch, made up of many overlapping
lines, is clearly visible in the centre of the band.

Recall that By and By are not very different, so the different lines in the @ branch are not as widely
separated as those in the P and R branches. Indeed, when recorded at moderate resolution it is not
uncommon for the @) branch lines not to be resolved from one another but simply to “pile up” and
give a strong feature in the centre of the band.

3.4.2 Symmetric Tops

As with linear molecules, the nature of the rotational fine structure depends on the symmetry of the
vibrational wavefunctions involved. Broadly, we again need to classify the vibrational transition as
perpendicular or parallel.

Throughout this section, we will use CH3l as an example. It is a prolate symmetric top with 3
Ay and 3 F normal modes, all of which are IR active. In C3,, z transforms as Ay, so the A; modes
are parallel, and (z,y) transforms as F, so the E modes are perpendicular.
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Figure 3.5: A schematic spectrum for a parallel transition of a prolate top, adapted from Bernath.
The P, @, and R branches with different K values partly overlap. Note that since K cannot be larger
than J, those lines from levels with J < K are missing from the branches, and that there is no @

branch for K = 0.

Parallel Transitions

For parallel transitions the selections rules for the rotational quantum numbers are
AJ=0,£41 AK =0 (3.27)

with the exception that for K = 0, AJ = 0 is not allowed. For each value of K we thus expect there
to be a P, @, and R branch (with the exception of K = 0 for which there is no @ branch).

Recall that the rotational energies for a prolate symmetric top are given by (ignoring centrifugal
distortion) ~ 3 o
Ejx=BJ(J+1)+(A-B)K?. (3.28)
It is clear that, as AK = 0, the term in (A — B) does not affect the positions of the lines and so the

P, @, and R branches have exactly the same frequency for any value of K. So, what we will see is a
simple PQ R-band structure, similar to that for a ¥ — II transition of a linear molecule.

The presence of centrifugal distortion terms alters this simple picture somewhat. The P, @), and
R branches now no longer fall on top of one another, but are very slightly displaced; as a result, the
band takes on a more complex appearance. However, at modest resolution the separate P, @), and R
branches are often not resolved from one another and so the band appears to have a “simple” PQR

structure.
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Figure 3.6: The spectrum of a parallel transition for CHsl, adapted from Banwell. The partly resolved
P and R branches are clearly visible, as is the intense ) branch.

Perpendicular Transition

For perpendicular transitions the selection rules for the rotational quantum numbers are
AJ=0,£1 AK =+1. (3.29)

For each value of K we thus expect there to be a P, @, and R branch corresponding to AK = +1
and one for AK = —1.

Assuming, for simplicity, that the rotational constants do not change with vibrational state, and
ignoring centrifugal distortion, the frequencies of the P, @, and R branch lines for a prolate top are

vp(J,K) =& —2Bs + (A - B)(1 £ 2K) (3.30)
vo(J, K) =& + (A — B)(1+2K) (3.31)
vR(J,K) = @0 +2B(J +1) + (A— B)(1 £ 2K). (3.32)

For each value of K there is a set of PQR branches centred at &g + (A — B)(1 + 2K) (corresponding
to AK = 41), and another set centred at &y + (A — B)(1 — 2K) (corresponding to AK = —1). Since
A—Bis usually comparable with the rotational constants, the displacement of these sets of PQR
branches is easily resolved.

There are so many of these PQR branches that the resulting spectrum is very complex indeed.
Typically, in moderate resolution, the only features which are visible are the strong () branches; the
P and R branch lines are so numerous that they merge into one another. It is clear from the above
that the separation of the Q branches is 2(A — B); provided that B is known (e.g. from a parallel
transition), it is thus possible to determine A. This is in contrast to the pure rotational spectrum
from which it is not possible to determine A.

3.4.3 Intensities

In the case of pure rotational transitions, it is necessary to take into account both stimulated
absorption and stimulated emission in order to explain the observed intensities of the lines. However,
in the case of rotational fine structure associated with a vibrational transition, the upper state
(which involves a vibrational excitation) is hardly populated, so we usually only need consider
stimulated absorption. The dominant factor determining the intensities of these rotational fine
structure transitions is thus the populations of the ground states.
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Figure 3.7: A schematic spectrum for a perpendicular transition of a prolate top, adapted from
Bernath. A perpendicular band is constructed from overlapping P, @), and R branches from different
K values and with AK = +1. Note how the lines in the P and R branches form a forest of
lines, leaving the narrow @) branches to stand out. (The notation used is that "Q g is the @ branch
corresponding to the transition with AK = +1 for a given K, and PQ  is the ) branch corresponding
to the transition with AK = —1.)
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Figure 3.8: The spectrum of a perpendicular transition for CH3l, adapted from Banwell. Only the
intense ) branches are visible.
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3.4.4 Nuclear Spin Effects

In the IB Molecular Energy Levels and Thermodynamics course we described how, in symmetrical
molecules, the intensities of rotational transitions are affected by nuclear spin. For example, we saw
that in the fundamental of the asymmetric stretch of 12C'6Q,, only lines originating from even J
levels in the ground state are present.

This discussion was limited to symmetrical linear molecules belonging to point group D.op.
However, similar effects are seen in symmetric top molecules. For example, the ) branches seen
in a perpendicular transition of C'H3F show a 2 : 1 : 1 : 2 intensity alternation on account of the
three equivalent hydrogen atoms whose nuclei have spin one half.

3.5 Direct Product

Below are the direct product tables for a selection of some commonly encountered point groups.
Direct product is commutative, so only the upper half of the table is shown.

Csp, Dsp | A1 Ay E
Aq A A E
A2 Al E
E AL @A) E
ODOIMDOO}L ‘ ZJF b 11 A
ot rt - II A
- at II A
II TtoZ ]eA oo
A Tt el

For those with " and ", or g and u labels, the products are as follows.

S

‘/ " ‘

SIS
SIS ST I
Q
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4 Raman Spectroscopy

In “normal” spectroscopy we look at the light which is either absorbed or emitted by a molecule.
However, there are other processes by which a molecule can interact with radiation, such as scattering
which is the topic of this section. In a scattering experiment we shine a beam of monochromatic light
through the sample and detect photons which emerge from the sample in all directions: these photons
are said to be scattered. It is important to realize that these scattered photons do not arise from the
original photons being absorbed and then re-emitted (that would be fluorescence/phosphorescence),
but from a completely different process.

Typically, only a tiny fraction of the incident photons are scattered so detecting them has in
the past represented quite a challenge. However, the ready availability of lasers, which emit intense
well-collimated beams of monochromatic light, have made such scattering experiments much easier
to perform.

The majority of scattered photons are at exactly the same frequency as the incoming photons
from the laser: this type of scattering is called Rayleigh scattering. However, it is found that some
of the scattered photons have lower energy than the photons from the laser, and some have higher
energy than the laser photons. This type of scattering in which there is a change in the photon energy
is called Raman scattering.

The interpretation of Raman scattering is that in the scattering process the laser photon either
loses energy as the scattering molecule moves up from one energy level to another, or gains energy
as the molecule moves down from one energy level to another. The energy separation between the
scattered photon and the laser photon therefore depends on the separation of the molecular energy
levels, and so measurements of the energies of the scattered photons gives information about molecular
energy levels, just in the same way as other forms of spectroscopy.

%hllL

Eupper ——F——
T hVL

Elower —0——

hvy — (Eupper - Elower) hvr, hvy + (Eupper - Elower)
Stokes Rayleigh Anti-Stokes
Scattering Scattering Scattering

4.1 Theory of Raman Scattering

An explanation of Raman scattering using quantum mechanics is not possible using the framework we
have introduced so far. It is necessary to postulate the existence of “virtual energy states” which are
created by the transient interaction between the molecule and the laser photon: these states are not
the same as the normal energy levels of the molecule. The details of this approach are well beyond the
level of this course, so we will not pursue it further.5 We can, however, develop a classical description

SAn incomplete explanation using time-dependent perturbation theory can be found in C7: Further Quantum
Mechanics.
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of scattering which is helpful in interpreting the results of the full quantum mechanical analysis and
which will provide us with a framework for understanding the Raman effect.

4.1.1 Classical Description

The key idea in this classical description is that the electric field of the laser light causes a distortion
of the electron density of the molecule, resulting in the generation of an induced dipole.”

The induced dipole fluctuates in sympathy with the oscillating electric field of the laser light.
Classically, a fluctuating dipole generates radiation, and so this induced dipole results in radiation at
the same frequency as the laser light: this is the origin of Rayleigh scattering. The size of the induced
dipole depends on the polarisability of the molecule: the more polarisable the molecule, the greater
the distortion caused by a given electric field, the greater the induced dipole and hence the stronger
the scattering.

The polarisability is a rank-2 tensor — it may either be isotropic or anisotropic. For example, in
a diatomic molecule it is easier to polarize the electrons parallel to the internuclear axis than it is to
polarize them perpendicular to the internuclear axis, so its polarisability is anisotropic.

+E

Figure 4.1: The polarisability of a diatomic molecule is anisotropic.

Assume the laser gives an oscillating electric field in the z direction
E = Esin(wpt)z. (4.1)

Let the polarisability of the molecule be the simple diagonal form

o 0 0
o= 0 ay 0], (4.2)
0 0 OzH

where a; < « accounting for the fact that the molecule is more polarisable along the internuclear
axis.

Now let the molecule rotate in the electric field. We will assume the molecule is rotating in the
xz plane, and the internuclear axis is making an angle 6 with the direction of the electric field. The
polarisability tensor is then

cosf 0 —sinf T a; 0 0 cosf 0 —sinf
a(f) = 0 1 0 0 o O 0 1 0
sinf 0 cosf 0 0 q sinf 0 cosf

cos?fa; +sin*0a; 0 sinfcosba) —ay)
= 0 (e AR 0 . (4.3)
sinfcosf(a —ar) 0 0052904“ +sin’fa,

7"The argument we present in this section is somewhat less handwaving than the one presented in the official handout.
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Therefore, the induced dipole is

pw=a(E
cos?fay +Sin29a“ 0  sinfcosf(a) —ay) 0
= 0 o) 0 0
sinfcosf(oyy —ar) 0 cos*Oay+ sin?f o Esin(wrt)
sin @ cos 0(o — o)
= Esin(wrt) 0
cos? 0o+ sinf o
1 0 1 sin 26
= 5(04” +ay)Esin(wrt) (0] + i(a” — ) )Esin(wrt) 0 . (4.4)
1 cos 20

This induced dipole has two components — one aligned with the electric field of the laser, the other
with lower magnitude rotating in the zz plane twice as fast as the molecule.®

We now focus on the more interesting direction — the z direction, since it has both components.

Define ) 1

aavza(au—&—aj_) Aa = 5(04” —ay), (4.5)
and let § = wgt i.e. the molecule is rotating at angular frequency wgr. Then the induced dipole along
the z axis is

ly = QayF sin(wrt) + AaFE cos(2wrt) sin(wpt) . (4.6)

The first term has the same frequency as the laser, so it gives rise to the Rayleigh scattering. The
second term can be rewritten as

%AaE fsin(wr, + 2wr)t) + sin((wr, — 20p)1)] - (4.7)

They are the Stokes and anti-Stokes scattering with frequencies 2wg higher and lower than the laser
frequency. Note the amplitude of these terms is proportional to «| — a1, the anisotropy of the
molecule’s polarisability.

In words, what is happening here is that the rotation of an anisotropic molecule leads to a
modulation, at the rotational frequency, in the size of the induced dipole, as is illustrated above.
This variation of the dipole results in a corresponding variation in the amplitude of the radiation
originating from the dipole. A sine wave which is modulated in amplitude by another sine wave has
a Fourier transform in which there are additional components shifted from the original frequency by
+ the modulation frequency, as is illustrated in the figure.

Within the terms of this explanation, we see that all that is required for Raman scattering due
to rotation is that the molecule has an anisotropic polarisability. Therefore, all diatomics (including
homonuclear ones) give rise to rotational Raman scattering, as do all linear polyatomic molecules.
This is in contrast to microwave spectroscopy where molecules belonging to the point group D do
not give rise to spectra.

The vibration of a molecule leads to a change in the electron density and hence a change in the
polarisability of the molecule. As a result, molecular vibrations also give rise to Raman scattering.
As we shall see in more detail below, normal modes which are not infra-red active may nevertheless
give rise to Raman scattering.

4.1.2 Quantum Description

As we stated before, the quantum mechanical description of Raman scattering is far beyond the scope
of this course. We will only state some results of it.

8The official note directly stated the z component of this result, and ignored the z direction to avoid using tensors.
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oscillation at wr, modulated by 2wr

A Ju

wr, wr — 2wWR wr, wr, + 2wr
Rayleigh Stokes Rayleigh anti-Stokes

laser ]* laser
~————————> ANNNNNNNY
hv
hvr Flower —— | = _LE1 ) hvr,
up ow

If in the scattering process the molecule moves from a lower energy level, with energy Fjower, t0
a higher energy level Eypper, the conservation of energy dictates that

hVstokes = hvp — (Eupper - Elower) . (4'8)
Similarly, for a scattering process in which the molecule drops down from Eypper t0 Elgwer We have

hVanti—Stokes = hVL + (Eupper - Elower) . (49)
The above equations can be easily rewritten in terms of wavenumbers

=Dy, + |AE (4.10)

Whether or not the scattering process is allowed for any particular pair of energy levels will depend
on relevant selections rules, which are detailed below. The intensity of the scattering process depends
on the polarisability of the molecule and the population of the energy level in which the molecule
starts. At equilibrium, these populations will be determined by the Boltzmann distribution.

We will also see that we recover the classical picture in the classical limit. If we substitute the
quantum rotational energy levels into the above expression together with the selection rules (see
later), we would expect the Stokes and anti-Stokes lines to appear at 2B (2J + 3) from the Rayleigh
line, which can be approximated to 4B.J in the classical limit for J > 1. Using the relation F' = hw,
this corresponds to a shift in photon angular frequency of

_ 20

A
YT

(4.11)

Also in the classical limit, the molecule has angular momentum ||J|| = i\/J(J + 1) ~ Jh, which
relates to the angular frequency wg at which the molecule rotates by ||J|| = Iwr. Hence we get

I3 A
=10 - = 4.12
WR Ii Ii ( )
We obtained our classical relation Aw = 2wpg i.e. the Stokes and anti-Stokes scattering have

frequencies 2wg higher and lower than the laser frequency.
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4.2 Experimental Raman Spectroscopy

The experimental arrangement for Raman spectroscopy is that an intense monochromatic beam
of light is directed through the sample, the scattered radiation is then collected and its frequency
analysed in the usual way by dispersing it with a prism or a diffraction grating, or analysing it using
an interferometer (as in an FTIR experiment). The scattered light comes out in all directions, so it is
advantageous to collect it from directions perpendicular to the exciting beam so as to minimize the
amount of this intense light which reaches the detector.

Laser light, on account of its high intensity, monochromaticity and high degree of collimation,
is ideal for recording Raman spectra. Since the intensity of Raman scattering is very low, but
proportional to the intensity of the exciting radiation, it is very advantageous to use an intense
source. Any frequency spread in the source translates to a frequency spread in the scattered photons
(i.e. a linewidth), so the monochromatic nature of laser light gives the highest resolution spectra.
Finally, the collimation of the light means that it can be directed through the sample and, if necessary,
passed back and forth many times so as to increase the number of scattered photons.

It is important that the laser light is not absorbed directly by the molecules being studied as this
would give rise to fluorescence which would swamp the much weaker signal due to Raman scattering.
Photons from the visible region are easy to detect with high sensitivity, so this indicates using a laser
in the visible region. However, this increases the chance that the laser light will be absorbed directly.

In the past, it was common to use light at 633 nm (red) from a He-Ne laser or at 515 nm (green)
from argon-ion laser. However, recent advances in the efficiency with which infra-red photons can be
detected, along with the use of Fourier transform instruments for analysing the scattered light, have
led to the use of 1064 nm light (which is in the near infra-red) from the Nd-YAG laser. Such near
infra-red light is far less likely to be absorbed by the molecules.

4.3 Rotational Raman Spectroscopy

Changes in rotational energy lead to Raman scattered light which is separated from the laser line by
typical rotational energies i.e. a few cm™!. Detecting such a weak signal close in to the very strong
laser line is very challenging experimentally.

4.3.1 Diatomics and Linear Polyatomics

All such molecules have anisotropic polarisability so lead to Raman scattering. The selection rules
are

AJ=0,%2. (4.13)
Scattered photons with AJ = 0 have the same frequency as the laser line, so will not be separable
from Rayleigh scattering.

The labelling of the lines requires some care. Recall that:

(i) AJ is defined as (Jupper — Jiower)-

(ii) lines are labelled according to the J value of the lower level.

A Stokes scattering event in which the molecule starts from J = 0 and ends in J = 2 will appear
on the low frequency side of the laser line and will have AJ = Jypper — Jiower = 2 — 0 = +2.
An anti-Stokes scattering event in which the molecule starts from J = 2 and ends in J = 0 will
appear on the high frequency side of the laser line. However, according to the definition above
AJ = Jupper — Jrower = 2 — 0 = +2. The lines are labelled with the J value of the lower level, which
in this case 0 for both.
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Figure 4.2: The rotational Raman spectrum of 1>’ N'4N, adapted from Hollas. Note that the intensities
of the lines with low J values have been somewhat truncated by experimental effects.

Under typical conditions many rotational levels are occupied so we expect to see several lines
corresponding to J = 0,1,2,.... The situation is therefore reminiscent of the (microwave) rotational
spectrum.

Let us first consider the Stokes lines, and assume that the rotational energy levels can be modelled

using the rigid rotor, with levels ~ R
E;=BJ(J+1). (4.14)

The wavenumber of the scattered photon is that of the laser minus the separation of the rotational
levels, giving

Ustokes(J) = 1, — [Egya — Ey]

=i —2B(2J +3). (4.15)
We therefore see a series of lines at
oL —6B, by —10B, by —14B... (4.16)
—— —_——— —_——
2+-0 3+1 442

Note that the first line is shifted (to lower wavenumber) by 6B from the laser line and that subsequent
lines are spaced by 4B5.

The anti-Stokes transitions are similar.
ﬂanti-Stokes(J) = ﬂL + [EJ+2 - EJ]
=g +2B(2J +3). (4.17)

The first line is shifted (to higher wavenumber) by 6B from the laser line and subsequent lines are
spaced by 4B.

Since both Stokes and anti-Stokes transitions have AJ = +2, they are both referred to as S
branches. The Stokes line closest to the laser is therefore labelled S(0) and subsequent Stokes lines
are labelled S(1),5(2),... Similarly, the anti-Stokes line closest to the laser is labelled S(0) and
subsequent anti-Stokes lines are labelled S(1),5(2),...

The intensities of these lines follow a contour similar to that for the microwave spectrum.

39



4 Raman Spectroscopy A3 High Resolution Molecular Spectroscopy

4.3.2 Symmetric Tops

All such molecules have an anisotropic polarisability so lead to Raman scattering. The selection rules
are AJ = 0,+1,+2, AK = 0. Transitions with AJ = +1 give lines shifted from the laser line by
2B,4B,6B, ..., and those with AJ = £2 give lines shifted from the laser line by 658,10B, 14B, ...

4.3.3 Spherical Tops

Spherical tops have isotropic polarisabilities. They do not give rise to rotational Raman spectra.

4.4 Vibrational Raman Spectra
4.4.1 Diatomics

The gross selection rule is that there must be a change in polarisability during the vibration. This
is always the case, so all diatomics give rise to vibrational Raman spectra. The harmonic oscillator
selection rule is Av = +1, as in the infra-red.

If we use the harmonic oscillator energy levels as a simple model, then a transition from v = 0
to v = 1 leads to a Raman line on the low frequency side of the laser line (Stokes scattering), with
frequency

Ustokes(1  0) =0, — & (4.18)
Similarly, a transition from v =1 to v = 0 leads to an anti-Stokes line at
Danti-Stokes(l — 0) = DL +w. (419)

Under typical conditions the v = 1 level is barely populated so the anti-Stokes line will be much
weaker than the Stokes line.

Rotational Fine Structure

As in the infra-red, a change in vibrational energy can be accompanied by a change in rotational
energy. For vibrational Raman spectroscopy the selection rules for rotational levels are:

AJ =0,£2. (4.20)

AJ = —2 transitions will lead to an O branch and AJ = +2 will lead to an S branch. Note that this
fine structure is spread about the frequency of the vibrationally scattered line (e.g. about 7y —@) and
not about the laser line. In addition, the AJ = 0 transitions form a @ branch, clustered at the centre.
If we assume that the rotational levels can be described using a rigid rotor and that the rotational
constant is independent of the vibrational state, then the frequencies of the Stokes scattered lines are

vo(J) =g — [0 —2B(2J — 1)] (4.21)
vo(J) =i —@ (4.22)
vs(J) =i — [@+2B(2J + 3)] (4.23)
where @ is the frequency of the pure vibrational transition. For the O branch J = 2,3, ... and for

the @) and S branches J = 0,1,.... Note that, in this approximation, all of the lines in the ¢) branch
fall on top of one another, and the spacing in the O and S branches is 4B.

If we make the more realistic assumption that B varies with the vibrational state, then the lines in
the @ branch are somewhat spread out, and the spacing in the other branches is no longer constant.
The values of the rotational constants can be found by using a modified version of the method of
combination differences.
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Figure 4.3: The 1 < 0 vibrational transition in the Raman spectrum of “Ny (i.e. the Stokes
peaks), adapted from Bernath. The intensity alternation is due to nuclear spin effects. Note that the
horizontal scale is the shift in frequency from the laser line, and that all of these peaks are on the
low frequency side of the laser. The O branch lines (left) appear at higher absolute frequencies than
those in the S branch (right).

4.4.2 Raman Activity of Normal Modes

The intensity of Raman scattering involving a transition between vibrational states ¢ and j depends
on the transition moment

R = /dTw;kdg[Jj . (4.24)
It will be non-zero only if the triple direct product
;oM er; (4.25)
includes the totally symmetric irreducible representation.

Following a similar line of argument as for the infra-red, we can easily show that the fundamental
of a particular normal mode gives rise to Raman scattering if the IR of the normal mode matches
that of x;x;. Such a mode is said to be Raman active. As before, symmetry arguments can be used
to examine whether or not overtones or combination lines are Raman active.

Rule of Mutual Exclusion

If a point group contains the centre of inversion i as a symmetry operation, then the character of
x, y and z under ¢ must be —1, as by definition, ¢ does the transformation (z,y, z) — (—z, —y, —2).
The character of quadratic functions z;z; must be +1 because z;z; — (—x;)(—x;) = x;x;. Hence,
x; and z;z; must transform as different irreducible representations. Hence we get the rule of mutual
exclusion.

In a centrosymmetric molecule, the fundamental of any normal mode cannot be infra-red
active and Raman active at the same time.
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4.4.3 Intensities and Polarisations

In non-centrosymmetric molecules it is rare for any of the modes to be Raman inactive. However,
it is found that the strength of Raman scattering varies considerably from mode to mode. So-called
breathing modes, in which all of the bonds around a central atom stretch together, often give rise to
particularly strong Raman scattering. In contrast, bending modes give weak scattering.

If the laser light used to excite Raman scattering is plane polarized, then it is found that some
of scattered light is polarized in the same direction as the laser light (called the parallel component)
and some of the scattered light is polarized at right angles to the laser light (called the perpendicular
component). The ratio of the intensity of the perpendicular (/) to the parallel scattering (1)) is
called the depolarization ratio p, defined as

I,
p="L. (4.26)
Iy

This ratio is easily measured using polarizing filters.

The detailed theory of Raman scattering shows that 0 < p < %. Scattering from totally symmetric
modes, such as the breathing modes referred to above, tend to have depolarization ratios close to
zero i.e. all the scattered light is polarized parallel to the laser light. The Raman bands from such
modes are said to be polarized.

On the other hand, non-totally-symmetric modes often have depolarization ratios close to the
theoretical maximum of 3/4. Such bands are said to be depolarized. Measurements of p can therefore
help to distinguish which normal mode is responsible for a particular band.

4.5 Applications of Raman Spectroscopy

Although it is technically more difficult than microwave or infra-red spectra, Raman spectroscopy
is useful as it provides complementary information or, in some cases, information that is simply not
obtainable by other forms of spectroscopy.

(i) The vibrational and rotational energy levels of homonuclear diatomics, and the rotational levels
of symmetrical linear polyatomics, can only be probed directly using Raman spectroscopy (but
electronic spectra may give the same information).

(ii) Vibrational Raman spectroscopy is complementary to infra-red when it comes to elucidating
the vibrational normal modes: in centrosymmetric molecules, some normal modes may only be
detectable using Raman spectroscopy.

(iii) As Raman spectroscopy uses light which is scattered, rather than transmitted, the technique
can be used for surface analysis, especially of solid materials.
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5 Electronic Spectroscopy of Diatomics

In electronic spectroscopy absorptions occur due to transitions between electronic energy levels;
typically these transitions occur in the visible or UV part of the spectrum. Electronic transitions
are accompanied by simultaneous changes in vibrational and rotational energy leading to extensive
fine structure and hence very complex spectra. As a result, only the electronic spectra of the simplest
molecules are understood in detail. We will confine our discussion to diatomics.

Electronic spectra give information about the electronic energy levels available to a molecule,
and about the vibrational and rotational levels associated with these energy levels. Together, this
information provides a very detailed picture of the bonding in a molecule, and in particular the way
the bonding varies with internuclear distance i.e. the potential energy curve. Electronic spectra are
used in the remote detection and measurement of molecules e.g. for studies of the atmosphere and
of interstellar species.

Before we discuss the electronic energy levels of diatomic molecules it is useful to remind ourselves
about the electronic energy levels of atoms, as many of the concepts which we use for atoms have
direct parallels in molecules.

5.1 Electronic Energy Levels of Atoms
5.1.1 Orbitals and Energy Levels

We are very used to describing the electronic structure of an atom by giving the electronic
configuration, in which we indicate which orbitals are occupied e.g. for carbon the configuration
is 1s22s22p2. It is very important to realize that this orbital description is just an approximation
(albeit a very useful one) and that the orbitals are not the energy levels of the atom.

An orbital is a one-electron wavefunction which is found on the assumption that the electron
experiences an average repulsion from all the other electrons. As a result, the energy of a given
orbital depends on the details of which other orbitals are occupied. When we first learn about
orbitals we are encouraged to think of them as a fixed “ladder” of energy levels into which we can
slot the electrons. Useful though this picture is, it is incomplete as it does not recognise the fact that
the orbitals change in energy as additional electrons are added, or the electrons are rearranged.

At a basic level atomic spectra can be thought of as arising due to an electron moving from
one orbital to another, but this approach must be used with caution because, as noted above, the
orbital energies change as the electrons are rearranged. The more formally correct view is that the
electronic levels (or states) of the atom are described by a multi-electron wavefunction ¥, (rq,rs,...)
which depends on the coordinates r; (and spin) of all of the electrons. Associated with each of these
multi-electron wavefunctions is a particular energy, F,, and it is between these energy levels that
spectroscopic transitions occur.

orbitals e levels

+
LS
[y

approximate exact
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As a result of electron-electron repulsion there is no simple way of calculating the energies of either
the orbitals or the multi-electron wavefunctions. Modern computer calculations can, however, give
reliable estimations on energies and wavefunctions. Although we cannot determine these by hand we
can say something about the wavefunctions which arise from a particular electronic configuration.
In particular, we can specify the total spin and orbital angular momenta, which turn out to be very
useful quantities to know when it comes to understanding the spectrum. Traditionally the values
of these angular momenta (as quantum numbers) are collected together in a term symbol which is
associated with an energy level.

5.1.2 Atomic Term Symbols

The method of obtaining atomic term symbols is explained in Part IB Introduction to Quantum
Mechanics. Here is a quick recap.

Suppose that we have two sources of angular momentum, with quantum numbers j; and j,. The
total angular momentum of the system is characterized by a quantum number J whose values are
given by the Clebsch—Gordan series

J=g1+j2, 51 +je—1,..., |51 — jo| - (5.1)

Using the Clebsch—Gordan series, we can work out the values of total spin quantum number S
and total orbital angular momentum quantum number L. These are combined in a term symbol

5L, (5.2)

Note the superscript is the spin degeneracy 25 4+ 1, not S. The value of L is represented by a capital
letter, with L values of 0,1,2,3,... being indicated by the letters S, P, D, F,.... It is also common
to add a subscript to the term symbol indicating the value of J, the total angular momentum, found
by combining L and S using the Clebsch—Gordan series. However, here we are not interested in this
quantum number and so will not discuss it further.

Note a certain electron configuration may result in multiple possible terms. All of these will
have different energies on account of how their different combinations of orbital and spin angular
momentum affect the electron-electron repulsion. Hund’s first rule indicates that the state with the
lowest energy has the largest S, and the second rule indicates that having maximised S, the lowest
energy state has maximum L.

For equivalent electrons the need to obey the Pauli principle means that certain term symbols
arising for non-equivalent electrons are not permitted for equivalent electrons. The details of how
this all works out in practice are beyond the scope of this discussion.

5.2 Molecular Term Symbols for Diatomics

Again, most of the content should be familiar from Part IB Symmetry and Bonding. We will do a
quick recap.

An atom is spherical, so no direction is preferred over any other, and this means that the vector
which represents the orbital angular momentum can point in any direction. If an electric or magnetic
field is applied to the atom, then the direction of the field is distinct from all others and, as a
consequence, we find that the vector which represents ¢ can no longer point in any direction. Rather,
¢ has to lie on a cone about the field direction, aligned such that the projection of ¢ onto the field is
myg, where my takes the values —/, ... ¢ in integer steps. This is the familiar phenomenon of space
quantisation, and the direction along which the quantisation occurs is called the quantisation axis.
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A linear molecule has such a distinct preferred direction on its own, in the absence of an external
field; that is, the internuclear axis. As a result, in a diatomic we can specify the component of
the angular momentum along the internuclear axis; this component is given the symbol A. In fact,
so strong is the effect of this quantisation axis that it is really only possible to specify the angular
momentum along this axis.

For a o-type MO the angular momentum along the internuclear axis is A = 0. For a 7-type MO,
A = =+1, and for a d-type MO, A = £2 and so on. These two values correspond to the two degenerate
MOs.

However, it is important to realize that the value of A gives the projection onto the internuclear
axis, and so this quantum number represents a scalar, not a vector. Therefore, when combining the
angular momentum from two electrons we simply add the A values numerically rather than adding
them vectorially using the Clebsch—Gordan series.

A molecular term symbol takes the form

+ -
2SHIAT (5.3)
25+1 is the spin multiplicity as before, and A is a capital Greek letter for the total angular momentum,
where A =0,1,2,... are represented by X, I, A, .. ..

If the molecule belongs to the point group Doop, then a g or u is added by working out the overall
symmetry of the state using the following rules

gRg=9g uQu=g9g gRU=1Uu. (5.4)

For X states only, a superscript +/— is added to indicate the symmetry under reflection in a plane
containing the internuclear axis.

Most of the term symbols of diatomics are straightforward to work out as long as you keep in
mind that full shells can be ignored and a hole is equivalent to an electron. An exception is the 72
configuration, which is the ground state of O5. This is elaborated in the IB Symmetry and Bonding.

Direct product provides a convenient way of determining the term symbol. Take the configuration
...(172) as an example. Using the direct product table,

ol =X ¢ [X;]&A,, (5.5)
where the antisymmetrised direct product is in the square bracket.

Recall that Pauli exclusion principle requires the overall wavefunction, when the spatial and spin
parts are included, be anti-symmetric with respect to exchange of electrons. Therefore, the spin
triplet, which is spin symmetric, has to go with the anti-symmetric spatial function, which is 3.
The spin singlet, which is spin anti-symmetric, can go with either of the symmetric spatial functions,
E;r and A,. Hence the possible term symbols are 12;, SE; and 1Ag, with 32; being the ground
state by Hund’s first rule.

5.3 Potential Energy Curves

The energy of a particular electronic state is found to vary as the internuclear distance r changes.
At some distance, called the equilibrium distance or equilibrium bond length, the energy goes to a
minimum. As the distance decreases below this value the energy increases, usually rather steeply, on
account of the unfavourable interactions between filled AOs. As the distance increases the energy
rises as the overlap between AOs is less effective, eventually flattening out at large distances where we
essentially have two non-interacting atoms i.e. dissociation. The resulting plot of energy vs distance r
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Figure 5.1: The PE curves for the Cy molecule. Figure adapted from Bernath.

is called the potential energy curve (PE curve). Each electronic state has such a PE curve associated
with it.

It is traditional to illustrate the electronic states of a molecule by plotting the PE curves for the
various electronic states, as is illustrated here for C5. The exact form of the PE curves and their
energies has been inferred from a very detailed analysis of the spectra of this molecule.

A few remarks.

(i) Even for this simple molecule, many excited electronic states have been identified, each with
a unique PE curve: for each state the equilibrium bond length and the shape of the curve are
different.

(ii) Some of the electronic states of Cq dissociate to give ground-state carbon atoms (term symbol
3P), but others dissociate to give carbon atoms in various excited states.

(iii) Some of the PE curves cross one another.

It is also possible to have potential energy curves which have no minimum, but in which the energy
simply falls as the internuclear distance increases. Such curves are said to be repulsive. A molecule
in such an electronic state will not be bound, but will simply dissociate into atoms.

It is erroneous to call these PE curves “Morse curves”. The Morse potential is just the simplest
example of a function which has the same general shape as a typical PE curve. However, it turns
out that the actual shape of these curves, especially at large internuclear distances, is only poorly
approximated by the Morse potential.

Each PE curve is labelled with the term symbol of the associated electronic state, prefixed with a
letter to indicate the energy ordering of the states. The ground-state is denoted X, and subsequent
excited states with the same multiplicity (i.e. same value of S) as the ground state are denoted
A, B, C etc. States with different multiplicity from the ground state are denoted by lower case letters
in alphabetic sequence a, b, ¢ etc. Unfortunately, this lettering convention is not the only one in use,
so be prepared to be flexible.
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5.3.1 Vibrational and Rotational Energy Levels in an Electronic State

Our discussion of spectroscopy rests on the Born—Oppenheimer separation in which we assume that
the energy of a molecule can be separated into contributions from rotation, vibration and electronic
motion. The justification for this is that the electrons are moving faster than either vibrations or
rotations. The electrons rearrange themselves very quickly the moment the nuclei move in a rotation
or vibration.

As a result, we can associate with each potential energy curve a set of vibrational energy levels.
The form of these levels depends on the precise shape of the PE curve. However, from our knowledge
of the behaviour of the energy levels associated with the Morse potential we can reasonably expect
that the levels will get closer together as the energy increases, and that at the dissociation limit these
levels will become continuous.

Dissociation

Generally, the energies of the vibrational levels can be written as a power series

~ 1\ . 1\? . 1"
E, = v—|—§ We — v+§ WeLe + v—|—§ @elYe + -+ - (5.6)

where @, is the vibrational frequency and z.,y.,... are a series of dimensionless anharmonicity
constants. For the harmonic oscillator only the first term is needed, and for the Morse oscillator only
the first two terms are needed. In this latter case the depth of the potential energy curve D, is given
by

~ [[;e
D, = =< 5.7
4I(3 ( )

and the dissociation energy is ~ ~ ~
Dy=D.— Ey. (5.8)

It is important to realize that each electronic state has a different value for the vibrational frequency
We, the various anharmonicity constants and the dissociation energy. The values of these parameters
are determined by the detailed shape of the PE curve.

To further add to the complications, each vibrational level in each electronic state has associated
with it a set of rotational energy levels. These can, for example, be modelled using the rigid rotor
levels ~ ~

Ey= Belec,vJ(J + ].) s (59)

where the rotational constant is a function of both the electronic state and the vibrational level. The
variation of the rotational constant with vibrational state is quite small (~ 1%), but the equilibrium
bond lengths of different electronic states can differ substantially, leading to a significant variation in
the rotational constant between different electronic states. We shall shortly see the consequences of
this.
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5.4 Selection Rules

The selection rules for electronic transitions are
AS =0 AN =0,+1

tod —o = e geu geg ueu. (5.10)

The spin selection rule AS = 0 means that the ground state labelled X is only allowed to transition
to excited states labelled with the upper case letters (A4, B,C,...). If heavy atoms are present the
spin selection rule starts to break down. For example, in Iy the spin-forbidden transition 3II «+! ¥ is
responsible for the purple colour of iodine vapour.

There is no selection rule for the change in vibrational energy although, as we shall see shortly,
the intensity of vibrational transitions varies quite markedly. For rotational transitions the rules are

For ¥ <+ ¥ transitions: AJ = %1 (5.11)
For ¥ < II transitions: AJ =0, +1 (5.12)

Therefore we expect to see P and R branches for ¥ «+ ¥ transitions, and P, Q, R branches for ¥ «+» 11
transitions.

You can see how electronic spectra can become very complicated. Each electronic transition
is accompanied by a number of different vibrational transitions. Then, each of these vibrational
transitions has a P, R and possibly @) branch fine structure associated with it. There is no reason to
assume that the P/Q/R branches from different changes in vibrational levels will not overlap with
one another: hence the spectrum becomes very complicated indeed.

5.4.1 Derivation of the Selection Rules using Symmetry

Recall that for a transition to be allowed, that is for the transition moment to be non-zero, the triple
direct product
el (5.13)

must contain the totally symmetric irreducible representation.

First we will consider heteronuclear diatomics, point group C,, for which the z transforms as
YT and (x,y) as II. Hence, the transition is allowed when either of the following two direct products
contains ['tot-sym-

Liestel;
{ w2T O (5.14)

This requires I'; ® T'; to contain either ¥ or IL

CoovaDooh ‘ 2+ E_ H A
o+ >t 2o I A
- o+ I A
I TteXT]eA oo
A TteXT]el

It is easy to observe from the direct product table that I'; ® T'; contains ¥ if and only if I'; = T'j,
so here comes the selection rule AA = 0 with the extra condition + < — to exclude 2T @ X~ =X~.

The other possibility is for I'; ® I'; to contain II, which happens when ¥ @ II, II ® A etc. i.e.
AA = +1.
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All these considerations apply to both hetero- and homonuclear diatomics. However, in the latter
case we also need to consider the g/u symmetry label. It is obvious that in Doy, @, y, 2 all have the
symmetry label u since the operation 4 is by definition the mapping (z,y,2) — (—z,—y, —2). The
totally symmetric irreducible representation has g symmetry, so it is evident that for the I'; ® I'; must
have a u symmetry. This happens when the transition is u < g.

5.4.2 Absorption and Emission Spectra

Under normal conditions it is almost always the case that excited electronic states are too high in
energy to be significantly populated. Therefore, absorption spectra are usually the result of transitions
between the ground electronic state and various excited electronic states. In addition, it is likely that
only the v” = 0 vibrational level within the ground electronic state is populated. Absorption spectra
are therefore dominated by transitions from this level.

Excited electronic states can be populated by passing a discharge through the gas, or perhaps
creating the molecules in a high energy environment such as a flame. Emission spectra arising from
transitions from these populated states to lower energy electronic states can then be observed. High
vibrational states of the excited electronic states may also be populated in discharges, and transitions
from these vibrational states may be seen. However, collisions between the molecules tend to degrade
the vibrational energy, so it is often the case that the v’ = 0 level is the most populated in an excited
electronic state.

5.5 Vibrational Coarse Structure

To simplify things, we will temporarily ignore the rotational contribution to energy and just
concentrate on the fine structure due to changes in vibrational energy. In addition, we will model
the vibrational energy levels using Morse oscillators.

Counsider a transition (in absorption) from a vibrational level with quantum number v in the
lower electronic state to one with quantum number v’ in the upper electronic state. Let T, be the
electronic energy measured at the bottom of the PE curve. Then the vibrational-electronic energy of
the lower and upper levels are

2
- - 1 1
E,r =T + <v” + 2) ol — (v” + 2) ol (5.15)
n T/ ’ 1 ~1 / 1 2 ~1 I
Ey=T,+ (v g o=V +g ) were. (5.16)
The transition occurs at ~ _
Dyt = Byt — Eyir . (5.17)

The diagram below depicts such a electronic transition, along with various other parameters
relating to the two potential energy curves. On the left it is assumed that the upper and lower
electronic states dissociate to different atomic states: the energy separation between the atomic
states is AEatomic. The transition between the v = 0 level of the lower electronic state and the v =0
level of the upper state, g, is also shown, as are the dissociation energies and well depths (ﬁo and
136) of the two PE curves. Dy is the highest wavenumber (frequency) transition possible between the
two states, going from v” = 0 to the dissociation limit of the upper state. On the right the two states
are shown as dissociating to the same atomic levels: this diagram can be annotated in the same way.
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Figure 5.2: Parameters for a transition between two electronic levels.

5.5.1 Progressions and Sequences

A progression is a series of transitions which share a common energy level. In an absorption spectrum,
the separation between successive lines in a particular progression will reflect the spacing of the energy
levels in the upper state. Therefore, the lines will get closer and closer together.

A sequence is a series of transitions which have a common value of Av = v/ — v”. The more
different the PE curves are, the more spread out the lines in the sequence are.

vl

S = oW

v = 1 progression v’ = 2 progression Av = +1 sequence

5.5.2 Vibrational Intensities and Franck—Condon Factors

The intensity of a particular transition between levels ¢ and j depends on the population of the lower
level ¢ and the modulus square of the transition moment

Ry = [ droti;. (5.18)
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Figure 5.3: Schematic variation of the Franck—Condon factors with the alignment of the vibrational
wavefunctions.

Using the Born—Oppenheimer separation, the wavefunctions can be written as a product of a
wavefunction which depends only on the electrons 1, and a wavefunction which depends only on
the vibrational motion of the nuclei 1.;,. We can also separate the dipole moment operator to a part
acting on the vibrational wavefunction, and another part acting on the electronic wavefunction.

Rij = (Wlfie| V) (Wvib,i|viv,j) + (Wvib,i| Avib|Uvib,; ) (et
= (Yl lfelle) (Pviv,ilvib,g) - (5.19)

The inner product of two electronic wavefunctions is zero by orthogonality. R;; factors out into two
terms.

The first term
(Yl frerl ) (5.20)

is the electronic transition moment, whose value is determined by the electronic states. If the
transition is forbidden, this integral will be zero as we analysed in previous sections using symmetry.

The second term is the overlap integral between the vibrational wavefunctions of the two electronic
states. They are not orthogonal as they belong to different electronic states so they are not the
eigenfunctions of the same Hermitian operator. The modulus square of this quantity is known as the

Franck—Condon factor
2

: (5.21)

dij = ‘/dT ¢31b7i¢vib,j

and it is important in determining the intensity of transitions between different vibrational energy
levels.

As has already been discussed, absorption spectra almost always arise as a result of transitions
from the ground vibrational level of the ground electronic state. We will therefore concentrate on
transitions from this vibrational level.

The diagram above shows the ground state vibrational wavefunction v = 0, and the excited state
with v = 6; for simplicity we have chosen the HO wavefunctions. Also shown is the product of the
two wavefunctions: the overlap integral is the area under this curve.

On the left the two wavefunctions have the same r., and it is clear from the plot that the
overlap integral is zero as the positive and negative contributions to the integral cancel. If one
of the wavefunctions is displaced slightly, as shown in the middle, the positive and negative areas do
not cancel completely, so the overlap integral is no longer zero. If the displacement is such that the
maximum in the v = 0 wavefunction coincides with the principal maximum in the other wavefunction,
as shown on the right, then the overlap integral is at a maximum.

The lesson is: the overlap integral will be the greatest when the peak of the ground state
wavefunction is aligned with the principal maximum of the excited state wavefunction.
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Figure 5.4: The variation of Franck—Condon factors when the PE curve is anharmonic. Figure adapted
from official course note by Prof. Keeler.

Having this in mind, let’s investigate how the Franck—Condon factors vary in real PE curves.

(a) . > r/. The maximum in the v = 0 wavefunction aligns well with the principal maximum
of one of the excited vibrational wavefunctions in the upper electronic state, giving rise to the
largest FC factor. Note that on account of the shallowness of the potential, the position of
these principal maxima change quite rapidly with the v’ value. The FC factors therefore drop
off quite quickly as v’ changes from its optimum value.

(b) rl < /. The largest FC factors arise when the maximum in the v = 0 wavefunction aligns with
the subsidiary maxima which occur on the left-hand side of the potential. As the wavefunction
is smaller, the maximum FC factors are smaller than in case (a). Note, however, that as the
potential is steep the position of these subsidiary maxima changes slowly with v so the FC
factors are not so sharply peaked.

(¢) 7, = /. The 0 — 0 transition will be the strongest.

€

The same principles also apply to the emission spectra. The transition will be the strongest when
the vibrational ground state wavefunction has its maximum aligned well with the principal maxima
of the vibrational wavefunctions for the lower electronic state.”

(a) If the Franck—Condon factors are appropriate, we can observe that the lines in a vibrational
progression observed in an absorption spectrum will get closer and closer together, reflecting
the decreasing spacing of the vibrational energy levels in the upper electronic state. Eventually
these levels will converge and, at the dissociation limit of the upper state, become a continuum.
The wavenumber at which this occurs is the yy,. This is only likely to be observable if the
upper state has a significantly different equilibrium bond length than does the ground state.

(b) The dissociation limit of the lower electronic state can be observed in an emission spectrum,
once again with the proviso that the FC factors are favourable.

9The official note has a classical explanation for the Franck-Condon factor after this section — it was stupid so I’'m
not including it here.
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(a) (b) (©

increasing )
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Figure 5.5: Oy, observed in (a) absorption, and (b) emission spectra. (c) Pre-dissociation may occur
when there are repulsive states. Figure adapted from the official course notes by Prof. Keeler.

(c¢) It is possible for there to be a radiationless transition in which the molecule passes from the
bound state over to the repulsive state. Once it does this, the molecule dissociates as the
PE simply falls away as the atoms get further apart. This process is called pre-dissociation,
the name arising from the fact that the molecule dissociates before being promoted to the
continuum states of the upper electronic state. The rate of the radiationless transition depends
on many factors, including a Franck—Condon-like term involving the overlap of the vibrational
wavefunction of the bound state and the (translational) wavefunction of the separated atoms.

Quite often the presence of pre-dissociation leads to a lifetime broadening of the vibrational
transitions to states that undergo the radiationless transition. Transitions to higher vibrational
levels become sharp once more as they go to states which are not close to the crossing point,
and so do not pre-dissociate.

5.5.3 Measurement of Dissociation Energies

It is easy to see that

D} = Pim — oo (5.22)
DY = Dim — AFatomic - (5.23)

Unfortunately, it is usually unlikely that the Franck—Condon factors will be sufficiently favourable
to observe both 7, and 59. Moreover, it is often rather difﬁcult to identify the atomic states into
which a particular molecular state dissociates, so the value of AF,iomic may not be known.

A more successful approach is to use what spectroscopic data is available (typically in a
progression) and then extrapolate this to find the dissociation energy. The simplest approach is
the Birge-Sponer extrapolation.

Let Aé(u + %) be the energy separation between the transitions in the same progression with a
common lower level and upper vibrational level v’ and v’ 4+ 1. Then obviously the dissociation energy

) Dy =) AG (v + ;) : (5.24)
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We can plot a graph of A@(U + %) against v + %, then the dissociation energy is given by the sum
of the area of the rectangles. If there are a sufficiently large number of rectangles, then the sum of
their areas is well approximated by the area under the dashed line.

It may be possible to extrapolate the line to lower or higher values of v in the case where the data
are missing, and so this method is known as the Birge-Sponer extrapolation, and the plot is known
as the Birge—Sponer plot.

If we want the value of D, all we would have to do is extrapolate the line back to correspond to
the value (v+2) = —1 and take the area from this point. This adds in the energy separation between
the bottom of the PE well and the v = 0 level. An alternative is to plot AG(v + 1) against (v+1)
and take the area from zero on the horizontal axis.

For a Morse potential the Birge-Sponer plot is expected to be a straight line, but in practice it
is found that the plot is often curved, especially as v approaches the dissociation limit when the line
tends to fall away. A linear extrapolation is thus like to overestimate the dissociation energy.

5.6 Rotational Fine Structure

As we noted before, in addition to a change in vibrational energy, the transition between two electronic
states may be accompanied by a change in rotational energy. Depending on the term symbols of the
electronic states we may have transitions with AJ = +1 (P and R branches), or with AJ = 0, £1
(P, @, R branches).

The frequencies of the three branches can be easily calculated.

p = Delyin — (B' + B")J + (B' — B").J? (5.25)
70 = Pelvin + J(J + 1)(B' — B") (5.26)
VR = Velvib + 2B + (3B" — B")J + (B' — B")J>. (5.27)

Since the r. values of the upper and lower electronic states are different, the values of B’ and B”
may differ substantially.

If B’ < B”, the lines in the R branch get closer together as J increases, whereas those in the P
branch get further apart. The lines in the ¢)-branch appear on the low-frequency side of 7 vib, which
is described by saying that the band is degraded to the red.
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Figure 5.6: The P and R branches for B’ = 6.82 cm™!, B” = 7.88 cm™!. The value corresponds to
the A 'Yt < X Y7 transition in CuH.
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Figure 5.7: The spectrum for CuH in which the band head structure in the R branch is clearly seen.
Figure adapted from Banwell.

On the other hand, if B’ > B”, the lines in the P branch get closer together as J increases, whereas
those in the R branch get further apart. The lines in the () branch appear on the high-frequency side
of De1vib, and are said to be degraded to the blue.

The figure above shows when B’ < B”. The lines in the R branch at first increase in frequency, but
their spacings are steadily decreasing. Eventually the (negative) quadratic term starts to dominate
over the linear term, resulting in the lines reaching a maximum frequency and then moving back to
lower frequencies. The highest frequency reached by the lines in the R branch is called a band head.

A band head is often visible in the spectrum as an intense feature since several lines are bunched
in this region. In addition, the feature has a sharp edge as all the lines are at lower frequencies than
this band head.

In this case the R branch is said to be degraded to the red, as it turns around and heads off to
lower frequencies. In contrast, the lines in the P branch simply head off to lower frequencies in a

consistent manner.

If B’ > B” then the band head appears in the P branch, and this would be degraded to the blue.
Which branch the band head appears in is thus diagnostic of the relative sizes of B’ and B”.

We can locate the position of the band head by differentiating the expression for the lines in the
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P or R branch (as appropriate) with respect to J and then finding the turning point. The calculation
is trivial and we find

B// _ SB/

R branch: Jheaqa = ———— 5.28
head Z(B/ _ B//) ( )
B/ B//
P branch: Jpead = — | (5.29)
Z(B/ _ B//)

Evaluating this expression with the data given above for CuH gives Jyeaqa = 5.93, so the band head
occurs at either J =5 or 6. By comparing the values, we find the band head is the line R(6), which
fits in with the graph.
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6 Fluorescence and Phosphorescence

The electronic spectra of molecules larger than diatomics rapidly become very complex as a result
of the large number of electronic states and the vibrational fine structure arising from many normal
modes. Spectra typically show broad absorption maxima which arise from the overlap of many bands.
If we move from the gas phase to solution the situation is made even worse as a result of interactions
with the solvent giving further broadening.

Despite the lack of resolved fine structure there is considerable interest in the electronic spectra

of larger molecules as a result of the phenomena of fluorescence and phosphorescence which these
molecules often show.

When a molecule is excited to a higher electronic state by the absorption of light of a particular
wavelength it is often found that the molecule starts to emit light at a somewhat longer wavelength.
Sometimes it is found that this emission of light stops very soon after the excitation is removed:
the emission is then termed fluorescence. Sometimes it is found that the emission continues for a
significant time after the excitation is removed: this is termed phosphorescence.

6.1 Fluorescence
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The diagram above can be used to explain the basic features of fluorescence. It shows the ground
electronic state and an excited electronic state which, as is often the case, is less tightly bound than
the ground state. Typically the ground vibrational state of the ground electronic state will be by far
the most populated level. As a result of the displacement of the potential energy curve of the excited
state, the Franck—Condon principle indicates that the strongest transitions in absorption will be to
excited vibrational states. If the molecule is in solution it undergoes frequent collisions in which this
excess vibrational energy will be lost and so the molecule quickly ends up in the ground vibrational
state of the excited electronic state. This process is called vibrational relaxation.

Vibrational relaxation is relatively efficient as the amount of energy that needs to be lost in each
step down the ladder of vibrational levels is, for large molecules in particular, small compared to
thermal energies; in addition, in solution collisions are frequent. In contrast, it is more difficult
for the molecule to lose the much larger amount of energy which would take it back to the ground
electronic state.

Spontaneous emission then occurs from the ground vibrational state of the excited electronic state

back down to the ground electronic state; the Franck—Condon principle indicates that the strongest
transitions will be to excited vibrational states. This emission is termed fluorescence.
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This mechanism provides an explanation of the key features of fluorescence:

(i) Fluorescence occurs at a longer wavelength than the absorption as a result of the loss of energy
due to vibrational relaxation.

(ii) The absorption spectrum shows vibrational fine structure characteristic of the excited electronic
state, whereas the fluorescence spectrum shows vibrational structure characteristic of the ground
electronic state — this is the result of the Franck—Condon factors and that both spectra originate
from ground vibrational states.

(iii) The emission stops once the exciting radiation is removed: without the excitation, there is no
process to populate the excited state from which emission occurs.

6.1.1 Fluorescence Spectra

The schematic arrangement of a fluorescence spectrometer is shown below.

monochromator

)\excitation

white lamp T
AT

frequency analyser

N

N detector
c_J

Adetect

The fluorescence spectrum is usually recorded by fixing the wavelength of the exciting radiation
Aexcitation (at a position where there is significant absorption) and then measuring the emission at
different wavelengths Agetect- The experimental arrangement involves detecting the emitted light at
right angles to the beam of exciting radiation so as to avoid swamping the detector with very intense
radiation normally used for excitation. According to the above model, the frequencies of the features
in the fluorescence spectrum are independent of the frequency of the exciting radiation, but we may
expect the intensity to vary as the frequency of the exciting radiation varies.

It is also possible to record the excitation spectrum in which we detect at a fixed frequency
(where fluorescence is expected) and then scan the frequency of the exciting radiation. According to
the model above, the excitation spectrum should have the same form as the absorption spectrum.

Shown below are the absorption and fluorescence spectra of anthracene (in cyclohexane as solvent).
As expected, we see the fluorescence spectrum centred at a lower frequency (longer wavelength) than
the absorption spectrum. In this case the two spectra overlap to a significant extent, and the fine
structure appears to be quite similar; the overlapping peak is likely to be due to the 0 — 0 transition.
From this we may infer that the ground and excited electronic states do not differ too much in
equilibrium geometry. In such a situation the absorption and fluorescence spectra are approximate
mirror images of one another.

The spectra for benzene are quite different. Here we see a much larger shift between the principal
maxima in the absorption and fluorescence spectra, as well as substantially different vibrational fine
structure. From this we can infer that the ground and excited electronic states differ significantly in
their equilibrium geometry.
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Figure 6.1: The fluorescence spectrum of anthracene using cyclohexane as solvent. This figure (and
all the other fluorescence spectra below) is adapted from a database maintained by the University of
Arizona, available at http://www.spectra.arizona.edu.
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Figure 6.2: The fluorescence spectrum of benzene using cyclohexane as solvent.
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6.1.2 Jablonski Diagram

It is common to discuss fluorescence and related phenomena using a schematic representation of the
electronic and vibrational energy levels called a Jablonski diagram.
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The thick lines represent the energies of the (pure) electronic states, and built on these is a set of
vibrational levels, shown schematically. In most molecules all of the spins are paired up in the ground
electronic state, thus the total spin S is zero, and hence the state is a spin singlet. The ground state
in the Jablonski diagram is therefore labelled Sy.

Since the selection rule for S is AS = 0, the excited state to which there is strong absorption is
also likely to be a singlet, and here it is labelled S7; further higher energy singlet states are labelled
S etc.

In terms of the Jablonski diagram, fluorescence would be described as absorption from the ground
vibrational state of Sy to various excited vibrational states of S7, followed by vibrational relaxation
down to the ground vibrational state of S;j. Fluorescence arises from transitions from the ground
vibrational state of S; down to various excited vibrational states of Sg.

6.1.3 Solvent Effect

The initial transition caused by absorption of the exciting photons is very fast so that when the
molecule is promoted to the 57 state its geometry is, to start with, the same as it had in the ground
state; in the language of the Franck—Condon principle, such transitions are said to be vertical. It is
likely that the equilibrium geometry of the Sy state is different to that of the Sy state, so S; will be
produced in an excited vibrational state (as predicted by the Franck—Condon principle). Subsequent
vibrational relaxation will allow S; to drop down to its ground vibrational state and achieve its
equilibrium geometry.

If the molecule is in solution there are additional effects due to changes in solvation. When it is
produced the S; state will be surrounded by solvent molecules which are arranged for the optimum
solvation of the Sy state. Not only is it likely that the equilibrium geometry of Sy is different from Sy,
but it is also likely that the electron distribution is different; as a result the solvent needs to adapt
itself to both the new geometry and the new electron distribution. The overall effect of this is that
the energy of the excited state falls slightly as the solvent adjusts itself to the new geometry.

When it comes to the fluorescent transition similar considerations apply. The vertical transition
initially produces Sy with the equilibrium geometry of Sy, and the solvation appropriate for S;. As
the molecule shifts to the equilibrium geometry of Sy, and the solvent accommodates to this change,
the energy will fall. These points are illustrated schematically in the diagram.
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The net result of these solvent effects is that the fluorescence is shifted to longer wavelengths. This
is most clearly seen in cases where the v/ = 0 <» v/ = 0 transition is visible in both the absorption
and fluorescence spectrum. Simple considerations would indicate that this transition should have the
same wavelength in both spectra, but in fact it is seen that the wavelength is slightly longer in the
fluorescence spectrum — an effect which is accounted for by the solvent effects discussed here. The
effect is greater for more polar solvents.

This medium-induced shift in the wavelength of the fluorescence has been exploited extensively
in the study of proteins. When excited at 290 nm, the (naturally occurring) amino acid tryptophan
shows a fluorescence maximum at around 356 nm in aqueous solution. Changing the solvent to
dioxane, which is less polar, moves the fluorescence maximum to around 320 nm.

Hence a tryptophan buried inside the protein in a hydrophobic environment we might expect a
fluorescence maximum at a shorter wavelength than would be the case if the tryptophan was on
the surface of the protein and exposed to polar solvent. This shift in the fluorescence maximum
can also be used to study the unfolding of a protein. Suppose that the protein has a tryptophan
which, in the folded form of the protein, is in a hydrophobic environment. When the protein unfolds,
the tryptophan is exposed to the polar solvent and so the fluorescence maximum moves to a longer
wavelength. By monitoring the onset of fluorescence at this longer wavelength we can therefore assess
the extent to which the protein is unfolded.

6.2 Phosphorescence

The characteristic feature of phosphorescence is that the emission continues from some time after the
exciting radiation has been removed. The accepted explanation for this is that the transition involved
in the phosphorescent emission is from an excited triplet state down to the singlet ground state. Such
a transition is forbidden by the spin selection rule so the spontaneous emission rate is much less than
for a singlet-singlet transition. The excited triplet state can therefore build up a population which
only decays away slowly, hence accounting for the persistence of the phosphorescent emission. How
the triplet state is populated in the first place is conveniently described using a Jablonski diagram.

As before, absorption followed by vibrational relaxation results in population of the ground
vibrational state of S7. Under the right circumstances it is then possible for there to be a radiationless
transition taking the molecule from S; to Ti: this is called intersystem crossing, ISC. This process
populates excited vibrational levels of 77, but as before we expect collisions to result in rapid
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vibrational relaxation resulting in population of the ground vibrational state. The phosphorescent
emission occurs from the ground vibrational state of 17 to various vibrational states of Sy. This
triplet-singlet transition is forbidden by the spin selection rule so the rate of emission is much slower
than for the allowed singlet-singlet transition. It is therefore possible for ISC to build up a population
of the Ty state which persists even after the exciting radiation has been removed.

We can think of intersystem crossing as a process in which the wavefunction for S; evolves over
time into the wavefunction for 7T7. Such a process is formally forbidden in the same way that a singlet-
triplet spectroscopic transition is forbidden by the AS = 0 selection rule, but in the presence of spin-
orbit coupling the selection rule starts to break down and both ISC and singlet-triplet spectroscopic
transitions become possible to some extent. Recall that spin-orbit coupling is the interaction between
the magnetic moments due to electron spin and the orbital motion of the electrons. Such interactions
increase markedly as the atomic number of the atom increases, so the presence of heavy atoms, such
as Br or I, will lead to a significant rate of ISC.

Intersystem crossing is only efficient between states with the same energy. It is unlikely that
the pure electronic states S; and 77 will have the same energy, but as these states also have many
vibrational levels associated with them there is a good chance of finding a pair of vibrational levels
in the two electronic states whose energies match — this is all the more likely for larger molecules
which have many, densely-packed vibrational levels.

Timescales

The time scales for the various processes involved in fluorescence and phosphorescence vary
considerably with both the molecule involved and the medium. Some representative ranges are

o vibrational relaxation: 10711 ~ 1079 s.
o fluorescence: 1078 ~ 10~ % s.
o ISC: 10712 ~ 107 % s.

« phosphorescence: 107% ~ 102 s

Internal Conversion

Internal conversion (IC) is a similar process to ISC except that it involves two electronic states of
the same multiplicity i.e. two singlets. Like ISC, IC will only be efficient between levels with the
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same energy, so IC between S; and Sy would have to involve very highly excited vibrational levels of
So. After IC, vibrational relaxation would quickly take us down to the lower vibrational levels of Sy.
The net result of IC is to remove electronically excited states.

6.3 Kinetics of Excited States

The various process involving the generation and interconversion of these excited electronic states can
be analysed using a kinetic scheme, just as we would for a series of interconnected chemical reactions.
This analysis leads to predictions which can be tested experimentally, and to methods for measuring
the rate constants of some of the individual processes.

6.3.1 Fluorescence Lifetime and Quantum Yield

For each of the processes we have discussed so far we can write a rate in terms of a relevant rate
constant and concentration. These are summarized in the table below.

process equation rate

abSOrption SO + hVexcitation — Sl Iabs

fluorescence S7 — Sp + Avguor kr[S1]
IC S1 — So kic[S]
ISC S1— T krsc[S1]

Measurement of the Fluorescence Lifetime

The simplest case to analyse is just after the exciting irradiation has been switched off. Now, no more
S1 states are being generated but there are three processes which contribute to the decay of S;. Since
all of these processes are first-order in [S7], the rate constant for the overall decay of S; is simply
the sum of the three individual rate constants. It therefore follows that [S1] decays exponentially
according to

[Sl](t) = [Sl](O) exp [7(1431:* + kic + kISC)t} . (61)

We can define the fluorescence lifetime as

1

= 6.2
kr + kic + k1sc (6.2)

70

It is possible to measure this lifetime by measuring the decay in the intensity of fluorescence after
the excitation has been switched off. Typically this might be done by exciting the molecules using a
brief pulse from a laser and then following the decay after the pulse.

Fluorescence Quantum Yield

Each photon that is absorbed creates a molecule in the S; state, but there are several possible fates
of this excited state, only one of which gives rise to the emission of a (fluorescent) photon. We can
define the quantum yield of fluorescence, ¢r, as the ratio of the number of fluorescent photons to the
number of photons absorbed

number of fluorescent photons

or = (6.3)

number of photons absorbed
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If each photon absorbed gives rise to the emission of a fluorescent photon, the quantum yield is 1; if
other processes destroy the S; states, the quantum yield will be less than 1. The quantum yield can
equally well be defined in terms of rates

rate of fluorescence

o = (6.4)

rate of absorption

Steady-State Measurements

Imagine an experiment in which the exciting radiation is applied continuously to the sample and the
intensity of the fluorescence is measured. This is called a steady-state experiment, in contrast to the
time-resolved experiment described above for the measurement of the fluorescence lifetime. We can
derive an expression for ¢ by invoking the steady-state approximation for [S;]; this will be valid
provided the intensity of the exciting radiation is not too great. Assuming the steady state we find:

Iabs

S = — .
[Sulss kr + k1c + k1sc

(6.5)

Note that the rate of absorption of photons has been written as I,1s, which subsumes the overall
concentration of the absorbing molecules and the flux of exciting photons. Using this to find an
expression for [S1]gs we can then proceed to use this to find ¢p as

e = kr[S1]ss _ kp
Tops kg + kic + kisc

(6.6)

In principle the value of ¢r can be found by measuring the rate at which photons are absorbed
and the rate at which fluorescent photons are emitted. Such absolute measurements are not at all
straightforward, so in practice the quantum yield is often found by comparing the absorbance and the
emission intensity of the sample of interest with a standard sample whose quantum yield is known.

The sum of kr + kic + kisc, which is equal to 1/7p, can be measured from the decay of the
fluorescence in a time-resolved experiment. Taking this with a measurement ¢ enables us to find
the rate constant for fluorescence kr using (6.6).

The table below gives some typical values of ¢r and kp for some organic molecules dissolved in
hydrocarbon solvents; the wide range of values is notable.

molecule oF kg /105 s71
benzene 0.06 0.81
toluene 0.14 1.72
anthracene 0.36 80.0
propanone 0.0009  0.56

benzophenone < 1074

Table 1: Data from Spectroscopy, Vol. 3, edited by B. P. Staughan and S. Walker, Chapman and
Hall, 1976.

6.3.2 Stern—Volmer Equation

The excited molecule S; can also lose its electronic energy by collision with another molecule, @, called
a quencher. Different molecules show different efficiencies as quenchers, but it is found that species
with unpaired electrons (e.g. Oz) or containing easily polarizable atoms (e.g. 1) are particularly
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process equation rate

abSOTptiOH SO + hyexcitation — Sl Iabs

fluorescence S7 — Sy + hrauor kg [S1]

IC S1 — So krc[S1]
ISC S — T kisc[S1]
quenching S1+Q — So+Q kq[S1][Q]

efficient. We can analyse the effect of the presence of a quencher by adding it to our table of kinetic
processes.

There is now an additional process which removes S7, and if it is assumed that the concentration of
the quencher is constant (i.e. it is not consumed) this process is pseudo first-order with rate constant
kq[Q]. The decay of Sy is still overall first-order

[S1](t) = [S1](0) exp [~ (kg + kic + kisc + kq[Q))t] - (6.7)

and we can define a fluorescence lifetime in the presence of quencher, 79 q, as

1
= ) 6.8
0.Q kr + kic + kisc + kqlQ] (6.8)
Inverting both sides gives
1 1
— = — + kq[@]. 6.9
P Ql@)] (6.9)

A plot of 1/79,q against [Q] should give a straight line plot with slope kq. Therefore, experimental
measurements of the fluorescence lifetime for a series of different concentrations of the quencher
make it possible to measure the rate constant for quenching. Equation (6.9) is one version of the
Stern—Volmer equation.

The effect of the quencher can also be analysed using a steady-state approach. With the inclusion
of the quencher, the steady-state expression for [S;] is

Iabs
S = . 6.10
[ 1]SS kg + kic + kisc + kQ [Q} ( )

This can then be used to find the quantum yield in the presence of quenchers

 kelSy] ki

= = . 6.11
¢rQ Taps kr + kic + kisc + kq[Q) (6.11)
In the absence of quencher the quantum yield is
kg [S1] kp
_ - , 6.12
Pr.0 Taps ke + kic + kisc (6.12)
SO 5
T =1+ mokq[Q) .- (6.13)
¢r.Q

This is another version of the Stern—Volmer equation and it implies that a plot of ¢r o/¢r g against
[Q] will give a straight line of slope 1okq. If a value for 7y is known from other measurements, we
can find a value from the rate constant for quenching, kq.

For otherwise fixed conditions the intensity of the fluorescence signal is proportional to the
quantum yield. Therefore ¢ro/¢r.q can be reexpressed as Iro/Ir,q. This gives another version
of the Stern—Volmer equation

Irg

7 =1+ TokQ[Q] . (6.14)
F,Q
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6.3.3 Quantum Yield for ISC and Phosphorescence

A quantum yield for ISC can be defined in an exactly analogous way. We then have

kisc

, 6.15
kp + kic + kisc (6.15)

d1sc =

The measured values of ¢rgc vary greatly.

molecule P1sc
benzene 0.25
anthracene 0.6
1,3-butadiene  ~ 0.0
propanone 1.0

benzophenone 1.0

Table 2: Data from Spectroscopy, Vol. 3, edited by B. P. Staughan and S. Walker, Chapman and
Hall, 1976.

The quantum yield for phosphorescence can be defined in the same way. We can also define a
phosphorescence lifetime, and the analysis is exactly the same as for fluorescence.

The following table compares values of the fluorescence and phosphorescence quantum yields for
a series of halogenated naphthalenes.

molecule ¢o (fluorescence) ¢p (phosphorescence) kigc/ s7!
naphthalene 0.55 0.06 10°
1-chloronaphthalene  0.29 0.30 —
1-bromonaphthalene 0.002 0.27 5 x 108
1-iodonaphthalene 0.0005 0.38 <3 x10°

Table 3: Data from Spectroscopy, Vol. 3, edited by B. P. Staughan and S. Walker, Chapman and
Hall, 1976.

The presence of a heavy atom increases the rate of ISC as a result of greater spin—orbit coupling.

6.4 Applications

Fluorescence is a very sensitive method for the detection of molecules. The reason for this is that
fluorescent photons appear at a different frequency from the exciting photons. So, rather than trying
to detect a small change in the absorption of the exciting radiation, we are detecting the appearance
of fluorescence against an essentially dark background. We can therefore take advantage of the very
sensitive detectors which are available for visible light and hence detect the fluorescence due to very
low concentrations of molecules.

In addition, by using lasers as the exciting radiation we can increase the intensity of the
fluorescence by maximizing the number of excited states which are generated. The monochromatic
nature of laser light also means that there is little contribution to the background signal in the region
where the fluorescence occurs.
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6.5 Fluorophores

Aside from simply detecting molecules, fluorescence measurements are much used as sensitive probes
of the environment in which they are located. We have already mentioned solvent effects as an
example of the use of such a probe. If the molecule of interest is not itself fluorescent then it is
still possible to use fluorescence measurements on such a system by attaching a fluorescent group or
molecule — called a fluorophore — to the molecule of interest, thereby rendering it fluorescent.

Much ingenuity has gone into developing fluorophores which can be attached to different kinds
of molecules. Sometimes the fluorophore is attached covalently to the molecule of interest, and
sometimes it simply binds using non-covalent interactions.

Dansyl chloride attaches itself covalently to side-chain amino groups of proteins, whereas ANS
binds non-covalently to proteins; both show fluorescence which is strongly dependent on environment.
These fluorophores also have the desirable property that they are only weakly fluorescent when free in
solution, but fluoresce strongly when bound to proteins. DPH is found to bind strongly to membrane
proteins, and like the other fluorophores mentioned here is only strongly fluorescent when bound.

DNA itself is only weakly fluorescent, but molecules such as ethidium bromide bind strongly to
DNA (by intercalation) and fluoresce strongly when bound. There are numerous other fluorophores
which are designed to bind to DNA.

Much ingenuity has also gone into developing fluorophores which either change the intensity, or
wavelength, of fluorescence as a result of the presence of simple ions (e.g. C1~,Nat, Ca?"), the pH
of the environment, or physical attributes, such as viscosity.

Green fluorescent protein (GFP) is a naturally occurring protein with 238 amino acid residues first
found in the jellyfish Aequorea victoria. Excitation at 395 nm gives strong fluorescence at 509 nm,
with a high quantum yield. What has made this protein so useful as a fluorophore is that, by using
genetic engineering techniques, it is possible to attach the DNA code for GFP to genes that code
for other proteins. When the gene is expressed, the protein is generated with GFP attached i.e.
the protein has an attached fluorophore. In this way it is possible to attach a fluorescent label to
all sorts of proteins and then follow their fate and distribution using fluorescence. There have been
many applications of this approach from the somewhat flippant “fluorescent fish” to fluorescence
microscopy.

6.5.1 FRET

If the (fluorescence) emission spectrum of one molecule overlaps significantly with the absorption
spectrum of another molecule, and if the two molecules are held in relatively close proximity, it is
found that there can be efficient energy transfer from the first molecule (the donor) to the second
(the acceptor). The energy is not transferred by exchange of a photon, but by a non-radiative process
mediated by a direct interaction between the two molecules. The process is known as fluorescence
resonance energy transfer, FRET.

The presence of FRET can be detected by measuring the reduction in fluorescence from the donor
as a result of interaction with the acceptor. Using the Férster theory of FRET it is possible to
infer the distance between the donor and acceptor molecules from such measurements. Practical
measurements cover distances of the order of tens of nm.

A typical example of the use of FRET is in structural studies on proteins. Typically the donor
might be an aromatic amino acid (e.g. tryptophan) and the acceptor might be a covalently attached
dansyl group. Protein folding has also been studied using FRET between aromatic amino acid residues
in the same protein. The principle here is that folding alters the distance between the residues, and
hence the efficiency of FRET.

67



A Black Body Radiation A3 High Resolution Molecular Spectroscopy

Appendices

A Black Body Radiation

First consider a photon gas in a three-dimensional box model. Analogous to particles in a box, the

wavelength of the light must satisfy

a= 2t (A1)

i

and so the total number of states available is

. % AV [
~ Sy — 3k = 7 2
}n: ~ /d n o /d k (271')3/0 dkk?, (A.2)

where we assumed \ < L so we can apply the integral approximation.

For photons, we have

E = hke = hw, (A.3)
and hence
dw = cdk. (A.4)
We may now rewrite our integral as
(427;‘)/3 /0 dkk? = /0 dw % : (A.5)
where )
g(w) = % (A.6)

is known as the density of states (although it is more common to express it in terms of energy as
g(E)dFE). It measures the number of states available for a single photon with frequency between
w and w + dw. There is a further complication for photons — it has two polarisation states (one
for each dimension transverse to the direction of propagation). To account for this, we double our
density of states to get

Vw?
g(w) =

(A7)

w2c3

The final fact that we need is important: photons are not conserved — you can check this by
turning off the light in your room. Therefore, we’re unable to define a chemical potential for photons.
Even in the canonical ensemble we must sum over states with different numbers of photons because
these are all accessible states.

We'll start by looking at photons with a definite frequency w. A state with N such photons has
energy £ = Nhw. Summing over all N gives us the partition function for photons at fixed frequency,

1

- —Bhw 4 o = —
Zy=1+e + e—2[hw + = o

(A.8)

We now need to sum over all possible frequencies. The independent partition functions multiply,
which means that the logs add. We only need to know how many photon states there are with some
frequency w. But this is exactly what the density of states (A.7) tells us. We have

logZ:/ dw g(w) log Z,,
0

voc _
7 log(1 — =P A.
= /0 dww? log(1 — =AM (A.9)
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This seems like a horrible integral to evaluate, but luckily, we don’t need to evaluate it! The
energy in the photon gas is

0 Vh [ w3
E =— log Z = dw ———. Al
0B 08 m2c3 /0 W e (A.10)
We obtained our Planck distribution
h 3
plw)dw 4 A (A.11)

ey :

irelAt

By the ideal gas equation, the concentration of gas is given by

N P
_N_ , B.1
TV T kaT (B.1)

The number of collisions occurring on a specific particle over a time interval At is
Neol = UrelAtoc, (BQ)

so the collision rate is
Neol

At
The speed distribution of a particle is given by the Maxwell-Boltzmann distribution

Z = = Uyei0C. (B.3)
fv)dv = NovZe ™ /2k5T qy
= N/e_mvz/QkBTZlﬂ' dov , (B4)

where we can regard 4mv? dv as the integration metric for the whole three dimension space of velocity
d3v. Hence, the velocity probability distribution is

d(v)dPv = N'e=mlIvIF/2k5T g3y (B.5)

which is a Gaussian distribution of variance kg7 /m. In fact this expression can be elegantly derived
from a pure symmetry argument, even if we do not know Maxwell-Boltzmann distribution.

The probability distribution of the relative velocity between two particles v, = vi — va is given
by the autoconvolution of (B.5), so it is a Gaussian with a doubled variance. Hence, the probability
distribution of the relative velocity

w(vrel) dSVrel = Meim‘lvrd I /4k5T d3Vre1 s (BG)
and so the relative speed distribution is
9(Vrel) = M'v2emvia/ kBT gy o (B.7)

where we can get the normalisation constant

(B.8)
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by evaluating the integral. The average relative speed is therefore

oo
Urel = / d'Urel vg(vrel)
0

kT
=44/ 28 (B.9)
m™m

Then, we can substitute (B.9) and (B.1) into the collision rate expression (B.3) to get

4 P 16kpT 2
=0 _—
kgT ™m

4dpo

= B.10
vV kB Trm ( )
Hence, the pressure broadening is given by

1 Z

AVprcss = 5 — &

2rT 2w

2

A (B.11)

VEkgTmm

C Microwave Spectra Intensities

Consider the allowed transitions between levels J and J + 1, with populations ny; and njyq,
respectively. Note that the degeneracy of the lower level is 2J + 1 and of the upper level is 2J + 3.
Then the net rate of absorption of photons is given by

dn J
dt
The first term is the stimulated absorption and the second term is the stimulated emission. We
ignored the spontaneous emission because it is insignificant in the microwave regime.

=—Bjyjrip(vi)ng + By, opVi)ngs1 (C.1)

Note that the Einstein B coefficients are not the same for both processes due to degeneracies. As
we stated before, the relationship is

Bij gj
=2 C.2
Bj‘ g ( )

and so we have o) +1
Bjt1,0= 2753 3BJ,J+1 . (C.3)

The populations are given by the Boltzmann distribution

N €y
= (2 1)— — 4
n =@+ D e (1) (C.4)
N €
ny1 = (2J + 3); exp (— kJ;;“) . (C.5)
The ratio is 0713 N
_ + _hwy
nji1 —nJ2J+1exp( kBT) , (C.6)

where v is the frequency of the corresponding transition.

Substituting everything into the rate expression, we get

dny
dt

= By ypvs)ng {1 —exp (— :;’;_’FH : (C.7)
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For rotational transitions, hvy < kpT', so we may use Taylor expansion to obtain

dnJ hVJ
= __B L
& Ta+1p(Vr)ng T
N €J hl/J
= —B 2 1 —_— —_— —_— . .
J7J+1p(VJ)( J+ ) q exp( kBT> k‘BT (C 8)

The rate is negative, meaning that overall stimulated absorption is faster than stimulated emission.

Detailed calculations show that the Einstein coefficients depend on rotational levels according to

J+1

1 (C-9)

Brjt1 =

Finally, note that what the spectrometer measures is the rate of absorption (or emission) of energy
(that is the power). Each time the population changes by one, a photon of energy hv; is absorbed
(or emitted). So, the rate of absorption of energy, I is given by

dn
I = 7dt‘] hVJ
2 €J
o (J 4+ 1)p(vy)vsexp (—) . (C.10)
kgT

If we assume the energy density of photons is constant, then we obtain the final result

I oc (J+1)v3exp (_I:JT> . (C.11)
B

D Symmetries of Degenerate Normal Modes

Consider a hypothetical centrosymmetric linear molecule A — A — A. The bending mode is doubly
degenerate: in one mode all molecules move in the x direction, and in the other mode all the molecules
are moving in the y direction. They are given normal coordinates Qu(z1,x2,x3) and Qy(y1,¥2,ys3)
respectively.

The ground state wavefunction of this degenerate normal mode is

oo = exp (—;Qi) exp (—;QZ) . (D.1)

The symmetry operations cause the mixing of the coordinates @), and @, so the two parts of the
wavefunctions cannot be considered separately.

We want to figure out the irreducible representation of the ground state wavefunction. For
example, consider the rotation by ¢ about the z-axis. This results in the mixing of the coordinates

<$Z> . ( cgsd) sin (b) <xz> . (D.2)
Yi —sing cosd ) \y;
<Qa¢> s ( CO.S @ sin ¢> (Qx) . (D.3)
Qy —sing cos¢) \Qy

Hence we have
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Hence the effect of this rotation on g is
exp (—;Qi) exp (—;Qi)
o oxp (= 51Qu coso-+ Qysingl? ) exp (5= Qusing + Q, cosl
= exp (—; (@7 cos® ¢+ 2QuQy sin ¢ cos ¢ + Q) sin” ¢})
X exp (—; (@2 sin® ¢ — 2Q,Qy sin ¢ cos ¢ + Q;, cos ¢})
—exp (3 (6007 6 + o 6102 + s 6 + cos? )

= exp (;Qi) exp (;Qi) . (D.4)

The net result is that 1gg is invariant to the rotation: the same turns out to be true for any symmetry
operation of the molecule. It follows that the ground state wavefunction transforms as the totally
symmetric IR, T, which is the same behaviour we have seen for non-degenerate normal modes.

The first excited state has one quantum of excitation which can be in the mode with normal
coordinate @, giving the wavefunction

19 = 2Q, exp <—;Qi> X exp (—;Qi) . (D.5)
vp=1 vy, =0

Alternatively, the quantum of excitation can be in the mode with normal coordinate @, giving the
wavefunction

i = exp (502 ) 20,00 (303 (D.6)

V=0 vy =1

These two wavefunctions correspond to degenerate states.

As before, let us consider the effect of a rotation by angle ¢ about z on 19 and vg,. By simple

algebra, we obtain
to1 [ s ¢ sing) (Yo . (D.7)
Y10 —sing cos¢ ) \ 1o

Thus 119 and ; transform together in the same way as the normal coordinates @, and Q,. In
other words they transform as the same IR as the normal mode, which is identical to the result we
found for non-degenerate normal modes. This pair of degenerate normal modes has IR II, and this is
consistent with the mixing going as cos ¢ and sin ¢: for the IR II the character under the operation
C.(«a) is 2 cos a.

For the second excited state there are three possibilities of excitation

Voo =(4Q? — 2) exp (;Qi> X exp (;Q;f) , (D.8)
m= 20w (-5@)x 20,0 (303 (D.9)
o2 = exp (—;Qi) X(4Qz2/ —2)exp (—;Qi) ) (D.10)

We know that the product of the exponential terms is invariant to rotations about z so we can simply
ignore these terms in what follows. For reasons that will become apparent it is easier to consider the
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linear combinations (omitting the exponential terms)

Py = %(1#20 +1o2) = 2(Q2 + Q) — 2 (D.11)
= L0 — o) = 2(Q3 ~ @) (D.12)

Some straightforward but tedious algebra shows that under a rotation by ¢ about the z-axis ¢} is
invariant whereas ¥4 and t;; are mixed, with coefficients going as cos 2¢ and sin 2¢.

The invariant wavefunction transforms as one of the ¥ IRs, because this invariance under a z
rotation is a property of the ¥ IR. To work out if the IR is ¥ or X~ consider the effect of a reflection
in zz plane: the coordinate @, is unaffected, but @, changes sign. However, 15 depends only on the
squares of these coordinates, so it is invariant to the reflection. The IR must therefore be X+.

The two wavefunctions that are mixed must correspond to a two-dimensional A IR because this
IR has character 2 cos2a under the operation C,(«). In summary, the second excited state of this
doubly-degenerate normal mode has three degenerate wavefunctions which transform as a ¥* IR and
as a A IR.

This is all very well, but it is a rather laborious process. Luckily, it can be sidestepped by using a
modified version of the argument we used to find the IR of the second excited-state wavefunction for
a non-degenerate mode: we simply compute the direct product '@ @ '™ | where T'() is the IR of the
normal mode. Applying this approach for a II degenerate mode gives the following direct product

IeI=X"Tae X |eA (D.13)

The difficulty is that the direct product of two two-dimensional IRs necessarily gives a result which
has a total dimensionality of four — but we only have three wavefunctions to classify. The resolution
of this problem is to understand that the square bracket around ¥~ indicates that this IR corresponds
to the antisymmetrised direct product whereas the other IRs correspond to the symmetrised direct
product. For vibrational states only the symmetrised direct product is appropriate, so the ¥~ is
rejected leaving just ©1T @& A. We have already identified these as the IRs spanned by the second
excited state. The method by which the IRs resulting from a direct product are classified as being
from the symmetrised or antisymmetrised product is described in the course BS: Symmetry.
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