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0 Assumed Knowledge IB Mathematical Methods

0 Assumed Knowledge

0.1 Numbers and Sets

Definition 0.1. A set is a collection of objects without regard to order. We write x ∈ X if x is an
element of X.

Definition 0.2. Two sets A and B are equal, written as A = B, if for all x,

x ∈ A ⇐⇒ x ∈ B .

Definition 0.3. A is a subset of B, written as A ⊆ B, if all elements in A are in B.

Definition 0.4. Given two sets A and B, we define the following:

• Intersection. A ∩B := {x | x ∈ A and x ∈ B}.

• Union. A ∪B := {x | x ∈ A or x ∈ B}.

• Set difference. A \B := {x | x ∈ A, x /∈ B}.

• Power set. P(A) = {X | X ⊆ A}.

Definition 0.5. Given two sets A, B, the Cartesian product of A and B is A × B = {(a, b) : a ∈
A, b ∈ B}, where (a, b) is an ordered pair of two items in which order matters.

Definition 0.6. A binary operation · on a set X is a function · : X ×X → X.

Definition 0.7. A set F together with two binary operations, say addition and multiplication, is a
field if elements in F satisfy the axioms:

(F1) Closure. ∀a, b ∈ F, a+ b, ab ∈ F ;

(F2) Associativity. ∀a, b, c ∈ F, a+ (b+ c) = (a+ b) + c, a(bc) = (ab)c;

(F3) Commutativity. ∀a, b ∈ F, a+ b = b+ a, ab = ba;

(F4) Distributivity. ∀a, b, c ∈ F, a(b+ c) = ab+ ac;

(F5) Additive identity. ∃e ∈ F such that ∀a ∈ F, e+ a = a;

(F6) Multiplicative identity. ∃u ∈ F, u 6= e such that ∀a ∈ F, ua = a;

(F7) Additive inverse. ∀a ∈ F, ∃b ∈ F such that a+ b = e;

(F8) Multiplicative inverse. ∀a ∈ F, a 6= e, ∃b ∈ F such that ab = u.

Remark. When mentioning fields or number fields in these lecture notes, it is always fine to think of
real numbers R or complex numbers C. It is easy to check that they satisfy the field axioms, with
additive identity 0 and multiplicative identity 1.

0.2 Functions

Definition 0.8. A function, or a mapping

f : X → Y

is a rule to associate a single element f(x) in set Y to every element x in set X. X is the domain
and Y is the codomain. If the element xi ∈ X maps to yi ∈ Y , we write xi 7→ yi.

1
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Definition 0.9. A function f : X → Y is injective if f(x1) = f(x2) implies x1 = x2. f maps distinct
elements to distinct elements.

Definition 0.10. A function f : X → Y is surjective if for every y ∈ Y , there is at least one x ∈ X
such that f(x) = y.

Definition 0.11. A function is bijective if it is both surjective and injective.

Definition 0.12. The composition of two functions is a function obtained by applying one after
another. In particular, if f : X → Y and g : Y → Z, then g ◦ f : X → Z is defined by g ◦ f(x) =
g(f(x)).

Definition 0.13. An inverse of f : X → Y is a function f−1 : Y → X such that

f−1(f(x)) = x and f(f−1(y)) = y ∀x ∈ X , y ∈ Y .

Theorem 0.14. The inverse of f exists if and only if it is bijective, and the inverse of a function is
necessarily unique.

Definition 0.15. The set A is finite if there exists a bijection f : A→ {1, 2, . . . , n} for some n ∈ N0.
The cardinality or size of A, written as |A|, is n.

Definition 0.16. A set A is countable if A is finite or there is a bijection between A and N. A set A
is uncountable if A is not countable.

0.3 Calculus

Theorem 0.17 (The first fundamental theorem of calculus). The derivative of the integral of
f is f if f is continuous.

d

dx

(ˆ x

a

f(t) dt

)
= f(x) .

Theorem 0.18 (The second fundamental theorem of calculus). The integral of the deriva-
tive of f is f if f is differentiable and f ′ is integrable.

ˆ b

a

df

dx
dx = f(b)− f(a) .

Theorem 0.19 (Taylor’s theorem). Let f(x) be a function of a real variable x, which is
differentiable at least n times in the interval x0 ≤ x ≤ x0 + h. Then the Taylor series of f(x0 + h) is
given by

f(x0 + h) = f(x0) + hf ′(x0) +
h2

2!
f ′′(x0) + · · ·+ hn−1

(n− 1)!
f (n−1)(x0) +Rn ,

where the remainder after n terms, Rn, is obtained by integration by parts to be

Rn =

ˆ x0+h

x0

(x0 + h− x)n−1

(n− 1)!
f (n)(x) dx .

Corollary (Taylor’s theorem of multiple variables). Let f(x, y) be a function of two variables,
then

f(x+ δx, y + δy) = f(x, y) + δx
∂f

∂x
+ δy

∂f

∂y
+

1

2!

(
(δx)2

∂2f

∂x2
+ 2δxδy

∂2f

∂x∂y
+ (δy)2

∂2f

∂y2

)
+ . . .

Theorem 0.20 (Chain rule). Suppose f is a function of n variables xi, f = f(x1, x2, . . . , xn), and
xi depends on m variables sj , then

∂f

∂sj
=

n∑
i=1

∂f

∂xi

∂xi
∂sj

.

2
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0.4 Vectors

For vectors a = (a1, a2, a3), b = (b1, b2, b3) and c = (c1, c2, c3) ∈ R3.

Definition 0.21. The scalar product of a and b is

a · b =

3∑
i=1

aibi .

Definition 0.22. The vector (cross) product of a and b is

a× b =

∣∣∣∣∣∣
î ĵ k̂
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ .
Theorem 0.23 (Scalar triple product).

a · (b× c) =

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ .
Theorem 0.24 (Vector triple product).

a× (b× c) = (a · c)b− (a · b)c .

0.5 Vector Calculus

0.5.1 Line Integral

Consider a curve characterised by a map

f : R → Rn .

Suppose the curve is parameterised by t, then the derivative is

dx

dt
= lim
δt→0

δx

δt
.

Theorem 0.25. The arc length is

s =

ˆ t

t0

∣∣∣∣dxdt′
∣∣∣∣ dt′ .

Definition 0.26. A scalar field ϕ(x) is a map

ϕ : Rn → R .

Definition 0.27. A vector field F(x) is a map

F : Rn → Rn .

Theorem 0.28. The line integral of a scalar field ϕ(x) and a vector field F(x) along a curve γ
parameterised by t in the interval [ta, tb] is

ˆ
γ

ϕ ds =

ˆ tb

ta

ϕ(x(t))

∣∣∣∣dxdt
∣∣∣∣ dt ,

ˆ
γ

F(x) · dx =

ˆ tb

ta

F(x(t)) · dx
dt

dt .

3
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0.5.2 Multiple Integral

Consider a region Ω ⊂ Rn and a scalar function ϕ : Rn → R.

Definition 0.29. The multiple integral of a function ϕ over a region is defined by the limit
ˆ
Ω

ϕ(x) dx := lim
all δVi→0

∑
i

ϕ(xi)δVi ,

where {δVi} partitions Ω.

Theorem 0.30. If a simple region Ω ⊂ R2 has x in range [a, b], and the upper and lower boundary
of Ω are given by y2(x) and y1(x), then

¨
Ω

ϕ(x, y) dA =

ˆ b

a

ˆ y2(x)

y1(x)

ϕ(x, y) dy dx .

Corollary. This can be generalised to n-dimensional integration:
ˆ
Ω

ϕ(x) dnx =

ˆ b

a

dx1
ˆ x2

2(x
1)

x2
1(x

1)

dx2 . . .

ˆ xn
2 (x

1,x2,...,xn−1)

xn
1 (x

1,x2,...,xn−1)

dxn ϕ(x1, x2, . . . , xn) .

0.5.3 Surface Integral

Consider a surface S ⊂ R3 parameterised by u and v.

Theorem 0.31. The surface vector area element is given by

dS = n̂ dS =
∂x

∂u
× ∂x

∂v
du dv ,

where n̂ is the local unit normal vector to the surface and dS is the scalar area element.

Definition 0.32. The flux of a vector field F(x) over a surface S is
¨

S
F(x) · dS .

Theorem 0.33. Let a surface S be parameterised by u and v, and let the unit normal vector to the
surface be n̂(x). The flux of F through S is

¨
S
F(x) · dS =

¨
S
F(x) · n̂ dS =

¨
S
F(x(u, v)) ·

(
∂x

∂u
× ∂x

∂v

)
du dv .

0.6 Fourier Series

Lemma 0.34. For n,m ∈ N0,
ˆ L

0

sin
2πnx

L
sin

2πmx

L
dx =

{
L
2 if n = m 6= 0

0 otherwise

ˆ L

0

cos
2πnx

L
cos

2πmx

L
dx =


L
2 if n = m 6= 0

L if n = m = 0

0 otherwiseˆ L

0

sin
2πnx

L
cos

2πmx

L
dx = 0 .
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Theorem 0.35 (Fourier series). Let f(x) be a function with period L, then the Fourier series
expansion of f(x) is given by

f(x) =
1

2
a0 +

∞∑
n=1

an cos
2πnx

L
+

∞∑
n=1

bn sin
2πnx

L
,

where
an =

2

L

ˆ x0+L

x0

f(x) cos
2πnx

L
dx ,

bn =
2

L

ˆ x0+L

x0

f(x) sin
2πnx

L
dx .

5
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1 Vector Calculus

In this chapter, we will consider the prototype E3 vector space without reference to general vector
spaces and linear algebra in an abstract sense — this will be done in section 4. We will first quickly
review some basic concepts that should be familiar at this stage.

1.1 Vectors and Basis

Definition 1.1. A vector is a quantity specified by a magnitude and a direction in space.

A 3D Euclidean space E3 is a close approximation to our physical space, with the following properties:

• points are the elements of the space;

• vectors are translatable, directed line segments;

• being Euclidean means lengths and angles obey the classical results of geometry.

Definition 1.2. Two vectors u and v are linearly independent if

λu+ µv = 0 =⇒ λ = µ = 0 .

Definition 1.3. A basis is a set of linearly independent non-zero vectors, e1, e2 and e3, such that
any vector v can be expressed uniquely as

v = v1e1 + v2e2 + v3e3 .

The numbers (scalars) v1, v2 and v3 are the components of the vector in this basis.

Remark. The choice of a basis is not unique. If we choose a different basis, then the components will
be different.

Definition 1.4. A set of basis vectors is said to be orthonormal if

ei · ei = 1, ei · ej = 0 for i 6= j .

We can choose the basis of an E3 space to be any three linearly independent vectors. But an
orthonormal basis will make the calculations much simpler.

Definition 1.5. An orthonormal basis is right-handed if

e1 × e2 = e3 ,

and therefore
[e1, e2, e3] := e1 · (e2 × e3) = 1 .

Definition 1.6. Identify e1, e2 and e3 along x, y, z directions respectively. For a position vector x
with

x = xe1 + ye2 + ze3 ,

its Cartesian coordinate is given by (x, y, z).

6
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1.2 Suffix Notation

Definition 1.7. An alternative notation for vectors is to write

v = (v1, v2, v3) =: {vi} for i = 1, 2, 3 .

Such notation is called the suffix notation.

We also denote the ith component of v as (v)i. (v)i ≡ vi.

Under suffix notation, we express position vectors as

x = (x, y, z) = (x1, x2, x3) = {xi} .

If two vectors are equal, a = b, then all components of them should be equal, so we write

ai = bi for i = 1, 2, 3 .

This is a vector equation; when we omit the ‘for i = 1, 2, 3’, it is understood that the one free suffix
i ranges through 1,2,3 (or 1,2 in 2D) so as to give three component equations. Similarly,

c = λa+ µb ⇐⇒ ci = λai + µbi .

The symbol for the index is arbitrary. We can use whatever symbol we want, say

c$ = λa$ + µb$ ,

and it is nothing different than using i.

More complicated expressions can also be expressed using suffix notations. For example, the scalar
product is

a · b =

3∑
i=1

aibi .

However, the expression will soon get complicated when we have complex expressions, especially
when we have a lot of summation signs to write. To express (a · b)(c · d), we need to write

3∑
i=1

3∑
j=1

aibicjdj ,

which is not any simpler than the usual expression. To make our life easier, we will introduce
summation convention to simplify our expressions.

1.2.1 Summation Convention

Definition 1.8. The rules of Einstein’s summation convention are

• if a suffix appears once, it is taken to be a free suffix and ranged through;

• if a suffix appears twice, it is taken to be a dummy suffix and summed over;

• if a suffix appears more than twice in one term, something has gone wrong unless there is an
explicit sum.

7
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Examples.

(i) Scalar product:
a · b = aibi

(ii) Transpose of a matrix:
(AT)ij = Aji

(iii) Trace of a matrix:
tr(A) = Aii

(iv) Matrix times a vector:
y = Ax ⇐⇒ yi = Aijxj

(v) Matrix times a matrix:
A = BC ⇐⇒ Aij = BikCkj

1.2.2 Kronecker Delta and Levi–Civita Symbol

We introduce two extra symbols, motivated by dot product and cross product (which will be clear
later), that will make our life even simpler.

Definition 1.9. The Kronecker delta, δij , is defined as

δij :=

{
1 if i = j

0 if i 6= jδ11 δ12 δ13
δ21 δ22 δ23
δ31 δ32 δ33

 =

1 0 0
0 1 0
0 0 1

 = I

The Kronecker delta has the following properties.

(i) δij is symmetric. δij = δji.

(ii) aiδij = aj

(iii) δijδjk = δik

(iv) aiδijbj = aibi = a · b

(v) δii = 3

(vi) For an orthonormal basis, ei · ej = δij .

Definition 1.10. The Levi–Civita symbol, εijk, is defined as

εijk :=


1 if i j k is an even permutation of 1 2 3
−1 if i j k is an odd permutation of 1 2 3
0 otherwise .

Lemma 1.11. The product of two Levi–Civita symbols is

εijkεlmn =

∣∣∣∣∣∣
δil δim δin
δjl δjm δjn
δkl δkm δkn

∣∣∣∣∣∣ .
Proof. We can observe that the value of both the LHS and the RHS:

8
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(i) are 0 when any of (i, j, k) are equal (two rows equal in a determinant), or when any of (l,m, n)
are equal (two columns equal in a determinant);

(ii) are 1 when (i, j, k) = (l,m, n) = (1, 2, 3);

(iii) change sign when any of (i, j, k) are interchanged (row interchange in a determinant), or when
any of (l,m, n) are interchanged (column interchange in a determinant). □

Contracting an increasing number of indices, we get the following handy identities.

Corollary.

εijkεimn = δjmδkn − δjnδkm

εijkεijn = 2δkn

εijkεijk = 6 .

A vector product can be expressed as

a× b = εijkeiajbk ,

or equivalently
(a× b)i = εijkajbk .

The scalar triple product is

a · (b× c) = ai(b× c)i = εijkaibjck

and the vector triple product is

(a× (b× c))i = εijkaj(b× c)k

= εijkajεklmblcm

= (δilδjm − δimδjl)ajblcm

= ajbicj − ajbjci

= ((a · c)b− (a · b)c)i .

1.2.3 Cauchy–Schwarz Inequality

Theorem 1.12 (Cauchy–Schwarz inequality).

‖x‖2‖y‖2 − |x · y|2 ≥ 0

Proof.

‖x‖2‖y‖2 − |x · y|2 = xixiyjyj − xiyixjyj

=
1

2
xixiyjyj +

1

2
xjxjyiyi − xiyixjyj

=
1

2
(xiyj − xjyi)

2 ≥ 0 .

□

9
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1.3 Vector Calculus in Cartesian Coordinates

1.3.1 Gradient and Directional Derivative

For a scalar field ψ(x), consider a small change to the position x, say to x + δx. This small change
in position will generally produce a small change in ψ. Estimating this change in ψ using the Taylor
series to the first order, we get

δψ ≡ ψ(x+ δx)− ψ(x) =
∂ψ

∂x
δx+

∂ψ

∂y
δy +

∂ψ

∂z
δz + . . .

=

(
∂ψ

∂x
ex +

∂ψ

∂y
ey +

∂ψ

∂z
ez

)
· (δxex + δyey + δzez) + . . .

The terms in the second bracket are just δx, so the terms in the first bracket evaluate how the scalar
field ψ changes to the first order in δx.

Definition 1.13. The gradient of a scalar field ψ is

∇ψ :=
∂ψ

∂xi
ei .

When δx is infinitesimal, the higher order terms in the Taylor expansion becomes negligible, so we
can write

dψ = ∇ψ · dx .

Definition 1.14. The differential operator, ∇, is defined as

∇ := ei
∂

∂xi
.

Definition 1.15. The directional derivative of ψ in a direction l̂ is the rate of change of ψ in the
direction of l̂. By doing a Taylor expansion of ψ(x+ ŝl) for small s, it’s easy to see that this is

d

ds
ψ(x+ ŝl)

∣∣∣∣
s=0

= l̂ · ∇ψ .

Proposition 1.16. A unit normal to the surface ϕ = const. is given by

n̂ =
∇ϕ

|∇ϕ|
.

Proof. When the directional derivative is zero, i.e. l̂ · ∇ϕ = 0, it follows that if ∇ϕ 6= 0, then ϕ does
not change in the direction of l; hence l is a tangent to the surface ϕ = const. ∇ϕ is orthogonal to
all l̂ tangent to the surface, so it is the normal. □

1.3.2 Divergence and Curl

Here we introduce two differential operators that are ubiquitous in vector calculus.

Definition 1.17. For a vector field
F(x) = Fi(x)ei ,

the divergence is defined as

div F := ∇ · F =

(
ex

∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z

)
· (Fxex + Fyey + Fzez)

=
∂Fi
∂xi

,

10
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and the curl is defined as

curl F := ∇× F =

(
ex

∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z

)
× (Fxex + Fyey + Fzez)

=

∣∣∣∣∣∣
ex ey ez
∂x ∂y ∂z
Fx Fy Fz

∣∣∣∣∣∣
= εijkei

∂Fk
∂xj

,

where ∂x is the shorthand notation of ∂
∂x .

Definition 1.18. The scalar operator F · ∇ is defined as

F · ∇ := Fi
∂

∂xi
.

It acts on both scalar and vector fields.

(F · ∇)ψ = Fi
∂ψ

∂xi
= F · (∇ψ)

((F · ∇)G)i = Fj
∂Gi
∂xj

1.4 Second-order Vector Differential Operators

1.4.1 Curl Grad and Div Curl

Theorem 1.19. For any differentiable scalar field ψ and vector field F

∇×∇ψ ≡ 0

∇ ·∇× F ≡ 0

Proof.

∇×∇ψ = εijkei
∂

∂xj

(
∂

∂xk
ψ

)
= εikjei

∂

∂xk

∂

∂xj
ψ

= −εijkei
∂

∂xj

∂

∂xk
ψ

= 0

∇ ·∇× F =
∂

∂xi
εijk

∂

∂xj
Fk

=
∂

∂xj
εjik

∂

∂xi
Fk

= − ∂

∂xi
εijk

∂

∂xj
Fk

= 0

□

11
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Definition 1.20. A vector field F(x) is irrotational if ∇× F = 0. A vector field is conservative if
there exists a scalar field φ(x) such that F = ∇φ.

Theorem 1.21. The line integral around any closed curve vanishes if and only if F is conservative.

Proof.

(⇐) Consider a conservative field F = ∇φ. Consider a curve C that interpolates from a to b, with
parameterisation x(t). We have

ˆ
C
F · dx =

ˆ
C
∇φ dx =

ˆ tb

ta

∂φ

∂xi

dxi
dt

dt =

ˆ tb

ta

d

dt
φ(x(t)) dt .

We now have the integral of a total derivative, so
ˆ
C
F · dx = [φ(x(t))]

tb
ta

= φ(b)− φ(a) .

This means that the line integral is only dependent on the endpoints of the path. This also
implies that the integral around any closed curve is 0.

(⇒) We are able to construct a potential φ for any conservative field F. Take an arbitrary value of
φ at some point (φ(0) = 0 for example), then for any other point x = y, its potential is given
by

φ(y) =

ˆ
C(y)

F · dx ,

where C(y) is an arbitrary curve from x = 0 to x = y. This is well-defined since a vanishing
loop integral implies the line integral is only dependent on the endpoints of the curve.
We have

∂φ(y)

∂xi
= lim
ϵ→0

1

ϵ

[ˆ
C(y+ϵei)

F · dx−
ˆ
C(y)

F · dx
]

= lim
ϵ→0

1

ϵ

ˆ
C(y+ϵei)−C(y)

F · dx

= F(y) · ei = Fi(y) .

This is our desired result ∇φ = F. □

Theorem 1.22 (Poincaré lemma). For vector fields defined everywhere on R3, conservative is the
same as irrotational.

∇× F = 0 ⇐⇒ F = ∇φ for some φ .

Proof.

(⇒) Corollary of Stokes’ theorem (Theorem 1.28). Will be proved later.

(⇐)
∇× F = ∇×∇φ = 0

by Theorem 1.19. □

Definition 1.23. A vector field F(x) is solenoidal if ∇ · F = 0.

Theorem 1.24. Any solenoidal field defined everywhere in R3 is the curl of some vector field.

∇ · F = 0 ⇐⇒ F = ∇×A for some A .

12
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Proof.

(⇒) We pick some arbitrary point x0 = (x0, y0, z0) and construct the following field

A(x) =

(ˆ z

z0

Fy(x, y, z
′) dz′ ,

ˆ x

x0

Fz(x
′, y, z0) dx

′ −
ˆ z

z0

Fx(x, y, z
′) dz′ , 0

)
.

∇×A =

(
−∂Ay
∂z

,
∂Ax
∂z

,
∂Ay
∂x

− ∂Ax
∂y

)
.

If follows immediately from the fundamental theorem of calculus that the x and y components
of ∇×A is F. Using the condition that ∇ · F = 0, we have

(∇×A)z = Fz(x, y, z0)−
ˆ z

z0

∂Fx
∂x

dz′ −
ˆ z

z0

∂Fy
∂y

dz′

= Fz(x, y, z0) +

ˆ z

z0

∂Fz
∂z

dz′ = Fz(x, y, z) .

The existence of A is proved by construction.

(⇐)
∇ · F = ∇ ·∇×A = 0

by Theorem 1.19. □

1.4.2 Laplacian

Consider

∇ ·∇ψ =
∂

∂xi

(
∂

∂xi
ψ

)
=
∂2ψ

∂x2i

=

(
∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23

)
ψ .

Definition 1.25. The Laplacian operator, ∇2, is defined as

∇2 := ∇ ·∇ =
∂2

∂x2i
.

Remark. Although defined for scalar fields, the Laplacian can also act on a vector field component-
wise. Its action on a vector field can also be defined via the identity

∇2F = ∇(∇ · F)−∇× (∇× F) .

1.5 Integral Theorems

1.5.1 The Divergence Theorem (Gauss’ Theorem)

Theorem 1.26 (The divergence theorem (Gauss’ theorem)). Let S be a piecewise smooth
surface enclosing a volume V in R3, with a normal n̂ that points outwards from V. Let F be a
smooth vector field. Then ˚

V
∇ · F dV =

‹
S
F · dS .

13
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Proof. Consider F = Fxex + Fyey + Fzez. We have
˚

V
∇ · F dV =

˚
V

∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

dV .

If the theorem holds for one component of F, it must hold for the sum of all three dimensions. Let
us consider the z component only.

Let us denote the projection of V on the xy plane as D, and the upper and lower boundary of V
as z+(x, y) and z−(x, y). We have

˚
V

∂Fz
∂z

dV =

¨
D

ˆ z+(x,y)

z−(x,y)

∂Fz
∂z

dz dA

=

¨
D
(Fz(x, y, z+(x, y))− Fz(x, y, z−(x, y))) dA .

Suppose that the normal of the upper surface makes an angle θ with ez. We have

δA = cos θδS = ez · n̂δS .

Similarly, for the lower bound, we have

δA = −ez · n̂δS .

Therefore, we can write
˚

V

∂Fz
∂z

dV =

¨
D
(Fz(x, y, z+(x, y))ez · n̂+ Fz(x, y, z−(x, y)))ez · n̂ dS

=

¨
S+

Fzez · n̂ dS +

¨
S−

Fzez · n̂ dS

=

‹
S
Fzez · n̂ dS .

Summing over all three dimensions, we have
˚

V
∇ · F dV =

˚
V

∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

dV

=

‹
S
Fxex · n+ Fyey · n+ Fzez · n dS

=

‹
S
F · dS .

□

Corollary. Generalisation for a scalar field. Let ψ be a smooth scalar field,
˚

V
∇ψ dV =

‹
S
ψ dS .

Proof. Set F = ψa, where a is an arbitrary constant vector. Then by the divergence theorem,

a ·
˚

V
∇ψ dV = a ·

‹
S
ψ dS .

Since a is arbitrary, the corollary follows. □

Alternative proof. Choose a = ei to obtain the component form
˚

V

∂ψ

∂xi
dV =

‹
S
ψni dS .

Then the corollary follows. □
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Corollary. Generalisation for a vector field. Let A be a smooth vector field,
˚

V
∇×A dV =

‹
S
n̂×A dS .

Proof. Either set F = a × A in the divergence theorem (Theorem 1.26), where a is an arbitrary
constant vector, and then proceed as above, or let ψ = εijkAj to recover this corollary in component
form. □

1.5.2 Stokes’ Theorem

Theorem 1.27 (Green’s theorem). For smooth functions P (x, y) and Q(x, y) in a closed region
A ⊂ R2 bounded by piecewise smooth, non-intersecting closed curve C = ∂A,

¨
A

(
∂Q

∂x
− ∂P

∂y

)
dx dy =

˛
C
(P dx+Q dy) .

Remark. Green’s theorem is equivalent to the 2D version of the Stokes’ theorem, which we will see
immediately after.

Proof. Let F = (Q,−P ) be a vector field. We then have
¨

A

(
∂Q

∂x
− ∂P

∂y

)
dA =

¨
A
∇ · F dA .

Parameterise curve C by x(s) = (x(s), y(s)), then the tangent vector is t(s) = (x′(s), y′(s)) and the
normal vector is n̂ = (y′(s),−x′(s)). We then have

F · n̂ = Q
dy

ds
+ P

dx

ds
,

and so the integral around C is
˛
C
F · n̂ ds =

˛
C
P dx+Q dy .

The 2D divergence theorem states that
¨

A
∇ · F dA =

˛
C
F · n̂ ds ,

so the Green’s theorem follows. □

Theorem 1.28 (Stokes’ theorem). Let C be a piecewise smooth closed curve bounding a smooth
open surface S. Let F(x) be a smooth vector field. Then

¨
S
∇× F · dS =

˛
C
F · dx ,

where the line integral is taken in the direction of C as specified by the right-hand rule.

Proof. Parameterise the surface S by x(u, v). Denote the associated area in the (u, v) plane as A.
Parameterise the boundary C = ∂S as x(u(t), v(t)) so that the corresponding boundary in (u, v) plane
∂A is (u(t), v(t)).

The key idea is to use Green’s theorem in the (u, v) plane for the area A and then uplift this to
prove Stokes’ theorem for the surface S.

The line integral around the boundary is
˛
C
F · dx =

˛
C
F ·
(
∂x

∂u
du+

∂x

∂v
dv

)
=

˛
∂A

Fu du+ Fv dv ,
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where Fi = F · ∂x∂i . By Green’s theorem,
˛
∂A

Fu du+ Fv dv =

¨
A

(
∂Fv
∂u

− ∂Fu
∂v

)
dA .

The partial derivatives are evaluated to be

∂Fv
∂u

=
∂

∂u

(
F · ∂x

∂v

)
=

∂

∂u

(
Fi
∂xi
∂v

)
=

(
∂Fi
∂xj

∂xj
∂u

)
∂xi
∂v

+ Fi
∂2xi
∂u∂v

,

∂Fu
∂v

=
∂

∂v

(
F · ∂x

∂u

)
=

∂

∂v

(
Fi
∂xi
∂u

)
=

(
∂Fi
∂xj

∂xj
∂v

)
∂xi
∂u

+ Fi
∂2xi
∂v∂u

.

The difference between the two partial derivatives becomes
∂Fv
∂u

− ∂Fu
∂v

=
∂xj
∂u

∂xi
∂v

(
∂Fi
∂xj

− ∂Fj
∂xi

)
= (δjkδil − δjlδik)

∂xk
∂u

∂xl
∂v

∂Fi
∂xj

= εjipεpkl
∂xk
∂u

∂xl
∂v

∂Fi
∂xj

= (∇× F) ·
(
∂x

∂u
× ∂x

∂v

)
.

The Stokes’ theorem follows.˛
C
F · dx =

¨
A
(∇× F) ·

(
∂x

∂u
× ∂x

∂v

)
du dv

=

¨
S
(∇× F) · dS .

□

Corollary. An irrotational field defined everywhere on R3 is conservative. (Poincaré Lemma,
Theorem 1.22, ⇒.)

Proof. It follows from Stokes’ theorem that an irrotational vector field, obeying ∇×F = 0, necessarily
has ˛

C
F · dx = 0

around any closed curve C. By Theorem 1.21, it can be written as F = ∇φ for some potential. □

1.5.3 Alternative Interpretation of Divergence and Curl

The divergence theorem and Stokes’ theorem can give us some more intuitive physical view of what
the divergence and the curl are.
Theorem 1.29. Let a closed surface S enclose V with volume |V|,

∇ · u = lim
|V|→0

1

|V|

‹
S
u · dS .

Let an open smooth surface S of area |S| and normal direction n̂ be bounded by a curve C,

n̂ · (∇× u) = lim
|S|→0

1

|S|

˛
C
u · dx .

Proof. Follows directly from the divergence theorem and Stokes’ theorem. □

Under such interpretations, the names ‘divergence’ and ‘curl’ should be obvious.
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1.6 Coordinate Systems

From now on, we will move away from our good old Cartesian coordinate system and consider some
more general coordinate systems, such as the spherical polar coordinates or the cylindrical coordinates.

In general, to describe a point in a n-dimensional space Rn, we need n real numbers {qi}ni=1 known
as the coordinates of the point. So x = x(q1, . . . , qn). As long as our coordinate system is defined in
a good way, changing any one of these coordinates slightly, leaving the others fixed, will result in a
small change in x. We write

dx =
∂x

∂qi
dqi =: hi dqi .

Remark. ∂x
∂qi

is the tangent vector to the lines formed when changing qi while holding other coordinates
constant.

Definition 1.30. The metric coefficient or scale factor of coordinate, hi, is defined by

hi := |hi| =
∣∣∣∣ ∂x∂qi

∣∣∣∣ .
Definition 1.31. The unit vector of a coordinate, ei, is defined as

ei :=
1

hi

∂x

∂qi
.

1.6.1 The Jacobian

Definition 1.32. The Jacobian matrix J of the transformation from coordinates (x1, x2, . . . , xn) to
(q1, q2, . . . , qn) is given by

J :=



∂x1

∂q1
∂x1

∂q2
· · · ∂x1

∂qn

∂x2

∂q1
∂x2

∂q2
· · · ∂x2

∂qn

...
... . . . ...

∂xn

∂q1
∂xn

∂q2
· · · ∂xn

∂qn

 .

Definition 1.33. The Jacobian is the determinant of the Jacobian matrix:

J :=
∂(x1, x2, . . . , xn)

∂(q1, q2, . . . , qn)
= det J .

The columns of the Jacobian matrix are the vectors hi, so in three dimensional coordinates.

J = [h1,h2,h3] = h1 · (h2 × h3) .

If we change the coordinates by {dqi}, this will be displacements {dxi} = {hi dqi} in the physical
space along the three coordinate directions. They span a parallelepiped, which is the change in the
physical volume when the coordinates change infinitesimally.

Proposition 1.34. For a coordinate system, the infinitesimal volume element in R3 is given by

dV = |J | dq1 dq2 dq3 ,

so in volume integrals, ˚
Φdx dy dz =

˚
Φ|J | dq1 dq2 dq3 .

17
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Under such interpretations of the Jacobian, the following two results should be obvious:

Proposition 1.35 (Chain rule for Jacobian).

∂(α1, . . . αn)

∂(γ1, . . . , γn)
=

∂(α1, . . . αn)

∂(β1, . . . , βn)

∂(β1, . . . βn)

∂(γ1, . . . , γn)

Proposition 1.36 (Inverse transformation).

∂(α1, . . . αn)

∂(β1, . . . , βn)
=

[
∂(β1, . . . βn)

∂(α1, . . . , αn)

]−1

The proofs are also straightforward. They follow from taking the determinant of the normal chain
rule and the differentiation of inverse functions.

We have the following two ugly formulae that are rarely used.

Proposition 1.37. The surface area element for a surface in R3 is given by

dS = sign(n̂ · e1)h2h3 dq2 dq3 e1 + sign(n̂ · e2)h3h1 dq3 dq1 e2 + sign(n̂ · e3)h1h2 dq1 dq2 e3 ,

dS = n̂ · dS = h2h3 dq2 dq3 |n̂ · e1|+ h3h1 dq3 dq1 |n̂ · e2|+ h1h2 dq1 dq2 |n̂ · e3| .

This one is much more common.

Corollary. If a surface in R3 is defined by holding a coordinate constant, so that the surface is
parameterised by the other two coordinate u and v, then

dS =
∂x

∂u
× ∂x

∂v
du dv .

1.7 Orthogonal Curvilinear Coordinates

It is very common that the three sets of basis vectors for the coordinates are always orthonormal. They
are then called orthogonal curvilinear coordinates. Both spherical and cylindrical polar coordinates
are examples of these.

1.7.1 Orthogonality

For orthogonal curvilinear coordinates, the ei are required to be mutually orthogonal at all points in
space:

ei · ej = δij ,

and it is conventional to order qi so that the coordinate system is right-handed:

e1 × e2 = e3 .

Therefore in an orthogonal curvilinear coordinate system, the expression for the incremental
distance is simplified to

|dx|2 = dx · dx

=
∑
i,j

(hi dqi)(hj dqj)δij

=
∑
i

h2i (dqi)
2 .

18
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1.7.2 Relationship between Coordinates

Suppose we have non-Cartesian coordinates qi (i = 1, 2, 3). There will be a functional dependence of
qi on Cartesian coordinates xi:

qi ≡ qi(x, y, z) .

The position vector x is also a function of q = (q1, q2, q3):

xi ≡ xi(q1, q2, q3) .

Taking cylindrical polar coordinates and spherical polar coordinates as examples, we have:

Cylindrical Polar
Coordinates

Spherical Polar
Coordinates

q1 ρ =
√
x2 + y2 r =

√
x2 + y2 + z2

q2 ϕ = tan−1
(
y
x

)
θ = tan−1

(√
x2+y2

z

)
q3 z ϕ = tan−1

(
y
x

)

Cylindrical Polar
Coordinates

Spherical Polar
Coordinates

x ρ cosϕ r sin θ cosϕ
y ρ sinϕ r sin θ sinϕ
z z r cos θ

1.7.3 Spherical Polar Coordinates

In spherical polar coordinates, q1 = r ∈ [0,∞), q2 = θ ∈ [0, π], q3 = ϕ ∈ [0, 2π), and in terms of
Cartesian coordinates,

x = (r sin θ cosϕ, r sin θ sinϕ, r cos θ) .

Proposition 1.38. For spherical polar coordinates, we have
∂x

∂q1
=
∂x

∂r
= (sin θ cosϕ, sin θ sinϕ, cos θ) ;

∂x

∂q2
=
∂x

∂θ
= (r cos θ cosϕ, r cos θ sinϕ,−r sin θ) ;

∂x

∂q3
=
∂x

∂ϕ
= (−r sin θ sinϕ, r sin θ cosϕ, 0) .

h1 = hr =

∣∣∣∣ ∂x∂q1
∣∣∣∣ = 1 , e1 = er = (sin θ cosϕ, sin θ sinϕ, cos θ) ;

h2 = hθ =

∣∣∣∣ ∂x∂q2
∣∣∣∣ = r , e2 = eθ = (cos θ cosϕ, cos θ sinϕ, − sin θ) ;

h3 = hϕ =

∣∣∣∣ ∂x∂q3
∣∣∣∣ = r sin θ , e3 = eϕ = (− sinϕ, cosϕ, 0) .

dx =
∑
j

hj dqj ej = dr er + r dθ eθ + r sin θ dϕ eϕ .

Remark. Note that the spherical polar coordinates are singular at r = 0, θ = 0 and θ = π.

19



1 Vector Calculus IB Mathematical Methods

1.7.4 Cylindrical Polar Coordinates

In cylindrical polar coordinates, q1 = ρ ∈ [0,∞), q2 = ϕ ∈ [0, 2π), q3 = z ∈ R, and in terms of
Cartesian coordinates,

x = (ρ cosϕ, ρ sinϕ, z) .

Proposition 1.39.

∂x

∂q1
=
∂x

∂ρ
= (cosϕ, sinϕ, 0) ;

∂x

∂q2
=
∂x

∂ϕ
= (−ρ sinϕ, ρ cosϕ, 0) ;

∂x

∂q3
=
∂x

∂z
= (0, 0, 1) .

h1 = hρ =

∣∣∣∣ ∂x∂q1
∣∣∣∣ = 1 , e1 = eρ = (cosϕ, sinϕ, 0) ;

h2 = hϕ =

∣∣∣∣ ∂x∂q2
∣∣∣∣ = ρ , e2 = eϕ = (− sinϕ, cosϕ, 0) ;

h3 = hz =

∣∣∣∣ ∂x∂q3
∣∣∣∣ = 1 , e3 = ez = (0, 0, 1) .

dx =
∑
j

hj dqj ej = dρ eρ + ρ dϕ eϕ + dz ez .

Remark. Note that cylindrical polar coordinates are singular at ρ = 0.

1.7.5 Volume and Surface Elements

Proposition 1.40. For orthogonal curvilinear coordinate systems, the volume element is given by

dV = (h1 dq1 e1) · (h2 dq2 e2)× (h3 dq3 e3) = h1h2h3 dq1 dq2 dq3 .

• Spherical polar coordinates: dV = r2 sin θ dr dθ dϕ

• Cylindrical polar coordinates: dV = ρ dρ dϕ dz

Proposition 1.41. For an orthogonal curvilinear coordinate system, with a surface normal parallel
to a basis vector (e.g. dS ‖ e3),

dS = (h1 dq1 e1)× (h2 dq2 e2)

= h1h2 dq1 dq2 e3 .

1.7.6 Gradient in Orthogonal Curvilinear Coordinates

Theorem 1.42. The gradient in an orthogonal curvilinear coordinate system is given by

∇ψ =
∑
i

ei
hi

∂ψ

∂qi
=

(
1

h1

∂ψ

∂q1
,
1

h2

∂ψ

∂q2
,
1

h3

∂ψ

∂q3

)
,
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with differential operator
∇ =

∑
i

ei
1

hi

∂

∂qi
.

• Spherical polar coordinates:

∇ = er
∂

∂r
+ eθ

1

r

∂

∂θ
+ eϕ

1

r sin θ

∂

∂ϕ

• Cylindrical polar coordinates:

∇ = eρ
∂

∂ρ
+ eϕ

1

ρ

∂

∂ϕ
+ ez

∂

∂z

Proof. The gradient of a scalar field, ∇ψ, is defined to be the vector such that for all dx,

dψ = ∇ψ · dx .

We write
∇ψ =

∑
i

eiαi ,

where the coefficients αi for the gradient operator in this coordinate system are to be determined.
Then

dψ = ∇ψ · dx =

(∑
i

eiαi

)
·

∑
j

hjej dqj

 =
∑
i

αihi dqi .

We must also have
dψ =

∑
i

∂ψ

∂qi
dqi ,

so the coefficients αi are
αi =

1

hi

∂ψ

∂qi
.

□

Corollary.
∇qi =

∑
j

ej
1

hj

∂qi
∂qj

=
∑
j

ej
hj
δij =

ei
hi
,

so
ei = hi∇qi .

1.7.7 Divergence and Curl in Orthogonal Curvilinear Coordinates

Theorem 1.43. The divergence of a vector field F in an orthogonal curvilinear coordinate system
is given by

∇ · F =
1

h1h2h3

(
∂

∂q1
(h2h3F1) +

∂

∂q2
(h3h1F2) +

∂

∂q3
(h1h2F3)

)
.

• Spherical polar coordinates:

∇ · F =
1

r2
∂

∂r

(
r2Fr

)
+

1

r sin θ

∂

∂θ
(sin θFθ) +

1

r sin θ

∂Fϕ
∂ϕ

• Cylindrical polar coordinates:

∇ · F =
1

ρ

∂

∂ρ
(ρFρ) +

1

ρ

∂Fϕ
∂ϕ

+
∂Fz
∂z
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Proof.

∇ · F = ∇ ·
(∑

i

Fiei

)

= ∇ ·
(
(h2h3F1)

(
e1
h2h3

))
+ cyclic permutations

=
e1
h2h3

· ∇(h2h3F1) + h2h3F1∇ ·
(

e1
h2h3

)
+ cyclic permutations

=
e1
h2h3

·
∑
j

ej

(
1

hj

∂

∂qj
(h2h3F1)

)
+ h2h3F1∇ · (∇q2 ×∇q3) + cyclic permutations ,

for which the latter terms vanish. □

e1

e2

e3

h1 dq1
h2 dq2

h3 dq3

Here is an easier way to interpret this result based on the alternative definition of divergence from
Theorem 1.29. If we take an infinitesimal cuboid V of volume V at point (q1, q2, q3) with sides parallel
to the basis vectors e1, e2 and e3.

∇ · F = lim
V→0

1

V

‹
S
F · dS .

The volume of the cuboid is V = h1h2h3δq1δq2δq3. The area of the surfaces along directions ei and
ej are given by hihjδqiδqj . Therefore,

‹
S
F · dS ≈ [h1h2F3(q1, q2, q3 + δq3)− h1h2F3(q1, q2, q3)]δq1δq2 + cyclic permutations

≈ ∂

∂q3
(h1h2F3)δq1δq2δq3 + cyclic permutations .

Dividing through the volume and taking the limit V → 0 gives the formula of divergence as claimed.

Theorem 1.44. The curl of a vector field F in an orthogonal curvilinear coordinate system is given
by

∇× F =
1

h1h2h3

∣∣∣∣∣∣
h1e1 h2e2 h3e3
∂
∂q1

∂
∂q2

∂
∂q3

h1F1 h2F2 h3F3

∣∣∣∣∣∣ .
• Spherical polar coordinates:

∇× F =
1

r2 sin θ

∣∣∣∣∣∣
er reθ r sin θeϕ
∂
∂r

∂
∂θ

∂
∂ϕ

Fr rFθ r sin θFϕ

∣∣∣∣∣∣
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• Cylindrical polar coordinates:

∇× F =
1

ρ

∣∣∣∣∣∣
eρ ρeϕ ez
∂
∂ρ

∂
∂ϕ

∂
∂z

Fρ ρFϕ Fz

∣∣∣∣∣∣
Proof.

∇× F =∇×
(∑

i

Fiei

)
=
∑
i

∇×
(
(hiFi)

(
ei
hi

))
=
∑
i

∇(hiFi)×
ei
hi

+
∑
i

hiFi(∇×∇qi)

=
∑
i

∑
j

(
1

hihj

∂(hiFi)

∂qj

)
ej × ei

=
e1
h2h3

(
∂(h3F3)

∂q2
− ∂(h2F2)

∂q3

)
+

e2
h3h1

(
∂(h1F1)

∂q3
− ∂(h3F3)

∂q1

)
+

e3
h1h2

(
∂(h2F2)

∂q1
− ∂(h1F1)

∂q2

)
. □

e1

e2

e3

Again, there is a more intuitive way to interpret this result based on Theorem 1.29. Take a surface
S with normal n̂ = ei and area A at point (q1, q2, q3), bounded by a rectangle with sides along ej
and ek. The component of ∇× F along ei is given by

ei · (∇× F) = lim
A→0

1

A

˛
C
F · dx .

The line integral can be approximated by˛
C
F · dx ≈ Fj(qj , qk)hjδqj + Fk(qj + δqj , qk)hkδqk − Fj(qj , qk + δqk)hjδqj − Fk(qj , qk)hkδqk

≈
[
∂

∂qj
(hkFk)−

∂

∂qk
(hjFj)

]
δqjδqk .

Dividing by the area A = hjhkδqjδqk and taking the limit A→ 0 gives

ei · (∇× F) =
1

hjhk

[
∂

∂qj
(hkFk)−

∂

∂qk
(hjFj)

]
,

which is the components of ∇× F as claimed.

1.7.8 Laplacian in Orthogonal Curvilinear Coordinates

Theorem 1.45. The Laplacian operator in an orthogonal curvilinear coordinate system is given by

∇2 =
1

h1h2h3

(
∂

∂q1

(
h2h3
h1

∂

∂q1

)
+

∂

∂q2

(
h3h1
h2

∂

∂q2

)
+

∂

∂q3

(
h1h2
h3

∂

∂q3

))
.
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• Spherical polar coordinates:

∇2ψ =
1

r2
∂

∂r

(
r2
∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂ϕ2

=
1

r

∂2

∂r2
(rψ) +

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂ϕ2

• Cylindrical polar coordinates:

∇2ψ =
1

ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
+

1

ρ2
∂2ψ

∂ϕ2
+
∂2ψ

∂z2

Proof. We already have the divergence and gradient, so it is easy to work out.

∇2ψ = ∇ ·∇ψ

=
1

h1h2h3

(
∂

∂q1

(
h2h3
h1

∂ψ

∂q1

)
+

∂

∂q2

(
h3h1
h2

∂ψ

∂q2

)
+

∂

∂q3

(
h1h2
h3

∂ψ

∂q3

))
.

□
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2 Green’s Functions

2.1 The Dirac Delta Function

In the first part of this chapter, we will first try to define a mysterious object called the Dirac delta
function which, technically, shouldn’t even be called a ‘function’.

2.1.1 Definition as Limit of Sequences

Consider the function δϵ(x) defined for ϵ > 0 by

δϵ(x) :=


0 x < −ϵ
1
2ϵ −ϵ ≤ x ≤ ϵ

0 x > ϵ ,

then ∀ϵ > 0, ˆ ∞

−∞
δϵ(x) dx = 1 .

For any integrable function f(x) and constant ξ,
ˆ ∞

−∞
δϵ(x− ξ)f(x) dx =

1

2ϵ
(F (ξ + ϵ)− F (ξ − ϵ)) ,

where F is the antiderivative of f . Then in the limit of ϵ→ 0+, we can recover

lim
ϵ→0+

ˆ ∞

−∞
δϵ(x− ξ)f(x) dx = lim

ϵ→0+

1

2ϵ

(
F (ξ) + ϵf(ξ) +

1

2
ϵ2f ′(ξ) + . . .

− F (ξ) + ϵf(ξ)− 1

2
ϵ2f ′(ξ) + . . .

)
= f(ξ) .

This inspires us to make the following definition:

Definition 2.1. We can view the Dirac delta function, δ(x), as the limit as ϵ→ 0 of δϵ(x):

δ(x) := lim
ϵ→0+

δϵ(x) .

What are we doing here? When ϵ gets smaller, the function δϵ has a higher and higher peak over a
narrower and narrower range around x = 0. Although it is absolutely clear that neither putting ϵ = 0
directly in the above sequence makes any sense, nor does the ϵ → 0 limit really converges to some
well-defined function, what we are trying to do here is to create some object that has an infinitely
high peak over an infinitely narrow range, and somehow carries a unit weight.

Of course, we can use another sequence of functions to make the same effect. For example, if we
alternatively define δϵ(x) as

δϵ(x) :=
ϵ

π(x2 + ϵ2)
,

which gives ˆ ∞

−∞
δϵ(x) dx = 1 .
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Now δϵ also has a peak of unit area centred at x = 0, which gets sharper as ϵ→ 0+. We can identify
the Dirac delta function as the ϵ→ 0+ limit of this function as well, which also gives

ˆ ∞

−∞
δ(x− ξ)f(x) dx = lim

ϵ→0+

ˆ ∞

−∞
δϵ(x− ξ)f(x) dx

= f(ξ) .

This sequence of functions even has the nice property that for any ϵ > 0, δϵ is smooth.

This definition of the delta function gives us an expression which turns out to be extremely useful
later.

Proposition 2.2.
δ(x) =

1

2π

ˆ ∞

−∞
eikx dk .

Proof. We note that

1

2π

ˆ ∞

−∞
eikx−ϵ|k| dk =

1

2π

(ˆ 0

−∞
eikx+ϵk dk +

ˆ ∞

0

eikx−ϵk dk

)
=

ϵ

π(x2 + ϵ2)
.

Take ϵ→ 0+. □

Of course we are doing something weird here. Putting x = 0, we get

δ(0)
?
=

1

2π

ˆ ∞

−∞
1 dx ,

which is a complete nonsense.

2.1.2 Properties

We may identify that the Dirac delta function has an infinitely sharp peak of zero width and has a
unit area.

δ(x) =

{
∞ x = 0

0 x 6= 0
,

ˆ b

a

δ(x) dx = 1 ∀a < 0, b > 0 .

This is obviously not what we would normally call a function, but we can get a sense of what it is
doing. It provides a surgical strike on the integrand to pick out its value at one particular point:

ˆ ∞

−∞
δ(x− ξ)f(x) dx = f(ξ) .

This is the continuum analogue of the Kronecker delta.

Despite its absurdity, we can still derive some of its properties.

Proposition 2.3. δ(x) is symmetric.

Proof. By the substitution k = −l,

δ(−x) = 1

2π

ˆ ∞

−∞
e−ikx dk = − 1

2π

ˆ −∞

∞
eilx dl =

1

2π

ˆ ∞

−∞
eilx dl = δ(x) .

□

26



2 Green’s Functions IB Mathematical Methods

Proposition 2.4. δ(x) is real.

Proof.
δ∗(x) =

1

2π

ˆ ∞

−∞
e−ikx dk = δ(−x) = δ(x) .

□

2.1.3 Alternative Definition of the Dirac Delta Function

We have done a lot of whimsical things above that would certainly drive a mathematician crazy. The
major issue of what we have done above is that we have encountered a lot of infinities — but there
is one nice property of Dirac delta that stands out as it involves no infinity. This might help us to
define the Dirac delta a bit more sensibly.

Definition 2.5. In an alternative (and better) view, δ(x) is defined as the generalised function
(distribution) such that for all smooth functions f(x),

ˆ ∞

−∞
δ(x− ξ)f(x) dx = f(ξ) .

Remark. The upshot is that, in this way, δ(x) is defined within an integrand as a linear operator,
and therefore should always be employed in an integrand. We should never consider taking it out of
the integral.

2.1.4 Derivative of the Delta Function

We can be more brave and try to differentiate the Dirac delta. But to do this more legally, we will
put it in an integral and see how it does to a well-behaved function. Using integration by parts, we
see that ˆ ∞

−∞
δ′(x− ξ)f(x) dx = [δ(x− ξ)f(x)]

∞
−∞ −

ˆ ∞

−∞
δ(x− ξ)f ′(x) dx = −f ′(ξ) .

Definition 2.6. The derivative of δ(x) is defined as the generalised function such that for all
differentiable functions f(x), ˆ ∞

−∞
δ′(x− ξ)f(x) dx = −f ′(ξ) .

Alternatively, the derivative of the delta function may again be defined as the limit of the
derivatives of some sequence of functions, δ′ϵ, similar to what we have done at the beginning of
this section.

2.2 The Heaviside Step Function

Definition 2.7. The Heaviside step function, H(x) is defined for x 6= 0 as

H(x) :=

{
0 x < 0

1 x > 0 .

There are various conventions for the value of the Heaviside step function at x = 0. It is not uncommon
to choose H(0) = 1

2 . This is unimportant.
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2.2.1 Properties

It is clear to see that this function is discontinuous at x = 0:

lim
x→0−

H(x) = 0 6= 1 = lim
x→0+

H(x) .

Therefore, it seems that H(x) is not differentiable at x = 0 — at least in a normal sense. However,
we have just seen that δ(x) has a unit area within an infinitely narrow area near x = 0. This allows
us to make the following identification.

Proposition 2.8.
H(x) =

ˆ x

−∞
δ(ξ) dξ ,

and so we may identify
d

dx
H(x) = δ(x) .

Proof.
ˆ ∞

−∞
H ′(x− ξ)f(x) dx = [H(x− ξ)f(x)]

∞
−∞ −

ˆ ∞

−∞
H(x− ξ)f ′(x) dx

= f(∞)−
ˆ ∞

ξ

f ′(x) dx

= f(ξ) .

□

2.3 Formal Theory of Distributions (Non-examinable)

After invented by physicist Dirac, the Dirac delta function quickly becomes ubiquitous in almost all
fields in physics, especially in quantum mechanics and quantum field theory. Although we played
around with infinities in very dangerous ways when defining this object, it just worked surprisingly
well.

But mathematicians at that time were not satisfied with that. They were trying to find a rigorous
mathematical theory to deal with objects like Dirac delta, and it was only achieved until mid-20th

century when they invented the theory of distributions.

Of course we are not introducing distribution theory in this course — this is a very deep subject.
Here, we will have a very brief look at some basic principles of it to get a sense of what a distribution
really is.

2.3.1 Distributions

To define a distribution, we must first choose a class of test functions, which is the functions that
our distribution will act on. For Ω ⊆ Rn, the simplest class of test functions are infinitely smooth
functions ϕ ∈ C∞(Ω) that have compact support, meaning that there exists a compact set K ⊂ Ω
such that ϕ(x) = 0 whenever x /∈ K. For our purposes, it is fine to just think of such functions to
be the ones that take non-zero values only for a finite region in space. Let us denote the space of all
test functions D(Ω).

Definition 2.9. For a space of test functions D(Ω), a distribution T is defined to be a linear map
T : D(Ω) → R, given by

T : ϕ 7→ T [ϕ] .
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Remark. T is not a function on Ω itself but rather is a function on the infinite-dimensional space of
test functions on Ω.

The space of distributions with test functions in D(Ω) is denoted D′(Ω). It is an infinite-
dimensional vector space because we can add two distributions T1 and T2 together, defining the
distribution (T1 + T2) by

(T1 + T2)[ϕ] := T1[ϕ] + T2[ϕ]

for all ϕ ∈ D(Ω). We can multiply a distribution by a constant, defining the distribution (cT ) by

(cT1)[ϕ] := cT1[ϕ]

for all ϕ ∈ D(Ω) and c ∈ R. We can also multiply distributions by smooth functions. If ψ ∈ C∞(Ω)
and T ∈ D′(Ω) then define the distribution (ψT ) by

(ψT )[ϕ] := T [ψϕ] .

Remark. In general, there is no way to multiply two distributions together.

The simplest type of distribution is just an ordinary function f : Ω → R that is locally integrable,
meaning that its integral over any compact set converges. To treat f as a distribution we must say
how it acts on any test function ϕ ∈ D(Ω). For example, we can define

f [ϕ] := (f, ϕ) =

ˆ
Ω

f(x)ϕ(x) dV ,

which is the inner product of f with ϕ. This integral is guaranteed to be well-defined even when
Ω is non-compact (say, the whole of Rn) since ϕ has compact support and f is locally integrable.
By definition, it is easy to check that f [ϕ] is a linear map from D(Ω) to R. In the case where the
generalised function is just an ordinary function, the map Tf : D(Ω) → R just corresponds to the
usual inner product between functions.

The most important example of a generalised function that is not a function is the Dirac delta.

Definition 2.10. The Dirac delta δ is a distribution defined by

δ[ϕ] := ϕ(0)

for all ϕ ∈ D(Ω), where 0 is the origin in Rn.

Proposition 2.11. δ : D(Ω) → R is a linear map.

Proof.
δ[c1ϕ1 + c2ϕ2] = c1ϕ1(0) + c2ϕ2(0) .

The addition on the left is in the vector space of test functions, while the addition on the right is
addition in R. □

By analogy with the case where the generalised function is itself a function, it is often convenient to
abuse notation and write

T [ϕ] = (T, ϕ) =

ˆ
Ω

T (x)ϕ(x) dV

even for general distributions that are not functions. However, for a general distribution the object
T (x) is not a function. There is no sense in which T : Ω → R. For example, it is common to write

δ[ϕ] =

ˆ
Ω

δ(x)ϕ(x) dV
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for some object δ(x). However, δ(x) cannot possibly be a genuine function. For the integral to be
equal to ϕ(0), the value of δ(x) must vanish whenever x 6= 0. On the other hand, if δ(0) does indeed
vanish everywhere except at one point, the integral cannot give the finite answer ϕ(0) if δ(x) takes
any finite value at x = 0. So it is not a genuine function in the sense of being a map from Ω → R.
One reason this abusive notation is convenient is that distributions can arise as the limit of a sequence
of integrals of usual functions, just as what we have seen before.

2.3.2 Differentiation of Distributions

In the case that the distribution is just an ordinary function f , we have

Tf ′ [ϕ] =

ˆ
Ω

f ′(x)ϕ(x) dx

= [f(x)ϕ(x)]Ω −
ˆ
Ω

f(x)ϕ′(x) dx

= −Tf [ϕ′] ,

where the boundary term vanishes since ϕ has compact support inside Ω. Let us now define the
derivative of a distribution.

Definition 2.12. The derivative of a generalised function T is defined as

T ′[ϕ] := −T [ϕ′]

for all ϕ ∈ D(Ω).

Remark. The idea here is that if we think of our distribution as coming from the limit of a sequence of
integrals involving only ordinary functions, this relation will hold for every member of the sequence,
and so it will hold for the limiting value of the integrals.

Example. For the delta distribution, we have

δ′[ϕ] = −δ[ϕ′] = −ϕ′(0) .

Proposition 2.13. The derivative of the Heaviside step function is the Dirac delta function.

Proof. H(x) defines a generalised function on R by

H[ϕ] =

ˆ ∞

−∞
H(x)ϕ(x) dx =

ˆ ∞

0

ϕ(x) dx ,

which converges since ϕ has compact support. H(x) is not differentiable, or even continuous as a
function, but it is perfectly differentiable as a distribution. We have

H ′[ϕ] = −H[ϕ′] = −
ˆ ∞

−∞
H(x)

∂ϕ

∂x
dx

= −
ˆ x

0

∂ϕ

∂x
dx

= ϕ(0)− ϕ(∞) = ϕ(0) ,

since ϕ has compact support. Since H ′[ϕ] = ϕ(0) = δ[ϕ] holds for any test function ϕ, we can identify
H ′ as the distribution δ. □

2.4 Second-order Linear Ordinary Differential Equations

One of the most important applications of the Dirac delta is in solving the differential equations.
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A general second-order linear ODE for y(x) can be written as

y′′ + p(x)y′ + q(x)y = f(x) or Ly(x) = f(x) ,

where L is the differential operator

L ≡ d2

dx2
+ p(x)

d

dx
+ q(x) .

If f(x) = 0, then the equation is homogeneous, otherwise it is inhomogeneous.

2.4.1 Homogeneous Second-order ODEs

Theorem 2.14 (The principle of superposition). If y1 and y2 are solutions to a homogeneous
linear differential equation

Ly = 0 ,

where L is a linear differential operator, then they can be superposed to give a third. For any α, β ∈ R,

y = αy1 + βy2

is also a solution.

Corollary. Suppose y1 and y2 are two linearly independent solutions, which means that

αy1(x) + βy2(x) ≡ 0 =⇒ α = β = 0 .

Since the equation is second-order, the general solution will be of the form

y = αy1 + βy2 .

y1 and y2 are commonly referred to as complementary functions.

2.4.2 Inhomogeneous Second-order ODEs

Corollary. If y0(x) is any solution of the real inhomogeneous equation

Ly ≡ y′′ + p(x)y′ + q(x)y = f(x) ,

then the general solution has the form

y(x) = y0(x) + αy1(x) + βy2(x) ,

where y1 and y2 are any linearly independent solutions of Ly = 0. y0 is referred to as a particular
solution.

2.4.3 The Wronskian

If y1 and y2 are linearly dependent, then so are y′1 and y′2. Hence y1 and y2 are linearly dependent
only if the equation (

y1 y2
y′1 y′2

)(
α
β

)
= 0

has a non-zero solution for α and β. Conversely, non-zero functions y1 and y2 are linearly independent
if and only if (

y1 y2
y′1 y′2

)(
α
β

)
= 0 =⇒ α = β = 0 .
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Definition 2.15. The Wronskian, W (x), of the two solutions is defined to be

W [y1, y2] := y1y
′
2 − y2y

′
1 .

Since Ax = 0 has only the trivial solution iff det(A) 6= 0, we conclude that y1 and y2 are linearly
independent iff ∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣ = y1y
′
2 − y2y

′
1 =W 6= 0 .

2.4.4 Initial-Value and Boundary-Value Problems

Two boundary conditions must be specified to fully determine the solution of a second-order ODE.
The general form of a linear boundary condition at a point x = a is

Ay(a) +By′(a) = E ,

where A,B are not both zero. If E = 0 the boundary condition is said to be homogeneous.

If two boundary conditions are specified at the same point, then the problem is referred to as an
initial value problem. If two conditions are specified at different points, then this is a boundary value
problem.

2.5 Differential Equations containing Delta Functions

Consider the linear second-order ODE

d2y

dx2
+ y = δ(x) .

If x represent time, then this equation could represent the behaviour of a simple harmonic oscillator
in response to an instantaneous force at x = 0 with unit impulse.

In regions x < 0 and x > 0 respectively, the right-hand side vanishes, so the general solution is
given by a linear combination of cosx and sinx

y =

{
α− cosx+ β− sinx x < 0

α+ cosx+ β+ sinx x > 0 .

Since the general solution of a second-order ODE should contain only two arbitrary constants, it
should be able to relate α−, β− with α+, β+.

Integrate the differential equation from x = −ϵ to x = ϵ to obtain
ˆ ϵ

−ϵ

∂2y

∂x2
dx+

ˆ ϵ

−ϵ
y(x) dx =

ˆ ϵ

−ϵ
δ(x) dx ,

y′(ϵ)− y′(−ϵ) +
ˆ ϵ

−ϵ
y(x) dx = 1 .

Take the limit ϵ→ 0, assume y is bounded,

lim
ϵ→0

ˆ ϵ

−ϵ
y(x) dx = 0 ,

=⇒
[
dy

dx

]
:= lim

ϵ→0

[
dy

dx

]x=ϵ
x=−ϵ

= 1 .
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Since there is only a finite jump in the derivative of y, y is continuous. The jump conditions are:

[y] = 0,

[
dy

dx

]
= 1 at x = 0 .

Applying these conditions, we obtain{
α+ − α− = 0

β+ − β− = 1
.

Hence the general solution is

y =

{
α cosx+ β sinx x < 0

α cosx+ (β + 1) sinx x > 0 .

2.6 Green’s Functions

2.6.1 The Green’s Function for Two-point Homogeneous Boundary-value Problems

Consider an ordinary differential equation

Ly(x) = f(x) ,

where L is the general second-order linear differential operator in x:

L =
d2

dx2
+ p(x)

d

dx
+ q(x)

with p and q being continuous functions, under two homogeneous boundary conditions:{
Ay(a) +By′(a) = 0

Cy(b) +Dy′(b) = 0 .

Definition 2.16. The Green’s function, G(x; ξ), of a differential operator L for a given set of
homogeneous boundary conditions is defined as the response of the system to forcing at a point
ξ, such that

LG(x; ξ) = δ(x− ξ) ,

subjected to homogeneous boundary conditions{
AG(a; ξ) +BGx(a; ξ) = 0

CG(b; ξ) +DGx(b; ξ) = 0
,

where
L =

∂2

∂x2
+ p(x)

∂

∂x
+ q(x)

Gx(x; ξ) =
∂G

∂x
.

Theorem 2.17. The solution to the second-order linear differential equation Ly = f is

y(x) =

ˆ b

a

G(x; ξ)f(ξ) dξ ,

where G(x; ξ) is the Green’s function.
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Remark. We may view Green’s function as an inverse differential operator

Ly = f =⇒ y = L−1f =

ˆ b

a

dξ G(x; ξ) f(ξ) .

Proof. Our proposed solution satisfies both of the boundary conditions

Ay(a) +By′(a) =

ˆ b

a

(AG(a; ξ) +BGx(a; ξ))f(ξ) dξ = 0

Cy(b) +Dy′(b) =

ˆ b

a

(CG(b; ξ) +DGx(b; ξ))f(ξ) dξ = 0

and the inhomogeneous equation

Ly(x) =

ˆ b

a

LG(x; ξ)f(ξ) dξ

=

ˆ b

a

δ(x− ξ)f(ξ) dξ = f(x) .

□

2.6.2 Properties of the Green’s Functions

Lemma 2.18. G is continuous and there is a unit jump in ∂G
∂x at x = ξ.

Proof. Integrate both sides of
LG(x; ξ) = δ(x− ξ)

from ξ − ϵ to ξ + ϵ for ϵ > 0 and consider the limit ϵ→ 0:

1 = lim
ϵ→0

ˆ ξ+ϵ

ξ−ϵ
LG dx

= lim
ϵ→0

ˆ ξ+ϵ

ξ−ϵ

(
∂2G

∂x2
+ p

∂G

∂x
+ qG

)
dx

= lim
ϵ→0

ˆ ξ+ϵ

ξ−ϵ

∂

∂x

(
∂G

∂x
+ pG

)
dx+ lim

ϵ→0

ˆ ξ+ϵ

ξ−ϵ

(
−dp

dx
G+ qG

)
dx

= lim
ϵ→0

[
∂G

∂x
+ pG

]x=ξ+ϵ
x=ξ−ϵ

− lim
ϵ→0

ˆ ξ+ϵ

ξ−ϵ

(
dp

dx
− q

)
G dx .

Suppose G(x; ξ) is bounded near x = ξ, and since p and q are continuous, the latter term vanishes to
give

lim
ϵ→0

[
∂G

∂x
+ pG

]x=ξ+ϵ
x=ξ−ϵ

= 1 .

This implies that the jump in the derivative of G is bounded, so G must be continuous. We conclude
that

lim
ϵ→0

[G(x; ξ)]
x=ξ+ϵ
x=ξ−ϵ = 0 , lim

ϵ→0

[
∂G

∂x

]x=ξ+ϵ
x=ξ−ϵ

= 1 .

□
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2.6.3 Construction of the Green’s Function

When x 6= ξ, G satisfies the homogeneous equation, so for both x > ξ and x < ξ, we can express
G in terms of solutions of the homogeneous equation. Suppose that {y1, y2} are a basis of linearly
independent solutions to the homogeneous equation Ly = 0 on [a, b]. We define this basis by requiring{

Ay1(a) +By′1(a) = 0

Cy2(b) +Dy′2(b) = 0
,

i.e. each of the solutions obeys one of the homogeneous boundary conditions. On [a, ξ), the Green’s
function obeys LG = 0 and

AG(a; ξ) +B
∂G

∂x
(a; ξ) = 0 .

Since any homogeneous solution to Ly = 0 satisfying Ay(a) + By′(a) = 0 must be proportional to
y1(x), with a proportionality constant independent of x. Thus we can set

G(x; ξ) = α(ξ)y1(x) for x ∈ [a, ξ) .

Similarly on (ξ, b] the Green’s function must be proportional to y2(x) so we get

G(x; ξ) = β(ξ)y2(x) for x ∈ (ξ, b] .

Now we can determine how these constructions defined at x ∈ [a, b] \ {ξ} can be joined together
at x = ξ. From Lemma 2.18, we must have{

β(ξ)y2(ξ)− α(ξ)y1(ξ) = 0

β(ξ)y′2(ξ)− α(ξ)y′1(ξ) = 1 .

Rearranging gives (
y1 y2
y′1 y′2

)(
−α
β

)
=

(
0
1

)
.

So a solution exists if
W ≡

∣∣∣∣y1 y2
y′1 y′2

∣∣∣∣ 6= 0 ,

which gives
α(ξ) =

y2(ξ)

W (ξ)
and β(ξ) =

y1(ξ)

W (ξ)
.

Theorem 2.19. For a linear second-order differential operator L subjected to homogeneous bound-
ary conditions, the Green’s function is given by

G(x; ξ) =


y1(x)y2(ξ)

W (ξ)
for x ∈ [a, ξ)

y1(ξ)y2(x)

W (ξ)
for x ∈ [ξ, b] ,

where y1 and y2 satisfy the boundary conditions at a and b respectively.

Example. Solve
y′′(x) + y(x) = f(x), y(0) = y(1) = 0 .

The complementary functions satisfying left and right boundary conditions are

y1 = sinx, y2 = sin(x− 1) ,
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and the Wronskian is

W = y1y
′
2 − y2y

′
1 = sinx cos(x− 1)− sin(x− 1) cosx = sin 1 .

Thus,

G(x; ξ) =


sinx sin(ξ − 1)

sin 1
0 ≤ x ≤ ξ

sin ξ sin(x− 1)

sin 1
ξ ≤ x ≤ 1 .

The solution is given by

y(x) =

ˆ 1

0

G(x; ξ)f(ξ) dξ

=
sin(x− 1)

sin 1

ˆ x

0

sin ξf(ξ) dξ +
sinx

sin 1

ˆ 1

x

sin(ξ − 1)f(ξ) dξ .

2.6.4 The Green’s Function for Homogeneous Initial-Value Problems

Suppose the boundary conditions are instead

y(a) = y′(a) = 0 .

For x ∈ [a, ξ), choose the complementary functions such that y1(a) = 0 and y′2(a) = 0, and the
Green’s function is given by

G(x; ξ) = α(ξ)y1(x) + β(ξ)y2(x) .

Apply boundary conditions to the Green’s function, then we get{
αy1(a) + βy2(a) = 0

αy′1(a) + βy′2(a) = 0
=⇒

{
α = 0

β = 0 .

This implies that
G = 0 for x ∈ [a, ξ) .

For x ∈ [ξ,∞), we again write the Green’s function as

G(x; ξ) = λ(ξ)y1(x) + µ(ξ)y2(x) .

Apply Lemma 2.18 at x = ξ, we get {
λy1(ξ) + µy2(ξ) = 0

λy′1(ξ) + µy′2(ξ) = 1 ,

which organises to (
y1(ξ) y2(ξ)
y′1(ξ) y′2(ξ)

)(
λ
µ

)
=

(
0
1

)
,

with solutions
λ = − y2(ξ)

W (ξ)
and µ =

y1(ξ)

W (ξ)
.

Theorem 2.20. For a linear second-order differential operator L subjected to homogeneous initial
conditions, Green’s function is given by

G(x; ξ) =


0 for a ≤ x < ξ

y1(ξ)y2(x)− y1(x)y2(ξ)

W (ξ)
for x ≥ ξ .

where y1 and y2 satisfy the boundary conditions y(a) = 0 and y′(a) = 0 respectively.
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2.6.5 Inhomogeneous Boundary Conditions

To solve an inhomogeneous equation under inhomogeneous boundary conditions

Ly = f ,

first solve the homogeneous equation Ly = 0 for the inhomogeneous boundary conditions, which gives
a solution yibc.

Then solve the inhomogeneous equation Ly = f for the homogeneous boundary conditions
(perhaps using Green’s functions) to give a solution yhbc.

By linearity, y = yibc + yhbc satisfies the inhomogeneous equation with inhomogeneous boundary
conditions.
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3 Fourier Transforms

3.1 Fourier Transforms

When we have a periodic function, we express it in terms of a Fourier series. In this chapter, we want
to generalise this result to non-periodic functions.

Definition 3.1. For a suitably well-behaved function f : R → C, its Fourier transform f̃ : R → C is
defined as

F [f(x)] ≡ f̃(k) :=

ˆ ∞

−∞
e−ikxf(x) dx .

Remark. You may encounter a lot of different conventions when defining the Fourier transform.
Sometimes there will be a normalising factor 1√

2π
, sometimes the −ikx will be replaced by +ikx

— or sometimes even ±2πikx. We will stick to the most common convention in the mathematical
community defined above.

The Fourier transform transforms between complex-valued functions, so the transform of a real
function does not necessarily remain real.

Proposition 3.2. If f(x) is both real and even, then f̃ is real.

Proof.

f̃∗(k) =

ˆ ∞

−∞
eikxf∗(x) dx

=

ˆ ∞

−∞
eikxf(−x) dx

=

ˆ ∞

−∞
e−ikyf(y) dy

= f̃(k)

□

Proposition 3.3. If f(x) is both real and odd, then f̃ is purely imaginary.

Proof. Similar to above. □

Remark. A necessary condition for f̃(k) to exist (as a normal function, not as a distribution) for all
real values of k is that f(x) → 0 as x→ ±∞. Otherwise, the Fourier integral does not converge (e.g.
for k = 0).

A set of sufficient conditions for f̃(k) to exist is that f(x) have bounded variation, a finite number
of discontinuities and be absolutely integrable, i.e.

ˆ ∞

−∞
|f(x)| dx <∞ .

3.1.1 Examples of Fourier Transforms

(i) e−b|x|, b > 0.

F
[
e−b|x|

]
=

ˆ ∞

−∞
e−ikx−b|x| dx

=
2b

k2 + b2
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(ii) cos(ax)e−b|x|.

F
[
cos(ax)e−b|x|

]
=

1

2

ˆ ∞

−∞
(eiax + e−iax)e−ikx−b|x| dx

= b

(
1

(a− k)2 + b2
+

1

(a+ k)2 + b2

)
(iii) sin(ax)e−b|x|.

F
[
sin(ax)e−b|x|

]
=

1

2i

ˆ ∞

−∞
(eiax − e−iax)e−ikx−b|x| dx

= −ib
(

1

(a− k)2 + b2
− 1

(a+ k)2 + b2

)
(iv) Gaussian.

F
[

1√
2πϵ

e−
x2

2ϵ2

]
=

1√
2πϵ

ˆ ∞

−∞
exp

(
− x2

2ϵ2
− ikx

)
dx

=
1√
2πϵ

ˆ ∞

−∞
exp

(
−1

2

(x
ϵ
+ iϵk

)2
− 1

2
ϵ2k2

)
dx

=
1√
2π

exp

(
−1

2
ϵ2k2

)ˆ ∞

−∞
exp

(
−1

2
y2
)
dy substitution x = ϵy − iϵ2k

= exp

(
−1

2
ϵ2k2

)

Remark. The Fourier transform of a Gaussian of width ϵ is a Gaussian of width ϵ−1.

(v) Dirac delta function.

F [δ(x− a)] =

ˆ ∞

−∞
δ(x− a)e−ikx dx

= e−ika

Hence the Fourier transform of δ(x) is 1. Recall that the Dirac delta function can be considered
as the limit of a Gaussian as ϵ→ 0+.

(vi) Constant function.
F [a] = a

ˆ ∞

−∞
e−ikx dx .

This clearly violates our previous claim that in order to have a Fourier transform in the sense of
a normal function, we must have f(x) → 0 as x→ ±∞. Therefore, this Fourier transform only
exists in the sense of a distribution. Recall the expression of the delta function in Proposition 2.2
— this is exactly what we have here. We can identifyˆ ∞

−∞
e−ikx = 2πδ(k) ,

so
F [a] = 2πaδ(k) .

(vii) Heaviside step function. A direct Fourier transform is problematic:

F [H(x− a)] =

ˆ ∞

−∞
H(x− a)e−ikx dx

=

ˆ ∞

a

e−ikx

=

[
e−ikx

−ik

]∞
a

,
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but the limit lim
x→∞

e−ikx does not exist. This is another case that the function is not absolutely
integrable, so we need a convergent regularisation of it.
We may first find the Fourier transform of H(x−a)e−ϵ(x−a), then take the limit ϵ→ 0+. Doing
so, we have

F [H(x− a)e−ϵ(x−a)] =

ˆ ∞

−∞
H(x− a)e−ϵ(x−a)−ikx dx

=

[
e−ϵ(x−a)−ikx

−ϵ− ik

]∞
a

=
e−ika

ϵ+ ik

For any k 6= 0, we are safe to ignore the ϵ in the denominator as we take the ϵ→ 0+ limit, and
therefore we have

F [H(x− a)] = lim
ϵ→0+

F [H(x− a)e−ϵ(x−a)] =
e−ika

ik
.

However, when k = 0, we are not allowed to do so. We have to work out the Fourier transform
at this point separately. We have

F [H(x− a)](0) =

ˆ ∞

a

1 dx =
1

2

ˆ ∞

−∞
dx .

This integral does not converge, but it is again exactly the expression of delta function we met
in Proposition 2.2 with x = 0, so

F [H(x− a)](0) = πδ(0) .

Combining the above results, we have

F [H(x− a)] =
e−ika

ik
+ πδ(k) ,

where we used the property that δ(k) = 0 for k 6= 0.
If you think the proof above makes no sense, you absolutely are right. This result must be
interpreted in the sense of a distribution, and is better proven using something called the
Sokhotski–Plemelj identity in distribution theory. We are of course not doing this here.

Remark. ikF [H(x− a)] = F [δ(x− a)].

(viii) Top-hat function, g(x), defined by

g(x) =

{
c a < x < b

0 otherwise .

g̃(k) =

ˆ b

a

ce−ikx dx =
ic

k
(e−ikb − e−ika)

For instance, if a = −1, b = 1, c = 1,

g̃(k) =
2 sin k

k
.
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3.2 Fourier Inversion Theorem

The nice thing about the Fourier transform is that you can transform it back easily.

Theorem 3.4 (Fourier inversion theorem). The inverse Fourier transform acting on f̃(k) that
recovers f(x) is given by

I[f̃ ] := 1

2π

ˆ ∞

−∞
eikxf̃(k) dk = f(x) .

Proof.

1

2π

ˆ ∞

−∞
eikxf̃(k) dk =

1

2π

ˆ ∞

−∞
eikx

(ˆ ∞

−∞
e−iksf(s) ds

)
dk

=

ˆ ∞

−∞

(
1

2π

ˆ ∞

−∞
eik(x−s) dk

)
f(s) ds swap integration order

=

ˆ ∞

−∞
f(s)δ(x− s) ds

= f(x) .

□

Corollary. If g(k) = f̃(k), then g̃(k) = 2πf(−k).

We can take advantage of this when calculating the Fourier series.

Example. Find the Fourier transform of (x2 + b2)−1.

We have worked out
F
[
e−b|x|

]
=

2b

k2 + b2
.

Applying the observation above, we get

F
[

1

x2 + b2

]
(k) =

π

b
e−b|k| .

3.3 Properties of Fourier Transforms

Proposition 3.5. The Fourier transform has the following properties.

(i) Linearity. For constants α, β ∈ C,

F [αf(x) + βg(x)] = αF [f(x)] + βF [g(x)] .

(ii) Rescaling. For real constant α ∈ R,

F [f(αx)] =
1

|α|
f̃

(
k

α

)
.

(iii) Translation. For real constant α ∈ R,

F [f(x− α)] = e−ikαF [f(x)]

(iv) Exponential. For constant α ∈ C,

F [eiαxf(x)](k) = F [f(x)](k − α) .
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(v) Duality. If g(x) = f̃(x), then
g̃(k) = 2πf(−k) .

(vi) Complex conjugation and parity inversion. For k ∈ R,

F [f∗](k) = F [f ](−k)∗ .

(vii) Symmetry. If f(−x) = ±f(x) i.e. f is even or odd, then

f̃(−k) = ±f̃(k) .

(viii) Differentiation.

F
[
dnf

dxn

]
= (ik)nf̃ .

(ix) Multiplication by x.

F [xf(x)] = i
df̃

dk
.

Remark. Fourier transforms allow a simple representation of derivatives of f(x) in Fourier space.
This has important consequences for solving differential equations.

Proof.

(i) Trivial by the linearity of multiplication and integration.

(ii) Let g(x) = f(αx),

g̃(k) =

ˆ ∞

−∞
e−ikxf(αx) dx

=
sgn α

α

ˆ ∞

−∞
e−i

k
αyf(y) dy

=
1

|α|
f̃

(
k

α

)
.

(iii)

F [f(x− α)] =

ˆ ∞

−∞
e−ikxf(x− α) dx

=

ˆ ∞

−∞
e−ik(y+α)f(y) dy

= e−ikαF [f(x)] .

(iv)

F [eiαxf(x)](k) =

ˆ ∞

−∞
e−i(k−α)xf(x) dx

= F [f(x)](k − α) .

(v)

g̃(k) =

ˆ ∞

−∞
e−ikxf̃(x) dx

= 2πf(−k) .
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(vi)

F [f∗](k) =

ˆ ∞

−∞
e−ikxf∗(x) dx

=

(ˆ ∞

−∞
eikxf(x) dx

)∗

= F [f ](−k)∗ .

(vii)

f̃(−k) =
ˆ ∞

−∞
f(x)eikx

=

ˆ ∞

−∞
±f(−x)eikx dx

= ±
ˆ ∞

−∞
f(y)e−iky dy

= ±f̃(k) .

(viii) By differentiating the inverse Fourier theorem, we obtain

d

dx
f(x) =

1

2π

ˆ ∞

−∞
eikx

(
ikf̃(k)

)
dk = I

[
ikf̃
]
.

Fourier transform this equation, and we obtain

F
[
df

dx

]
= F

[
I
[
ikf̃
]]

= ikf̃ ,

and hence
F
[
dnf

dxn

]
= (ik)nf̃ .

Alternatively, here is another proof.

F
[
df

dx

]
=

ˆ ∞

−∞
f ′(x)e−ikx dx

=
[
f(x)e−ikx

]∞
−∞ −

ˆ ∞

−∞
−ikf(x)e−ikx dx

= ikf̃(k) ,

where the former part vanishes because f(x) → 0 as x → ±∞ for the Fourier transform to
converge.

(ix) Differentiate the Fourier transform with respect to k, we obtain

d

dk
f̃(k) =

ˆ ∞

−∞
e−ikx(−ixf(x)) dx .

After multiplying by i, we can deduce that

F [xf(x)] = i
df̃

dk
.

□
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3.4 Fourier Series

We claimed that the Fourier transform is the generalisation of Fourier series to non-periodic functions.
We will illustrate this connection here.

Lemma 3.6 (Fourier series). Suppose that f : R → C is a periodic function with period L, then
f can be represented by a Fourier series

f(x) =

∞∑
n=−∞

an exp

(
2πinx

L

)
,

where

an =
1

L

ˆ 1
2L

− 1
2L

f(x) exp

(
−2πinx

L

)
dx .

As L → ∞ (f(x) becomes non-periodic), the increment between successive wavenumbers in its
Fourier series, ∆k = 2π

L , becomes vanishingly small. Therefore, the spectrum for allowed wavenumbers
kn becomes a continuum.

Rewrite the formula of the Fourier series as

f(x) =
1

2π

∞∑
n=−∞

f̃(kn) exp(ixkn)∆k

f̃(kn) =

ˆ 1
2L

− 1
2L

f(x) exp(−ixkn) dx ,

where
f̃(kn) = Lan =

2πan
∆k

.

We then see that in the limit ∆k → 0 and L→ ∞

f(x) =
1

2π

ˆ ∞

−∞
f̃(k) exp(ikx) dk

f̃(k) =

ˆ ∞

−∞
f(x) exp(−ikx) dx .

3.5 Convolution

3.5.1 Definition of Convolution

Definition 3.7. The convolution, f ∗ g, of a function f(x) with another function g(x) is defined by

(f ∗ g)(x) :=
ˆ ∞

−∞
f(y)g(x− y) dy .

Remark. The convolution expresses the amount of overlap of one function g as it is shifted over
another function f .

Proposition 3.8. The convolution operator is commutative.

f ∗ g = g ∗ f
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Proof. Let z = x− y.

f ∗ g(x) =
ˆ ∞

−∞
f(y)g(x− y) dy

= −
ˆ −∞

+∞
f(x− z)g(z) dz

=

ˆ ∞

−∞
g(z)f(x− z) dz .

□

3.5.2 Interpretation

Proposition 3.9. If x and y are two random variables with probability densities f(x) and g(y). Let
the distribution of their sum, z = x+ y, be h(z). The probability density function of z is given by

h = f ∗ g .

Proof. For any given value of x, the probability that z lies in the range
z0 < z < z0 + δz

is the probability that y lies in the range
z0 − x < y < z0 − x+ δz ,

which is g(z0 − x)δz. Therefore, the probability that z lies in the same range for all x is

h(z0)δz =

ˆ ∞

−∞
f(x)g(z0 − x)δz dx .

This implies that h = f ∗ g. □
Remark. The effect of measuring, observing or processing scientific data can often be described as a
convolution between the data with certain functions. For instance, the gravitational potential of an
object

Φ(x) = −G
ˆ

ρ(y)

|x− y|
dy

is the convolution of the mass density ρ(x) with the potential of a point mass − G
|x| .

3.5.3 The Convolution Theorem

Theorem 3.10 (The convolution theorem). If the functions f and g have Fourier transforms
F [f ] and F [g] respectively, then

F [f ∗ g] = F [f ]F [g] .

Proof.

F [f ∗ g] =
ˆ ∞

−∞
e−ikx

(ˆ ∞

−∞
f(y)g(x− y) dy

)
dx

=

ˆ ∞

−∞

(ˆ ∞

−∞
e−ikxg(x− y) dx

)
f(y) dy swap integration order

=

ˆ ∞

−∞

(ˆ ∞

−∞
e−ik(z+y)g(z) dz

)
f(y) dy substitution z = x− y

=

ˆ ∞

−∞
f(y)e−iky

(ˆ ∞

−∞
e−ikzg(z) dz

)
dy

= F [f ]F [g]

□
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Corollary. Conversely, the Fourier transform of the product fg is given by the convolution of Fourier
transforms of f and g divided by 2π.

F [fg] =
1

2π
F [f ] ∗ F [g] .

Proof.

F [fg](k) =

ˆ ∞

−∞
e−ikxf(x)g(x) dx

=

ˆ ∞

−∞
e−ikx

(
1

2π

ˆ ∞

−∞
eilxf̃(l) dl

)
g(x) dx

=
1

2π

ˆ ∞

−∞
f̃(l)

(ˆ ∞

−∞
e−i(k−l)xg(x) dx

)
dl swap integration order

=
1

2π

ˆ ∞

−∞
f̃(l)g̃(k − l) dl

=
1

2π
(f̃ ∗ g̃)(k)

□
Remarks.

• Convolution is an operation best carried out as a multiplication in the Fourier domain.

• Convolution can be undone (deconvolution) by a division in the Fourier domain.

Example. Suppose a linear ‘black box’ has an output G(ω) exp(iωt) for a periodic input exp(iωt).
What is the output r(t) corresponding to input f(t)?

Express the input as a Fourier transform:

f(t) =
1

2π

ˆ ∞

−∞
F (ω)eiωt dω .

Then, since the ‘black box’ is linear, we can directly superpose the frequency space of the input to
produce the output:

r(t) =
1

2π

ˆ ∞

−∞
G(ω)F (ω)eiωt dω

=
1

2π

ˆ ∞

−∞
(F [f ∗ g])eiωt dω

= (f ∗ g)(t) .

3.6 Correlation

Definition 3.11. The correlation of two functions, h = f ⊗ g, is defined by

h(x) = f(x)⊗ g(x) :=

ˆ ∞

−∞
f(y)∗g(x+ y) dy .

This is a way of quantifying the relationship between two oscillatory functions. If two signals
oscillating about an average value of zero are in phase, their correlation will be positive. If they are in
opposite phases, the correlation will be negative. If they are completely unrelated, their correlation
will be zero.
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Lemma 3.12. The Fourier transform of a correlation is given by

F [f(x)⊗ g(x)] = [f̃(k)]∗g̃(k) .

Proof.

F [f(x)⊗ g(x)] =

ˆ ∞

−∞

(ˆ ∞

−∞
f(y)∗g(x+ y) dy

)
e−ikx dx

=

ˆ ∞

−∞

ˆ ∞

−∞
f(y)∗g(z)eikye−ikz dz dy substitution z = x+ y

=

[ˆ ∞

−∞
f(y)e−iky dy

]∗ ˆ ∞

−∞
g(z)e−ikz dz

= [f̃(k)]∗g̃(k) .

□

Definition 3.13. The quantity
Φ(k) =

∣∣∣f̃(k)∣∣∣2
is the power spectrum (power spectral density) of the function f(x).

Theorem 3.14 (Wiener–Khinchin theorem). The Fourier transform of the autocorrelation of a
function is its power spectrum.

F [f ⊗ f ](k) =
∣∣∣f̃(k)∣∣∣2

Proof. The special case of Lemma 3.12 when g(x) = f(x). □

Remark. The spectrum of a perfectly periodic signal consists of a series of delta functions at the
principal frequency and its harmonics (if present). Its autocorrelation does not decay as t→ ∞.

White noise is an ideal random signal with an autocorrelation function proportional to δ(t): the
signal is perfectly decorrelated and therefore has a flat spectrum (Φ = const.).

3.7 Parseval’s Theorem

Theorem 3.15 (Parseval’s theorem). Fourier transform is a unitary transform that preserves the
inner product between two functions up to a multiplicative constant.

ˆ ∞

−∞
[f(x)]∗g(x) dx =

1

2π

ˆ ∞

−∞
[f̃(k)]∗g̃(k) dk .

Proof. Apply inverse Fourier transform to Lemma 3.12 to obtain
ˆ ∞

−∞
[f(y)]∗g(x+ y) dy =

1

2π

ˆ ∞

−∞
[f̃(k)]∗g̃(k)eikx dk .

Set x = 0 and relabel y → x to obtain Parseval’s theorem
ˆ ∞

−∞
[f(x)]∗g(x) dx =

1

2π

ˆ ∞

−∞
[f̃(k)]∗g̃(k) dk .

□

Corollary. The special case is used most frequently when g = f :
ˆ ∞

−∞
|f(x)|2 dx =

1

2π

ˆ ∞

−∞

∣∣∣f̃(k)∣∣∣2 dk .
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Alternative proof.
ˆ ∞

−∞
|f(x)|2 dx =

ˆ ∞

−∞
f(x)f∗(x) dx

=
1

4π2

ˆ ∞

−∞

(ˆ ∞

−∞
eikxf̃(k) dk

)(ˆ ∞

−∞
e−ilxf̃∗(l) dl

)
dx

=
1

2π

ˆ ∞

−∞

ˆ ∞

−∞

(
1

2π

ˆ ∞

−∞
ei(k−l)x dx

)
f̃∗(l)f̃(k) dl dk

=
1

2π

ˆ ∞

−∞

ˆ ∞

−∞
f̃∗(l)δ(k − l) dl f̃(k) dk

=
1

2π

ˆ ∞

−∞
f̃(k)f̃∗(k) dk =

1

2π

ˆ ∞

−∞

∣∣∣f̃(k)∣∣∣2 dk
□

Example. Heisenberg’s Principle of Uncertainty.

Suppose that

ψ(x) =
1

(2π∆2
x)

1
4

exp

(
− x2

4∆2
x

)
is a real wave function. Then ∣∣ψ2(x)

∣∣ = 1√
2π∆2

x

exp

(
− x2

2∆2
x

)
is the probability density of finding the particle at position x, and ∆x is the root mean square
deviation in position.

There is a unit probability of finding the particle since
∣∣ψ2
∣∣ is a Gaussian of width ∆x and

ˆ ∞

−∞

∣∣ψ2(x)
∣∣ dx =

1√
2π∆2

x

ˆ ∞

−∞
exp

(
− x2

2∆2
x

)
dx = 1 .

The Fourier transform of the wave function gives

ψ̃(k) =
(
8π∆2

x

) 1
4 exp

(
−∆2

xk
2
)

=

(
2π

∆2
k

) 1
4

exp

(
− k2

4∆2
k

)
,

where ∆k = 1
2∆x

. ψ̃2 is another Gaussian with root mean square deviation in wavenumber of ∆k. In
agreement with Parseval’s theorem, it has an area of 2π.

Therefore, in the case of a Gaussian wave packet, ∆k∆x = 1
2 . More generally, for any wavefunction

ψ(x),
∆k∆x ≥ 1

2
.

In quantum mechanics, the momentum of a particle is given by p = ℏk. Therefore, if we interpret
∆x = ∆x and ∆p = ℏ∆k to be the uncertainty in the particle’s position and momentum, we can
obtain Heisenberg’s Uncertainty Principle

∆p∆x ≥ 1

2
ℏ .
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3.8 Solution of Ordinary Differential Equations using Fourier Transforms

Suppose ψ(x) satisfies
d2ψ

dx2
− a2ψ = −f(x) ,

where a is a constant and f is a known function. Suppose also that ψ satisfies the boundary conditions
|ψ| → 0 as |x| → ±∞ (required for the Fourier transform to converge).

If we multiply the LHS by exp(−ikx) and integrate over x, then we obtain
ˆ ∞

−∞
e−ikx

(
d2ψ

dx2
− a2ψ

)
dx = F

[
d2ψ

dx2

]
− a2F [ψ]

= −k2F [ψ]− a2F [ψ] .

The same action on the RHS yields −F [f ]. Hence, by taking the Fourier transform of the whole
equation we have

−k2F [ψ]− a2F [ψ] = −F [f ] ,

and rearrangement gives
F [ψ] =

F [f ]

k2 + a2
.

Taking the inverse Fourier transform, we obtain the solution

ψ =
1

2π

ˆ ∞

−∞
eikx

F [f ]

k2 + a2
dk .

We will explore this technique in much greater detail in section 13.
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4 Linear Algebra

4.1 Vector Spaces

Definition 4.1. A vector space over a field F is a non-empty set V together with
• a binary operation, vector addition V × V → V , (u,v) 7→ u+ v,

• a binary function, scalar multiplication F× V → V , (λ,v) 7→ λv,
that satisfy the eight axioms listed below. The elements of V are called vectors, and the elements of
F are called scalars.

The eight axioms satisfied for every u,v,w ∈ V and λ, µ ∈ F are

(V1) the vector addition is associative
(u+ v) +w = u+ (v +w) ;

(V2) the vector addition is commutative
u+ v = v + u ;

(V3) there exists a null vector, or zero vector, 0 ∈ V such that,
v + 0 = v ;

(V4) for every v ∈ V there exists a negative vector, or inverse vector, −v ∈ V such that
v + (−v) = 0 ;

(V5) the scalar multiplication is compatible with field multiplication

λ(µv) = (λµ)v ;

(V6) for the multiplicative identity 1 ∈ F,
1v = v ;

(V7) the scalar multiplication is distributive with respect to vector addition
λ(u+ v) = λu+ λv ;

(V8) the scalar multiplication is distributive with respect to field addition
(λ+ µ)u = λu+ µu .

Remarks.

• The field F is commonly R or C — this will always be the case in our course.

• The zero vector 0 is unique.

• The additive inverse of a vector v is unique.

• The existence of a negative vector allows us to define the subtraction of vectors
u− v ≡ u+ (−v) .

• Multiplication between vectors is not defined in general.
Example. The basic example of a vector space is Fn. An element of Fn is an ordered list of n scalars,
(x1, . . . , xn), where xi ∈ F, called an n-tuple. Vector addition and scalar multiplication are defined
component-wise:

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn)

α(x1, . . . , xn) = (αx1, . . . , αxn)

Nothing else is defined (no distance, dot product etc.).
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4.1.1 Span and Linear Independence

Definition 4.2. Let S = {u1,u2, . . . ,um} be a subset of vectors in V . A linear combination of S is
any vector of the form

a1u1 + a2u2 + · · ·+ amum ≡ aiui ,

where a1, a2, . . . , am ∈ F.

Definition 4.3. The span of S is the set of all vectors that are linear combinations of S, written as

span(S) ≡ 〈S〉 .

Definition 4.4. A set of m non-zero vectors {u1,u2, . . . ,um} is linearly independent if

aiui = 0 =⇒ ai = 0 .

Otherwise, the vectors are linearly dependent. There exists scalars ai, at least one of which is
non-zero, such that

aiui = 0 .

4.1.2 Basis and Dimension

Definition 4.5. S = {e1, e2, . . . , en} is a basis of the vector space V if it is linearly independent and
spans V .

Lemma 4.6. The set of vectors S = {e1, e2, . . . , en} form a basis of V if and only if for all vectors
v ∈ V , there exists a unique set of scalars vi ∈ F such that

v = viei .

The vi are said to be the components of v with respect to the basis {e1, . . . , en}.

Proof. (⇒): Since {ei} span V , there exists {vi} such that

v = viei

for all v ∈ V . Suppose also
v = wiei ,

then the difference ∑
(wi − vi)ei = 0 .

Since {ei} are linearly independent, wi = vi ∀ i. The expression is therefore unique.

(⇐): By assumption, {ei} span V . Suppose that

viei = 0 ,

and since 0 =
∑
i 0 · ei, by the uniqueness of 0, vi = 0 for all i. {ei} is a basis. □

Lemma 4.7 (Steinitz Exchange Lemma). Let V be a finite-dimensional vector space. Take
u1, . . . ,um to be linearly independent, v1, . . . ,vn to span V , then

(i) m ≤ n

(ii) reordering the vi if needed, {u1, . . . ,um,vm+1, . . . ,vn} spans V .
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Theorem 4.8. If V is a finite-dimensional vector space over F, then any two bases of V have the
same cardinality, which is called the dimension of V , denoted as

dimF V .

Proof. Suppose that {u1, . . . ,un} and {v1, . . . ,vm} are both bases of V . Since {ui} are linearly
independent and {vi} span V , n ≤ m by Lemma 4.7. Similarly m ≤ n. Therefore, the bases of V
have the same cardinality. □

Remarks. For a set of vectors, {u1, . . . ,um}, in an n-dimensional vector space:

• If m < n then there exists a vector that cannot be expressed as a linear combination of ui.

• If m > n then there exists some vector that, when expressed as a linear combination of ui, has
a non-unique scalar coefficient, whether or not the ui span V .

• Vector spaces can have infinite dimensions, e.g. the function defined on 0 ≤ x < 2π with a
Fourier series

f(x) =

∞∑
n=−∞

fne
inx, .

Here f(x) is the vector and fn are its components with respect to its basis of functions {einx}.

Examples.

(i) 3D Euclidean space E3. In this case the scalars are real and V is three dimensional.

(ii) The complex numbers. We can view this in two different ways.

Suppose we are considering a complex linear vector space (linear vector space over C). Then
every complex number z can be written uniquely as

z = α · 1 where α ∈ C .

and moreover,
α · 1 = 0 =⇒ α = 0 for α ∈ C .

We conclude that the single vector {1} constitutes a basis for C.

We might alternatively consider the complex numbers as a linear vector space over R, so the
scalars are real. Then the pair of vectors {1, i} constitute a basis since every complex number
z can be written uniquely as

z = α · 1 + β · i where α, β ∈ R ,

and
α · 1 + β · i = 0 =⇒ α = β = 0 if α, β ∈ R .

Thus we have
dimC C = 1 and dimR C = 2 .

Remarks.

• R3 is not the same as the physical space because the physical space has a rule for the distance
between two points. We can add more algebraic structures to R3 to make them the same.

• R2 is not the same as C because C has a rule for multiplication.
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4.2 Vector Subspace and Direct Sum (Non-examinable)

We can find smaller vector spaces in larger ones. For example, if you pick two linearly independent
vectors in R3, then they span a R2 space within the R3 space. This is an example of a subspace.
Definition 4.9. Suppose V is a vector space over F. A subset U ⊆ V is a subspace over F if

(i) for all u1,u2 ∈ U , u1 + u2 ∈ U .

(ii) for all λ ∈ F and u ∈ U , λu ∈ U .

(iii) 0 ∈ U .
Remark. We say U is a proper subspace of V to exclude the cases U = {0} and U = V .

On the other hand, we can also create larger vector spaces from smaller ones. For example, if we
have a 2D subspace and a linearly independent 1D subspace of a 3D vector space, we can ‘combine’
them to span the whole 3D space.
Definition 4.10. Suppose that V is a vector space over F and U,W are subspaces of V . The sum
of U and W is defined to be the set

U +W := {u+w | u ∈ U,w ∈W}.

Definition 4.11. We say that V is the (internal) direct sum of U and W , written as V = U ⊕W , if

V = U +W and U ∩W = 0.

Remark. Equivalently, V = U ⊕W if every element v ∈ V can be written uniquely as u + w with
u ∈ U and w ∈W .

We can extend this idea to stick together any two vector spaces to form a larger one.
Definition 4.12. Given any two vector spaces U and W over F, the (external) direct sum, U ⊕W
of U and W is defined to be the set of pairs

{(u,w) | u ∈ U,w ∈ W}

with addition given by
(u1,w1) + (u2,w2) = (u1 + u2,w1 +w2)

and scalar multiplication given by
λ(u,w) = (λu, λw) .

More generally, we can make the following definitions.
Definition 4.13. If U1, U2, . . . , Un are subspaces of V , then V is the (internal) direct sum of U1, . . . ,
Un, denoted as

V = U1 ⊕ · · · ⊕ Un =

n⊕
i=1

Ui ,

if every element v in V can be written uniquely as

v =

n∑
i=1

ui

with ui ∈ Ui.

Definition 4.14. If U1, . . . , Un are vector spaces over F, their (external) direct sum is the vector
space

n⊕
i=1

Ui := {(u1, . . . ,un) | ui ∈ Ui}

with coordinate-wise operations.
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4.3 Matrices

Next, we will investigate functions between vector spaces. Since we investigate them on vector spaces
with nice properties of linearity, we want our functions to preserve such linearity. Therefore, we are
particularly interested in the linear maps.

4.3.1 Linear Maps

Definition 4.15. Suppose that U and V are vector spaces over a field F. A function A : U → V is
a linear map if

(i) A(u1 + u2) = A(u1) +A(u2) for all u1,u2 ∈ U ;

(ii) A(λu) = λA(u) for all u ∈ U and λ ∈ F.

We say U is the domain of A and V is the codomain of A. We denote the vector space of linear maps
from U to V as L(U, V ).

Definition 4.16. For a linear map A : U → V ,

• The image of A,
ImA := {A(u) | u ∈ U} .

• The kernel of A,
kerA := {u ∈ U | A(u) = 0} .

Remark. A linear map, or linear operator, has an existence without reference to any basis.

Proposition 4.17. For a linear map A : U → V , kerA is a subspace of U and ImA is a subspace of
V .

Proof. First of all, 0 is in both kerA and ImA. For all λ, µ ∈ F and u1,u2 ∈ kerA,

A(λu1 + µu2) = λA(u1) + µA(u2) = 0+ 0 = 0 ,

so kerA is a subspace of U . Similarly, for u1,u2 ∈ U

λA(u1) + µA(u2) = A(λu1 + µu2) ∈ ImA .

□
Definition 4.18. Suppose that A : U → V is a linear map between finite dimensional vector spaces.

• The number n(A) := dimkerA is called the nullity of A.

• The number r(A) := dim ImA is called the rank of A.

4.3.2 Matrix Representations of Linear Operators

Proposition 4.19. Suppose that U and V are vector spaces over F and let S be a basis for U :
S := {e1, . . . en}. Every function f : S → V extends uniquely to a linear map A : U → V .

Proof. First we prove uniqueness: suppose that f : S → V , and A and B are two linear maps U → V
extending f . Let u ∈ U so that u =

∑
i uiei for some ui ∈ F. Then

A(u) = A

(
n∑
i=1

uiei

)

=

n∑
i=1

uiA(ei) .

54



4 Linear Algebra IB Mathematical Methods

Similarly,

B(u) =
n∑
i=1

uiB(ei) .

Since A(ei) = f(ei) = B(ei) for each i, we see that A(u) = B(u) for all u ∈ U and so A ≡ B.

That argument also shows us how to construct a linear map A that extends f . Every u ∈ U can
be written uniquely as u =

∑
i uiei with ui ∈ F. Thus we can define A(u) =

∑
i uif(ei) without

ambiguity. It remains to show that A is linear. We compute for u =
∑
i uiei and v =

∑
i viei,

A(λu+ µv) = A

(
n∑
i=1

(λui + µvi)ei

)

=

n∑
i=1

(λui + µvi)f(ei)

= λ

n∑
i=1

uif(ei) + µ

n∑
i=1

vif(ei)

= λA(u) + µA(v) .

□

Remark. To define a linear map, it suffices to specify its values on a basis.

Corollary. If U and V are finite dimensional vector spaces over F with ordered bases (e1, . . . , em)
and (f1, . . . , fn) respectively then there is a bijection

Matn×m(F) ↔ L(U, V )

that sends a n×m matrix A to the unique linear map A such that A(ei) =
∑
j Ajifj .

Remark. The i-th column of the matrix A tells where the i-th basis vector of U goes as a linear
combination of the basis vectors of V .

Corollary. The sum of two linear operators is defined by

(A+ B)x = Ax+ Bx = ei(Aij +Bij)xj .

The product, or composition, of two linear operators has the action

ABx = A(Bx) = A(ekBkjxj) = (Aek)Bkjxj = eiAikBkjxj .

The components therefore satisfy the rules of matrix addition and multiplication:

(A+ B)ij = Aij +Bij (AB)ij = AikBkj .

Note that AB 6= BA in general, and matrix multiplication is not commutative.

Remark. A matrix is the components of the linear operator with respect to a given basis.

We will focus on linear maps that transform within the same vector space.

Definition 4.20. Let V be a finite dimensional vector space over F. An endomorphism of V is a
linear map A : V → V .

Remark. The endomorphisms of V form a vector space, which is usually denoted by End(V ).
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4.3.3 Transformation Matrices

Let {ei}ni=1 and {e′i}ni=1 be two sets of basis vectors for an n-dimensional vector space V over F. Since
{ei}ni=1 is a basis of V , each basis vector e′i can be written in the {ei} basis as

e′j = eiAij

for some numbers Aij . Aij is the ith component of the vector e′j in the basis {ei}ni=1.

Proposition 4.21. The numbers Aij can be represented by a n× n transformation matrix A

A =


A11 A12 · · · A1n

A21 A22 · · · A2n

...
... . . . ...

An1 An2 · · · Ann

 ,

where the jth column of A consists of the components of e′j in the {ei}ni=1 basis.

Similarly, the individual basis vectors of the basis {ei}ni=1 can be written as

ei = e′kBki ,

for some numbers Bki. Here Bki is the kth component of the vector ei in the basis {e′i}ni=1. Again
the Bki can be viewed as the entries of a matrix B

B =


B11 B12 · · · B1n

B21 B22 · · · B2n

...
... . . . ...

Bn1 Bn2 · · · Bnn

 .

From the above two transformations of basis, we have that

e′j = (e′kBki)Aij = e′k(BkiAij) .

Since
e′j = e′kδkj ,

it follows that
BkiAij = δkj .

Hence in matrix notation, BA = I, where I is the identity matrix. Conversely, we can also prove that
AB = I.

Proposition 4.22. For the transformation matrices between two sets of bases, A and B,

B = A−1 ,

and
detA 6= 0 and detB 6= 0 .

Remark. A transformation matrix uniquely determines an endomorphism.

4.3.4 Transformation Law for Vector Components

Proposition 4.23. Let v and v′ be the column matrices of the components of a vector in the two
bases {ei} and {e′i} respectively, and let A be the transformation matrix of the endomorphism between
the two bases. We have

v = Av′ ,

v′ = A−1v .
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Proof. For a vector v, in the {ei}ni=1 basis we have

v = viei .

Similarly, in the {e′i}ni=1 basis we can write

v = v′je
′
j

= v′jeiAij

= ei(Aijv
′
j) ,

so it follows that
vi = Aijv

′
j ,

which relates the components of v in the basis {ei}ni=1 to those in the basis {e′i}ni=1 as claimed. The
second equation follows as A is invertible. □

Remark. In matrix notation, the transformation between bases is expressed as

e′ = eA .

We can see that the components of v transform inversely to the way that the basis vectors transform,
so that the vector v is unchanged:

v = v′jej

= ((A−1)jkvk)(eiAij)

= ei(vk(Aij(A
−1)jk))

= ei(vkδik)

= viei .

4.3.5 Transformation of Matrices Representing Linear Maps

Proposition 4.24. Let M and M′ be the matrices representing an endomorphism M ∈ End(Fn) in
two bases {ei} and {e′i} where the transformation matrix between the two bases is A. Then, we have

M′ = A−1MA .

Proof. Let v 7→ M(v) = u. In terms of matrices, this can be expressed as

u = Mv ,

where u, v are the component column matrices of u and v with respect to the basis {ei}. Let u′ and
v′ be the component column matrices of u and v in an alternative basis {e′i}. Then it follows that

Au′ = MAv′

=⇒ u′ = (A−1MA)v′ .

Therefore, in the new basis {e′i}, the matrix representing the linear map M becomes

M′ = A−1MA

as claimed. □
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4.4 Some Definitions of Special Matrices

We define the following special real matrices:
Definition 4.25. A square matrix is symmetric if it is equal to its transpose:

AT = A or Aij = Aji .

Definition 4.26. A square matrix is anti-symmetric if it is equal to the negative of its transpose:

AT = −A or Aij = −Aji .

Definition 4.27. A square matrix is orthogonal if its transpose is equal to its inverse:

AT = A−1 or AAT = ATA = I .

These ideas can be generalised to a complex vector space.
Definition 4.28. The Hermitian conjugate of a matrix is the complex conjugate of its transpose:

A† := (AT)∗ = (A∗)T or (A†)ij := A∗
ji .

Proposition 4.29.

(i) The Hermitian conjugate of a Hermitian conjugate:

A†† = A .

(ii) The Hermitian conjugate of a product:

(AB)† = B†A† .

Proof.

(i)
A†† = (A∗T)T∗ = A .

(ii)

(AB)† = ((AB)T)∗

= (BTAT)∗

= (BT)∗(AT)∗ = B†A† .

□

Definition 4.30. A n× n matrix is positive definite if for all column matrices v of length n,

v†Av ≥ 0 , with equality iff v = 0 .

Remark. If equality to zero were possible for non-zero v, then A is said to be positive semi-definite
rather than positive definite.

Definition 4.31. A square matrix is Hermitian if it is equal to its Hermitian conjugate:

A† = A or A∗
ji = Aij .

Definition 4.32. A square matrix is anti-Hermitian if it is equal to the negative of its Hermitian
conjugate:

A† = −A or A∗
ji = −Aij .

Definition 4.33. A square matrix is unitary if its Hermitian conjugate is equal to its inverse:

A† = A−1 or AA† = A†A = I .

Definition 4.34. A square matrix is normal if it commutes with its Hermitian conjugate:

AA† = A†A .
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4.5 Scalar Product

4.5.1 Definition of a Scalar Product

The prototype vector space E3 has the additional property that any two vectors u and v can be
combined to form a scalar u · v. This is generalised to an n-dimensional vector space over C. From
now on, let F be C or R.

Definition 4.35. An inner product space is a vector space over C equipped with an inner product.
An inner product is a map · : V × V → C with the properties.

(i) Sesquilinear. For a, b ∈ C, x,y, z ∈ V ,

(ax+ by) · z = a∗(x · z) + b∗(y · z) ,

x · (ay + bz) = a(x · y) + b(x · z) .

(ii) Hermitian.
x · y = (y · x)∗ .

(iii) Positive definite. For all x ∈ V \ {0}, x · x > 0, and 0 · 0 = 0.

Remark. A scalar product has existence without reference to any basis.

Definition 4.36. The (Euclidean) norm of a vector v ∈ V is defined as

‖v‖ = (v · v) 1
2 .

Remark. A norm in general is a function V → R≥0 satisfying several properties, and the Euclidean
norm is a specific example of a norm. A norm can induce a notion of distance (metric) in the vector
space, which makes a normed vector space also a metric space.

Definition 4.37. Two vectors are orthogonal if u · v = 0.

Two orthogonal vectors are orthonormal if ‖u‖ = ‖v‖ = 1.

Lemma 4.38. Orthogonal vectors are linearly independent.

Proof. For two orthogonal vectors u and v, suppose that there exists α and β such that

αu+ βv = 0 .

By pre-multiplying u, we have

α(u · u) + β(u · v) = α‖u‖2 + 0 = 0 .

Since u is non-zero, α = 0, and similarly β = 0, so they are linearly independent. □

Alternative notations.
〈u|v〉 ≡ u · v , ‖v‖ ≡ |v| = (v · v) 1

2 .

4.5.2 Some Inequalities

Theorem 4.39 (Cauchy–Schwarz inequality).

|〈u|v〉| ≤ ‖u‖‖v‖ ,

with equality only when u is a scalar multiple of v .
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Proof. Write 〈u|v〉 = |〈u|v〉|eiα, and for λ ∈ C, consider

‖u+ λv‖2 = 〈u+ λv|u+ λv〉

= 〈u|u〉+ λ 〈u|v〉+ λ∗ 〈v|u〉+ |λ|2 〈v|v〉

= 〈u|u〉+ (λeiα + λ∗e−iα)|〈u|v〉|+ |λ|2 〈v|v〉 .

First, suppose that v = 0. The RHS of the equation simplifies to an expression linear in λ. If
〈u|v〉 6= 0 we then have a contradiction since for a certain choice of λ this expression can be negative.
Hence we conclude that

〈u|v〉 = 0 if v = 0 ,

which satisfies the Cauchy–Schwarz inequality as an equality.

Next suppose v 6= 0 and choose λ = re−iα so that

0 ≤ ‖u+ λv‖2 = ‖u‖2 + 2r|〈u|v〉|+ r2‖v‖2 .

The RHS is a quadratic in r that has a minimum when r‖v‖2 = −|〈u|v〉|. Cauchy–Schwarz inequality
follows by substituting this value of r, with equality if u = −λv. □

Theorem 4.40 (The triangle inequality).

‖u+ v‖ ≤ ‖u‖+ ‖v‖ .

Proof.

‖u+ v‖2 = 〈u|u〉+ 〈u|v〉+ 〈u|v〉∗ + 〈v|v〉

= ‖u‖2 + 2Re{〈u|v〉}+ ‖v‖2

≤ ‖u‖2 + 2|〈u|v〉|+ ‖v‖2

≤ ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2

= (‖u‖+ ‖v‖)2 .

□

4.5.3 The Scalar Product in Terms of Components

Suppose that we have a scalar product defined on a vector space with a given basis {ei}ni=1. The
scalar product is determined for all pairs of vectors by its value for all pairs of basis vectors. Define
the complex number Gij by

Gij = ei · ej (i, j = 1, . . . , n) .

Then, for any two vectors
v = viei and w = wjej ,

we have that

v ·w = (viei) · (wjej)
= v∗iwjei · ej
= v∗iGijwj .

Definition 4.41. In matrix notation, the scalar product is written as

v ·w = v†Gw ,

where G is the matrix with entries Gij , called the metric.
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4.5.4 Properties of the Metric

Proposition 4.42. A metric is Hermitian.

Proof. The elements of the Hermitian conjugate of the metric G are the complex numbers

(G†)ij = (Gji)
∗

= (ej · ei)∗

= ei · ej
= Gij .

Hence G is Hermitian. G† = G. □

Remark. The property that G is Hermitian is consistent with the requirement that |v|2 = v · v is
real.

(v · v)∗ = ((v · v)∗)T

= (v · v)†

= (v†Gv)†

= v†G†v

= v†Gv

= v · v .

Proposition 4.43. A metric is positive definite.

Proof. For any v, we have
|v|2 ≥ 0 with equality iff v = 0 .

Hence, for any v,
v†Gv ≥ 0 with equality iff v = 0 .

Therefore, G is positive definite by definition. □

4.5.5 The Gram–Schmidt Process

For an Fn space, a set of mutually orthogonal vectors can be generated using the following process.

Proposition 4.44 (The Gram–Schmidt process). Let Fn be a vector space equipped with an
inner product. Given a set of linearly independent vectors {w1, . . . ,wn}, a set of mutually orthogonal
vectors {v1, . . . ,vn} as

v1 = w1 ,

v2 = w2 − Pv1
(w2) ,

v3 = w3 − Pv1(w3)− Pv2(w3) ,

...

vn = wn −
n−1∑
i=1

Pvi(wn) ,

where P is the operator that projects w orthogonally on v:

Pv(w) =
v ·w
v · v v .
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Proof. First, we have that

v1 · v2 = v1 ·
(
w2 −

v1 ·w2

v1 · v1
v1

)
= 0 .

Assume that {v1, . . .vk−1} are mutually orthogonal, then for 1 ≤ i ≤ k − 1,

vi · vk = vi ·

wk −
k−1∑
j=1

Pvj (wk)


= vi ·wk −

k−1∑
j=1

vj ·wk

vj · vj
vi · vj

= vi ·wk −
vi ·wk

vi · vi
vi · vi

= 0 .

The proposition is therefore proved by induction. □

4.6 Eigenvalues, Eigenvectors and Diagonalisation

Theorem 4.45 (The fundamental theorem of algebra). Let p(z) be a polynomial of degree
m ≥ 1

p(z) =

m∑
j=0

cjz
j ,

with cj ∈ C and cm 6= 0. Then p(z) can be factorised as

p(z) = cm

m∏
j=1

(z − ωj) ,

where ωj ∈ C. p(z) is guaranteed to have m roots in C. The number of times an ω is repeated in the
factorisation is called its multiplicity.

Definition 4.46. Let A ∈ End(Fn) be an endomorphism, where F is R or C. Then a non-zero vector
x ∈ Fn that satisfies the eigenvalue equation

Ax = λx ,

where λ ∈ F, is said to be an eigenvector of the endomorphism A with eigenvalue λ.

Definition 4.47. For a n× n square matrix M, its characteristic polynomial is

p(λ) := det(M− λI) ,

which is a polynomial of order n. The characteristic equation of M is

p(λ) = 0 .

Proposition 4.48. The eigenvalues of a square matrix M are given by the roots of its characteristic
polynomial. A n× n matrix has n eigenvalues.

Proof. Rewrite the eigenvalue equation as

(M− λI)x = 0 .
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Since x is non-zero, a non-trivial linear combination of the columns of the matrix (M− λI) is zero, so
the columns of the matrix are linearly dependent. Therefore,

det(M− λI) = 0 .

Since an nth order polynomial has exactly n complex roots (might be repeated) by the fundamental
theorem of algebra, there are always n eigenvalues. □

If the eigenvalues are not all distinct, then the repeated eigenvalues are said to be degenerate. If
an eigenvalue occurs m times, there may be any number between 1 and m of linearly independent
eigenvectors corresponding to it.

Definition 4.49. The multiplicity of an eigenvalue as a root of the characteristic polynomial is called
the algebraic multiplicity of λ, which is denoted by aλ. If the characteristic polynomial has degree n,
then ∑

λ

aλ = n .

Definition 4.50. The maximum number, mλ, of linearly independent eigenvectors corresponding to
λ is called the geometric multiplicity of λ.

Any linear combination of these eigenvectors with the same eigenvalue is also an eigenvector with
this eigenvalue, and the space spanned by these vectors is called an eigenspace.

Proposition 4.51. The set of all eigenvectors corresponding to an eigenvalue, together with 0, is a
vector subspace of Fn called the eigenspace of λ, denoted as Eλ.

Proof. The set of all eigenvectors corresponding to an eigenvalue λi with 0 are the kernel of the linear
map (M− λiI), so is a vector subspace of Fn by Proposition 4.17. □

Corollary. mλ = dimFEλ.

Definition 4.52. The difference ∆λ = aλ −mλ is called the defect of λ.

Remark. We shall see below that if the eigenvectors of a map form a basis of Fn (i.e. if there is no
eigenvalue with strictly positive defect), then it is possible to analyse the behaviour of that map and
associated matrices in terms of these eigenvectors.

Lemma 4.53. If the n eigenvalues of a square n×n matrix are all distinct, then there are n linearly
independent eigenvectors, each of which is determined uniquely up to an arbitrary multiplicative
constant.

4.6.1 Similarity Transformation

Definition 4.54. Two n × n matrices A and B are similar, or conjugate, if there exists a invertible
matrix P such that

B = P−1AP .

A map from A to P−1AP is a similarity transformation.

Remark. The matrices representing the same linear map A with respect to different bases are similar.

Proposition 4.55. Similar matrices have the same determinant and trace.

Proof.

det
(
P−1AP

)
= detP−1 detA detP

= detA det
(
P−1P

)
= detA .
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Tr
(
P−1AP

)
= P−1

ij AjkPki

= AjkPkiP
−1
ij

= Ajkδkj

= Tr(A) .

□

Remark. The determinants and traces of matrices representing a map A with respect to different
bases are the same. We can therefore talk of the determinant and trace of a map directly.

Proposition 4.56. Two similar matrices have the same characteristic polynomial, and hence the
same eigenvalues.

Proof. Suppose that B = P−1AP, then

pB(λ) = det(B− λI)

= det
(
P−1AP− λP−1IP

)
= det

(
P−1(A− λI)P

)
= det

(
P−1

)
det(A− λI) detP

= pA(λ) .

□

4.6.2 Diagonalisation

Theorem 4.57. If a n× n matrix M has n linearly independent eigenvectors xi with corresponding
eigenvalues λi, then M can be diagonalised by a similarity transformation

X−1MX = Λ ,

where X is a square matrix whose columns are the eigenvectors xi and Λ is the diagonal matrix with
diagonal entries Λii = λi.

Proof. We have
Mxi = λix

i , (no summation convention)

or in index notation for the jth component,
n∑
k=1

Mjkx
i
k = λix

i
j .

Let X be the n× n matrix whose columns are the eigenvectors of M, then

(X)ij = Xij = xji ,

X =


x11 x21 · · · xn1
x12 x22 · · · xn2
...

... . . . ...
x1n x2n · · · xnn

 .

The eigenvalue equation can be rewritten as
n∑
k=1

MjkXki = λiXji =

n∑
k=1

Xjkδkiλi ,
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or, in matrix notation, as
MX = XΛ ,

where Λ is the diagonal matrix

Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . ...
0 0 · · · λn

 .

The theorem follows if X is invertible, which is equivalent to the requirement that the columns of X
are linearly independent, i.e. M has n linearly independent eigenvectors. □

Remark. If any eigenvalue of the matrix has a non-zero defect, then it is not diagonalisable.

4.6.3 Eigenvalues and Eigenvectors of a Hermitian Matrix

Let H be a Hermitian matrix, and consider two eigenvectors x and y corresponding eigenvalues λ and
µ:

Hx = λx ,

Hy = µy .

Since H is Hermitian,
y†H = µ∗y† .

We can therefore construct two expressions for y†Hx:

y†Hx = λy†x = µ∗y†x ,

and hence
(λ− µ∗)y†x = 0 .

Theorem 4.58. The eigenvalues of a Hermitian matrix are real.

Proof. Suppose that x and y are the same eigenvector. Then λ = µ, so

(λ− λ∗)x†x = 0 .

Since x 6= 0, x†x = x∗i xi = |x|2 6= 0, and so λ = λ∗, i.e. the eigenvalues are real. □

Theorem 4.59. The eigenvectors of a Hermitian matrix are orthogonal.

Proof. Since the eigenvalues of a Hermitian matrix are real,

(λ− µ)y†x = 0 .

If y and x are different eigenvectors, we can deduce that y†x = 0 provided µ 6= λ. Therefore, the
eigenvectors with different eigenvalues are orthogonal.

When there is a repeated eigenvalue, the proof of orthogonality is more difficult and we will not
do it here. The basic idea of the proof is to use the Gram–Schmidt procedure to extend the set of
eigenvectors of non-degenerate eigenvalues to a complete set of orthonormal basis of Cn and use it to
attempt to diagonalise H. We can iteratively diagonalise the undiagonalised part until the matrix is
fully diagonalised. □

If we want to diagonalise a Hermitian matrix with a repeated eigenvalue, we can directly use the
Gram–Schmidt procedure to generate an arbitrary orthogonal basis in the eigenspace.

Corollary. A n× n Hermitian matrix has n orthonormal eigenvectors.
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Proof. For any µ ∈ C, if Hx = λx, then H(µx) = λ(µx). This allows us to normalise the eigenvectors
so that

x†x = 1 .

Therefore, for Hermitian matrices, it is always possible to find n orthonormal eigenvectors that
are linearly independent. □

Corollary. The eigenvectors of a Hermitian matrix are linearly independent.

Proof. By Lemma 4.38, orthogonal vectors are linearly independent. Therefore, a n × n Hermitian
matrix has n orthonormal eigenvectors that are linearly independent. □

Corollary. It can be proved similarly that the eigenvalues of anti-Hermitian and unitary matrices
are imaginary and of unit modulus, respectively.

Corollary. The eigenvectors of normal matrices corresponding to distinct eigenvalues are orthogonal.
Moreover, if a repeated eigenvalue λ occurs m times, then there are m corresponding linearly
independent eigenvectors.

Therefore, even if the eigenvalues of a Hermitian matrix are degenerate, it is possible to find n
mutually orthogonal eigenvectors, which form a basis for the vector space.

4.6.4 Diagonalisation of Hermitian Matrices

Theorem 4.60. Every Hermitian matrix, H, is diagonalisable by a transformation

X†HX = Λ ,

where X is a unitary matrix.

Proof. As shown above, a n × n Hermitian matrix H has n linearly independent eigenvectors, so it
must be diagonalisable to the matrix Λ by the transformation X−1HX, where the columns of X are
the eigenvectors of H:

X =


x11 x21 · · · xn1
x12 x22 · · · xn2
...

... . . . ...
x1n x2n · · · xnn

 .

If the xi are the orthonormal eigenvectors of H then X is a unitary matrix since:

(X†X)ij = (X†)ik(X)kj = (xik)
∗(xjk) = xi†xj = δij ,

or, in matrix notation
X†X = I .

Hence X is a unitary matrix. □

Corollary. If we restrict ourselves to real matrices, we conclude that for every real symmetric matrix,
S, is diagonalisable by a transformation RTSR, where R is an orthogonal matrix.

Corollary. As noted above, normal matrices always have n linearly independent eigenvectors, and
hence can always be diagonalised. So, in addition to Hermitian matrices, anti-Hermitian matrices
and unitary matrices can always be diagonalised.
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4.7 Application of Diagonalisation

4.7.1 Transformation Law for Metrics

For an arbitrary vector v, its components in the two bases transform according to v = Av′, where
v and v′ are column matrices containing the components. Taking the Hermitian conjugate of this
expression, we have that

v† = v′†A† .

Hence for arbitrary vectors v and w

v ·w = v†Gw

= v′†A†GAw′ .

We also have that in terms of the new basis,

v ·w = v′†G′w′ ,

where G′ is the metric in the new {e′i}ni=1 basis. Since v and w are arbitrary we conclude that the
metric in the new basis is given by

G′ = A†GA .

Alternative derivation.

(G′)ij ≡ G′
ij = e′i · e′j
= (ekAki) · (elAlj)
= A∗

ki(ek · el)Alj
= A†

ikGklAlj

= (A†GA)ij .

Remark. G′ is also Hermitian since

(G′)† = (A†GA)† = A†G†A = A†GA = G′ .

4.7.2 Diagonalisation of the Metric

If we identify A with X, the matrix with columns consisting of the orthonormal eigenvectors of G,
then

G′ = X†GX = Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . ...
0 0 · · · λn

 ,

where the λi are the real eigenvalues of the Hermitian matrix G.

Proposition 4.61. The eigenvalues of a metric are strictly positive.

Proof. Writing Λij = λiδij , from the positive definiteness of a metric, we have that

0 ≤ v′†G′v′ =
n∑

i,j=1

v′
∗
i λiδijv

′
j =

n∑
i=1

λi|v′i|
2
,

with equality only if v′ = 0. This can only be true for all vectors v′ if

λi > 0 for i = 1, . . . , n ,

i.e. the diagonal entries λi are strictly positive. □
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4.7.3 Orthonormal Bases

For a diagonalised metric, the new basis vectors {e′i}ni=1 are the eigenvectors of G since

e′j = eiXij = eix
j
i (j = 1, . . . , n) .

Hence the new basis vectors are orthogonal. Further,

e′i · e′j = G′
ij = Λij = λij .

Hence, because the λi are strictly positive, we can normalise the basis

e′′i =
1√
λi

e′i

so that
e′′i · e′′j = δij .

The {e′′i }ni=1 are thus an orthonormal basis. We therefore conclude that any vector space with a
scalar product has an orthonormal basis.

Theorem 4.62. Let column matrices v and w contain the components of two vectors v and w, in
an orthonormal basis {ei}ni=1. Then

v ·w = v†Iw = v†w .

Corollary. If the two vectors v and w are orthogonal, i.e. v · w = 0, then the components in an
orthonormal basis are such that

v†w = 0 .

4.7.4 Transformation between Orthonormal Bases

Given an orthonormal basis {ei}ni=1, a question is what change of basis maintains orthonormality.
Suppose that {e′i}ni=1 is a new orthonormal basis, and suppose that in terms of the original
orthonormal basis (with summation convention)

e′i = ekUki ,

where U is the transformation matrix. Then the metric of the new basis is given by

G′ = U†IU = U†U .

For the new basis to be orthonormal we require that the new metric be the identity matrix:

U†U = I .

Since detU 6= 0, the inverse U−1 exists and hence U must be unitary:

U† = U
−1
.

Corollary. An analogous result applies to vector spaces over R. Then because the transformation
matrix U = R is real,

U† = R
T
,

and so R must be orthogonal:
RT = R−1 .
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4.7.5 Uses of Diagonalisation

Because diagonal matrices can be multiplied easily component-wise along the diagonal, certain
operations on diagonalisable matrices are more easily carried out using the representations:

X−1MX = Λ and M = XΛX−1 .

Proposition 4.63. For a diagonalisable matrix M,

(i) Mn = XΛnX−1.

(ii) detM =
∏
i λi.

(iii) trM =
∑
i λi.

(iv) tr(Mn) =
∑
i λ

n
i .

Proof.

(i)

Mn = (XΛX−1) . . . (XΛX−1)

= XΛnX−1 .

(ii)

detM = det
(
XΛX−1

)
= detX detΛ detX−1

= detΛ =
∏
i

λi .

(iii)

trM = tr
(
XΛX−1

)
= tr

(
ΛX−1X

)
= trΛ =

∑
i

λi .

(iv)

tr(Mn) = tr
(
XΛnX−1

)
= tr

(
ΛnX−1X

)
= tr(Λn) =

∑
i

λni .

□

Remark. The results (ii) and (iii) are in fact true for all matrices, whether or not they are
diagonalisable.

4.7.6 Cayley–Hamilton Theorem (Non-examinable)

Theorem 4.64 (Cayley–Hamilton theorem). Every endomorphism satisfies its own characteris-
tic equation. If A has a characteristic polynomial p(λ), then

p(A) = 0 .
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A proof is beyond the scope of this course.

We can take advantage of the Cayley–Hamilton theorem to calculate the inverse of a matrix.
Suppose a n× n square matrix A has a characteristic polynomial

p(λ) =

n∑
i=0

ciλ
i .

Then by Cayley–Hamilton theorem,
n∑
i=0

ciA
i = 0 .

By acting a A−1 on both sides, we have

n−1∑
i=0

ci+1A
i + c0A

−1 = 0

=⇒ A−1 = − 1

c0

n−1∑
i=0

ci+1A
i .

These powers of A are generally much easier to calculate, especially when A is diagonalisable.

4.8 Jordan Normal Form (Non-examinable)

We will quote a few interesting results in this section, but will prove none of them.

4.8.1 Minimal Polynomial

The Cayley–Hamilton theorem states that

p(A) =
n∏
i=1

(A− λiI) = 0 ,

but this polynomial is not necessarily the ‘minimal’ one to make A vanish.

Definition 4.65. The minimal polynomial of an endomorphism A ∈ End(V ) is the non-zero monic
(leading coefficient is 1) polynomial mA(t) of the least degree with coefficients in F such that mA(A) =
0.

Lemma 4.66. Let f(x) be a non-zero polynomial with coefficient in F. f(A) = 0 if and only if mA

is a factor of f .

Remark. In particular, the minimal polynomial is a factor of the characteristic polynomial.

Lemma 4.67. For an endomorphism A ∈ Fn and λ ∈ F, the following are equivalent.

(i) λ is an eigenvalue of A;

(ii) λ is a root of the characteristic polynomial pA;

(iii) λ is a root of the minimal polynomial mA.

Let us extend our definition on the multiplicity of an eigenvalue.

Definition 4.68. Let A ∈ End(Fn) be an endomorphism with an eigenvalue λ.
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(i) The algebraic multiplicity of λ is

aλ := the multiplicity of λ as a root of pA .

(ii) The geometric multiplicity of λ is
gλ := dimEA(λ) .

(iii) Another useful number is

cλ := the multiplicity of λ as a root of mA .

Lemma 4.69. Let A ∈ End(Fn) be an endomorphism and λ be an eigenvalue of A.

(i) 1 ≤ gλ ≤ aλ;

(ii) 1 ≤ cλ ≤ aλ.

Lemma 4.70. For a square matrix over C, the following are equivalent

(i) A is diagonalisable;

(ii) aλ = gλ for all eigenvalues of A, i.e. ∆λ = 0 for all λ;

(iii) cλ = 1 for all eigenvalues of A.

Now, we are ready to introduce the Jordan normal form of a matrix.

Definition 4.71. A matrix A ∈ Mn×n(C) is in Jordan normal form (Jordan canonical form) if it is
a block diagonal matrix

A =


Jn1

(λ1) 0 · · · 0
0 Jn2(λ2) · · · 0
...

... . . . 0
0 0 0 Jnk

(λk)

 ,

where k ≥ 1, n1, . . . , nk ∈ N such that n1, . . . , nk ∈ N such that
∑k
i=1 ni = n and λ1, . . . , λk ∈ C (not

necessarily distinct) and Jm(λ) ∈ Matm×m(C) has the form

Jm(λ) :=


λ 1 · · · 0

0 λ
. . . 0

...
... . . . 1

0 0 0 λ

 .

We call Jm(λ) the Jordan blocks.

Finally, we have the theorem.

Theorem 4.72 (Jordan normal form). Every matrix A ∈ Matn×n(C) is similar to a matrix in
Jordan normal form. This matrix in Jordan normal form is uniquely determined by A up to reordering
the Jordan blocks.

The Jordan normal form of a matrix satisfies the following properties:

(i) aλ is the total number of λ on the diagonal.

(ii) gλ is the number of Jordan normal blocks with diagonal entries λ

(iii) cλ is the size of the largest block with eigenvalue λ.
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Remark. If the matrix is diagonalisable, then its Jordan normal form is trivially a diagonal matrix of
eigenvalues. If not, then the matrix in Jordan normal form can immediately show us the multiplicities
of its eigenvalues.

Example. Consider a matrix with Jordan normal form
1 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 3 0
0 0 0 0 0 3


Then we can see that the eigenvalue λ1 = 1 has algebraic multiplicity of 3, geometric multiplicity
of 2 and c1 = 2. Its eigenspace has defect ∆1 = 1. The next eigenvalue λ2 = 2 is non-degenerate.
The eigenvalue λ3 = 3 has algebraic multiplicity of 2, geometric multiplicity of 2 and c3 = 1. The
eigenspace is 2 dimensional with no defect. The characteristic polynomial is

p(t) = (t− 1)3(t− 2)(t− 3)2 ,

and the minimal polynomial is
m(t) = (t− 1)2(t− 2)(t− 3) .

4.9 Duality (Non-examinable)

This concept will be especially important if you are doing quantum mechanics.

4.9.1 Dual Spaces

To specify a subspace of Fn, we can write down a set of linear equations that every vector in the
subspace satisfies. For example, let

U =

〈1
2
1

〉 ⊂ F3 ,

we can see that

U =


x1x2
x3

∣∣∣∣∣∣ 2x1 − x2 = 0 , x1 − x3 = 0

 .

These equations are determined by the kernels of linear maps θ : Fn → F. Moreover if θ1, θ2 : Fn → F
are linear maps that vanish on U and λ, µ ∈ F, then λθ1 + µθ2 vanishes on U . One may study the
subspace of linear maps Fn → F that vanish on U .

Definition 4.73. Let V be a vector space over F. The dual space of V is the vector space

V ∗ := L(V,F) = {θ : V → F linear}

with pointwise addition and scalar multiplication.

The elements of V ∗ are sometimes called linear forms or linear functionals on V .

Lemma 4.74. Suppose that V is a finite dimensional vector space over F with basis (e1, . . . , en),
then its dual space V ∗ has a basis (ϵ1, . . . , ϵn) such that

ϵi(ej) = δij .
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Proof. We know that to define a linear map it suffices to define it on a basis so there are unique
elements ϵ1, . . . , ϵn such that ϵi(ej) = δij . We must show that they span V ∗ and are linearly
independent.

To show that {ϵi} do span V ∗, we need to show that any linear map θ ∈ V ∗ can be written as

θ =

n∑
i=1

λiϵi .

Let λi = θ(ei) ∈ F, it suffices to show that the two representations agree on the basis (e1, . . . , en) of
V . We have

n∑
i=1

λiϵi(ej) = λj = θ(ej) ,

so the claim is true.

Next, suppose that
∑
µiϵi = 0 ∈ V ∗ for some µ1, . . . , µn ∈ F . Then 0 =

∑
µiϵi(ej) = µj for each

j = 1, . . . , n. Thus ϵ1, . . . , ϵn are linearly independent as claimed. □

Corollary. If V is a finite dimensional vector space over F, then dimF V = dimF V
∗.

Definition 4.75. We call the basis (ϵ1, . . . , ϵn) of V ∗ such that

ϵi(ej) = δij

the dual basis with respect to the basis (ei, . . . , en) of V .

Remark. If we think of the elements of V as column vectors with respect to some basis

∑
xiei =

xi...
xn

 ,

then we can view elements of V ∗ as row vectors with respect to the dual basis∑
aiϵi =

(
a1 · · · an

)
such that (∑

aiϵi

)(∑
xjej

)
=
∑

aixi =
(
a1 · · · an

)xi...
xn

 .

Proposition 4.76. Suppose that V is a finite dimensional vector space over F with bases (e1, . . . , en)
and (f1, . . . , fn), and that P is the change of basis matrix from {ei} to {fi} such that fi = Pkiek. Let
(ϵ1, . . . , ϵn) and (η1, . . . , ηn) be the corresponding dual bases such that

ϵi(ej) = δij = ηi(fj) .

The change of basis matrix from {ϵi} to {ηi} is given by (P−1)T such that

ϵi =
∑

ηlPil .

Proof. Let Q = P−1. Then ej = Qkjfk, so we can compute(∑
l

ηlPil

)
(ej) =

∑
k,l

(Pilηl)(Qjkfk) =
∑
k,l

PilδklQkj = δij ,

so ϵi =
∑
l ηlPil as claimed. □
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4.9.2 Dual Maps

Definition 4.77. Let V and W be vector spaces over F and suppose that α : V → W is a linear
map. The dual map to α is defined to be the map α∗ :W ∗ → V ∗, θ 7→ θα.

Proposition 4.78. Let α∗ be the dual map α∗ :W ∗ → V ∗,

α∗ ∈ L(W ∗, V ∗) .

Proof. θα is the composite of two linear maps and so is linear. Moreover, if λ, µ ∈ F, θ1, θ2 ∈ W ∗

and v ∈ V , then

α∗(λθ1 + µθ2)(v) = (λθ1 + µθ2)α(v)

= λθ1α(v) + µθ2α(v)

= (λα∗(θ1) + µα∗(θ2))(v) .

Therefore, α∗(λθ1 + µθ2) = λα∗(θ1) + µα∗(θ2), and α∗ is linear, so α∗ ∈ L(W ∗, V ∗). □

Lemma 4.79. Suppose that V and W are finite dimensional vector spaces with bases (e1, . . . , en)
and (f1, . . . , fm) respectively. Let (ϵ1, . . . , ϵn) and (η1, . . . , ηm) be the corresponding dual bases. If
α : V → W is represented by A with respect to {ei} and {fj}, then α∗ is represented by AT with
respect to {ηi} and {ϵi}.

Proof. We are given α(ei) =
∑
Akifk and must compute α∗(ηi) in terms of ϵ1, . . . , ϵn.

α∗(ηi)(ej) = ηi(α(ej))

= ηi

(∑
k

Ajkfk

)
=
∑
k

Akjδik = Aij .

Thus α∗(ηi)(ej) =
∑
k Aikϵk(ej) =

∑
k A

T
kiϵk(ek) and so α∗(ηi) =

∑
k A

T
kiϵk as required. □

4.10 Forms

Definition 4.80. Let U and V be vector spaces over F. A map F : U × V → F is a bilinear form if
it is linear in both of its arguments. For a, b ∈ C, u1,u2 ∈ U and v1,v2 in V ,

F(au1 + bu2,v1) = aF(u1,v1) + bF(u2,v1) ,

F(u1, av1 + bv2) = aF(u1,v1) + bF(u1,v2) .

Definition 4.81. A map F : U × V → C is a sesquilinear form if it is linear in its second argument
and anti-linear in its first argument. For a, b ∈ C, u1,u2 ∈ U and v1,v2 in V ,

F(au1 + bu2,v1) = a∗F(u1,v1) + b∗F(u2,v1) ,

F(u1, av1 + bv2) = aF(u1,v1) + bF(u1,v2) .

Lemma 4.82. Let F : U × V → C be a sesquilinear form and let {ui} and {vj} be the bases of U
and V . The form can be represented by a matrix A defined by

Aij = F(ui,vj)

such that for u ∈ U and v ∈ V ,
F(u,v) = u†Av .
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Proof. Let
u =

∑
i

λiui , v =
∑
j

µjvj .

F(u,v) = F

∑
i

λiui,
∑
j

µjvj


=
∑
i

∑
j

λ∗iAijµj

= u†Av .

□

Definition 4.83. A sesquilinear form F : V × V → C is Hermitian if

F(x,y) = F(y,x)∗

for x,y ∈ V .

Remark. An inner product is a positive definite Hermitian form.

Lemma 4.84. A form is Hermitian if and only if its representing matrix is Hermitian.

Proof. If F is Hermitian then

Hij = F(vi,vj) = F(vj ,vi)
∗ = H∗

ji .

Conversely, if H = H†,

F(x,y) = x†Hy = yTHTx
∗
= (y†Hx)∗ = (F(y,x))

∗
.

□

Lemma 4.85. A Hermitian form of a vector with itself F : V → C is real.

Proof.

(x†Hx)∗ = (x†Hx)†

= x†H†x

= x†Hx .

□

An important special case is obtained by restriction to real vector spaces.

Definition 4.86. If ϕ : V × V → F is a bilinear form, then we call the map F : V → F; v 7→ ϕ(v,v)
a quadratic form.

Lemma 4.87. A quadratic form on real vector spaces can be represented by a real, symmetric matrix.

F(x) = xTSx =
n∑

i,j=1

xiSijxj .

Proof. Restricting to real vector space, a bilinear map of a vector with itself is clearly sesquilinear
and Hermitian. Its representing matrix is Hermitian, but should also be real. Therefore, a quadratic
form is represented by a real symmetric matrix. □

75



4 Linear Algebra IB Mathematical Methods

4.10.1 Eigenvectors and Principal Axes

The coefficient matrix, H, of a Hermitian form can be written as

H = UΛU† ,

where U is unitary and Λ is a diagonal matrix of eigenvalues. Let

x′ = U†x ,

then the Hermitian form of a vector with itself can be written as

F(x) = x†UΛU†x

= x′†Λx′

=

n∑
i=1

λi|x′i|
2
.

Transforming to a basis of orthonormal eigenvectors transforms the Hermitian form to a standard
form with no off-diagonal terms. The orthonormal basis vectors that coincide with the eigenvectors
of the coefficient matrix, which lead to the simplified version of the form, are known as the principal
axes.

Proposition 4.88. For a Hermitian form

F(x) = x†Hx ,

its principal axes are given by the eigenvectors of the Hermitian matrix H.

Example. Let F(x) be the quadratic form

F(x) = 2x2 − 4xy + 5y2 = xTSx ,

where
x =

(
x
y

)
and S =

(
2 −2
−2 5

)
.

Find the surface described by F(x) = constant.

The eigenvalues of the real symmetric matrix S are λ1 = 1 and λ2 = 6, with corresponding unit
eigenvectors

u1 =
1√
5

(
2
1

)
and u2 =

1√
5

(
1
−2

)
.

The orthogonal matrix
Q =

1√
5

(
2 1
1 −2

)
transforms the original orthonormal basis to a basis of principal axes. Hence S = QΛQT, where Λ is
a diagonal matrix of eigenvalues. It follows that F can be rewritten in the normalised form

F = xTQΛQTx = x′
T
Λx′ = x′2 + 6y′2 ,

where
x′ = Q

T
x , i.e.

(
x′

y′

)
=

1√
5

(
2 1
1 −2

)(
x
y

)
.

Such a surface is therefore an ellipse.

Remark. In diagonalising S by transforming to its eigenvector basis, we are rotating the coordinates
to reduce the quadratic form to its simplest form.
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4.10.2 Quadrics and Conics

Definition 4.89. A quadric, or a quadric surface, is the n-dimensional hypersurface defined by the
zeros of a real quadratic polynomial. For coordinates (x1, . . . , xn) the general quadric is defined by

xiAijxj + bixi + c ≡ xTAx+ bTx+ c = 0 ,

under summation convention, where A is a n×n matrix, b is a n×1 column vector and c is a constant.

Let
S =

1

2
(A+ AT) ,

then from the above two equations of the quadric,

xTSx+ bTx+ c = 0 .

Note that S is real symmetric. By taking the principal axes as basis vectors it follows that

x′TΛx′ + b′Tx′ + c = 0 ,

where Λ = QTSQ, b′ = QTb and x′ = QTx. If Λ does not have a zero eigenvalue, then it is invertible
and the equation can be simplified further by a translation of the origin

x′ → x′ − 1

2
Λ−1b′ ,

to obtain
x′TΛx′ = k ,

where k is a constant.

Conic sections. First suppose that n = 2 and that Λ does not have a zero eigenvalue, then with

x′ =

(
x′

y′

)
and Λ =

(
λ1 0
0 λ2

)
,

the simplified quadric formula becomes

λ1x
′2 + λ2y

′2 = k ,

which is the normalised equation for a conic section.

(i) λ1λ2 > 0. If λ1λ2 > 0, then k must have the same sign as λ1, and this is an equation of an
ellipse with principal axes coinciding with the x′ and y′ axes.

Scale. The scale of the ellipse is determined by k.

Shape. The shape of the ellipse is determined by the ratio of the eigenvalues.

Orientation. The orientation of the ellipse in the original basis is determined by the eigenvectors
of S.

In the degenerate case, λ1 = λ2, the ellipse becomes a circle with no preferred principal axes.
Any two orthogonal (or just linearly independent) vectors may be chosen as the principal axes.

(ii) λ1λ2 < 0. If λ1λ2 < 0 then this is an equation for a hyperbola with principal axes coinciding
with the x′ and y′ axes.
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(iii) λ1λ2 = 0. If λ1 = λ2 = 0 then there is no quadratic term.

We assume that only one eigenvalue is zero; wlog λ2 = 0. Then we alternatively translate the
origin according to

x′ → x′ − b′1
2λ1

, y′ − c

b′2
+

b′
2
1

4λ1b′2
,

assuming b′2 6= 0, to obtain
λ1x

′2 + b′2y
′ = 0 .

This is the equation of a parabola with principal axes coinciding with the x′ and y′ axes.

If b′2 = 0, the equation for the conic section can be reduces to λ1x′2 = k, with possible solutions
of zero (λ1k < 0), one (k = 0) or two (λ1k > 0) lines.

Three Dimensions. If n = 3 and Λ does not have a zero eigenvalue, then with

x′ =

x′y′
z′

 and Λ =

λ1 0 0
0 λ2 0
0 0 λ3

 .

The simplified quadric equation becomes

λ1x
′2 + λ2y

′2 + λ3z
′2 = k .

When λik > 0, the distance to the surface along the ith principal axes =
√

k
λi

.

This equation describes a number of characteristic surfaces.

Coefficients Quadric Surface

λ1 > 0, λ2 > 0, λ3 > 0, k > 0 Ellipsoid. This include the case of metric matrices, since
S is then positive definite and the λi are all positive.

λ1 = λ2 Surface of revolution about the z′ axis.
λ1 = λ2 > 0, λ3 > 0, k > 0 Spheroid: A prolate spheroid if λ1 = λ2 > λ3 and an

oblate spheroid if λ1 = λ2 < λ3.
λ1 = λ2 = λ3 > 0, k > 0 Sphere.
λ1 = λ2 > 0, λ3 = 0, k > 0 Cylinder.
λ1 > 0, λ2 > 0, λ3 = 0, k > 0 Elliptic cylinder.
λ1 > 0, λ2 > 0, λ3 < 0, k > 0 Hyperboloid of one sheet.
λ1 > 0, λ2 > 0, λ3 < 0, k = 0 Elliptical conical surface.
λ1 > 0, λ2 < 0, λ3 < 0, k > 0 Hyperboloid of two sheet.

λ1 > 0, λ2 = λ3 = 0, λ1k ≥ 0 Planes x = ±
√

k
λ1

.

4.10.3 The Stationary Properties of the Eigenvalues

Suppose that we have an orthonormal basis, and let x be a point on xTSx = k where k is a constant.
Then the distance squared from the origin to the quadric surface is xTx. This distance naturally
depends on the value of k. This dependence on k can be removed by considering the square of the
relative distance to the surface:

(relative distance to surface)2 =
xTx

xTSx
.
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Let us consider the directions for which this relative distance, or equivalently its inverse (referred to
as the Rayleigh quotient)

λ(x) =
xTSx

xTx
,

is stationary. We can find the first variation in λ(x) by letting

x → x+ δx and xT → xT + δxT ,

using Taylor expansion, and ignoring terms quadratic or higher in |δx|. First note that

(xT + δxT)(x+ δx) = xTx+ xTδx+ δxTx+ . . .

= xTx+ 2δxTx+ . . .

Hence
1

(xT + δxT)(x+ δx)
=

1

xTx+ 2δxTx+ . . .

=
1

xTx

(
1 +

2δxTx

xTx
+ . . .

)−1

=
1

xTx

(
1− 2δxTx

xTx
+ . . .

)
Similarly,

(xT + δxT)S(x+ δx) = xTSx+ xTSδx+ δxTSx+ . . .

= xTSx+ 2δxTSx+ . . .

Putting them together we have

δλ(x) ≡ λ(x+ δx)− λ(x) =
(xT + δxT)S(x+ δx)

(xT + δxT)(x+ δx)
− xTSx

xTx

=
xTSx+ 2δxTSx+ . . .

xTx

(
1− 2δxTx

xTx
+ . . .

)
− xTSx

xTx

=
2δxTSx

xTx
− xTSx

xTx

2δxTx

xTx

=
2

xTx
(δxTSx− λ(x)δxTx)

=
2

xTx
δxT(Sx− λ(x)x)

Theorem 4.90 (The Rayleigh–Ritz variational principle). The eigenvectors of S are the di-
rections that make the relative distance to the quartic surface stationary, and the eigenvalues are the
values of

λ(x) =
xTx

xTx
at the stationary points.

Proof. The first variation of λ(x) is zero for all possible δx when

Sx = λ(x)x ,

i.e. when x is an eigenvector of S and λ is the associated eigenvalue. □

Corollary. Similarly, it can be shown that the eigenvalues of a Hermitian matrix H are the values
of the function

λ(x) =
xTHx

xTx
at its stationary points.
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5 Elementary Analysis

5.1 Sequences and Limits

5.1.1 Sequences

Definition 5.1. A sequence is a function s : N → R (or C) usually written as sn instead of s(n) as
an ordered list of numbers.

5.1.2 Behaviour of sequences

Possible behaviours of a sequence sn as n increases are:

(i) sn tends towards a particular value;

(ii) sn does not tend to any value but remains limited in magnitude;

(iii) sn is unlimited in magnitude.

Definition 5.2. A sequence sn is said to tend to the limit s if given any positive ϵ, there exists
N ≡ N(ϵ) such that |sn − s| < ϵ for all n > N . We write this as

lim
n→∞

sn = s or as sn → s as n→ ∞ .

In other words, the members of the sequence are eventually contained within an arbitrarily small disk
centred on s.

Theorem 5.3 (Cauchy’s principle of convergence). A sequence sn ∈ R or C is convergent if
and only if for any positive number ϵ, there exists N > 0 such that for all n ≥ N and m ≥ 1,∣∣s(n+m) − sn

∣∣ < ϵ. Such a sequence is said to be Cauchy.

Remark. For sequences in other domains, convergence =⇒ Cauchy but a Cauchy sequence is not
necessarily convergent.

Definition 5.4. The sequence sn is bounded as n → ∞ if there exists a positive number K and a
positive integer N such that |sn| ≤ K for all n ≥ N .

Definition 5.5. A sequence an is increasing if an ≤ an+1 for all n. It is strictly increasing if
an < an+1 for all n. (Strictly) decreasing sequences are defined analogously.

A sequence is (strictly) monotone if it is (strictly) increasing or (strictly) decreasing.

Definition 5.6. A sequence is said to tend to infinity if given any A ∈ R (however large), there exists
N ∈ N such that sn > A for all n > N . We then write sn → ∞ as n→ ∞.

Similarly, we say that sn → −∞ as n→ ∞ if given any A (however large), there exists N ≡ N(A)
such that sn < −A for all n > N .

Proposition 5.7. If sn+1 > sn, and sn < K ∈ R ∀n, then s = limn→∞ sn exists.

Proof. A monotone sequence tends either to a limit or to ±∞. Hence a bounded monotone sequence
tends to a limit. □

Definition 5.8. If a sequence does not tend to a limit or ±∞, then it is said to oscillate. If sn
oscillates and is bounded, it oscillates finitely, otherwise, it oscillates infinitely.
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5.2 Convergence of Infinite Series

5.2.1 Convergent and Divergent Series

Definition 5.9. Given an infinite sequence of numbers u1, u2, . . ., the partial sum sn is defined by

sn =

n∑
r=1

ur .

Definition 5.10. If as n→ ∞, sn tends to a finite limit s, then we say that the infinite series

s =

∞∑
r=1

ur ,

converges, and that s is its sum.

An infinite series which is not convergent is called divergent.
Remarks.

• Whether a series converges or diverges depends on the behaviour of the terms un as n tends to
infinity.

• According to Cauchy’s principle of convergence, a necessary and sufficient condition for
∑
ur

to converge is that, for any positive number ϵ,

|sn+m − sn| = |un+1 + un+2 + · · ·+ un+m| < ϵ

for all positive integers m, for sufficiently large n.

Lemma 5.11. The geometric series
∞∑
r=0

zr = 1 + z + z2 + z3 + . . . ,

converges to (1− z)−1 provided that |z| < 1 .

Proof. Consider the partial sum

sn = 1 + z + · · ·+ zn−1 =
1− zn

1− z
.

If |z| < 1, then we have that zn → 0 as n→ ∞, and hence

s = lim
n→∞

sn =
1

1− z
for |z| < 1 .

However if |z| ≥ 1 the series diverges. □

Lemma 5.12. The harmonic series,
∞∑
n=1

1

n
,

diverges.

Proof. Consider the partial sum

sn =

n∑
r=1

1

r
= 1 +

1

2
+

1

3
+ · · ·+ 1

n
.

Then
sn >

ˆ n+1

1

1

x
dx = ln(n+ 1) .

Therefore sn increases without bound and does not tend to a limit as n→ ∞. □
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Lemma 5.13. A necessary condition for s to converge is that ur → 0 as r → ∞.

Proof. Use the fact that ur = sr − sr−1 we have that

lim
r→∞

ur = lim
r→∞

(sr − sr−1) = lim
r→∞

sr − lim
r→∞

sr−1 = s− s = 0 .

□

Remark. However, ur → 0 as r → ∞ is not a sufficient condition for convergence. The harmonic
series is an example.

5.2.2 Absolute and Conditional Convergence

Definition 5.14. A series
∑
ur is said to converge absolutely if

∞∑
r=1

|ur|

converges.

Lemma 5.15. If
∑

|ur| converges, then
∑
ur also converges.

Proof. If
∑

|ur| converges, then for any positive number ϵ, |un+1|+ |un+2|+ · · ·+ |un+m| < ϵ For all
positive integers m, for sufficiently large n. But then

|un+1 + un+2 + · · ·+ un+m| ≤ |un+1|+ |un+2|+ · · ·+ |un+m| < ϵ ,

and so
∑
ur also converges. □

Definition 5.16. If
∑

|ur| diverges but
∑
ur converges, then the series is said to converge

conditionally.

Lemma 5.17. The Alternating harmonic series,
∞∑
r=1

(−1)r−1 1

r
= 1− 1

2
+

1

3
+ . . . ,

converges conditionally.

Proof. From the Taylor expansion

log(1 + x) = −
∞∑
r=1

(−x)r

r
,

we spot that s = log 2. Hence
∑∞
r=1 ur converges. However,

∑∞
r=1 |ur| diverges, so the series is

conditionally convergent. □

5.3 Tests of Convergence

5.3.1 The Comparison Test

This test applies to series of non-negative real numbers.

Theorem 5.18 (The comparison test). Suppose given that vr > 0 and that S =
∑∞
r=1 vr is

convergent. If
0 ≤ ur ≤ Kvr

for some K independent of r. Then the series
∑∞
r=1 ur is also convergent.
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Proof. Since ur > 0, sn =
∑n
r=1 ur is an increasing sequence. Further

sn =

n∑
r=1

ur < K
n∑
r=1

vr ,

and thus
lim
n→∞

sn < K

∞∑
r=1

vr = KS ,

i.e. sn is an increasing bounded sequence. Therefore,
∑∞
r=1 ur is convergent. □

Remark. Similarly, if
∑∞
r=1 vr diverges, vr > 0 and ur > Kvr for some K independent of r, then∑∞

r=1 ur diverges.

5.3.2 D’Alembert’s Ratio Test

Theorem 5.19 (D’Alembert’s ratio test). Suppose that the ur are real and positive, ur > 0.
Define the ratio of successive terms to be

ϱr =
ur+1

ur
,

and suppose that ϱr tends to a limit ϱ as r → ∞, i.e.

lim
r→∞

ur+1

ur
= ϱ .

Then
∑
ur converges if ϱ < 1 and diverges if ϱ > 1.

Proof.

• ϱ < 1. For the case ϱ < 1, choose σ with ϱ < σ < 1. Then there exists N ≡ N(σ) such that

ur+1

ur
< σ for all r > N .

It follows that
∞∑
r=1

ur =

N∑
r=1

ur + uN+1

(
1 +

uN+2

uN+1
+
uN+3

uN+2
+ . . .

)

<

N∑
r=1

ur + uN+1

(
1 + σ + σ2 + . . .

)
<

N∑
r=1

ur +
uN+1

1− σ
.

We conclude that
∑∞
r=1 ur is bounded. Then, since sn =

∑n
r=1 ur is an increasing sequence, it

follows that
∑
ur converges.

• ϱ > 1. For the case ϱ > 1, choose τ with ϱ > τ > 1. Then there exists M ≡M(τ) such that

ur+1

ur
> τ > 1 for all r > M ,

and hence
ur
uM

> τ r−M > 1 for all r > M .

Thus, since ur 6→ 0 as r → ∞, we conclude that
∑
ur diverges. □
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Corollary. A series
∑
ur of complex terms converges if the limit of the absolute ratio of successive

terms is less than one:
lim
r→∞

∣∣∣∣ur+1

ur

∣∣∣∣ = ρ < 1 .

Proof. D’Alembert’s ratio test shows that
∑
ur converges absolutely, so

∑
ur must converge. □

Remarks.

• If ϱ = 1, then nothing can be concluded. The series may converge or not, and a different test
is required.

• The ratio test cannot be used for series in which some of the terms are zero. However, it may
be adapted by relabelling the series to remove the vanishing terms.

5.3.3 Cauchy’s Test

Theorem 5.20 (Cauchy’s test). Suppose that the ur > 0 and that

lim
r→∞

u
1
r
r = ϱ .

Then
∑
ur converges if ϱ < 1, while

∑
ur diverges if ϱ > 1.

Proof. First, suppose that ϱ < 1. Choose σ with ϱ < σ < 1. Then there exists N ≡ N(σ) such that

u
1
r
r < σ, i.e. ur < σr for all r > N .

It follows that
∞∑
r=1

ur <

N∑
r=1

ur +

∞∑
r=N+1

σr .

We conclude that
∑∞
r=1 ur is bounded (since σ < 1). Moreover sn =

∑n
r=1 ur is an increasing

sequence, and hence
∑
ur converges.

Next, suppose that ϱ > 1. Choose τ with 1 < τ < ϱ. Then there exists M ≡M(τ) such that

u
1
r
r > τ > 1, i.e. ur > τ r > 1, for all r > M .

Thus, since ur 6→ 0 as r → ∞,
∑
ur must diverge. □

5.4 Functions of a Continuous Variable

5.4.1 Limits and Continuity

Let f : U → R or C, where U ⊆ R or C.

Definition 5.21. The function f(z) tends to the limit L as z → z0 if for any ϵ > 0, ∃ δ > 0 such
that |f(z)− L| < ϵ for all 0 < |z − z0| < δ. We write this as

lim
z→z0

f(z) = L or f(z) → L as z → z0 .

Definition 5.22. The function f(z) is continuous at the point z = z0 if f(z) → f(z0) as z → z0.

Remark. The notion of limit and continuity can be easily generalised to f : U → Fn, where F is R or
C and U ⊆ Fm.
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Definition 5.23. The function f(z) is bounded as z → z0 if there exist positive numbers K and δ
such that |f(z)| < K for all z with 0 < |z − z0| < δ.

Definition 5.24. The function f(z) tends to the limit L as z → ∞ if for any ϵ > 0, ∃R > 0 such
that |f(z)− L| < ϵ for all |z| > R. We write this as

lim
z→∞

f(z) = L or f(z) → L as z → ∞ .

Definition 5.25. The function f(z) is bounded as z → ∞ (or eventually bounded) if there exist
positive numbers K and R such that |f(z)| < K for all z with |z| > R.

Warning: approaches to a point. There are different ways in which z can approach z0 or ∞, especially
in the complex plane. Sometimes the limit or bound applies only if the point is approached in a
particular way.

For example, consider tanh(z) as |z| → ∞ for real z:

lim
z→+∞

tanh z = 1 , lim
z→−∞

tanh z = −1 .

However, if z approaches infinity along the imaginary axis (z → ±i∞), the limit of tanh z is not
defined.

Remark. In the context of real variables, x→ ∞ usually means specifically x→ +∞. One-side limits
of a function f(z) at z = z0 are denoted by

lim
z→z+0

f(z) and lim
z→z−0

f(z) .

5.4.2 The O Notation

The symbols O, o and ∼ are often used to compare the rate of growth or decay of different functions.

Definition 5.26. Suppose that f(z) and g(z) are functions of z, then

(i) if f(z)
g(z)

is bounded as z → z0, we say that f(z) = O(g(z)) as z → z0;

(ii) if f(z)
g(z)

→ 0 as z → z0, we say that f(z) = o(g(z)) as z → z0;

(iii) if f(z)
g(z)

→ 1 as z → z0, we say that f(z) ∼ g(z) as z → z0.

Remarks.

• Only f(z) ∼ g(z) is a symmetric relation.

• If f(z) ∼ g(z) we say that f(z) is asymptotically equal to g(z).

5.5 Differentiability

Definition 5.27. Let U ⊆ R. A function f : U → R is differentiable at x = x0 with a derivative
f ′(x0) if the limit

lim
x→x0

f(x)− f(x0)

x− x0

exists and is equal to f ′(x0).
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The derivative of f as a function of x is denoted

f ′(x) or df

dx
.

Alternatively, we can write
f(x+ h)− f(x)

h
= f ′(x) + ϵ(h) ,

where ϵ(h) → 0 as h→ 0.

Proposition 5.28.
f(x+ h) = f(x) + hf ′(x) + o(h) .

Proof. Rearranging the above expression. □

Remark. This can be seen as an approximation of f(x+ h) for small h.

Definition 5.29. The multiple derivatives are defined recursively. f is n + 1-times differentiable if
it is n-times differentiable and its n-th derivative, denoted

f (n)(x) or dnf

dxn
,

is differentiable. The (n+ 1)-th derivative of f is the derivative of its n-th derivative.

Definition 5.30. A function f is of Cn class if f ′, . . . , f (n) exist and are continuous.

We can extend this to higher dimensions (multiple variables).

Definition 5.31. Let U ⊂ Rm and f : U → Rn. We say f is differentiable at x0 ∈ U if there is a
linear map T : Rm → Rn and a function ϵ : {h ∈ Rm | x0 + h ∈ U} → Rn such that

f(x0 + h) = f(x0) + T (h) + ϵ(h)‖h‖ ,

where ϵ→ 0 as h → 0. T is the derivative of f .

Remark. These definitions continue to work well when we extend the codomain of our functions to
C. However, we still require our domain to be a subset of R or Rn.

Differentiating functions with a complex variable is a bit more subtle. We will do this in later
chapters.

Proposition 5.32 (Sum, product, quotient and chain rule). Let f, g be differentiable.

(f + g)′(x) = f ′(x) + g′(x)

(f × g)′(x) = f ′(x)g(x) + f(x)g′(x)(
f

g

)′

=
f ′(x)g(x)− f(x)g′(x)

g(x)2

(f ◦ g)′(x) = f ′(g(x))g′(x)

5.6 Taylor’s Theorem for Functions of a Real Variable

Theorem 5.33 (Taylor’s theorem). Let f(x) be a (real or complex) function of a real variable x,
and

f(x) ∈ Cn[x0, x0 + h] .
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Then the Taylor series of f(x0 + h) is given by

f(x0 + h) = f(x0) + hf ′(x0) +
h2

2!
f ′′(x0) + · · ·+ hn−1

(n− 1)!
f (n−1)(x0) +Rn ,

where the remainder after n terms, Rn, is obtained by integration by parts to be

Rn =

ˆ x0+h

x0

(x0 + h− x)n−1

(n− 1)!
f (n)(x) dx .

Remark. The remainder term can be expressed in alternative ways. Lagrange’s expression for the
remainder is

Rn =
hn

n!
f (n)(ξ) ,

where ξ is an unknown number in the interval x0 < ξ < x0 + h. It follows that

Rn = O(hn) .

Definition 5.34. A function f(x) is smooth in some region if it is infinitely differentiable there. We
denote this as

f(x) ∈ C∞ .

Definition 5.35. A function f(x) smooth in x0 ≤ x ≤ x0 + h is analytic if it is locally given by a
convergent infinite Taylor series:

f(x0 + h) =

∞∑
n=0

hn

n!
f (n)(x0) .

This power series in h converges for sufficiently small h.

Remark. A smooth function is not necessarily analytic.

Example. Consider

f(x) =

{
0 x ≤ 0

e−
1
x x > 0 .

This function is smooth everywhere and its derivatives of all orders are 0 at x = 0. Therefore, the
Taylor series of f about x = 0 is f = 0, which fails to converge to f for arbitrarily small x > 0.

We can even construct functions that are smooth but not analytic anywhere. An example is the
Fourier series

g(x) =
∑
k∈N

e−
√
2k cos

(
2kx
)
.

5.7 Riemann Integration

Before introducing integration, let us first introduce some definitions.
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Definition 5.36. A dissection, or partition D of the interval [a, b] is a finite set of points {t0, . . . , tN}
such that

a = t0 < t1 < · · · < tN = b .

Definition 5.37. The supremum of a set S is the smallest number a such that s ≤ a for all s ∈ S,
written as

supS = a .

The infimum of a set S is the largest number b such that s ≥ b for all s ∈ S, written as

inf S = b .

Definition 5.38. The modulus, gauge or norm of a dissection D, written |D|, is defined to be the
supremum of the sub-intervals tj − tj−1 of D.

|D| := sup
1≤j≤N

|tj − tj−1| .

We might have seen the following definition of integral.

Definition 5.39 (Ill-defined). The integral of a function f(x) in the interval [a, b] is defined as
ˆ b

a

f(t) dt := lim
N→∞

N∑
j=1

f(a+ jh)h , where h =
b− a

N
.

Remark. This definition of integral involves uniform dissections of the interval [a, b].

This definition of integration is fine for well-behaved functions. However, for some pathological
functions, this definition fails to work. Consider the following function.

Definition 5.40. The Dirichlet function is defined as

D(x) :=

{
0 if x is irrational
1 if x is rational .

Consider the integral ˆ b

0

D(x) dx .

If

• b = π, then the integral evaluates to 0;

• b is a rational approximation of π, then the integral evaluates to b.

We can choose our upper bound to be arbitrarily close to π, but the integral does not approach 0,
but rather approaches π. This may suggest that our definition of the integral (Definition 5.39) is
ill-defined.

We may suggest a better definition of integration.

Definition 5.41. A Riemann sum, σ(D, ζ) for a bounded function f(t) is the sum

σ(D, ζ) :=

N∑
j=1

f(ζj)(tj − tj−1) where ζj ∈ [tj−1, tj ] .

Remark. Different from the ill-defined integral (Definition 5.39), the dissection D and the choice ζj
are arbitrary for a Riemann sum.
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Definition 5.42. A bounded function f(t) is Riemann integrable if given any ϵ > 0, there exists
I ∈ R and δ > 0 such that for all dissections D with |D| < δ and all choices of ζ,

|σ(D, ζ)− I| < ϵ .

Definition 5.43. For a Riemann integrable function f , the Riemann definite integral of f over the
interval [a, b] is the limiting value of the Riemann sum

ˆ b

a

f(t) dt := lim
|D|→0

σ(D, ζ) = I .

5.7.1 Properties of the Riemann Integral

Proposition 5.44. If f and g are Riemann integrable, a < c < b and k ∈ R, we have the following
properties of Riemann integrals.

ˆ b

a

f(t) dt = −
ˆ a

b

f(t) dt ,

ˆ b

a

f(t) dt =

ˆ c

a

f(t) dt+

ˆ b

c

f(t) dt ,

ˆ b

a

kf(t) dt = k

ˆ b

a

f(t) dt ,

ˆ b

a

f(t) + g(t) dt =

ˆ b

a

f(t) dt+

ˆ b

a

g(t) dt ,∣∣∣∣∣
ˆ b

a

f(t) dt

∣∣∣∣∣ ≤
ˆ b

a

|f(t)| dt .

Theorem 5.45 (Cauchy–Schwarz inequality). For real, integrable functions f and g,(ˆ b

a

fg dt

)2

≤

(ˆ b

a

f2 dt

)(ˆ b

a

g2 dt

)
.

Proof. For arbitrary λ ∈ R, we have

0 ≤
ˆ b

a

(λf + g)2 dt = λ2
ˆ b

a

f2 dt+ 2λ

ˆ b

a

fg dt+

ˆ b

a

g2 dt .

If
´ b
a
f2 dt = 0, then

2λ

ˆ b

a

fg dt+

ˆ b

a

g2 dt ≥ 0 .

This can only be true for all λ if
´ b
a
fg dt = 0. The equality follows.

If
´ b
a
f2 dt 6= 0, then choose

λ = −

ˆ b

a

fg dt

ˆ b

a

f2 dt

,

and the inequality again follows. □
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5.7.2 The Fundamental Theorems of Calculus

Lemma 5.46. If f is bounded and Riemann integrable on an interval [a, b], then

F (x) =

ˆ x

a

f(t) dt

is continuous on [a, b].

Proof.

|F (x+ h)− F (x)| =

∣∣∣∣∣
ˆ x+h

x

f(t) dt

∣∣∣∣∣
≤
ˆ x+h

x

|f(t)| dt

≤

(
sup

t∈[x,x+h]

|f(t)|

)
|h| ,

and hence
lim
h→0

|F (x+ h)− F (x)| = 0 .

Therefore F (x) is continuous by definition. □

Theorem 5.47 (The first fundamental theorem of calculus). If f(x) is continuous, then

dF

dx
≡ d

dx

(ˆ x

a

f(t) dt

)
= f(x) .

Proof.
F (x+ h)− F (x)

h
=

1

h

ˆ x+h

x

f(t) dt .

Let ϵ > 0. Since f is continuous at x, then there exists δ such that |y − x| < δ implies |f(y)− f(x)| <
ϵ. If |h| < δ, then ∣∣∣∣∣ 1h

ˆ x+h

x

f(t) dt− f(x)

∣∣∣∣∣ =
∣∣∣∣∣ 1h

ˆ x+h

x

(f(t)− f(x)) dt

∣∣∣∣∣
≤ 1

|h|

∣∣∣∣∣
ˆ x+h

x

|f(t)− f(x)| dt

∣∣∣∣∣
≤ ϵ|h|

|h|
= ϵ .

□

Theorem 5.48 (The second fundamental theorem of calculus). If g is differentiable then
ˆ x

a

dg

dt
dt = g(x)− g(a) .

Proof. Let
f(x) =

dg

dx
(x) , F (x) =

ˆ x

a

f(t) dt .

Using Theorem 5.47, we have
d

dx
(F − g) = 0 .
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This implies that F − g is a constant function, so

F (x)− g(x) = F (a)− g(a) = −g(a) ,

and therefore
F (x) =

ˆ x

a

dg

dt
dt = g(x)− g(a) .

□

5.7.3 Indefinite and Improper Integrals

Definition 5.49. Suppose f is integrable and f(x) = F ′(x) for some function F . We define the
indefinite integral of f to be ˆ x

f(t) dt := F (x) + c ,

where c is an arbitrary constant.

Definition 5.50. Suppose that we have a function f : [a, b] → R such that, for every ϵ > 0, f is
integrable on [a+ ϵ, b] and

lim
ϵ→0

ˆ b

a+ϵ

f(x) dx

exists. Then we define the improper integral
ˆ b

a

f(x) dx := lim
ϵ→0

ˆ b

a+ϵ

f(x) dx

even if the Riemann integral does not exist.

Definition 5.51. The integral to infinity is defined as
ˆ ∞

a

f(x) dx := lim
b→∞

ˆ b

a

f(x) dx ,

ˆ ∞

−∞
f(x) dx := lim

a→−∞
b→∞

ˆ b

a

f(x) dx .

Remark. When integrating from −∞ to ∞, the two limits need to both converge. Integral likeˆ ∞

−∞

x

1 + x2

does not converge as both ˆ ∞

a

x

1 + x2
and

ˆ b

−∞

x

1 + x2
dx

does not converge for any finite a, b ∈ R, although this function is odd and it is tempting to say that
the integral is 0.

5.8 Convergence of Functions (Non-examinable)

Definition 5.52. A sequence of functions {fn} with the same domain X and codomain Y is said to
converge pointwise to a given function f : X → Y , written as

lim
n→∞

fn = f pointwise ,

if and only if
lim
n→∞

fn(x) = f(x)

for every x in the domain of f .
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This is an easy definition that is simple to check. However, there is a problem. Ideally, we want
to deduce properties of f from properties of fn. For example, it would be great if the continuity of
all fn implies continuity of f , and similarly for integrability and values of derivatives and integrals.
However, it turns out we cannot. The notion of pointwise convergence is too weak.

Example. Consider a sequence of functions fn : [−1, 1] → R defined by fn = x1/(2n+1). These are all
continuous, but their pointwise limit function is

fn(x) → f(x) =


1 x ∈ (0, 1]

0 x = 0

−1 x ∈ [−1, 0) ,

which is not continuous. The continuity of functions is not preserved.

Example. Consider a sequence of functions fn : [0, 1] → R be the piecewise linear function formed by
joining the points (0, 0), ( 1n , n), (

2
n , 0), (1, 0). The pointwise limit of this function is fn(x) → f(x) = 0.

However, we have ˆ 1

0

fn(x) dx = 1 for all n, but
ˆ 1

0

f(x) dx = 0 .

The limit of the integral is not the integral of the limit.

Example. Let fn : [0, 1] → R be

fn(x) =

{
1 if n!x ∈ Z
0 otherwise ,

which all have finitely many discontinuities, so are Riemann integrable. However, its limit is

fn(x) → f(x) =

{
1 x ∈ Q
0 x /∈ Q ,

which is not integrable. So the integrability of a function is not preserved by pointwise limits.

Definition 5.53. A sequence of functions {fn} with the same domain X and codomain Y is said to
converge uniformly to a given function f : X → Y , written as

lim
n→∞

fn = f uniformly ,

if and only if for any ϵ > 0, there exists a N ∈ N such that for all n ≥ N and for all x ∈ X,

|fn(x)− f(x)| < ϵ .

Here is a useful test on whether the limit of a sequence of functions is uniform or not.

Theorem 5.54 (Weierstrass M-test). Suppose that fn is a sequence of real or complex-valued
functions defined on a set X, and that there is a sequence of non-negative numbers Mn satisfying the
conditions

|fn(x)| ≤Mn

for all n ≥ 1 and all x ∈ X, and
∞∑
n=1

Mn

converges. Then the series
∞∑
n=1

fn(x)

converges absolutely and uniformly on X.
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We now move on to show that uniform convergence tends to preserve properties of functions.

Theorem 5.55. Let fn, f : X → R, where X ⊆ R. Suppose fn → f uniformly and fn are continuous
at x for all n, then f is also continuous at x. In particular, if fn are continuous everywhere, then f
is continuous everywhere.

Proof. Let ϵ > 0. Choose N such that for all n > N , we have

sup
y∈X

|fn(y)− f(y)| < ϵ .

Since fN is continuous at x, there is some δ such that

|x− y| < δ =⇒ |fN (x)− fN (y)| < ϵ .

Then for each y such that |x− y| < δ, we have

|f(x)− f(y)| ≤ |f(x)− fN (x)|+ |fN (x)− fN (y)|+ |fN (y)− f(y)| < 3ϵ .

□

Remark. The uniform limit of continuous functions is continuous.

We will state but not prove that the uniform limit of a sequence of integrable functions is also
integrable.

Lemma 5.56. If a sequence of functions fn : [a, b] → R are integrable in [a, b], then their uniform
limit f is also integrable in [a, b].

Theorem 5.57. Let fn, f : [a, b] → R be Riemann integrable, with fn → f uniformly. Then
ˆ b

a

fn(x) dx→
ˆ b

a

f(x) dx .

Proof. ∣∣∣∣∣
ˆ b

a

fn(x) dx−
ˆ b

a

f(x) dx

∣∣∣∣∣ =
∣∣∣∣∣
ˆ b

a

fn(x)− f(x) dx

∣∣∣∣∣
≤
ˆ b

a

|fn(x)− f(x)| dx

≤ sup
x∈[a,b]

|fn(x)− f(x)|(b− a)

→ 0 as n→ ∞ .

□

Remark. We are allowed to exchange the order of a limit and an integral if the function converges
uniformly. Similarly, we are allowed to exchange the order of a sum and an integral if the sum
converges uniformly.

Corollary. If fn : [a, b] → R is a sequence of integrable functions whose partial sum converges
uniformly to some function f , then f is integrable and

ˆ b

a

f(x) dx =

∞∑
n=1

ˆ b

a

fn(x) dx .

However, the relationship between uniform convergence and differentiability is more subtle. The
uniform limit of differentiable functions need not be differentiable. Even if it were, the limit of the
derivative is not necessarily the same as the derivative of the limit.
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Example. Let fn, f : [−1, 1] → R be defined by

fn(x) = |x|1+
1
n , f(x) = |x| .

Then fn → f uniformly. Each f is differentiable. At x = 0,

f ′n(0) = lim
x→0

fn(x)− fn(0)

x
= lim
x→0

sgn(x)|x|
1
n = 0 .

However, the limit f is not differentiable at x = 0.

We need a condition even stronger than uniform convergence.

Theorem 5.58. Let fn : [a, b] → R be a sequence of functions differentiable on [a, b]. If

(i) for some c ∈ [a, b], fn(c) converges;

(ii) the sequence of derivatives f ′n converges uniformly on [a, b],

then fn converges uniformly on [a, b]. If f = limn→∞ fn, then f is differentiable with derivative
f ′(x) = limn→∞ f ′n(x).
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6 Complex Analysis

6.1 Complex Differentiation

Let us first make a few definitions.

Definition 6.1. An open ball of radius r > 0 centred at a ∈ C is

D(a, r) := {z ∈ C | |z − a| < r} .

Definition 6.2. A subset U ⊂ C is open if for every a ∈ U , there exists ϵ > 0 such that D(a, ϵ) ⊂ U .

a

U

b

Ū

For example, the subset U on the left, excluding its boundary, is open. For any a ∈ U , we can
find small enough r > 0 such that D(a, r) is completely contained within U . While the subset Ū
on the right, which includes its boundary, is not open because if we take b to be on the boundary,
b ∈ ∂Ū , then D(b, ϵ) 6⊂ Ū for any ϵ > 0, no matter how small ϵ is. By the same logic, any V ⊂ C that
contains its boundary (even a section of it) is not open.

Definition 6.3. A curve is a continuous map from a closed interval to the complex plane γ : [a, b] →
C. A curve is continuously differentiable (C1) if γ′ exists and is continuous on [a, b] (at endpoints a, b
this means one-sided derivative).

Definition 6.4. An open set U ⊂ C is path-connected if for every z, w ∈ U there exists a curve
γ : [0, 1] → U with endpoints z, w.

Definition 6.5. A domain is a non-empty path-connected open subset of C.

z

γ w

z

γ w

As an example, the region shaded in blue on the left is path-connected, and therefore is a domain
because for any two points in the region, we can connect them with a curve. While for the two-pieces
subset on the right, if we take one point from each piece, then they cannot be connected by a curve
completely within the subset. It is therefore not path connected and not a domain.

Remark. We make so many definitions above just to make sure that whenever we say ‘domain’ in this
chapter, it is a ‘single piece’ of region without a boundary so that any point has a neighbourhood.

95



6 Complex Analysis IB Mathematical Methods

Definition 6.6. The complex derivative of the function f : U → C at a point z = z0 ∈ U is

f ′(z0) := lim
z→z0

f(z)− f(z0)

z − z0

if such a limit exists, and the function f(z) is said to be complex differentiable at z = z0.

Remark. Complex differentiation satisfies the same formal rules (derivatives of sum, product,
quotient, chain rule, and inverse functions) as the differentiation of functions of a real variable because
they are defined by the same limit.

6.1.1 The Cauchy–Riemann Equations

Being complex differentiable is actually a very strict condition, as you will see later. It means that if
we move by a small amount h in all possible directions in the complex plane, we must have

f(z0 + h) = f(z0) + hf ′(z0) + o(|h|) .

This is stricter than viewing a complex function as a function defined on R2 and ask it to be
differentiable along x and y direction respectively. It must be differentiable, with the same derivative
f ′ along all possible directions.

This extra requirement can be captured by the Cauchy–Riemann equations.

Theorem 6.7 (The Cauchy–Riemann equations). f : U → C is differentiable at w = c+id ∈ U
if and only if, writing f(x+ iy) = u(x, y) + iv(x, y), u and v are real differentiable at (c, d) and

∂u

∂x
=
∂v

∂y

∂v

∂x
= −∂u

∂y
.

Proof. f is differentiable at w = c+ id with f ′(w) = p+ iq

⇐⇒ lim
z→w

f(z)− f(w)− (z − w)(p+ iq)

z − w
= 0

⇐⇒ lim
z→w

f(z)− f(w)− (z − w)(p+ iq)

|z − w|
= 0 .

Writing f = u+ iv and evaluating the real and imaginary parts, this holds

⇐⇒


lim

(x,y)→(c,d)

u(x, y)− u(c, d)− [p(x− c)− q(y − d)]√
(x− c)2 + (y − d)2

= 0

lim
(x,y)→(c,d)

v(x, y)− v(c, d)− [q(x− c) + p(y − d)]√
(x− c)2 + (y − d)2

= 0 .

Therefore, f is differentiable at w with derivative f ′(w) = p+ iq if and only if u, v are differentiable
at (c, d) with ∇u(c, d) = (p,−q) and ∇v(c, d) = (q, p). □

6.1.2 Holomorphic Functions

Definition 6.8. A function f : U → C is holomorphic at z0 ∈ U if there exists ϵ > 0 such that f
is differentiable for all z ∈ D(z0, ϵ). f is holomorphic on U if it is differentiable at all z0 ∈ U . The
function is entire if it is holomorphic in the whole complex plane.
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Remark. To be holomorphic at some point, the function must be differentiable on a small
neighbourhood of that point.

The existence of a complex derivative in a neighbourhood is a very strong condition: it implies
that a holomorphic function is infinitely differentiable.

Proposition 6.9. Let f = u + iv : U → C. Suppose that the functions u, v have continuous
partial derivatives everywhere on U and that they satisfy the Cauchy–Riemann equations, then f is
holomorphic on U .

Example. Entire functions:

(i) f(z) = c, where c ∈ C.

(ii) f(z) = z.

(iii) f(z) = exp(z).

(iv) f(z) = zn, where n ∈ N0.

Property: Sums, products and compositions of holomorphic functions are also holomorphic.

Example. Non-holomorphic functions:

(i) f(z) = Re z.

(ii) f(z) = z∗.

(iii) f(z) = |z|.

(iv) f(z) = |z|2.

Remark. In the last case, the Cauchy–Riemann equations are satisfied only at x = y = 0 and we can
say that f ′(0) = 0. However, f(z) is not holomorphic even at z = 0 because it is not differentiable
throughout any neighbourhood |z| < ϵ of 0.

Definition 6.10. Many complex functions are holomorphic everywhere in the complex plane except
at some isolated points, which are called the singular points or singularities of the function.

Example. f(z) = zc, where c ∈ C, is holomorphic except at z = 0. (Strictly speaking for non-integer
c we need a branch choice, so zc is holomorphic on any simply connected domain avoiding the branch
cut and 0.)

6.1.3 Consequences of the Cauchy–Riemann Equations

If we know the real part of a holomorphic function in some region, we can find its imaginary part (or
vice versa) up to an additive constant by integrating the Cauchy–Riemann equations.

Proposition 6.11. The real and imaginary parts of a holomorphic function satisfy Laplace’s
equation, i.e. u and v are harmonic functions.

Proof.

∂2u

∂x2
+
∂2u

∂y2
=

∂

∂x

(
∂u

∂x

)
+

∂

∂y

(
∂u

∂y

)
=

∂

∂x

(
∂v

∂y

)
+

∂

∂y

(
−∂u
∂x

)
= 0 .

Similarly, ∇2v = 0. □
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Proposition 6.12. The curves of constant u and those of constant v are orthogonal. They are said
to be conjugate harmonic functions.

Proof. Using the Cauchy–Riemann equations, we have

∇u · ∇v =
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

=
∂v

∂y

∂v

∂x
− ∂v

∂x

∂v

∂y

= 0 .

□

Remark. Since u and v satisfy Laplace’s equation, which is an elliptic PDE, it is guaranteed that u
and v are smooth (and in fact analytic). This is a result of the elliptic regularity theorem.

This is a (quite convoluted) way to prove that a holomorphic complex function is always smooth.

Theorem 6.13 (Elliptic regularity theorem). For a differential equation

Lψ(x) = f(x) ,

where L is an elliptic differential operator, if f is infinitely differentiable, then ψ is also infinitely
differentiable.

6.2 Power Series of a Complex Variable

6.2.1 Convergence of Power Series

A complex power series about z = z0 has the form

f(z) =

∞∑
r=0

ar(z − z0)
r where ar ∈ C .

Many of the tests of convergence for real series can be generalised for complex series. Note that
if the sum of the absolute values of a complex series converges, then so does the series. Hence if∑

|ar(z − z0)
r| converges, so does

∑
ar(z − z0)

r.

Lemma 6.14. If the power series converges for z = z1, then the series converges absolutely for all z
such that |z − z0| < |z1 − z0|.

Proof. Since
∑
ar(z1 − z0)

r converges, then from the necessary condition for convergence,

lim
r→∞

ar(z1 − z0)
r = 0 .

Hence for a given ϵ there exists N = N(ϵ) such that if r > N then

|ar(z1 − z0)| < ϵ .

Thus for r > N ,

|ar(z − z0)
r| = |ar(z1 − z0)

r|
∣∣∣∣ z − z0
z1 − z0

∣∣∣∣r
< ϵϱr , where ϱ =

∣∣∣∣ z − z0
z1 − z0

∣∣∣∣ .
Hence, by comparison with a geometric series,

∑
ar(z − z0)

r converges for ϱ < 1, i.e. |z − z0| <
|z1 − z0|. □
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Corollary. If the power series diverges for z = z1 then it diverges for all |z − z0| > |z1 − z0|.

Proof. This can be proven by contradiction. If the series converges for the sum z2 such that |z2 − z0| >
|z1 − z0|, then the series would converge for z = z1; this is a contradiction. □

Definition 6.15. Let cn be a sequence of complex numbers. There must exist a unique real number
R ∈ [0,∞] such that the power series

∑
cn(z − z0)

n

• converges absolutely if 0 < |z − z0| < R,

• diverges if |z − z0| > R.

This R is called the radius of convergence.

Proof. Trivial by Lemma 6.14 and its corollary. □

Remark. On the circle of convergence, the series may either converge or diverge.

Corollary. Let the complex power series
∑
cn(z − z0)

n have a radius of convergence R > 0. Let
0 < r < R, then the power series converges uniformly on D(z0, r).

Proof. We know that
∑

|cn|rn is convergent. If |z − z0| ≤ r, then

|cn(z − z0)
n| ≤ |cn|rn .

So the result follows from the Weierstrass M-test by taking Mn = |cn|rn. □

Remark. This can be seen as the uniform convergence of a geometric progression.

6.2.2 Determination of the Radius of Convergence

Without loss of generality take z0 = 0, so that the power series becomes

f(z) =

∞∑
r=0

ur =

∞∑
r=0

arz
r .

Proposition 6.16. If the limit exists, then

lim
r→∞

∣∣∣∣ar+1

ar

∣∣∣∣ = 1

R
.

Proof. For the series to converge, we must have

lim
r→∞

∣∣∣∣ur+1

ur

∣∣∣∣ = lim
r→∞

∣∣∣∣ar+1

ar

∣∣∣∣|z| < 1 .

Therefore by the D’Alembert ratio test, the power series

converges if 1

|z|
> lim
r→∞

∣∣∣∣ur+1

ur

∣∣∣∣ and diverges if 1

|z|
< lim
r→∞

∣∣∣∣ur+1

ur

∣∣∣∣ .
□

Proposition 6.17. If the limit exists, then

lim
r→∞

|ar|
1
r =

1

R
.

Proof. For the series to converge, we must have

lim
r→∞

|ur|
1
r = lim

r→∞
|ar|

1
r |z| < 1

by Cauchy’s test. □
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6.2.3 Holomorphicity of Analytic Functions (Non-examinable)

Theorem 6.18. Let f(z) =
∑
cn(z − z0)

n be a complex power series with radius of convergence
R > 0, then

(i) f is holomorphic on D(z0, R);

(ii) its derivative is given by the series
∞∑
n=0

ncn(z − z0)
n−1 ,

which also has a radius of convergence R;

(iii) f has derivatives of all orders on D(z0, R) and f (n)(z0) = n!cn.

Proof. We will assume wlog that z0 = 0. Consider the function
∞∑
n=1

ncnz
n−1 .

Since |ncn| ≥ |cn|, this series has radius of convergence R′ ≤ R. If 0 < R1 < R, then for |z| < R1, we
have ∣∣ncnzn−1

∣∣ < ncnR
n−1
1

|z|n−1

Rn−1
1

,

so since n |z|n−1

Rn−1
1

→ 0 as n→ ∞, for suitably large n, |cn|Rn−1
1 provides an upper bound for

∣∣ncnzn−1
∣∣.

By the Weierstrass M-test, the series converges absolutely and uniformly on 0 < |z − z0| < R1, so
the radius of convergence of this series is R.

Consider

f(z)− f(w)

z − w
=

∞∑
n=0

cn
zn − wn

z − w

= lim
N→∞

N∑
n=0

cn

n−1∑
j=0

zjw
n−1−j

 . (∗)

For |z|, |w| < r < R, we have ∣∣∣∣∣∣cn
n−1∑
j=0

zjw
n−1−j

∣∣∣∣∣∣ < |cn|nrn−1 ,

so (∗) converges uniformly on |z|, |w| < r, so the series has a continuous limit. We call it g(z, w).
When z = w,

g(z, z) =

N∑
n=0

cnnz
n−1 .

Therefore, f is differentiable with this derivative. This proves (i), (ii). (iii) is induction. □

6.3 Contour Integration

Definition 6.19. A path (curve) γ : [a, b] → C is closed if γ(a) = γ(b), and is simple if γ is injective,
possibly except at endpoints.

100



6 Complex Analysis IB Mathematical Methods

This means that a simple path never crosses itself.

Definition 6.20. A contour is a simple piecewise differentiable path.

Definition 6.21. Let f : U → C be a continuous complex function and γ : [a, b] → U be a contour.
The contour integral of f along γ is

ˆ
γ

f(z) dz =

ˆ b

a

f(γ(t))γ′(t) dt .

Example. Consider the integral ˆ
γ

1

z
dz

from z = −1 to z = 1 along paths around half the unit circle (i). clockwise; (ii). anticlockwise.
Making the substitution z = eiθ, dz = ieiθ, we have

I1 =

ˆ
γ1

1

z
dz =

ˆ 0

π

ieiθ

eiθ
dθ =

ˆ 0

π

i dθ = −iπ ,

I2 =

ˆ
γ2

1

z
dz =

ˆ 2π

π

i dθ = iπ .

Remark. The result of a contour integration may depend on the contour.

Proposition 6.22. Basic properties of contour integration:

(i) Linearity. ˆ
γ

c1f1(z) + c2f2(z) dz = c1

ˆ
γ

f1(z) dz + c2

ˆ
γ

f2(z) dz .

(ii) Additivity. If γ1 is a contour from z = a to z = b, γ2 is a contour from z = b to z = c, and γ is
γ1 followed by γ2, then ˆ

γ

f(z) dz =

ˆ
γ1

f(z) dz +

ˆ
γ2

f(z) dz .

(iii) Inverse path. If γ+ is a contour from α to β, and γ− is the contour in reverse, then
ˆ
γ+

f(z) dz = −
ˆ
γ−

f(z) dz .

(iv) Reparameterisation. If γ : [a, b] → U is a contour, ϕ : [a′, b′] → [a, b] ∈ C1 with ϕ(a′) = a and
ϕ(b′) = b so that δ = γ ◦ ϕ : [a′, b′] → U is a different parameterisation of the same curve, then

ˆ
γ

f(z) dz =

ˆ
δ

f(z) dz .

Lemma 6.23 (ML estimation lemma). If a contour γ has length L, then∣∣∣∣ˆ
γ

f(z) dz

∣∣∣∣ ≤ L sup
z∈γ

|f(z)| .

Theorem 6.24 (‘Fundamental theorem of calculus’). If F : U → C is holomorphic with a
continuous derivative and γ : [a, b] → U is a curve, then

ˆ
γ

F ′(z) dz = F (γ(b))− F (γ(a)) .

Proof. ˆ
γ

F ′(z) dz =

ˆ b

a

F ′(γ(t))γ′(t) dt =

ˆ b

a

d

dt
(F (γ(t))) = [F (γ(t))]ba .

□
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6.4 Cauchy–Goursat Theorem

Definition 6.25. A subset U ⊆ C is simply connected if it is path-connected and any loop γ : S1 → U
path can be continuously contracted to a point: for any γ, there exists an extended continuous map
γ̂ : D2 → U such that γ̂|S1

= γ. Here, S1 and D2 denote the unit circle and closed unit disk
respectively.

Remark. A simply connected domain has no ‘hole’ in it.

Theorem 6.26 (Cauchy–Goursat theorem). If a function f is holomorphic and has continuous
partial derivatives in a simply connected domain U , then for any closed contour γ in U ,

˛
γ

f(z) dz = 0 .

Proof. Green’s theorem states that, for a vector field p = (p, q),
˛
γ

(p dx+ q dy) =

ˆ
Ω

(
∂q

∂x
− ∂p

∂y

)
dx dy ,

where Ω is the simply connected region bounded by a simple closed curve γ. Hence, by expanding
into real and imaginary parts and using the Cauchy–Riemann equations,

˛
γ

f(z) dz =

˛
γ

(u+ iv)(dx+ i dy)

=

˛
γ

(u dx− v dy) + i

˛
γ

(v dx+ u dy)

=

ˆ
Ω

(
−∂u
∂y

− ∂v

∂x

)
dx dy + i

ˆ
Ω

(
−∂v
∂y

+
∂u

∂x

)
dx dy = 0 .

□

Remark. This is a weaker version of this theorem proven by Cauchy. It requires f to be holomorphic
and have continuous partial derivatives. A stronger version of this theorem, proven by Goursat,
removes the need for partial-derivative continuity.

6.4.1 Deforming Contours

Proposition 6.27. Let γ1 and γ2 be two different contours both from α to β. If f(z) is a function
that is holomorphic on both contours and inside the region bounded by the contours, then

ˆ
γ1

f(z) dz =

ˆ
γ2

f(z) dz .

Proof. Consider the closed curve γ = γ1 − γ2. It follows from Cauchy’s theorem that
˛
γ

f(z) dz =

ˆ
γ1

f(z) dz −
ˆ
γ2

f(z) dz = 0 .

The proposition hence follows. □

Corollary. We can deform a contour without changing the value of the integral as long as we do not
move the contour across a singularity.

Corollary. We can deform a closed contour if we are not passing it through any singularity.

Remark. This concept of continuously deforming a contour is formally known as a homotopy in
algebraic topology.
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This is possible even if the contour have (the same) singular points enclosed before and after
deformation. Consider two closed contours γ1 and γ2 shown below. Let f(z) be holomorphic within
the region bounded between γ1 and γ2, but has singularities enclosed by γ2. Consider cutting off
a small piece of each contour and joining them together by two bridges γϵ and γ′ϵ to form a closed
contour Γ.

We have Γ = γ′1−γ′2+γϵ+γ′ϵ. Since f(z) is holomorphic in the region bounded by Γ by assumption,
we have ˆ

Γ

f(z) dz = 0 .

If we take the limit such that the width of the cut → 0, we have γ′1 → γ, γ′2 → γ2 and γ′ϵ → γϵ.
Therefore, ˆ

Γ

f(z) dz →
ˆ
γ1

f(z) dz −
ˆ
γ2

f(z) dz = 0 ,

so the integral along two closed contours enclosing the same singularities is the same.

γ1γ2 γ′1γ′2

γϵ

γ′ϵ

Remark. This is connected with Theorem 6.24. If we can find a function F (z) that is holomorphic in
a simply connected domain U and F ′(z) = f(z), then

ˆ
γ

f(z) dz = F (γ(b))− F (γ(a))

for all γ : [a, b] → U . The integral is invariant.

6.5 Cauchy’s Integral Formula

Theorem 6.28 (Cauchy’s integral formula). If f(z) is holomorphic on a domain U ⊆ C, z0 ∈ U ,
and γ ⊂ U is an arbitrary simple closed contour that encircles z0 counter-clockwise. We have Cauchy’s
integral formula

f(z0) =
1

2πi

˛
γ

f(z)

z − z0
dz .

Proof. f(z)
z−z0 is holomorphic everywhere except at z = z0. Therefore, we can deform γ to an arbitrarily

small contour, say a circle of radius ϵ around z0, γϵ contained completely within γ. By substituting
z = z0 + ϵeiθ, we have

˛
γ

f(z)

z − z0
dz =

˛
γϵ

f(z)

z − z0
dz

=

ˆ 2π

0

f(z0 + ϵeiθ)

ϵeiθ
iϵeiθ dθ .
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Take the limit ϵ→ 0, we have
˛
γ

f(z)

z − z0
dz = i lim

ϵ→0

ˆ 2π

0

f(z0 + ϵeiθ) dθ

= i

ˆ 2π

0

f(z0) dθ = 2πif(z0) .

□
Remarks.

• If we know f(z) on γ, then from the Cauchy’s formula, we know f(z) throughout the interior
of γ.

• Since the real and imaginary parts of an analytic function, u and v, satisfy Laplace’s equation,
this statement is equivalent to the uniqueness of the solutions to Laplace’s equation with
Dirichlet boundary conditions (Theorem 10.9).
In particular, if we specify u and v on γ, then there is a unique solution for u and v inside γ. This
is equivalent to the integral solution of Poisson’s equation that we will see later (Theorem 14.26).

Corollary (The mean-value property). If f : D(z0, r) → C is holomorphic, then

f(z0) =

ˆ 1

0

f(z0 + re2πit) dt .

Proof. Change the variable θ = 2πt in the above proof and done. □

Remark. f(w) equals the average value of f on any circle with centre w.

Theorem 6.29 (Liouville’s theorem). Every bounded entire function must be constant.

Proof. Let f : C → C be an entire function such that |f | < M . For any w ∈ C, let R > |w|,

|f(w)− f(0)| = 1

2π

∣∣∣∣∣
ˆ
|z|=R

f(z)

(
1

z − w
− 1

z

)
dz

∣∣∣∣∣
=

1

2π

∣∣∣∣∣
ˆ
|z|=R

wf(z)

z(z − w)
dz

∣∣∣∣∣
≤ 1

2π
× 2πR× M |w|

R(R− |w|)
→ 0 as R→ ∞ ,

so f(w) = f(0) by Cauchy’s formula and ML estimation lemma. □

6.6 Taylor Expansion

Theorem 6.30 (Complex Taylor expansion). Let f : D(z0, r) → C be holomorphic, then f has
a convergent power series representation on D(z0, r):

f(z) =

∞∑
n=0

cn(z − z0)
n ,

where
cn =

f (n)(z0)

n!
=

1

2πi

ˆ
|z−z0|=ρ

f(z)

(z − z0)n+1
dz

for arbitrary 0 < ρ < r.
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Proof (Non-examinable). Let |w − z0| < ρ < r. Using the geometric series, we have

1

z − w
=

1

(z − z0)
(
1− w−z0

z−z0

) =

∞∑
n=0

(w − z0)
n

(z − z0)n+1

which converges uniformly for |z − z0| = ρ. By the Cauchy integral formula,

f(w) =
1

2πi

ˆ
|z−z0|=ρ

f(z)

z − w
dz

=
1

2πi

ˆ
|z−z0|=ρ

f(z)

∞∑
n=0

(w − z0)
n

(z − z0)n+1
dz

=

∞∑
n=0

(
1

2πi

ˆ
|z−z0|=ρ

f(z)
1

(z − z0)n+1
dz

)
(w − z0)

n ,

where the interchange of integration and summation is justified by the uniform convergence of the
geometric progression. So f has a convergent power series representation on D(z0, ρ) for any ρ < r.

Differentiate the Cauchy’s integral formula n times to get

f(z0)
(n) =

n!

2πi

ˆ
|z−z0|=ρ

f(z)

(z − z0)n+1
dz ,

so the coefficients of the power series are f (n)(z0)/n!. □

Corollary. If f : U → C is holomorphic then its derivatives of all orders exist and are holomorphic.

Definition 6.31. A function f : U → C is said to be analytic if every z0 ∈ U , f can be represented
by a convergent power series on some D(z0, r) ⊂ U .

Theorem 6.32. For a complex function f : U → C, holomorphic ⇐⇒ analytic =⇒ infinitely
differentiable.

Note that ‘smooth’ in complex analysis means infinitely differentiable in R2 sense, not infinitely
complex differentiable, so smoothness does not imply holomorphicity (e.g. f(z) = z∗).

Proof. Analytic =⇒ holomorphic by Theorem 6.18. Holomorphic =⇒ infinitely differentiable and
analytic by the previous theorem. □

Remark. This is not the case in real analysis. A once differentiable real function is far from being
infinitely differentiable. Even if a function is infinitely differentiable in some interval, it can be
nowhere analytic. The Taylor series may have a radius of convergence of zero, or the function defined
by its Taylor series fails to converge to f .

From now on, we shall use the terms ‘holomorphic’ and ‘analytic’ interchangeably.

6.7 Analytic Continuation (Non-examinable)

The fact that holomorphic functions are analytic has an interesting and important consequence: a
holomorphic function on a domain U is determined by its restriction to a subdomain in U .

Definition 6.33. Let U ′ ⊂ U be domains and f : U ′ → C be analytic. A function g(z) : U → C is
called the analytic continuation of f if it is analytic and f(z) = g(z) for all z ∈ U ′

Theorem 6.34. The analytic continuation of a function is unique (if exists).

105



6 Complex Analysis IB Mathematical Methods

Γ γ1γ2

Proof. Let g1, g2 : U → C be analytic continuations of f : U ′ → C to U . Then h = g1 − g2 : U → C
is analytic and h(z) = 0 on U ′. It suffices to show that h is identically zero on U . Define

U0 = {w ∈ U | h is identically 0 on some open disk D(w, r)}
U1 = {w ∈ U | h(n)(w) 6= 0 for some n > 0} .

Then since h has a convergent power series expansion about each point w ∈ U , we see that U = U0∪U1

and U0 ∩ U1 = ∅. Moreover, both U0 and U1 are open subsets of C. So as U is connected, one of Ui
is empty, and as U0 ⊃ U ′ 6= ∅ we must have U1 = ∅, so U = U0 and h = 0 on all of U . □

6.8 Singularities and the Laurent Expansion

Theorem 6.35. Let f be holomorphic on an annulus A = {z ∈ C | r < |z − z0| < R}, where
0 ≤ r < R ≤ ∞. Then

(i) There is a unique convergent Laurent series expansion on A

f(z) =

∞∑
n=−∞

cn(z − z0)
n .

(ii) For any ρ ∈ (r,R), the coefficient cn of the Laurent series is given by

cn =
1

2πi

ˆ
|z−z0|=ρ

f(z)

(z − z0)n+1
dz .

(iii) If r < ρ′ ≤ ρ < R, then the Laurent series converges uniformly on {z ∈ C | ρ′ ≤ |z − z0| ≤ ρ},
and hence on any compact subdomain of A.

Proof (Non-examinable). For a given w ∈ A, choose r < ρ2 < |w − z0| < ρ1 < R and consider the
circular paths γ1, γ2, where γi is the circle |z − z0| = ρi. Construct a path Γ by joining γ1 and γ2
together with two straight paths of width ϵ. By the Cauchy’s integral formula and taking ϵ→ 0, we
have

f(w) =
1

2πi

ˆ
Γ

f(z)

z − w
dz

=
1

2πi

ˆ
γ1

f(z)

z − w
dz − 1

2πi

ˆ
γ2

f(z)

z − w
dz

=: f1(w) + f2(w) .

For the first integral term f1(w), expand as in the proof of the Taylor series to get f1(w) =∑∞
n=0 cn(w − z0)

n, where

cn =
1

2πi

ˆ
|z−z0|=ρ1

f(z)

(z − z0)n+1
dz , for all n ≥ 0 .
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For the second integral term f2(w), use the geometric series

−1

z − w
=

1
w−z0

1− z−z0
w−z0

=

∞∑
m=1

(z − z0)
m−1

(w − z0)m

which converges uniformly for |z − z0| = ρ2. This gives f2(w) =
∑∞
m=1 dm(w − z0)

−m, where

dm =
1

2πi

ˆ
|z−z0|=ρ2

f(z)

(z − z0)−m+1
dz for all m ≥ 1 .

Combining these two results gives (i).

To show (ii) and (iii), suppose that we have any convergent series
∑∞
n=−∞ cn(z − z0)

n on A, and
let r < ρ′ ≤ ρ < R. Then the power series

∑∞
n=0 cn(z − z0)

n must have radius of convergence ≥ R,
so converges uniformly on {|z − z0| ≤ ρ}. Likewise, let u = (z − z0)

−1, then the series
∑∞
n=1 c−nu

n

must have a radius of convergence ≥ 1
r , so converges uniformly on {|u| ≤ 1

ρ′ }. Therefore, the series∑∞
n=−∞ cn(z − z0)

n converges uniformly on {ρ′ ≤ |z − z0| ≤ ρ} and therefore in particular can be
integrated term-by-term along any curve in this set; so

ˆ
|z−z0|=ρ

f(z)

(z − z0)m+1
dz =

∞∑
n=−∞

cn

ˆ
|z−z0|=ρ

(z − z0)
n−m−1 = 2πicm .

□

Definition 6.36. The zeros of a holomorphic function f(z) are the points z = z0 where f(z0) = 0.
A zero is of order k if the first non-zero term in the Taylor expansion of f(z) about z0 is ck(z− z0)

k.

Definition 6.37. A singularity of a function f is a point z = z0 where f is not holomorphic. If f
has a singularity at z0, but f is holomorphic in a neighbourhood of z0 except at z0 itself, then z0 is
an isolated singularity of f . If there exists no such neighbourhood, z0 is a non-isolated singularity.

Examples.

(i) f = cosech z = 1
sinh z has isolated singularities at z = inπ, n ∈ Z because sinhx = 0 at these

points.

(ii) f = cosech 1
z has isolated singularities at z = 1

inπ , n ∈ Z \ {0}. f also has a non-isolated
singularity at z = 0; for any disk D(ϵ, 0) we can find a large enough n such that the disk
contains another singularity at z = 1

inπ .

We shall usually be concerned with isolated singularities, for which f(z) is holomorphic on the
punctured disk D(z0, R)

× := D(z0, R) \ {z0}.

Definition 6.38. There are three possible behaviours of f with isolated singularities:

(i) If the first non-zero term in the Laurent series of f has n ≥ 0, then the Laurent series converges
throughout the unpunctured disk D(z0, R). We say f has a removable singularity at z = z0.

(ii) If there exists some finite k > 0 such that c−k 6= 0 but cn = 0 for all n < −k, then f has a pole
of order k at z = z0.

(iii) Otherwise, if the Laurent series centred at z = z0 involves an infinite number of terms with
n < 0, we say f has an essential singularity at z = z0.

Examples.

(i) Removable singularity typically arises when f is given by some formula which is not well-defined
at z = z0; for example, take z0 = 0 and f(z) = (ez − 1)/z.
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(ii) An example of essential singularity is f(z) = e
1
z at z = 0.

e
1
z =

∞∑
n=0

1

n!

(
1

z

)n
=

0∑
n=−∞

1

(−n)!
zn .

Remark. The behaviour of a function near an essential singularity is remarkably complicated.

Theorem 6.39 (Picard’s theorem). In any neighbourhood of an essential singularity, the function
takes all possible complex values (possibly with one exception) at infinitely many points.

Example. In the case of e 1
z , the exceptional value 0 is never obtained.

Proposition 6.40. f has a removable singularity at z = z0 if and only if

lim
z→z0

(z − z0)f(z) = 0 .

Proof.

(⇒) Write

(z − z0)f(z) =

∞∑
n=0

cn(z − z0)
n+1

so it vanishes as z → z0.

(⇐) Consider

g(z) =

{
(z − z0)

2f(z) if z 6= z0

0 if z = z0 .

We see that g is holomorphic and g′(z0) = 0 so

g(z) =

∞∑
n=2

cn(z − z0)
n

f(z) =

∞∑
n=0

cn+2(z − z0)
n

and hence f has a removable singularity at z = z0.

□

Proposition 6.41. f has a pole at z = z0 if and only if |f(z)| → ∞ as z → z0. Moreover, the
following statements are equivalent:

(i) f has a pole of order k at z = z0.

(ii) f = (z − a)−kg(z), where g : D(z0, R) → C is holomorphic and g(z0) 6= 0.

(iii) f(z) = 1
h(z) , where h is holomorphic at z = z0 with a zero of order k.

Proof. First, prove (i) ⇔ (ii). Given f with a pole, multiplying the Laurent series by (z − z0)
k gives

a power series with a non-zero constant term, defining g, and the converse is clear. The Taylor series
for g multiplied with (z − z0)

−k gives the Laurent series for f .

Next, (ii) ⇔ (iii). This is because g is holomorphic and non-zero z = z0 if and only if 1/g is
holomorphic and non-zero at z = z0.

Suppose f has a pole at z = z0. Then by (ii) |f | → ∞ as z → z0. Conversely if |f | → ∞ as
z → z0, then for some r > 0, f is non-zero for 0 < |z − z0| < r. Therefore 1/f is holomorphic for
0 < |z − z0| < r and 1/f → 0 as z → z0. By the previous proposition, 1/f has a removable singularity
at z = z0. Thus there is a holomorphic h on D(z0, r) with 1/h = f for 0 < |z − z0| < r. As 1/f → 0
as z → z0, h has a zero at z = z0. □
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6.8.1 Meromorphic Functions

Definition 6.42. Let U be a domain and S ⊂ U is a set of isolated points in U , then a function
f : U \ S → C with at worst poles (poles and removable singularities) at the points in S is said to be
meromorphic.

Remark. A function f meromorphic on U can be written as f = g
h , where g and h are holomorphic

on U .

6.8.2 Behaviour at Infinity

We can examine the behaviour of a function f(z) as z → ∞ by defining a new variable ξ = 1
z and a

new function g(ξ) = f(z). The z = ∞ maps to a single point ξ = 0, the point at infinity.

Examples.

(i) f(z) = ez = e
1
ξ = g(ξ) has an essential singularity at z = ∞.

(ii) f(z) = z2 = 1
ξ2 = g(ξ) has a double pole at z = ∞.

(iii) f(z) = e
1
z = eξ = g(ξ) is analytic at z = ∞.

Remark. All entire functions f(z) have essential singularities at z = ∞ unless they are polynomials,
and all polynomials have poles at z = ∞ unless they are constant.
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7 Series Solutions of Ordinary Differential Equations

7.1 Linear Independence and the Wronskian

7.1.1 Linearly Independent Solutions

Consider homogeneous second-order linear ordinary differential equations of the form

y′′ + p(x)y′ + q(x)y = 0 . (†)

Recall that two solutions y1 and y2 are linearly independent if and only if

αy1(x) + βy2(x) = 0 =⇒ α = β = 0 .

If y1(x) and y2(x) are linearly independent solutions, then the general solution of the ODE is given
by

y(x) = αy1(x) + βy2(x) ,

where α and β are arbitrary constants.

7.1.2 The Wronskian

Recall that the Wronskian of two solutions y1(x) and y2(x) of a second-order ODE of the form (†) is
the determinant of the Wronskian matrix

W [y1, y2] =

∣∣∣∣y1 y2
y′1 y′2

∣∣∣∣ = y1y
′
2 − y2y

′
1 .

If W 6= 0, the solutions y1 and y2 must be linearly independent.

Lemma 7.1. The Wronskian, W , of a homogeneous second-order linear ODE

y′′ + p(x)y′ + q(x)y = 0 (†)

satisfies the first-order equation
W ′ + p(x)W = 0 ,

with solution
W (x) = κ exp

(
−
ˆ x

p(ξ) dξ

)
,

where κ is a constant.

Proof.

W ′ = y1y
′′
2 − y′′1 y2

= −y1(py′2 + qy2) + (py′1 + qy1)y2

= −p(y1y′2 − y′1y2)

= −pW .

□
Remarks.

• Up to the multiplicative κ, the Wronskian W is the same for any two linearly independent
solutions y1 and y2, and hence it is an intrinsic property of the ODE.

• If W 6= 0 for one value of x, then W 6= 0 for all x. Hence if y1 and y2 are linearly independent
for one value of x, they are linearly independent for all values of x; it follows that linear
independence needs to be checked at only one value of x.
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7.1.3 A Second Solution via Wronskian

Suppose that we already have one solution, y1, to the homogeneous equation. Then we can calculate
a second linearly independent solution, y2, using the Wronskian.

Lemma 7.2. For a given solution y1 to the equation (†), a linearly independent solution is given by

y2(x) = y1(x)

ˆ x W (η)

y21(η)
dη

= y1(x)

ˆ x κ

y21(η)
exp

(
−
ˆ η

p(ξ) dξ

)
dη .

Proof. The definition of the Wronskian provides a first-order linear ODE for the unknown y2:

y1y
′
2 − y′1y2 =W (x) .

To solve, divide by y21 to obtain (
y2
y1

)′

=
y′2
y1

− y2y
′
1

y21
=
W

y21
,

and hence
y2(x) = y1(x)

ˆ x W (η)

y21(η)
dη .

□
Remarks.

• The indefinite integral involves an arbitrary additive constant since any amount of y1 can be
added to y2.

• W involves an arbitrary multiplicative constant, since y2 can be multiplied by any constant.

• The same result can be obtained by writing y2(x) = y1(x)u(x) and obtaining a first order
linear ODE for u′. This method applies to higher-order linear ODEs and is reminiscent of the
factorisation of polynomial equations.

7.2 Taylor Series Solutions

7.2.1 Ordinary and Singular Points

Now generalise the ODE to complex functions y(z) of a complex variable z. The homogeneous linear
second-order ODE in the standard form then becomes

y′′(z) + p(z)y′(z) + q(z)y(z) = 0 . (††)

Definition 7.3. For ODE of the form (††), if p(z) and q(z) are both analytic at z = z0, then z = z0
is called an ordinary point of the ODE. A point at which p and/or q is singular is called a singular
point of the ODE.

Definition 7.4. A singular point z = z0 is regular if (z− z0)p(z) and (z− z0)2q(z) are both analytic
at z = z0.

Example. Legendre’s equation.

Consider Legendre’s equation

(1− z2)y′′ − 2zy′ + ℓ(ℓ+ 1)y = 0 , (∗)
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where ℓ is a constant. To identify the singular points and their nature, we obtain the standard form
with

p(z) = − 2z

1− z2
, q(z) =

ℓ(ℓ+ 1)

1− z2
.

Both p(z) and q(z) are analytic for all z except z = ±1, which are the singular points. However, they
are both regular since

(z − 1)p(z) =
2z

1 + z
, and (z − 1)2q(z) = ℓ(ℓ+ 1)

(
1− z

1 + z

)
are both analytic at z = 1, and similarly for z = −1.

7.2.2 The Solution at Ordinary Points in terms of a Power Series

Claim 7.5. If z = z0 is an ordinary point of the complex ODE (††), then we claim that the solution
y(z) is analytic at z = z0, and consequently, the equation has two linearly independent solutions of
the form

y =

∞∑
n=0

an(z − z0)
n when |z − z0| < R ,

where R is the radius of convergence.

The coefficients can be determined by substituting the series into the equation and comparing powers
of (z − z0). The radius of convergence turns out to be the distance to the nearest singular point of
the equation in the complex plane.

For simplicity, we will assume henceforth wlog that z0 = 0 (corresponding to a shift in the origin,
e.g. define z′ = z − z0). Hence we seek solutions of the form

y =

∞∑
n=0

anz
n ,

for which
y′ =

∞∑
n=1

nanz
n−1 =

∞∑
m=0

(m+ 1)am+1z
m ,

y′′ =

∞∑
n=2

n(n− 1)anz
n−2 =

∞∑
r=0

(r + 2)(r + 1)ar+2z
r .

At an ordinary point p(z) and q(z) are analytic so we can write

p(z) =

∞∑
n=0

pnz
n and q(z) =

∞∑
n=0

qnz
n .

On substituting the above series into the ODE, we need a rule for multiplying double sums of the
form

∞∑
n=0

Anz
n

∞∑
m=0

Bmz
m

to only include powers like zr. Let r = n+m, and we then have

∞∑
n=0

Anz
n

∞∑
m=0

Bmz
=

∞∑
r=0

(
r∑

m=0

Ar−mBm

)
zr .
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Hence we have

p(z)y′(z) =

∞∑
r=0

(
r∑

m=0

pr−m(m+ 1)am+1

)
zr ,

q(z)y(z) =

∞∑
r=0

(
r∑

m=0

qr−mam

)
zr .

Now substitute series into the ODE, and group powers of zr, we have

∞∑
r=0

(
(r + 2)(r + 1)ar+2 +

r∑
m=0

((m+ 1)am+1pr−m + amqr−m)

)
zr = 0 .

Since the equation is true for all |z| < R, each coefficient of zr (r = 0, 1, . . .) must be zero. Thus we
deduce the recurrence relation

ar+2 = − 1

(r + 2)(r + 1)

r∑
m=0

((m+ 1)am+1pr−m + amqr−m) for r ≥ 0 .

This is a recurrence relation that determines ar+2 (for r ≥ 0) in terms of preceding coefficients
a0, a1, . . . , ar+1. This means that if a0 and a1 are known then so are all the ar. The first two
coefficients a0 and a1 play the role of the two integration constants in the general solution.

7.2.3 Example

Consider
y′′ − 2

(1− z)2
y = 0 .

z = 0 is an ordinary point so try

y =

∞∑
n=0

anz
n .

We note that

p = 0 , q = − 2

(1− z)2
= −2

∞∑
m=0

(m+ 1)zm ,

and hence we have pm = 0 and qm = −2(m+ 1). Substitution into the general result we obtain the
recurrence relation

ar+2 =
2

(r + 1)(r + 2)

r∑
n=0

an(r − n+ 1) for r ≥ 0 .

However, without the reference to the standard result, we may obtain a simpler recurrence relation
with a small amount of forethought. We can simplify the ODE to

(1− z)2y′′ − 2y = 0 .

Then the substitution of the series of derivatives gives
∞∑
n=2

n(n− 1)anz
n−2 − 2

∞∑
n=1

n(n− 1)anz
n−1 +

∞∑
n=0

(n2 − n− 2)anz
n = 0 .

After the substitutions r = n− 2, r = n− 1 and r = n in the three terms respectively, we obtain
∞∑
r=0

(r + 1)[(r + 2)ar+2 − 2rar+1 + (r − 2)ar]z
r = 0 ,
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which leads to the recurrence relation

ar+2 =
1

r + 2
(2rar+1 − (r − 2)ar) for r ≥ 0 .

For r = 0 the recurrence relation yields a2 = a0, while for r = 1 and r = 2 we obtain

a3 =
1

3
(2a2 + a1) and a4 = a3 .

First we note that if 2a2 + a1 = 0, then a3 = a4 = 0, and hence ar = 0 for all r ≥ 3. We thus
have our first solution (with a0 = α 6= 0)

y1 = α(1− z)2 .

Next, we note that ar = a0 for all r is also a solution to the recurrence relation. In this case, we have

y2 = β

∞∑
n=0

zn =
β

1− z
.

Linear independence. We can check that y1 and y2 are linearly independent by calculating the
Wronskian:

W = α(1− z)2
β

(1− z)2
+ 2α(1− z)

β

1− z
= 3αβ 6= 0 .

Hence the general solution is given by

y(z) = α(1− z)2 +
β

1− z
,

for constant α and β.

Radius of convergence. The radius of convergence of y2 is R = 1, which is consistent with the
general solution being singular at z = 1, and the equation having a singular point at z = 1 since
q(z) = −2(1− z)−2 .

7.2.4 Example: Legendre’s Equation

Consider Legendre’s equation

(1− z2)y′′ − 2zy′ + ℓ(ℓ+ 1)y = 0 , (∗)

where ℓ ∈ R. The points z = ±1 are singular points but z = 0 is an ordinary point, so for smallish z
we seek a power series solution

y =

∞∑
n=0

anz
n .

On substituting this into the Legendre’s equation, we have
∞∑
n=2

n(n− 1)anz
n−2 −

∞∑
n=0

n(n− 1)anz
n − 2

∞∑
n=0

nanz
n +

∞∑
n=0

ℓ(ℓ+ 1)anz
n = 0 .

From substituting r = n − 2 in the first sum and r = n in the next three sums, and from grouping
powers of zr, we obtain

∞∑
r=0

[(r + 2)(r + 1)ar+2 − (r(r + 1)− ℓ(ℓ+ 1))ar]z
r = 0 .
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The recurrence relationship is therefore

ar+2 =
r(r + 1)− ℓ(ℓ+ 1)

(r + 1)(r + 2)
ar for r ∈ N0 .

a0 and a1 are arbitrary constants. For instance:

• if a0 = 1 and a1 = 0, then
y1 = 1− ℓ(ℓ+ 1)

2
z2 +O(z4)

is an even solution;

• if a0 = 0 and a1 = 1, then
y2 = z +

2− ℓ(ℓ+ 1)

6
z3 +O(z5)

is an odd solution.

Linear independence. By checking the Wronskian, we can confirm that y1 and y2 are linearly
independent.

Radius of convergence. The two solutions are effectively power series in z2 rather than z. Hence
to find the radius of convergence, we may re-express our series (e.g. z2 → y and a2n → bn), or use a
slightly modified D’Alembert’s ratio test. We observe that

lim
n→∞

∣∣∣∣an+2z
n+2

anzn

∣∣∣∣ = lim
n→∞

∣∣∣∣n(n+ 1)− ℓ(ℓ+ 1)

(n+ 1)(n+ 2)

∣∣∣∣|z|2 = |z|2 .

It then follows from an extension of D’Alembert’s ratio test that the series converges for |z| < 1.

Remark. The radius of convergence is the distance to the nearest singularity of the ODE.

Legendre Polynomials

In a generic situation, the power series of the solution has an infinite number of terms. However, for
ℓ ∈ N0, it follows that

aℓ+2 =
ℓ(ℓ+ 1)− ℓ(ℓ+ 1)

(ℓ+ 1)(ℓ+ 2)
aℓ = 0 ,

and so the series terminates. For instance,

ℓ = 0 : y = a0 ,

ℓ = 1 : y = a1z ,

ℓ = 2 : y = a0(1− 3z2) .

These functions are proportional to the Legendre polynomials, Pℓ(z), which are conventionally
normalized so that Pℓ(1) = 1. Thus, the first few Legendre polynomials are

P0(z) = 1 ,

P1(z) = z ,

P2(z) =
1

2
(3z2 − 1) ,

. . .
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7.3 Regular Singular Points

Let z = z0 be a regular singular point of the ODE

y′′(z) + p(z)y′(z) + q(z)y(z) = 0

where wlog we can take z0 = 0. If we write

p(z) =
1

z
s(z) and q(z) =

1

z2
t(z) ,

then the homogeneous equation becomes

z2y′′ + zs(z)y′ + t(z)y = 0 ,

where, from the definition of a regular singular point, s(z) and t(z) are both analytic at z = 0. It
follows that s0 ≡ s(0) and t0 ≡ t(0) are finite.

7.3.1 The Indicial Equation

Theorem 7.6 (Fuchs’ theorem). A second-order differential equation of the form

y′′ + p(z)y′ + q(z)y = g(z)

has at least one solution expressible by a Frobenius series of the form

y =

∞∑
n=0

an(z − z0)
n+σ, a0 6= 0 and σ ∈ C

when p(z), q(z) and g(z) are analytic at z = z0 or z = z0 is a regular singular point.

If z = 0 is a regular singular point, Fuchs’ theorem guarantees that there is at least one solution
of the form

y = zσ
∞∑
n=0

anz
n, a0 6= 0 and σ ∈ C .

Remarks.

• This is a Taylor series only if σ is a non-negative integer.

• There may be one or two solutions of this form.

• The condition a0 6= 0 is required to define σ uniquely.

Substitute the solution into the homogeneous equation (††), after the division of zσ, we have
∞∑
n=0

((σ + n)(σ + n− 1) + (σ + n)s(z) + t(z))anz
n = 0 .

We now evaluate this sum at z = 0. Since zn = 0 except for n = 0, we have

(σ(σ − 1) + σs0 + t0)a0 = 0 .

Since by definition a0 6= 0, we obtain the indicial equation for σ:

σ2 + σ(s0 − 1) + t0 = 0 .

The roots σ1 and σ2 are called the indices of the regular singular point.
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7.3.2 Series Solutions

For each choice of σ from σ1 and σ2 we can find a recurrence relation for an by comparing powers of
z.

• σ1 − σ2 /∈ Z. If σ1 − σ2 /∈ Z we can find both linearly independent solutions in this way.

• σ1 − σ2 ∈ Z. If σ1 = σ2 we note that we can find only one solution by the ansatz. The ansatz
also fails (in general) to give both solutions when σ1 and σ2 differ by an integer (although there
are some exceptions).

Frobenius’ method is used to find the series of solutions about a regular singular point. This is
demonstrated by the example below.

7.3.3 Bessel’s Equation of Order ν

Definition 7.7. Bessel’s equation of order ν is

y′′ +
1

z
y′ +

(
1− ν2

z2

)
y = 0 , (∗∗)

where ν ≥ 0 wlog.

The origin z = 0 is a singular point with

s(z) = 1 and t(z) = z2 − ν2 .

A Frobenius series solution solves the Bessel’s equation if
∞∑
n=0

((σ + n)(σ + n− 1) + (σ + n)− ν2)anz
n +

∞∑
n=0

anz
n+2 = 0 .

By a transformation n→ n− 2 in the second sum, this simplifies to
∞∑
n=0

((σ + n)2 − ν2)anz
n +

∞∑
n=2

an−2z
n = 0 .

Comparing the powers of z gives

n = 0 : σ2 − ν2 = 0

n = 1 : ((σ + 1)2 − ν2)a1 = 0

n ≥ 2 : ((σ + n)2 − ν2)an + an−2 = 0 .

The n = 0 case is the indicial equation, and it implies that

σ = ±ν .

Substituting this into the n = 1 and n ≥ 2 equations yields

(1 + 2ν)a1 = 0

n(n± 2ν)an = −an−2 for n ≥ 2 .

This gives us a recurrence relation to solve for an from an−2.
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Radius of convergence. The radius of convergence of the solution is infinity since

lim
n→∞

∣∣∣∣ anan−2

∣∣∣∣ = lim
n→∞

∣∣∣∣ 1

n(n± 2ν)

∣∣∣∣ = 0 .

This is consistent with p and q having no singularities other than at z = 0.

Remark. We note that there is no difficulty in solving an from an−2 using the recurrence relation if
σ = +ν. However, if σ = −ν the recursion will fail with an predicted to be infinite if at any point
n = 2ν. There are hence potential problems if σ1−σ2 = 2ν ∈ Z, i.e. if the indices differ by an integer.

• 2ν /∈ Z. First, suppose that 2ν /∈ Z so that σ1 and σ2 do not differ by an integer. In this case,
an is solved to be

an =


0 n = 1, 3, 5 . . .

− an−2

n(n± 2ν)
n = 2, 4, 6, . . .

and so we get two linearly independent solutions

y1 = a0z
+ν

(
1− z2

4(1 + ν)
+

z4

32(1 + ν)(2 + ν)
+ . . .

)
,

y2 = a0z
−ν
(
1− z2

4(1− ν)
+

z4

32(1− ν)(2− ν)
+ . . .

)
.

• 2ν = 2m + 1, m ∈ N. In this case, even though σ1 and σ2 differ by an odd integer there is
no problem. The solutions are still as above. This is because for Bessel’s equation, the power
series proceed in even powers of z, and hence the problem recursion when n = 2ν = 2m+ 1 is
never encountered.

• 2ν = 0. If ν = 0 then σ1 = σ2 and we can only find one power series solution of the proposed
form

y = a0

(
1− 1

4
z2 + . . .

)
.

• 2ν = 2m, m ∈ N. If ν is a positive integer, m, then we can find one solution by choosing ν = σ.
However, if we take σ = −ν then a2m is predicted to be infinite. The second series solution
fails.

Remark. The existence of a second power series solution for 2ν = 2m+1, m ∈ N is a lucky accident.
In general, there exists only one solution of the proposed form whenever the indices σ1 and σ2 differ
by an integer.

Bessel’s equation of zeroth order

In order to obtain an idea of how to proceed when σ1 − σ2 ∈ Z, first consider the example of Bessel’s
equation of zeroth order. Let y1 denote the power series solution obtained

y1 = a0

(
1− 1

4
z2 + . . .

)
.

Then from what we derived before, a second linearly independent solution is given by

y2 = κy1(z)

ˆ z 1

ηy21(η)
dη .
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For small positive z we can deduce that

y2(z) = κa0(1 +O(z2))

ˆ z 1

ηa20
(1 +O(η2)) dη

=
κ

a0
log z + . . .

We conclude that the second solution contains a logarithm.

Claim 7.8. Let σ1, σ2 be two solutions to the indicial equation for a regular singular point at z = 0.
Order them so that

Re{σ1} ≥ Re{σ2} .

Then we can always find one solution of the form

y1(z) = zσ1

∞∑
n=0

anz
n .

If σ1 − σ2 ∈ Z we claim that the second solution takes the form

y2(z) = zσ2

∞∑
n=0

bnz
n + ky1(z) log z ,

for some number of k. The coefficient bn can be found by substitution into the ODE. In some very
special cases, k may vanish, but in general k 6= 0.

Bessel’s Equation of Integer Order

Suppose that y1 is the series solution with σ = +m to

z2y′′ + zy′ + (z2 −m2)y = 0 ,

Hence,

y1 = zm
∞∑
l=0

a2lz
2l ,

since a2l+1 = 0 for integer l. Let
y = ky1 log z + w ,

then
y′ = ky′1 log z +

ky1
z

+ w′ ,

y′′ = ky′′1 log z +
2ky′1
z

− ky1
z2

+ w′′ .

On substituting into Bessel’s equation, and using the fact that y1 is a solution of the equation, we
find that

z2w′′ + zw′ + (z2 −m2)w = −2kzy′1 .

Based on our claim, we now seek a series solution of the form

w = kz−m
∞∑
n=0

bnz
n .

Substitution gives

k

∞∑
n=1

n(n− 2m)bnz
n−m + k

∞∑
n=0

bnz
n−m+2 = −2k

∞∑
l=0

(2l +m)a2lz
2l+m .
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After multiplying by zm and making transformations n→ n− 2 and 2l → n− 2m in the second and
third sums respectively, it follows that

∞∑
n=1

n(n− 2m)bnz
n +

∞∑
n=2

bn−2z
n = −2

∞∑
n=2m,n even

(n−m)an−2mz
n .

We now demand the combined coefficient of zn is zero. Consider the even and odd powers of zn in
turn.

• Odd n. From equating powers of z1 it follows that b1 = 0. Next, from writing n = 2l + 1
(l = 1, 2, . . .) and equating the powers of z2l+1, we obtain the recurrence relation:

(2l + 1)(2l + 1− 2m)b2l+1 = −b2l+1 .

Since b1 = 0, we conclude that b2l+1 = 0 (l = 1, 2, . . .).

• Even n. Let n = 2l (l = 1, 2, . . .), then from equating powers of z2l we obtain

b2l−2 = −4l(l −m)b2l for 1 ≤ l ≤ m− 1

b2m−2 = −2ma0 for l = m

b2l = − 1

4l(l −m)
b2l−2 −

2l −m

2l(l −m)
a2l−2m for l ≥ m+ 1 .

To determine the even coefficients, b2l,

– first, after noting that 2m−2 ≥ 0, solve for b2m−2 in terms of a0 from the second equation;
– next, if m ≥ 2, solve for the b2l (l = m − 2,m − 3, . . . , 0) recurrently using the first

recurrence relation;
– then, having noted that a non-zero value simply generates a solution proportional to y1,

choose a value for b2m, e.g., wlog, b2m = 0;
– finally, having fixed b2m, solve for the b2l (l = m+1,m+2, . . .) using the third recurrence

relation.
Remark. These examples illustrate a feature that is commonly encountered in scientific applications:
one solution is regular (analytic) and the other is singular. Often only the regular solution is an
acceptable solution for the scientific problem.

Theorem 7.9. The Bessel equation of order ν always has a solution of the form

Jν(z) =

∞∑
n=0

(−1)n

n!Γ(n+ ν + 1)

(z
2

)2n+ν
,

known as the Bessel function of the first kind of order ν. The k-th zero of the function is denoted as
jνk. The second solution is singular at z = 0, known as the Bessel function of the second kind.

Here, Γ(z) is the generalisation of the factorial to the complex numbers (except non-positive integers).
It is defined by

Γ(z) =

ˆ ∞

0

tz−1e−t dt

with the property Γ(n) = (n− 1)! for positive integers n.

7.3.4 Irregular Singular Points

If either (z − z0)p(z) or (z − z0)
2q(z) is not analytic at the point z = z0, it is an irregular singular

point of the equation. The solution can have worse kinds of singular behaviours there.
Example. The equation z4y′′ + 2z3y′ − y = 0 has an irregular singular point at z = 0. Its solutions
are exp

(
±z−1

)
, both of which have an essential singularity at z = 0.
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7.4 The Method of Variation of Parameters (Non-examinable)

To solve an inhomogeneous ODE

y′′(x) + p(x)y′(x) + q(x)y(x) = f(x) ,

the question that remains is how to find a particular solution. First, suppose that we have solved
the homogeneous equation and found two linearly-independent solutions y1 and y2. Then in order to
find a particular solution consider

y0(x) = u(x)y1(x) + v(x)y2(x) .

If u and v are constants, y0 would solve the homogeneous equation. However, we allow these
parameters to vary, i.e. to be functions of x, in such a way that y0 solves the inhomogeneous
equation.

Remark. We have gone from one unknown function (y0) and one equation to two unknown functions
(u, v) and one equation. We will need to choose another equation.

We now differentiate our expression of y0 to find that

y′0 = (uy′1 + vy′2) + (u′y1 + v′y2)

y′′0 = (uy′′1 + vy′′2 + u′y′1 + v′y′2) + (u′′y1 + v′′y2 + u′y′1 + v′y′2) .

If we directly substitute this into the equation, we will not make much progress. However, we can
demand u and v to satisfy the extra equation

u′y1 + v′y2 = 0 .

Then the derivatives of y0 become
y′0 = uy′1 + vy′2

y′′0 = uy′′1 + vy′′2 + u′y′1 + v′y′2

Therefore

y′′0 + py′0 + qy0 = u(y′′1 + py′1 + qy1) + v(y′′2 + py′2 + qy2) + u′y′1 + v′y′2

= u′y′1 + v′y′2 ,

since y1 and y2 solve the homogeneous equation. Hence y0 solves the inhomogeneous equation if

u′y′1 + v′y′2 = f ,

We now have two simultaneous equations for u′ and v′{
u′y1 + v′y2 = 0

u′y′1 + v′y′2 = f ,

with solution 
u′ = −fy2

W

v′ =
fy1
W

,

where W is the Wronskian
W = y1y

′
2 − y2y

′
1 .
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Integrating we obtain 
u = −

ˆ x

a

y2(ξ)f(ξ)

W (ξ)
dξ

v =

ˆ x

a

y1(ξ)f(ξ)

W (ξ)
dξ ,

where the lower bound of integration is arbitrary. Substituting this result back into the expression of
y0 we obtained

y0(x) =

ˆ x

a

f(ξ)

W (ξ)
(y1(ξ)y2(x)− y1(x)y2(ξ)) dξ .

Remark. We observe that, since the integrand is zero when ξ = x,

y′0(x) =

ˆ x

a

f(ξ)

W (ξ)
(y1(ξ)y

′
2(x)− y′1(x)y2(ξ)) dξ .

Hence the particular solution y = y0 we obtained satisfies the initial value boundary conditions

y(a) = y′(a) = 0 .

More general initial value boundary conditions would be inhomogeneous:

y(a) = k1 , y
′(a) = k2 ,

where k1 and k2 are constants. Such inhomogeneous boundary conditions are obtained by adding
suitable multiples of the linearly independent solutions of the homogeneous equation, i.e. y1 and y2.
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8 Sturm–Liouville Theory

8.1 Abstract Eigenvalue Problems

8.1.1 Eigenfunctions

Suppose we want to solve an inhomogeneous ordinary differential equation of the form

L̃y(x) = f(x) ,

where L̃ is a general second-order linear differential operator in the form

L̃ = p(x)
d2

dx2
+ r(x)

d

dx
+ s(x) ,

with p, r and s being real functions, and boundary conditions on the solutions are specified at x = α
and x = β.

Except for simple f(x), it will generally not be possible to find a particular integral in a closed
form. However, we can exploit the linearity of L̃ further to find the solution in terms of a superposition
of a set of solutions. A convenient choice for the set of basis functions is the set of eigenfunctions of
L̃ that satisfy the boundary conditions.

Definition 8.1. The eigenfunctions, {yi}, of an operator L̃ are the functions that satisfy the
eigenvalue equation

L̃yi(x) = λiyi(x) ,

where the constants {λi} are the eigenvalues of L̃.

Remark. Note the close analogy between matrices and differential operators: functions form a vector
space and differential operators are linear maps.

8.1.2 Inner Products of Functions

Let V be a vector space of functions [α, β] → C. Let us equip V with an inner product.

Definition 8.2. For two complex functions u(x) and v(x) defined for α ≤ x ≤ β, an inner product
is defined as

〈u|v〉w :=

ˆ β

α

u∗(x)w(x)v(x) dx ,

where the real, positive function w : (a, b) → R>0 is called the weight function.

Remark. When the weight function w = 1, abbreviate

〈u|v〉w =: 〈u|v〉 .

Proposition 8.3. For complex functions u(x), v(x) and t(x) and complex numbers a and b:

• 〈u|v〉w = 〈v|u〉∗w.

• 〈u|av + bt〉w = a 〈u|v〉w + b 〈u|t〉w.

• 〈au+ bv|t〉w = a∗ 〈u|t〉w + b∗ 〈v|t〉w.

Remark. An inner product is a sesquilinear and Hermitian form.

Definition 8.4. Two functions u and v are orthogonal if 〈u|v〉w = 0.
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Definition 8.5. The norm of u(x), ‖u‖w, is defined by

‖u‖w :=
√
〈u|u〉w =

√ˆ β

α

w(x)|u(x)|2 dx .

Note that ‖u‖w is always real and non-negative.

Remark. We will restrict ourselves to reasonably well-behaved functions such that

‖u‖ = 0 =⇒ u(x) = 0 .

However, for some less well-behaved functions, ‖u‖ = 0 may not imply u(x) = 0. An example would
be the Dirichlet function, D(x), which is unity when x is rational and zero otherwise.

Definition 8.6. A normalised function y(x) is a function with a unit norm, i.e.

‖y‖w = 1 .

8.1.3 Adjointness

Definition 8.7. For a general differential operator L̃, and a given inner product 〈u|v〉w, the adjoint
operator of L̃, L̃†, is defined to be the operator such that〈

u
∣∣∣L̃v〉

w
=
〈
L̃†u

∣∣∣v〉
w
.

Definition 8.8. A differential operator L̃ is self-adjoint (Hermitian) on (V, 〈 · | · 〉w) if〈
u
∣∣∣L̃v〉

w
=
〈
L̃u
∣∣∣v〉

w
∀u, v ∈ V .

Remark. Self-adjoint operators are analogous to Hermitian matrices. Suppose that an inner product
for column vectors u and v is defined by

〈u|v〉 = u†v .

Then for a Hermitian matrix H,

〈u|Hv〉 = u†Hv = u†H†v

= (Hu)†v = 〈Hu|v〉 .

Theorem 8.9. If L̃ is self-adjoint on (V, 〈 · | · 〉w), then

(i) eigenvalues are real.

(ii) eigenfunctions with different eigenvalues are orthogonal.

Proof. (i) Let L̃y = λy,

(λ∗ − λ)‖y‖2w = (λ∗ − λ) 〈y|y〉w
= 〈λy|y〉w − 〈y|λy〉w
=
〈
L̃y
∣∣∣y〉

w
−
〈
y
∣∣∣L̃y〉

w
= 0 .

(ii) Let L̃y1 = λ1y1, L̃y2 = λ2y2, λ1 6= λ2.

(λ1 − λ2) 〈y1|y2〉w = 〈λ1y1|y2〉w − 〈y1|λ2y2〉w
=
〈
L̃y1

∣∣∣y2〉−
〈
y1

∣∣∣L̃y2〉
w
= 0

=⇒ 〈y1|y2〉w = 0 .

□

124



8 Sturm–Liouville Theory IB Mathematical Methods

Remark. We claim without proof that mutually orthogonal eigenfunctions can always be constructed,
even for repeated eigenvalues. Further, if we normalize all eigenfunctions to have unit norm then we
have an orthonormal set of eigenfunctions.

8.2 Sturm–Liouville Operators

Definition 8.10. A Sturm–Liouville operator is a second-order differential operator, defined on the
range α ≤ x ≤ β, of the form,

L = − d

dx

(
ρ(x)

d

dx

)
+ σ(x) ,

where σ and ρ are real, smooth functions, and ρ(x) > 0 for α < x < β.

Definition 8.11. For a Sturm–Liouville problem on (a, b), we say an endpoint c ∈ {α, β} is singular
if ρ(c) = 0, and non-singular if ρ(c) 6= 0.

Remark. We only need to specify boundary conditions at non-singular endpoints.

At a non-singular endpoint c ∈ {α, β}, we will impose boundary condition of the form

acy(c) + bcy
′(c) = 0 ,

where ac, bc ∈ R, and ac and bc are not both zero.

We call these real, homogeneous boundary conditions — latter because if y1, y2 satisfy the
boundary conditions, then so does c1y1 + c2y2.

We will work on vector spaces of the form

V =

{
y ∈ C2[α, β]

∣∣∣∣ y satisfies real, homogeneous boundary conditions
at each non-singular endpoint.

}
,

where C2[α, β] means the vector space of all twice differentiable functions in [α, β].

Lemma 8.12. A Sturm–Liouville operator of the form

L = − d

dx

(
ρ(x)

d

dx

)
+ σ(x)

is self-adjoint if the boundary conditions are such that

[ρW (v, u∗)]
β
α = 0 ,

where W is the Wronskian.

Proof. Sturm–Liouville operators satisfy

〈u|Lv〉 =
ˆ β

α

u∗Lv dx = −
ˆ β

α

u∗(ρv′)
′
dx+

ˆ β

α

u∗σv dx

= −[u∗ρv′]
β
α +

ˆ β

α

ρv′u∗′ dx+

ˆ β

α

vσu∗ dx

= −[u∗ρv′]
β
α +

[
ρvu∗′

]β
α
−
ˆ β

α

v(ρu∗′)′ dx+

ˆ β

α

vσu∗ dx

=

ˆ β

α

(Lu)∗v dx+
[
ρ(vu∗′ − u∗v′)

]β
α

= 〈Lu|v〉+ [ρW (v, u∗)]
β
α ,
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where [ρW (v, u∗)]
β
α is the boundary term. Therefore we have

〈u|Lv〉 = 〈Lu|v〉

if the boundary terms vanish. □

Theorem 8.13. If y1, y2 ∈ V , then L is self-adjoint on 〈y1|y2〉.

Proof. If the endpoint c is singular, then ρ(c) = 0, so ρW (v, u∗) is trivially zero.

If the endpoint c is non-singular, then we have the boundary conditions{
acy1(c) + bcy

′
1(c) = 0

acy2(c) + bcy
′
2(c) = 0 =⇒ acy

∗
2(c) + bcy

′
2
∗
(c) = 0

=⇒
(
y1(c) y′1(c)
y∗2(c) y′2

∗
(c)

)(
ac
bc

)
= 0 .

Since ac, bc are not both zero,

det

(
y1(c) y′1(c)
y∗2(c) y′2

∗
(c)

)
=W (y1, y

∗
2) = 0 .

Therefore, [ρW (v, u∗)]
β
α = 0 is satisfied. □

8.2.1 Reduction to Sturm–Liouville Form

Lemma 8.14. For a general second-order linear differential operator, L̃, that is not in the Sturm–
Liouville form, we can always find a weight function w(x) such that L = wL̃ is in the Sturm–Liouville
form.

Proof. Consider a general second-order linear differential operator defined for α ≤ x ≤ β

L̃ = p
d2

dx2
+ r

d

dx
+ s = − d

dx

(
a(x)

d

dx

)
− b(x)

d

dx
− c(x) ,

where a, b, c are all real, smooth functions and a(x) > 0 for α < x < β. Then

wL̃ = − d

dx

(
aw

d

dx

)
+ (aw′ − bw)

d

dx
− wc .

Choose w(x) such that aw′ = bw, i.e.

w(x) = C exp

(ˆ x b(u)

a(u)
du

)
,

where the arbitrary constant is chosen to be positive and hence w(x) is positive. This gives an
operator of Sturm–Liouville form

L = wL̃ = − d

dx

(
aw

d

dx

)
− wc .

□

Theorem 8.15. A general differential operator,

L̃ = − d

dx

(
a(x)

d

dx

)
− b(x)

d

dx
− c(x) ,
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is self-adjoint with respect to an inner product of u and v with weight function w, given by

w(x) = C exp

(ˆ x b(u)

a(u)
du

)
,

if the boundary conditions are real, homogeneous at each non-singular endpoint such that

[waW (y1, y
∗
2)]

β
α = 0 .

Corollary. If y(x) satisfies the eigenvalue equation for L̃,

L̃y = λy ,

then it also satisfies a generalised eigenvalue equation for L reduced to Sturm–Liouville form with
weight function w(x),

Ly = λw(x)y .

8.2.2 Hermite’s Equation

The Hermite’s equation,
y′′ − 2xy′ + 2ny = 0 ,

arises when solving the quantum harmonic oscillator.

This can be rewritten as an eigenvalue equation, L̃y = λy, with

L̃ = − d2

dx2
+ 2x

d

dx
= −ex

2 d

dx

(
e−x

2 d

dx

)
,

λ = 2n .

This L̃ is not in the Sturm–Liouville form. Multiplying by w(x) = e−x
2 gives

L = wL̃ = − d

dx

(
e−x

2 d

dx

)
,

which is in the Sturm–Liouville form. The Hermite’s equation can therefore be rewritten as

Ly = λwy .

If we require that the norm ‖y‖w is finite, then non-zero solutions exist only when n is a non-
negative integer: these are nth order polynomials called Hermite polynomials.

8.2.3 Legendre’s Equation

The Legendre’s equation,
(1− x2)y′′ − 2xy′ + ℓ(ℓ+ 1)y = 0 ,

arises when solving Laplace’s equation with axial symmetry or Schrödinger equation in 3D with a
central potential. We may view this equation as an eigenvalue equation, Ly = λy, with

L = − d

dx

[
(1− x2)

d

dx

]
, λ = ℓ(ℓ+ 1) ,

where L is of the Sturm–Liouville form. This operator is self-adjoint when acting on functions y(x)
that are finite at x = ±1.
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In previous sections, we have found that the only non-zero solutions for which y is finite at both
x = ±1 are polynomials. This only happens if ℓ is an integer.

These polynomials are known as Legendre polynomials, Pℓ(x), with conventional normalisation
such that Pℓ(1) = 1. Note that Legendre polynomials are orthogonal, but with conventional
normalisation, they are not orthonormal:

ˆ 1

−1

Pℓ(x)Pk(x) dx =
2

2ℓ+ 1
δℓk .

8.3 Eigenfunction Expansion

Theorem 8.16. If L̃ is self-adjoint on (V, 〈 · | · 〉w), then the countable set of its eigenfunctions,
{yn}∞n=1, form a complete orthogonal set on V . This means that for any f ∈ V , we can write

f =

∞∑
n=1

f̃nyn ,

where

f̃n =
〈f |yn〉w
〈yn|yn〉w

= 〈f |yn〉w if yn are normalised.

We call the f̃n the generalised Fourier coefficients of f .

Remark. We claim that the eigenfunctions of a self-adjoint operator form a basis on V .

Proof. We cannot prove that such an expansion always exists (David Hilbert famously claimed it was
true). However, if we assume such an expansion does exist, by the orthogonality of the eigenfunctions
of a self-adjoint operator, the coefficients must be given by 〈yn|f〉w because

〈yn|f〉w =

〈
yn

∣∣∣∣∣
∞∑
m=1

amym(x)

〉

=

∞∑
m=1

am 〈yn|ym〉w

=

∞∑
m=1

amδnm = an

□

Proposition 8.17 (The completeness relation). Let {yn} be a complete orthonormal set of
eigenfunctions of an operator,

∞∑
n=1

yn(x)y
∗
n(ξ) =

1

w(ξ)
δ(x− ξ) .

Proof. If the eigenfunctions are complete, we must have

f(x) =

∞∑
n=1

anyn(x) =

∞∑
n=1

yn(x) 〈yn|f〉w

=

∞∑
n=1

yn(x)

ˆ β

α

w(ξ)y∗n(ξ)f(ξ) dξ

=

ˆ β

α

f(ξ)

[
w(ξ)

∞∑
n=1

y∗n(ξ)yn(x)

]
dξ .
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Since
f(x) =

ˆ β

α

f(ξ)δ(x− ξ) dξ ,

if our proposition holds true for all f , we have
∞∑
n=1

yn(x)y
∗
n(ξ) =

1

w(ξ)
δ(x− ξ) .

□
Remark. The completeness relation defines a complete set of functions {yn} such that any function
f ∈ V can be expressed on the basis of the eigenfunctions yn. □
Example. Fourier Series.

Again, consider the Sturm–Liouville operator

L = − d2

dx2
.

In this case assume that the operator acts on functions that are 2π-periodic, i.e. y(x) = y(x + 2π).
Write the general solution to the eigenvalue equation Ly = λy as

y = Aei
√
λx +Be−i

√
λx ,

where A and B are constants. This solution is 2π-periodic if λ = n2 for integer n. Label the
eigenfunctions by yn for n = . . . ,−1, 0, 1, . . . , with corresponding eigenvalues λn = n2. Although
there are repeated eigenvalues (n = ±k), there still exists an orthonormal set of eigenfunctions as
claimed, i.e.

yn =
1√
2π
einx , n ∈ Z .

Hence, a 2π-periodic function f has an eigenfunction expansion

f(x) =
1√
2π

∞∑
n=−∞

ane
inx

for some complex coefficients ak, which is the Fourier series expansion of f . To the extent that any
such function has a Fourier series expansion, the set {yk | k ∈ Z} is complete, with completeness
relation ∑

k∈Z

eik(x−ξ) = 2πδ(x− ξ) .

Remark. The Fourier series is a particular example of an expansion in terms of the eigenfunctions of
a self-adjoint operator.

8.4 Solution of Differential Equations

8.4.1 Green’s Functions for Sturm–Liouville Operators

Consider the differential equation of the form

Ly(x) = f(x)

with homogeneous boundary conditions for some forcing function f(x). We require L to be in Sturm–
Liouville form and have a complete set of normalised eigenfunctions {yn}∞n=1 with eigenvalues {λn}∞n=1

such that
Lyn = λnwyn

〈yn|ym〉w = δmn
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Lemma 8.18. A formal solution is given by

y(x) =

ˆ β

α

G(x; ξ)f(ξ) dξ ,

where the Green’s function G(x; ξ) satisfies the boundary conditions when considered both as a
function of x and ξ, and it is the response of the system to a point-like source:

LG(x; ξ) = δ(x− ξ) .

Proof.

Ly = L
ˆ β

α

G(x; ξ)f(ξ) dξ

=

ˆ β

α

LG(x; ξ)f(ξ) dξ

=

ˆ β

α

δ(x− ξ)f(ξ) dξ = f(x) .

□

Recall that if L is a general second-order linear differential operator, then Green’s function
subjected to homogeneous boundary conditions at a and b can be written as

G(x; ξ) =


y1(x)y2(ξ)

W (ξ)
for x ∈ [a, ξ)

y1(ξ)y2(x)

W (ξ)
for x ∈ [ξ, b] ,

where y1 and y2 satisfy the boundary conditions at a and b respectively (Theorem 2.19).

However, if L is a Sturm–Liouville operator, the Green’s function would have a much better form.

Lemma 8.19. For a Sturm–Liouville operator L with {yn}∞n=1 and eigenvalues {λn}∞n=1, the
eigenfunction expansion of the Green’s function is given by

G(x; ξ) =

∞∑
n=1

1

λn
yn(x)y

∗
n(ξ) .

Proof. The Green’s function constructed in this way satisfies the boundary conditions, and satisfies

LG(x; ξ) =
∞∑
n=1

Lyn
λn

y∗n(ξ) =

∞∑
n=1

λnw(x)yn
λn

y∗n(ξ)

= w(x)

∞∑
n=1

yn(x)y
∗
n(ξ)

= w(x)
1

w(x)
δ(x− ξ) by the completeness relation

= δ(x− ξ) .

□

Remark. This can be seen as an eigenfunction expansion of Green’s function, although paradoxically
it is not twice differentiable in [a, b].

Remark. By the above equation of the Green’s function, we can observe that

G(x; ξ) = G∗(ξ;x) .
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Theorem 8.20. The solution to the equation

Ly(x) = f(x) ,

where L is a differential operator in the Sturm–Liouville form, is

y =

∞∑
n=1

yn(x)
〈yn|f〉
λn

,

where yn and λn are the corresponding eigenvectors and eigenvalues of L.

Proof.

y(x) =

ˆ β

α

∞∑
n=1

1

λn
yn(x)y

∗
n(ξ)f(ξ) dξ

=

∞∑
n=1

yn(x)
1

λn

ˆ β

α

y∗n(ξ)f(ξ) dξ

=

∞∑
n=1

yn(x)
〈yn|f〉
λn

.

□

Remark. If L has a zero eigenvalue then G(x; ξ) will not exist and there is no finite solution for y for
a general f . In other words, there is no solution to the forced problem if there is a solution to the
homogeneous equation, Ly = 0, satisfying the boundary conditions. The vanishing of one or more of
the eigenvalues is related to the phenomenon called resonance. If a solution to the problem exists in
the absence of the forcing f , then any non-zero forcing elicits an infinite response.

If instead λ1 is very small compared to others, then

y(x) =

λ∑
n=1

yn(x)
〈yn|f〉
λn

≈ y1(x)

λ1
〈y1|f〉+ . . .

and the omitted terms are all suppressed as long as 〈y1|f〉 is not too small. Any forcing function with
non-zero y1-component will cause a large resonant response ∝ y1(x).

Example. Solve the equation

−d2y

dx2
− dy

dx
− 1

4
y = −e− x

2

subjected to the boundary conditions 
y(0) = 0

dy

dx
(1) +

1

2
y(1) = 0 .

For the differential operator

L̃ = − d2

dx2
− d

dx
− 1

4
,

an appropriate weight function is

w(x) = exp

(ˆ
dx

)
= ex ,

so that a Sturm–Liouville form operator would be

L = w(x)L̃ = − d

dx

(
ex

d

dx

)
− 1

4
ex ,
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and the equation becomes
Ly = −e x

2 .

First, solve the eigenvalue equation

L̃yn = λnyn , or equivalently Lyn = λnwyn .

A trial solution y = ekx yields
k = −1

2
± i

√
λ .

Therefore,
yn(x) = e−

x
2 (A sin

√
λnx+B cos

√
λnx) .

Applying the boundary conditions gives{
B = 0√
λne

− 1
2 cos

√
λn = 0 ,

so
λn =

(
n+

1

2

)2

π2 ,

yn = Ane
− x

2 sin

[(
n+

1

2

)
πx

]
for n ∈ N0 .

With these eigenfunctions, the boundary terms vanish, so L is self-adjoint. Therefore, for
normalised yn,

〈yn|ym〉w =

ˆ 1

0

yn(x)ym(x)ex dx = δnm .

To normalise yn,
〈yn|yn〉w = 1

gives An =
√
2, so the normalised eigenfunctions are

yn(x) =
√
2e−

x
2 sin

[(
n+

1

2

)
πx

]
.

Since Lyn = λne
xyn and so writing y =

∑
n anyn, we require

Ly =
∑
n

anλne
xyn = −e x

2 .

Multiplying by y∗m(x) and integrating gives
ˆ 1

0

∑
n

anλne
xyn(x)y

∗
m(x) dx =

∑
n

anλn

ˆ 1

0

exy∗m(x)yn(x) dx

=
∑
n

anλn 〈ym|yn〉w

=
∑
n

anλnδmn

= amλm ,
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ˆ 1

0

−e x
2 y∗m(x) dx = −

√
2

ˆ 1

0

sin

[(
m+

1

2

)
πx

]
dx

= −
√
2(

m+ 1
2

)
π
,

which gives

am = −
√
2

λm
(
m+ 1

2

)
π

= −
√
2(

m+ 1
2

)3
π
.

Finally, this gives us the solution

y(x) = − 2

π3
e−

x
2

∞∑
n=0

1(
n+ 1

2

)3 sin

[(
n+

1

2

)
πx

]
.

8.5 Bessel’s Equation

Consider the eigenvalue problem

− d

dr

(
r
dy

dr

)
+
m2

r
y = λry , (†)

where the boundary conditions are such that we work on the vector space

y ∈ V = {y ∈ C2[0, 1] : y(1) = 0} .

This differential operator is naturally in Sturm–Liouville form with weight function w = r. Let
z = r

√
λ, and set y(r) = R(z) = R(r

√
λ), we can expand equation (†) to{

z2R′′ + zR′ + (z2 −m2)R = 0 for z ∈ (0,
√
λ)

R(
√
λ) = 0 .

This is the form of Bessel’s equation of order m we have seen before in Definition 7.7.

Lemma 8.21. The Bessel’s equation of order m has two series solutions. The first solution is

Jm(z) =
(z
2

)m ∞∑
k=0

(−1)k

k!Γ(k +m+ 1)

(z
2

)2k
,

known as Bessel function of the first kind of order m. The other solution, known as Bessel function
of the second kind of order m, is singular as z → 0.

Here, we will focus on the Bessel function of the first kind. We can show that

Jm(z) =

√
2

πz
cos
(
z − mπ

2
− π

4

)
+O

(
1

z
3
2

)
as z → ∞. This shows that Jm has infinitely many zeroes on z > 0. We call them {jmk} for
k = 1, 2, . . . for each m. To fix the boundary conditions, we must have

R(
√
λ) = Jm(

√
λ) = 0 ,

so the eigenvalues must be
λk = j2mk , k = 1, 2, . . .

The eigenfunctions are therefore
yk(r) = Jm(jmkr) .
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We also have the orthogonality relations.

〈yk|yl〉w =

ˆ 1

0

Jm(jmkr)Jm(jmlr)r dr

=
1

2
δkl[J

′
m(jmk)]

2

=
1

2
δkl[Jm+1(jmk)]

2 .

Remark. The Bessel functions Jm(jmkr) are orthogonal for each fixed m, but between different values
k, l of the index labeling the roots.

8.6 Approximation via Eigenfunction Expansions

If we only keep the first N terms in an expansion and write

y(x) ≈
N∑
n=1

anyn(x) ,

it is not obvious how to determine an for this truncated series to best approximate y(x). We define
the error of such an approximation to be

EN (a1, a2, . . . , aN ) :=

∥∥∥∥∥y(x)−
N∑
n=1

anyn(x)

∥∥∥∥∥
2

w

=

〈
y −

N∑
n=1

anyn

∣∣∣∣∣y −
N∑
m=1

amym

〉

= ‖y‖2w −
N∑
n=1

a∗n 〈yn|y〉w −
N∑
m=1

am 〈y|ym〉w +

N∑
n,m=1

a∗Nam 〈yn|ym〉w

= ‖y‖2w −
N∑
n=1

[a∗n 〈yn|y〉w + an 〈y|yn〉w] +
N∑
n=1

|an|2 .

Let an = Ren+i Imn, then a∗n = Ren−i Imn. Since 〈y|yn〉w = 〈yn|y〉∗w, we can write

EN = ‖y‖2w +

N∑
n=1

|an|2 −
N∑
n=1

[Ren (〈yn|y〉w + 〈y|yn〉w) + i Imn (〈y|yn〉w − 〈yn|y〉w)]

= ‖y‖2w +

N∑
n=1

|an|2 − 2

N∑
n=1

[RenRe 〈yn|y〉w + Imn Im 〈yn|y〉w] .

Consider EN as a function of Ren and Imn, taking derivatives gives
∂EN
∂ Ren

= 2Ren−2Re 〈yn|y〉w ,

∂EN
∂ Imn

= 2 Imn−2 Im 〈yn|y〉w .

Those derivatives are zero when the error is minimized, which gives us an = 〈yn|f〉w, just as the value
in the untruncated expansion.

The minimum error is

minEN = ‖y‖2w −
N∑
n=1

[
|an|2 + |an|2

]
+

N∑
n=1

|an|2 = ‖y‖2w −
N∑
n=1

|an|2 .
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Corollary. Because EN ≥ 0 from its definition, we deduce the Bessel’s Inequality

‖y‖2w ≥
N∑
n=1

|an|2 .

Remark. This becomes an equality in the limit N → ∞.

‖y‖2w =

N∑
n=1

|an|2 ,

where y =
∑∞
n=1 anyn. This is a generalisation of Parseval’s theorem.
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9 Calculus of Variations

9.1 Functionals

Definition 9.1. A real function of many variables {xk | k = 1, 2, . . . , n} maps the ordered pair
(x1, . . . , xn) to a real number f : Rn → R,

f : (x1, . . . , xn) 7→ f(x1, . . . , xn) ∈ R .

We may take the number of variables to uncountably many: y = {y(x) | x ∈ R}.

Definition 9.2. A real functional maps multiple functions of multiple variables to a real number.

G : (y1(x1), . . . , yn(xn)) 7→ G[(y1(x1), . . . , yn(xn))] ∈ R .

We shall usually be concerned with functionals of the form

G[y] =

ˆ β

α

f(y, y′;x) dx . (†)

9.2 Functional Derivatives

9.2.1 Functional Derivatives

Consider the effect of changing a function y(x) to a nearby function y(x) + δy(x).

Definition 9.3. The variation of a functional G is defined as

δG := G[y + δy]−G[y] .

The variation of G of the above integral form (†) is

δG =

ˆ β

α

f(y + δy, y′ + δy′;x) dx−
ˆ β

α

f(y, y′;x) dx

=

ˆ β

α

f(y, y′;x) + δy
∂f

∂y
+ (δy)′

∂f

∂y′
+ . . . dx−

ˆ β

α

f(y, y′;x) dx

=

ˆ β

α

δy
∂f

∂y
dx+

[
δy
∂f

∂y′

]β
α

−
ˆ β

α

δy
d

dx

(
∂f

∂y′

)
dx+ . . .

where the terms of O(δy)2 are omitted.

Definition 9.4. The functional derivative of G with respect to a function y is defined as

δG

δy(x)
:=

∂f

∂y
− d

dx

(
∂f

∂y′

)
.

Therefore, if y is fixed on the boundaries, then

δG =

ˆ β

α

δy

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
=

ˆ β

α

δy
δG

δy(x)
dx .

Remark. Compare this with the variation of a function f({yi}):

δf =
∑
i

δyi
∂f

∂yi
.
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Theorem 9.5 (Euler–Lagrange equation). Let y(x) be a real, smooth function with fixed values
at x = α and x = β. The functional

G[y] =

ˆ β

α

f(y, y′;x) dx (†)

is stationary if and only if
d

dx

(
∂f

∂y′

)
=
∂f

∂y
.

Proof. The functional is stationary when δG = 0 for any change δy, so δG
δy(x) = 0. □

Remark. ∂f
∂y′ may look strange since it seems impossible to change y′ while not changing y. Here ∂

∂y

and ∂
∂y′ are just formal derivatives and we can pretend that y and y′ are not connected.

Corollary. This can be generalised to functionals F [y] for y(x) ∈ Rn:

∂f

∂yi
− d

dx

(
∂f

∂y′i

)
for each i .

9.2.2 Geodesics of the Euclidean Plane

Definition 9.6. A geodesic is a curve representing in some sense the shortest path between two
points in a surface (or more generally in a Riemannian manifold).

What is the geodesic between two points A and B on the Euclidean plane?

There are two ways to do this.

(i) We restrict to curves for which y can be made a function of x. The length of the curve is given
by

L =

ˆ B

A

dl =

ˆ B

A

√
dx2 + dy2 =

ˆ xB

xA

√
1 +

(
∂y

∂x

)2

dx .

This is a functional of y(x):

L(y) =

ˆ xB

xA

f(y′) dx , f(y′) =
√
1 + y′2 .

The Euler–Lagrange equation is

d

dx

(
∂f

∂y′

)
=

d

dx

(
y′√

1 + y′2

)
=
∂f

∂y
= 0 .

y′√
1 + y′2

= const. ,

so we must have
y′ = const. =⇒ y = ax+ b .

The geodesic on an Euclidean plane is a straight line.

(ii) This can be done more generally without the restriction by choosing a parameterisation x =
(x(t), y(t)) for t ∈ [0, 1] such that x(0) = A, x(1) = B, so

L[x, y] =

ˆ
dl =

ˆ 1

0

√
ẋ2 + ẏ2 dt .
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We have
∂f

∂x
=
∂f

∂y
= 0

=⇒ d

dt

(
∂f

∂ẋ

)
=

d

dt

(
∂f

∂ẏ

)
= 0 ,

so we obtain the solutions
ẋ√

ẋ2 + ẏ2
= c ,

ẏ√
ẋ2 + ẏ2

= s ,

where c, s are constants. They satisfy c2 + s2 = 1, so we can write c = cos θ, s = sin θ, and the
conditions are equivalent to

(ẋ sin θ)2 = (ẏ cos θ)2 .

Hence,
ẋ sin θ = ±ẏ cos θ .

We can choose a θ such that we have a positive sign. So

y cos θ = x sin θ +A

for a constant A. This is a straight line with gradient tan θ.

9.2.3 First Integral Forms

Proposition 9.7. If ∂f
∂y = 0, the Euler–Lagrange equation reduces to

∂f

∂y′
= const.

known as a first integral.

Proof.
d

dx

(
∂f

∂y′

)
=
∂f

∂y
= 0 .

□

Proposition 9.8. If ∂f
∂x = 0, the Euler–Lagrange equation reduces to a first integral.

y′
∂f

∂y′
− f = const. .

Proof. From the chain rule, we have

df

dx
=
∂f

∂x
+
∂f

∂y

∂y

∂x
+
∂f

∂y′
∂y′

∂x

=
∂f

∂x
+ y′

∂f

∂y
+ y′′

∂f

∂y′
.

Euler–Lagrange equation gives

df

dx
=
∂f

∂x
+ y′

d

dx

(
∂f

∂y′

)
+ y′′

∂f

∂y′

=
∂f

∂x
+

d

dx

(
y′
∂f

∂y′

)
,

and hence
d

dx

(
f − y′

∂f

∂y′

)
=
∂f

∂x
= 0 .

□

Remark. The first integral corresponds to a conserved quantity of the system.
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9.2.4 The Brachistochrone

Definition 9.9. The Brachistochrone is the smooth curve joining two points A and B (not
underneath one another) along which a particle will slide from A to B under gravity in the shortest
possible time.

The particle starts with speed v = 0, and so from the conservation of energy we have
1

2
mv2 = mgy =⇒ v =

√
2gy .

We also have

v =
√
ẋ2 + ẏ2 = ẋ

√
1 +

(
dy

dx

)2

=
dx

dt

√
1 + y′2 ,

so
dt =

1

v

√
1 + y′2 dx .

The total time is

T [y] =

ˆ B

A

dt =

ˆ B

A

√
1 + y′2

2gy
dx

=
1√
2g

ˆ B

A

f(y, y′) dx , where f(y, y′) =

√
1 + y′2

y
.

Here ∂f
∂x = 0, so the first integral gives

f − y′
∂f

∂y′
=

√
1 + y′2

y
− y′

y′√
y(1 + y′2)

=
1√

y(1 + y′2)
= const.

Let
y(1 + y′2) = 2c ,

where c is a constant, then

y′ =

√
2c− y

y
.

By parameterising y = c(1− cos θ) = 2c sin2
(
θ
2

)
, we have

y′ =

√
2c− 2c sin2

(
θ
2

)
2c sin2

(
θ
2

)
=

cos θ2
sin θ

2

,

and
y′ =

dy

dθ

dθ

dx
= 2c sin

θ

2
cos

θ

2

dθ

dx
,

so
dx

dθ
= 2c sin2

(
θ

2

)
= c(1− cos θ) .

Therefore, with y(0) = 0, the solution is given parametrically by{
x = c(θ − sin θ)

y = c(1− cos θ) .

This is an inverted cycloid, the curve traced by a point on the rim of a circular wheel as the wheel
rolls along a straight line without slippage.
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9.2.5 Geodesics on the Surface of a Sphere

In a spherical coordinate,
dx = dr er + r dθ eθ + r sin θ dϕ eϕ .

On the surface of a sphere, dr = 0, so the length of a path from A to B on the surface of a sphere
with radius r is

L =

ˆ B

A

|dx|

=

ˆ B

A

√
r2 dθ2 + r2 sin2θ dϕ2

= r

ˆ B

A

√
1 + sin2θ

(
dϕ

dθ

)2

dθ

= r

ˆ θB

θA

√
1 + sin2θ ϕ′2 dθ .

The Euler–Lagrange equation gives, for L[ϕ],

f(ϕ, ϕ′, θ) =

√
1 + sin2θ ϕ′2 ,

d

dθ

(
∂f

∂ϕ

)
=
∂f

∂ϕ
= 0 ,

and so
∂f

∂ϕ′
=

sin2θ ϕ′

1 + sin2θ ϕ′2
= const. = c .

Rearrangement gives
sin4θ ϕ′2 = c2 + c2 sin2θ ϕ′2 ,

ϕ′ =
c

sin θ
√
sin2θ − c2

=
c

sin2θ
√
1− c2 csc2θ

.

Therefore,

ϕ =

ˆ
c

sin2θ
√
1− c2 csc2θ

dθ

=

ˆ
− c

sin2θ csc2θ
√
1− c2 csc2θ

du substitute u = cot θ

=

ˆ
− c

1− c2(1 + u2)
du

=

ˆ
− 1√

1−c2
c2 − u2

du

=

ˆ
− 1√

a2 − u2
du set a2 =

1− c2

c2

= a arccos
(u
a

)
+ ϕ0 .

The path is therefore given by
cot θ = a cos(ϕ− ϕ0) ,

or equivalently 
x = r sin θ cosϕ

y = r sin θ sinϕ

z = r cos θ .

Remark. This path is along a great circle passing through A and B. It is also the intersection of the
sphere and a plane crossing the origin.
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9.3 Variational Principles

9.3.1 Fermat’s Principle

Theorem 9.10 (Fermat’s principle). The path taken by a light ray from point A to point B in a
material of variable refractive index, µ(x), makes the optical path length, P , stationary, where

P =

ˆ B

A

µ(x) dl ,

and dl is the length element
dl =

√
dx2 + dy2 + dz2 .

Remark. Fermat’s principle applies only in geometric optics approximations when the wavelength of
light is small compared to the physical dimensions of the system. The approximation fails in occasions
like diffraction.

Using the x-coordinate to parameterise position along the path and assuming there is no doubling
back, the optical path length is a functional of y(x) and z(x).

P [y, z] =

ˆ B

A

µ(x, y, z)
√
1 + y′2 + z′2 dx =

ˆ B

A

f(y, y′, z, z′;x) dx .

Looking for stationary points of P [y, z] with respect to variations of y(x) and z(x) gives

δP =

ˆ xB

xA

δy
δP

δy
dx+

ˆ xB

xA

δz
δP

δz
dx ,

where
δP

δy
=

d

dx

(
∂f

∂y′

)
− ∂f

∂y
,

δP

δz
=

d

dx

(
∂f

∂z′

)
− ∂f

∂z
.

Example. Path of light in a uniform medium.

If µ ≡ 1, then
d

dx

(
∂f

∂y′

)
=

d

dx

(
∂f

∂z′

)
= 0

=⇒ y′√
1 + y′2 + z′2

= c1 ,
z′√

1 + y′2 + z′2
= c2

=⇒ y′ = const. , z′ = const. .

This implies that the path of light in a uniform medium is the intersection of two planes, i.e. a
straight line.

Example. Snell’s law.

We suppose that the path is in the xy plane and

µ ≡ µ(y) =

{
µ1 , y < 0

µ2 , y ≥ 0 ,

where µ1 and µ2 are constants. The integrand to make the integral stationary is

f(y, y′) = µ(y)
√
1 + y′2 .
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There is no explicit x dependence, so the first integral gives

f − y′
∂f

∂y′
= µ

√
1 + y′2 − y′

µy′

1 + y′2

=
µ(y)√
1 + y′2

= c ,

where c is a constant. For regions where µ is constant, this says that the path is straight. Let the
angle the light paths make with the y axis be θ, then we have

y′ = cot θ .

Therefore,

c =
µ√

1 + y′2
=

µ√
1 + cot2θ

= µ sin θ .

Since the constant c is the same for the entire path, we can deduce Snell’s law

µ1 sin θ1 = µ2 sin θ2 .

Example. There is an analogous principle for sound waves where the acoustic path is stationary. This
can be used to explain why distant sounds are better heard at night.

The speed of sound, v, depends on the absolute air temperature, T ,

v ∝
√
T .

After sunset, the ground cools faster than the air, setting up a temperature gradient. Assume such
variation is linear

T = T0 + αz ,

where z is the height above the ground. This leads to a variational problem for

P [z] =

ˆ B

A

dl

v
∝
ˆ B

A

√
1 + z′2√
αz + T0

dx =

ˆ B

A

f(z, z′) dx ,

where

f(z, z′) =

√
1 + z′2

αz + T0
.

This is now equivalent to the Brachistochrone problem.

9.3.2 Hamilton’s Principle

Lagrangian and Hamiltonian mechanics reformulate Newtonian mechanics in terms of the principle
of least action, based on energy rather than force. The time evolution of a system is viewed as the
motion of a point in a multi-dimensional configuration space described by some generalised coordinates
{qi}.

Definition 9.11. The Lagrangian of a system, L, is defined as

L := T − V ,

where T is the kinetic energy and V is the potential energy.
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Definition 9.12. The action of a path, starting at time ti and ending at tf , is given by

S[qi] :=

ˆ tf

ti

L({qi}, {q̇i}; t) dt .

Theorem 9.13 (Hamilton’s principle (Principle of the least action)). The motion in config-
uration space extremises the action functional S

Theorem 9.14 (Lagrange’s equations). For L({qi}, {q̇i}; t) with N generalised coordinates and
fixed starting and ending points,

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 , i = 1, . . . , N .

Proof. First proof that Lagrange’s equations are equivalent to Newtonian mechanics when the
generalised coordinates {qi} are set to be the Cartesian coordinates {xi}.

From the definition of the Lagrangian, we have

∂L

∂xi
= − ∂V

∂xi
,

since T has no direct dependence on xi. while

∂L

∂ẋi
= pi ,

so we have
dpi
dt

= − ∂V

∂xi
,

which implies that Lagrangian mechanics is indeed equivalent to Newtonian mechanics.

Next, we need to show that the form of the equation holds when shifting from Cartesian coordinates
to any generalised coordinates.

Let
qi = qi(. . . , xi, . . . , xn, t) ,

then by chain rule, we can write
q̇i =

dqi
dt

=
∂qi
∂xj

ẋj +
∂qi
∂t

.

To be a proper coordinate system, we should be able to invert the relationship so that xj =
xj(. . . , qi, . . . , qn, t), which we can do as long as we have a non-zero Jacobian. Then we have

ẋj =
∂xj
∂qi

q̇i +
∂xj
∂t

.

Therefore,
∂L

∂qi
=

∂L

∂xj

∂xj
∂qi

+
∂L

∂ẋj

(
∂2xj
∂qi∂qk

q̇k +
∂2xj
∂t∂qi

)
,

while
∂L

∂q̇i
=

∂L

∂ẋj

∂ẋj
∂q̇i

.

Now use the fact that
∂ẋj
∂q̇i

=
∂xj
∂qi

,

we have
d

dt

(
∂L

∂q̇i

)
=

d

dt

(
∂L

∂ẋj

)
∂xj
∂qi

+
∂L

∂ẋj

(
∂2xj
∂qi∂qk

q̇k +
∂2xj
∂qi∂t

)
,
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so we have that
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
=

[
d

dt

(
∂L

∂ẋj

)
− ∂L

∂xj

]
∂xj
∂qi

.

Therefore, once Lagrange’s equation is solved in the {qi} system, it is also solved in the {xi}
system. □

Corollary. Given that the Lagrangian has no explicit dependence on time, i.e. ∂L
∂t = 0,

N∑
i=1

q̇i
∂L

∂q̇i
− L = const.

Proof. The chain rule and Lagrange’s equations give

dL

dt
=
∂L

∂t
+

N∑
i=1

(
q̇i
∂L

∂qi
+ q̈i

∂L

∂q̇i

)

=
∂L

∂t
+

N∑
i=1

(
q̇i

d

dt

(
∂L

∂q̇i

)
+ q̈i

∂L

∂q̇i

)
,

and hence,
dL

dt
=
∂L

∂t
+

d

dt

N∑
i=1

q̇i
∂L

∂q̇i
,

∂L

∂t
=

d

dt

(
L−

N∑
i=1

q̇i
∂L

∂q̇i

)
.

□

Theorem 9.15 (Energy conservation). The conserved quantity

N∑
i=1

q̇i
∂L

∂q̇i
− L

is equivalent to energy if the generalised coordinates are natural coordinates that have no explicit
time dependence: r = r(q1, . . . , qn).

Proof. Under such assumption, T is a homogeneous quadratic in the generalised velocities {q̇i}, i.e.

T =
1

2
mv2 =

m

2

∑ ∂x

∂qi
q̇i
∂x

∂qj
q̇j =

∑
i,j

aij(q1, . . . , qN )q̇iq̇j ,

Then the conserved quantity:

N∑
i=1

q̇i
∂L

∂q̇i
− L =

N∑
u=1

q̇u
∂

∂q̇u

 N∑
i=1

N∑
j=1

aij q̇iq̇j − V

−
N∑
i=1

N∑
j=1

aij q̇iq̇j + V

=

N∑
i=1

N∑
j=1

aij q̇iq̇j + V = T + V = E ,

i.e. The total energy E = T + V is conserved. □

Remark. This is an example of Noether’s theorem. The uniformity of time corresponds to energy
conservation.

Theorem 9.16 (Noether’s theorem). Every differentiable symmetry of the action of a physical
system with conservative forces has a corresponding conservation law.
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• Time invariance =⇒ conservation of energy;

• Translational invariance =⇒ conservation of momentum;

• Rotational invariance =⇒ conservation of angular momentum.

Example. Consider a particle of mass m subjected to a conservative force field

F(x) = −∇V (x) .

We have

L =
1

2
m|ẋ|2 − V (x)

=
1

2
m

3∑
i=1

ẋi
2 − V (x1, x2, x3) .

∂L

∂xi
= − ∂V

∂xi
∂L

∂ẋi
= mẋi .

The Euler–Lagrange equations give

mẍi = − ∂V

∂xi
=⇒ mẍ = −∇V = F .

This is Newton’s second law. We also found that, as expected,
3∑
i=1

ẋi
∂L

∂ẋi
− L = m

3∑
i=1

ẋi
2 − 1

2
m

3∑
i=1

ẋi
2 + V

=
1

2
m|ẋ|2 + V = E = const. .

Example. Suppose that the central force field depends only on r = |x|. For a planar motion, work in
polar coordinate, we have

L =
1

2
m(v2r + v2φ)− V (r)

=
1

2
mṙ2 +

1

2
mr2φ̇2 − V (r) .

The Euler–Lagrange equations are

d

dt

(
∂L

∂ṙ

)
=
∂L

∂r
=⇒ d

dt
(mṙ) = mr̈ = mrφ̇2 − ∂V

∂r

d

dt

(
∂L

∂φ̇

)
=
∂L

∂φ
=⇒ d

dt

(
mr2φ̇

)
= 0 .

The second equation gives mr2φ̇ = J = const., where J is the angular momentum. Define specific
angular momentum, h, such that

h =
J

m
= r2φ̇ .

The first equation reduces to

mr̈ = −∂V
∂r

+
mh2

r3

= − ∂

∂r

(
V +

mh2

2r2

)
= −∂Veff

∂r
.
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For h 6= 0, the effective potential has a centrifugal barrier. For example, if the gravitational potential

V = −GMm

r
,

then we have
Veff(r) = m

(
−GM

r
+

h2

2r2

)
.

When h 6= 0, the centrifugal barrier prevents an approach to r = 0. There will be three types of
stable orbits depending on the Veff of the particle.

• Veff < 0. Elliptical orbits;

• Veff = 0. Parabolic orbits;

• Veff > 0. Hyperbolic orbits.

Example. Consider two particles of masses m1 and m2, interacting via a potential V (x1 − x2). A
point in configuration space can be specified by two position vectors x1, x2, but we can also use the
centre of mass R and relative position r.

R =
m1x1 +m2x2

m1 +m2
,

r = x1 − x2 .

Then we have
x1 = R+

m2

m1 +m2
r ,

x2 = R+
m1

m1 +m2
r .

The kinetic energy is

T =
1

2
m1|ẋ1|2 +

1

2
m2|ẋ2|2

=
1

2
m1

[
Ṙ2 + 2

m2

m1 +m2
ṙ · Ṙ+

(
m2

m1 +m2

)2

ṙ2

]

+
1

2
m2

[
Ṙ2 − 2

m1

m1 +m2
ṙ · Ṙ+

(
m1

m1 +m2

)2

ṙ2

]

=
1

2
(m1 +m2)Ṙ

2 +
1

2

m1m2

m1 +m2
ṙ2 .

Let
M = m1 +m2 , µ =

m1m2

m1 +m2
,

then
T =

1

2
MṘ2 +

1

2
µṙ2 .

The Lagrangian equation for R gives

d

dt

(
∂L

∂Ṙ

)
=
∂L

∂R
= 0 ,

d

dt

(
MṘ

)
= 0 ,

Ṙ = const. ,
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i.e. the centre of mass moves with constant velocity. The Lagrangian equation for r gives

d

dt

(
∂L

∂ṙ

)
=
∂L

∂r
,

d

dt
(µṙ) = −∇V ,

µr̈ = −∇V (r) .

Because T is a homogeneous quadratic in the generalised velocities, V does not depend on velocities
and contains no explicit t-dependence, E = T + V is constant.

9.4 Constrained Variation and Lagrange Multipliers

Lemma 9.17. For any differentiable f : Rn → R,

df = ∇f · dx .

Proof. Taylor’s theorem states that

δf = f(x+ δx)− f(x)

=
∂f

∂x
δx+

∂f

∂y
δy +

∂f

∂z
δz + . . .

= ∇f · δx

in the limit |δx| → 0. □

Consider extremising f(x, y) along a path specified by p(x, y) = 0. We will require

df = dl · ∇f = 0

for dl along the path. Such dl along the path would naturally require

dp = 0 =⇒ ∇p · dl = 0 .

This is a constraint on dl. At the extremum point on the path, ∇f will be orthogonal to all dl that
are orthogonal to ∇p. Therefore ∇f and ∇p are parallel or anti-parallel. For some λ,{

∇f − λ∇p = 0

p(x, y) = 0 .

These equations arise from extremisation without constraint of a function of three variables

L(x, y, λ) = f(x, y)− λp(x, y) .

Variation with respect to the Lagrange multiplier, λ, gives the constraint p = 0. Variation with
respect to x, y gives the other equations.

Remark. By introducing the Lagrange multiplier, we turned a constrained variation problem into an
unconstrained variation problem.

We can extend this method to higher numbers of variables and constraints.

Theorem 9.18 (Lagrange multiplier). To find the stationary point of a function f({ξ}) of n
variables (ξ1, . . . , ξn) under m constraints pi({ξ}) = 0 (i = 1, . . . ,m), we need to extremise, with
respect to n+m variables,

L({ξ}; {λ}) = f({ξ})−
m∑
i=1

λipi({ξ}) .
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The generalisation to functionals (n→ ∞) is straightforward.

Corollary. To maximize G[y] subject to the constraint P [y] = 0, we may generalise without
constraint

L[y] = G[y]− λP [y]

with respect to the function y and the variable λ.

9.4.1 Catenary

Definition 9.19. A catenary is the curve that an idealized hanging chain assumes under its own
weight when supported only at its ends in a uniform gravitational field.

Let the two fixed points be at x = ±L with y > 0. The chain has a fixed length l0 > 2L and a
constant mass per unit length ρ. The potential energy of an element dl is dV = ρgy dl, where y(x) is
the height of the chain above the ground. Therefore, the potential energy is

V ∝
ˆ

chain
y dl

=

ˆ L

−L
y
√
1 + y′2 dx = G[y] .

We must minimize V subject to the constraint

l0 =

ˆ
chain

dl =

ˆ L

−L

√
1 + y′2 dx ,

=⇒ P [y] =

ˆ L

−L

√
1 + y′2 dx− l0 = 0 .

This is equivalent to extremising without constraint

L[y] = G[y]− λP [y]

=

ˆ L

−L
(y − λ)

√
1 + y′2 dx+ λl0

=

ˆ L

−L
f(y, y′;λ) dx+ λl0 ,

where λ is the Lagrange multiplier. Because there is no explicit dependence on x in the integrand,
the first integral gives

const. = y′
∂f

∂y′
− f

= y′
(y − λ)y′√
1 + y′2

− (y − λ)
√
1 + y′2

= (y − λ)

(
y′2√
1 + y′2

−
√
1 + y′2

)

=
λ− y√
1 + y′2

= c .

=⇒ y′ =
1

c

√
(y − λ)2 − c2 .

This gives us the solution
y(x) = λ+ c cosh

x+ a

c
.
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For simplicity, suppose both ends are at height h = λ + c cosh L
c above the ground such that a = 0.

We have
y(x) = c cosh

x

c
,

l0 = 2c sinh
L

c
.

9.4.2 Isoperimetric Problem

Find the simple closed plane curve C of fixed length L in a plane that maximizes the enclosed area
A. This implies that the curve does not intersect itself and the area it encloses is simply connected.

It is obvious that the inside region must be convex to maximise the area enclosed, otherwise, a
curve with a larger area can easily be constructed. Assume that the curve has x values in the range
[x1, x2]. Then, the curve can be divided into an ‘upper’ part and a ‘lower’ part, given by y1(x) and
y2(x) for x ∈ [x1, x2]. The area of the curve is

A =

ˆ x2

x1

y2(x)− y1(x) dx =

˛
C
y(x) = A[y] .

We want to maximize A subject to the constraint

L =

˛
C
dl

=

˛
C

√
1 + y′2 dx ,

P [y] =

˛
C

√
1 + y′2 dx− L = 0 .

Therefore we have to extremise without constraint

L[y] =
˛
C
y − λ

√
1 + y′2 dx+ λL

=

˛
C
f(y, y′;λ) dx+ λL

with respect to the function y and the real variable λ.

f(y, y′;λ) has no explicit dependence on x, so the first integral gives

const. = y′
∂f

∂y′
− f

= y′
−λy′√
1 + y′2

− y + λ
√
1 + y′2

=
λ√

1 + y′2
− y = −y0 ,

λ√
1 + y′2

= y − y0 .

This is equivalent to
dy

dx
=

√
λ2 − (y − y0)2

y − y0

=⇒ x− x0 =

ˆ
y − y0√

λ2 − (y − y0)2
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for some constant y0. This ODE has solution

y = y0 ±
√
λ2 − (x− x0)2

for some constant x0, so
(x− x0)

2 + (y − y0)
2 = λ2 .

This is a circle of radius λ. Varying Φ with respect to λ gives the original constant 2πλ = L.

9.4.3 Sturm–Liouville Theory

Consider a Sturm–Liouville operator L and the following real functionals of the real function y

F [y] = 〈y|Ly〉 =
ˆ β

α

{
−y d

dx
[ρ(x)y′] + σ(x)y2

}
dx

=

ˆ β

α

{ρ(x)(y′)2 + σ(x)y2} dx ,

G[y] = 〈y|y〉w =

ˆ β

α

w(x)y2 dx ,

where ρ(x), w(x) > 0 for α < x < β. Assume that the boundary conditions lead to vanishing
boundary terms, we have the functional derivatives

δF

δy
= 2Ly

δG

δy
= 2wy .

Consider the formulation of the Sturm–Liouville problem as an extremisation of F subjected to the
constraint G = 1. This is equivalent to extremising without constraint

Φ[y] = F [y]− λ(G[y]− 1) = (F [y]− λG[y]) + λ

with respect to the function y and the real variable λ. Extremising Φ, we obtain
δΦ

δy
=
δF

δy
− λ

δG

δy

= 2Ly − 2λwy = 0

impliesLy = λwy ,

i.e. the eigenvalue equation, where now the Lagrange multiplier λ is the eigenvalue.

We can view this problem in a different way. Notice that Ly = λwy is linear in y. Hence if y
is a solution, then so is ay. But if G[y] = 1, then G[ay] = a2. Hence the condition G[y] = 1 is
simply a normalisation condition. We can get around this problem by asking for the minimum of the
functional

Λ[y] =
F [y]

G[y]
.

δΛ[y] =
F [y + δy]

G[y + δy]
− F [y]

G[y]
=
F [y] + δF

G[y] + δG
− F [y]

G[y]

=
1

G

[
(F + δF )

(
1− δG

G
+ . . .

)]
− F

G
expansion

=
F −

(
F
G

)
δG+ δF

G
− F

G
only keep first order terms

=
1

G

(
δF − F

G
δG

)
.
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When Λ is minimised, we have

δΛ = 0 ⇐⇒ δF

δy
= Λ

δG

δy
⇐⇒ Ly = Λwy .

So at stationary values of Λ[y], Λ is the associated Sturm–Liouville eigenvalue.

9.5 Rayleigh–Ritz Method

The eigenvalues of a Sturm–Liouville problem are the extremal values of Λ = F
G , where

F [y] =

ˆ β

α

[
ρ(x)y′2 + σ(x)y2

]
dx = 〈y|Ly〉

G[y] =

ˆ β

α

w(x)y2 dx = 〈y|y〉w .

Suppose ρ > 0 and σ ≥ 0 so that F ≥ 0, so that Λ ≥ 0. Let one of the extremal values of Λ, λ0 be
an absolute minimum.

λ0 = Λ[y0] ,

where y0 is the eigenfunction corresponding to λ0. For simplicity, we assume that there is no
degeneracy.
Proposition 9.20. We have the inequality

λ0 ≤ Λ[y] for all y(x) ,
with equality if and only if y = y0.
Proof. Let

y =

∞∑
n=0

anyn ,

Λ[y] =
〈y|Ly〉
〈y|y〉w

=

〈 ∞∑
n=0

anyn

∣∣∣∣∣L
∞∑
m=0

amym

〉
〈 ∞∑
n=0

anyn

∣∣∣∣∣
∞∑
m=0

amym

〉

=

∞∑
n=0

∞∑
m=0

a∗nam 〈yn|Lym〉

∞∑
n=0

∞∑
m=0

a∗nam 〈yn|ym〉w

.

Since
〈yn|ym〉w = δnm ,

Lym = λmwym ,

we have
〈yn|Lym〉 = 〈yn|λmwyn〉

= λm 〈yn|ym〉w = λmδnm .

Therefore,

Λ[y] =

∞∑
n=0

|an|2λn

∞∑
n=0

|an|2
≥

∞∑
n=0

|an|2λ0

∞∑
n=0

|an|2
= λ0 .

□
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We can first make a guess, ytrial, for y0 and evaluate Λ[ytrial]

λ0 ≤ Λ[ytrial] .

The better ytrial is, the closer Λ[ytrial] will be to λ0. Because Λ[y] is stationary at y = y0, a moderately
good guess would give us a reasonable approximation to λ0.

Theorem 9.21 (Rayleigh–Ritz method). Choose ytrial to depend on one or more parameters
(a1, a2, . . . ). Since λ0 ≤ Λ[y({ai})] ≡ Λ({ai}) for all choices of parameters, we can get the lowest
upper bound by minimizing Λ({ai}) with respect to {ai},

λ0 ≤ min
{ai}

Λ({ai}) .

Example. Quantum harmonic oscillator.

Consider solutions to
Lψ = λψ = 2Eψ ,

L ≡ − d2

dx2
+ x2 ,

subjected to boundary conditions that ψ → 0 as |x| → ∞, which makes the Sturm–Liouville operator
L self-adjoint. The solution of this equation maximizes Λ[ψ] = F [ψ]

G[ψ] , where

F [ψ] =

ˆ ∞

−∞

[
(ψ′)2 + x2ψ2

]
dx

G[ψ] =

ˆ ∞

−∞
ψ2 dx .

For a suitable choice of unit, this is the Schrödinger equation for a particle of energy E in a
harmonic oscillator potential.

Since ψ(x) → 0 as |x| → ∞, we take the trial solution as

ψtrial(x) = exp
(
−α
2
x2
)
,

so
ψ′

trial = −αx exp
(
−α
2
x2
)
,

with parameter α. Using the result that
ˆ ∞

−∞
x2ne−αx

2

=
(2n)!

22nn!

√
π

α2n+1
,

we find
F [ψtrial] = (α2 + 1)

ˆ ∞

−∞
x2e−αx

2

,

G[ψtrial] =

ˆ ∞

−∞
e−αx

2

dx ,

=⇒ Λ[ψtrial] =
α2 + 1

2α
.

This is a minimum when α = 1, where

min
α

Λ[ψtrial(x;α)] = 1

for
ψtrial(x) = e−

x2

2 .

We deduce that λ0 ≤ 1.
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Remark. λ0 = 1 is actually the exact answer, which happens when the exact eigenfunction
corresponding to the lowest eigenvalue happens to be of the form of the trial solution.

For some less-inspired guesses, the answer would not be exact. For example, let the trial solution
be

ψtrial(x) = (1 + ax2)e−x
2

,

which gives an upper bound of λ0 ≤ Λ(amin) ≈ 1.03. The accuracy of this upper bound can be
improved by adding more parameters to our trial solution. An improved trial solution might be

ψtrial(x) = (1 + ax2 + bx4)e−x
2

.

Example. Circularly symmetric vibration of a circular drum.

Consider a drum with a unit radius fixed at r = 1. The amplitude y(r) of small-amplitude
vibrations satisfies Bessel’s equation

y′′ +
1

r
y′ + λy = 0 ,

subject to y(1) = 0 and finite y(0). λ goes like the square of the angular frequency, and the dominant
effect is from the lowest frequency, so we want to estimate λ0.

To put the differential operator into a Sturm–Liouville form, we need to multiply w(r) = r.

F [y] =

ˆ 1

0

r(y′)2 dr

G[y] =

ˆ 1

0

ry2 dr .

Try
ytrial = a+ br2 + cr4 ,

where a + b + c = 0 to satisfy r(1) = 0. We include only even powers of r because the equation has
the same form when r → −r. Using a = −b− c, we get

F [ytrial] = f(b, c) = b2 +
8

3
bc+ 2c2

G[ytrial] = g(b, c) =
1

6
b2 +

5

12
bc+

4

15
c2 .

This gives us our approximation to λ0: λ0 ≈ 5.784. This is close to the true value of λ0 = 5.7832 . . ..

9.5.1 Extension to Higher Eigenvalues

Suppose we already have a good approximation to λ0 and y0, and we want an approximation to the
next-lowest eigenvalue λ1. The orthogonality suggests that we should consider a trial function y

(1)
trial

orthogonal to y0:

y
(1)
trial =

∞∑
n=1

anyn(x) ,〈
y0

∣∣∣y(1)trial

〉
w
= 0

for some coefficients an. The a0y0 term is missing because of the required orthogonality. We do not
know what the functions yn are, just that they are a complete set of eigenfunctions. Now,

Λ
[
y
(1)
trial

]
=

∑∞
n=1 |an|

2
λn∑∞

n=1 |an|
2 .
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Since |an|2 ≥ 0 and λ1 ≤ λn for n = 1, 2, . . ., we have
∞∑
n=1

|an|2λn ≥ λ1

∞∑
n=1

|an|2 ,

and hence Λ
[
y
(1)
trial

]
≥ λ1.

Therefore, we will have an upper bound on λ1 from any trial function orthogonal to y0, and a
reasonably good guess will give a good estimate for λ1.

An obvious problem is: how do we find a trial function orthogonal to y0 if we only have an
approximation to y0? In general we cannot, but it can be done in some exceptional cases. For
example, a theorem in quantum mechanics states that the ground-state wavefunction of a particle in
a symmetric potential, V (x) = V (−x), is a symmetric function. Since any anti-symmetric function
is orthogonal to any symmetric function, we can find a bound on λ1 by choosing any anti-symmetric
trial function.
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10 Partial Differential Equations and Separation of Variables

10.1 Nomenclature

Definition 10.1. Partial differential equations are equations relating one or more unknown functions
(dependent variables) of two or more independent variables with one or more of the functions’ partial
derivatives with respect to those variables.

F

(
ψ,
∂ψ

∂x
,
∂ψ

∂y
,
∂2ψ

∂x2
,
∂2ψ

∂x∂y
,
∂2ψ

∂y2
, . . . , x, y

)
= 0

The order of the PDE is the order of the highest derivative in the equation.

If the system of differential equations is of the first degree in the dependent variables and all its
derivatives, then the system is said to be linear.

10.1.1 Linear Second-order Partial Differential Equations

The most general linear second-order PDE in two variables is

Lψ(x, y) = g(x, y) ,

where L is a differential operator such that

Lψ ≡ a(x, y)
∂2ψ

∂x2
+ b(x, y)

∂2ψ

∂x∂y
+ c(x, y)

∂2ψ

∂y2
+ d(x, y)

∂ψ

∂x
+ e(x, y)

∂ψ

∂y
+ f(x, y)ψ .

Remarks.

• If g = 0, then the equation is said to be homogeneous.

• We will focus on examples where the coefficients are independent of x and y i.e. constant
coefficients.

• These ideas can be generalised to more than two independent variables or systems of PDEs
with more than one dependent variable.

Definition 10.2. The linear second-order PDEs are often classified as:

• Elliptic: b2 − 4ac < 0;

• Parabolic: b2 − 4ac = 0;

• Hyperbolic: b2 − 4ac > 0.

Remark. In hyperbolic PDEs (e.g. wave equations), the smoothness of the solution depends on the
smoothness of the initial and boundary conditions. In the worst case, the solution even may be
differentiable nowhere. In a system modeled with a hyperbolic PDE, information travels at a finite
speed referred to as the wave speed.

In contrast, the solutions of elliptic PDEs (e.g. Laplace’s equation) are always smooth, even if the
initial and boundary conditions are rough. This is known as elliptic regularity. In addition, boundary
data at any point affect the solution at all points in the domain.

Parabolic PDEs are usually time-dependent and represent diffusion-like processes. Solutions are
smooth in space but may possess singularities. However, information travels at infinite speed in a
parabolic system.
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10.1.2 Boundary Conditions

Definition 10.3. The boundary conditions may be classified as the following:

• Dirichlet condition:
ψ = g(x)

where g(x) is a known function.

• Neumann condition:
∂ψ

∂n
≡ n̂ · ∇ψ = h(x) ,

where h(x) is a known function.

• Robin (mixed) condition:
α(x)

∂ψ

∂n
+ β(x)ψ = d(x)

where α(x), β(x) and d(x) are known functions.

10.1.3 Superposition

L is a linear operator since
L(αψ + βϕ) = αLψ + βLϕ

where ψ and ϕ are any functions of x and y, and α and β are any constants.

Theorem 10.4 (The principle of superposition). If L is a linear operator and both ψ and ϕ
satisfy the homogeneous equation

Lψ = Lϕ = 0 ,

then αψ + βϕ also satisfies the homogeneous equation.

Consider the following boundary value problem{
Lψ(x) = F (x) x ∈ Ω

ψ = f(x) x ∈ ∂Ω ,
(A)

and the following initial, boundary value problem
Lϕ(x) = G(x) x ∈ Ω, t > 0

ϕ(x, t) = g(x, t) x ∈ ∂Ω, t > 0

ϕ(x) = h(x) x ∈ Ω, t = 0 .

(B)

Solve (A) by considering{
Lψ1(x) = F (x) x ∈ Ω

ψ1 = 0 x ∈ ∂Ω

{
Lψ2(x) = 0 x ∈ Ω

ψ2 = f(x) x ∈ ∂Ω .

Then ψ = ψ1 + ψ2 solves (A).

Proof.
Lψ = Lψ1 + Lψ2 = F , x ∈ Ω

ψ|∂Ω = ψ1|∂Ω + ψ2|∂Ω = f .

□
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Solve (B) by considering
Lϕ1(x) = G(x)

ϕ1(x, t) = 0 x ∈ ∂Ω

ϕ1(x) = 0 t = 0


Lϕ2(x) = 0

ϕ2(x, t) = g(x, t) x ∈ ∂Ω

ϕ2(x) = 0 t = 0


Lϕ3(x) = 0

ϕ3(x, t) = 0 x ∈ ∂Ω

ϕ3(x) = h(x) t = 0 .

Then ϕ = ϕ1 + ϕ2 + ϕ3 solves (B).

Example. Consider a boundary value problem on a square{
Lψ = 0 x ∈ (0, 1)× (0, 1)

ψ = fi(x) on side i, i = 1, 2, 3, 4 .

Then for i = 1, 2, 3, 4, solve 
Lψi = 0 x ∈ (0, 1)× (0, 1)

ψi = fi(x) on side i
ψi = 0 on side 6= i .

Then ψ = ψ1 + ψ2 + ψ3 + ψ4.

10.2 Common Partial Differential Equations

Definition 10.5. There are some common types of partial differential equations.

• Laplace’s equation.
∇2Ψ(x) = 0 .

• Poisson’s equation.
∇2Ψ(x) = f(x) .

• Diffusion equation.
∂Ψ(x)

∂t
= D∇2Ψ .

• Wave equation.
∂2Ψ(x)

∂t2
= c2∇2Ψ(x) .

10.3 Physical Examples and Applications

10.3.1 Waves on a Violin String

Consider small displacements on a stretched elastic string of line density µ. Assume that all
displacements y(x, t) are vertical. Resolve forces to obtain

T (x+ dx) cos θ(x+ dx) = T (x) cos θ(x) = T

(µ dx)
∂2y

∂t2
= T (x+ dx) sin θ(x+ dx)− T (x) sin θ(x)

= T (x+ dx) cos θ(x+ dx)(tan θ(x+ dx)− tan θ(x)) .

And we observe that
tan θ =

∂y

∂x
.
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From Taylor’s theorem,

µ dx
∂2y

∂t2
= T (tan θ(x+ dx)− tan θ(x))

= T

(
∂

∂x
y(x+ dx , t)− ∂

∂x
y(x, t)

)
= T

∂2y

∂x2
dx+ . . .

and hence, in the infinitesimal limit,
∂2y

∂t2
=
T

µ

∂2y

∂x2
.

This is the one-dimensional wave equation with wave speed c =
√

T
µ .

10.3.2 Electromagnetic Waves

The theory of electromagnetism is based on Maxwell’s equations

∇ ·E =
ρ

ϵ0
∇ ·B = 0

∇×E = −∂B
∂t

∇×B = µ0J+ µ0ϵ0
∂E

∂t
,

which relate the electric field E, magnetic field B, the charge density ρ, the current density J and
two fundamental constants µ0 and ϵ0.

In a vacuum where there is no free charge or current,

µ0ϵ0
∂2E

∂t2
= ∇× ∂B

∂t
= −∇×∇×E

= ∇2E−∇(∇ ·E)

= ∇2E .

Therefore, we recovered the three-dimensional wave equation
∂2E

∂t2
=

1

µ0ϵ0
∇2E ,

in which the wave speed is c = 1√
µ0ϵ0

≈ 3× 108 m s−1.

Remarks.

• B obeys the same equation.

• The pressure perturbation of gas (sound waves) satisfies the scalar equivalent of this equation,
with c ≈ 300m s−1.

10.3.3 Electrostatics

In the absence of a magnetic field, Maxwell’s equations for a static electric field E(x) give{
∇×E = 0

∇ ·E = ρ(x)
ϵ0

.
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Because E is irrotational, we can write E = −∇Φ, where Φ is the electrical potential. We obtain the
Poisson’s equation

∇2Φ = − ρ

ϵ0
.

In regions where there is no electric charge, this reduces to Laplace’s equation

∇2Φ = 0 .

Remark. In absence of currents, a static magnetic field B(x) satisfies{
∇×B = 0

∇ ·B = 0 ,

and so there is also a magnetostatic potential ψ satisfying the Laplace’s equation

∇2ψ = 0 .

10.3.4 Gravitational Fields

The Newtonian gravitational field g of mass density ρ follows

∇ · g = −4πGρ

and
∇× g = 0 .

Therefore, there exists a gravitational potential φ such that

g = −∇φ ,

and it satisfies Poisson’s equation
∇2φ = 4πGρ .

10.3.5 Diffusion of a Passive Tracer

Suppose we want to describe the diffusion of an inert chemical. Denote the mass concentration of
the chemical by C(x, t), and the material flux vector of the chemical by q(x, t). Then the amount of
chemical crossing a small surface dS in time δt is

local flux = (q · dS)δt .

Hence the flux of chemical out of a closed surface S enclosing a volume V in time δt is

surface flux =

(‹
S
q · dS

)
δt .

Let Q(x, t) denote the chemical mass source per unit time per unit volume of the media. Then since
the change of chemical within the volume is to be equal to the flux of the chemical out of the surface
in time δt, (‹

S
q · dS

)
δt = −

(
d

dt

˚
V
C dV

)
δt+

(˚
V
Q dV

)
δt .

Then by the divergence theorem, and exchanging the order of differentiation and integration,
˚

V

(
∇ · q+

∂C

∂t
−Q

)
dV = 0 .
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and since this is true for any volume,

∂C

∂t
= −∇ · q+Q .

The simplest empirical law that relates concentration flux to concentration gradient is Fick’s first
law,

q = −D∇C ,

where D is the diffusion constant.

The PDE governing the concentration is therefore

∂C

∂t
= D∇2C +Q .

• Diffusion Equation. If there is no chemical source (Q = 0), then the governing equation becomes
the diffusion equation

∂C

∂t
= D∇2C .

• Poisson’s Equation. If the system has reached a steady state (∂C∂t = 0), then with f(x) = Q(x)
D ,

the governing equation is the Poisson’s equation

∇2C = −f .

• Laplace’s Equation. If the system has reached a steady state and there is no chemical source
then the concentration is governed by Laplace’s equation

∇2C = 0 .

10.3.6 Heat Flow

Let q(x, t) denote the heat flux vector. Then the heat energy flowing out of a closed surface S
enclosing a volume V in time δt is again

surface flux =

(¨
S
q · dS

)
δt .

Also, let E(x, t) denote the internal energy per unit mass, let Q(x, t) denote the heat source per unit
time per unit volume, and let ρ(x, t) denote the mass density.

The heat flowing in and out of S must balance the change in internal energy and the heat source
over a time δt, so (¨

S
q · dS

)
δt = −

(
d

dt

˚
V
ρE dV

)
δt+

(˚
V
Q dV

)
δt .

From the first law of thermodynamics, for slow changes at constant volume,

E(x, t) = cvθ(x, t) ,

where θ is the temperature, and cv is the specific heat capacity (assumed constant). Hence,
˚

V

(
∇ · q+ ρcv

∂θ

∂t
−Q

)
dV = 0 ,

160



10 Partial Differential Equations and Separation of Variables IB Mathematical Methods

followed by
ρcv

∂θ

∂t
= −∇ · q+Q .

Similarly, the simplest empirical law relating heat flow to temperature gradient is Fourier’s law
q = −k∇θ ,

where k is the heat conductivity. If k is constant, then the PDE governing the temperature is
∂θ

∂t
= ν∇2θ +

Q

ρcv

where ν = k
ρcv

is the diffusivity.
Remark. The heat diffusion is remarkably similar to chemical diffusion.

10.3.7 Schrödinger Equation

The Schrödinger equation is [
− ℏ2

2m
∇2 + V (x)

]
ψ = Eψ .

10.3.8 Ideal Fluid Flow

The flow of a fluid can be described by a vector field of the fluid’s velocity u(t,x). If the flow is
irrotational (no vortex, where the vorticity is given by ω = ∇× u) and non-viscous, then

u = ∇Φ ,

where Φ is the velocity potential. The continuity equation, given by the conservation of mass,
∂ρ

∂t
+∇ · (ρu) = 0

reduces to
∇ · u = 0

if the fluid is incompressible and therefore has a uniform constant density ρ. Therefore the velocity
potential satisfies Laplace’s equation

∇2Φ = 0 .

10.3.9 Other Equations

PDEs are also useful in non-scientific areas, such as the Black–Scholes equation for call option pricing
∂w

∂t
= rw − rx

∂w

∂x
− 1

2
v2x2

∂2w

∂x2
,

where w(x, t) is the price of the call option of the stock, x is the variable market price of the stock,
r is the fixed interest rate and v2 is the variance rate of the stock price.

Despite all the equations above being linear, many other interesting equations are nonlinear, such
as Euler’s equation for an inviscid fluid

ρ

(
∂u

∂t
+ (u ·∇)u

)
= −∇p ,

and the non-linear Schrödinger equation

i
∂A

∂t
+
∂2A

∂x2
= A|A|2 .
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10.4 Wave Equation

10.4.1 One Dimensional Wave Equation

We have the initial, boundary value problem

∂2y

∂t2
= c2

∂2y

∂x2
(x, t) ∈ (0, L)× (0,∞)

y(0, t) = y(L, t) = 0 t ∈ (0,∞)

y(x, 0) = f(x)

∂y

∂t
(x, 0) = g(x)

 x ∈ (0, L) .

(†)

Try the solution of the form
y(x, t) = X(x)T (t) .

Substituting the solution into the equation (†), we obtain

XT̈ = c2TX ′′

where a ˙ and a ′ denote differentiation by t and x respectively. Rearrangement gives

1

c2
T̈ (t)

T (t)
=
X ′′(x)

X(x)
= λ

where λ can only be a constant. We have therefore split the PDE into two ODEs:{
T̈ − c2λT = 0

X ′′ − λX = 0 .

There are three cases to consider based on the sign of λ.

• λ = 0. In this case,

T̈ (t) = X ′′(x) = 0 =⇒

{
T = A0 +B0t

X = C0 +D0x ,

where A0, B0, C0, D0 are constants.

y = (A0 +B0t)(C0 +D0x)

• λ = σ2 > 0. In this case,{
T̈ − σ2c2T = 0

X ′′ − σ2X = 0
=⇒

{
T = Aσe

σct +Bσe
−σct

X = Cσe
σx +Dσe

−σx ,

where Aσ, Bσ, Cσ, Dσ are constants.

y = (Aσe
σct +Bσe

−σct)(Cσe
σx +Dσe

−σx)

or alternatively

y = (Ãσ coshσct+ B̃σ sinhσct)(C̃σ coshσx+ D̃σ sinhσx)

• λ = −k2 < 0. In this case,{
T̈ + k2c2T = 0

X ′′ + k2X = 0
=⇒

{
T = Ak cos kct+Bk sin kct

X = Ck cos kx+Dk sin kx ,

where Ak, Bk, Ck, Dk are constants.

y = (Ak cos kct+Bk sin kct)(Ck cos kx+Dk sin kx)
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Now substitute the boundary conditions in.

• λ = 0. If the homogeneous boundary conditions are to be satisfied for all time, then we must
have C0 = D0 = 0. This gives a trivial solution of y = 0.

• λ > 0. Again, for the homogeneous boundary conditions to be satisfied, Cσ = Dσ = 0.

• λ < 0. Applying the boundary conditions yields

Ck = 0 and Dk sin kL = 0

If Dk = 0 then this solution is trivial (as for λ ≥ 0), so the only non-trivial solution has

sin kL = 0 =⇒ k =
nπ

L
,

where n is a non-zero integer. These special values of k are eigenvalues and the corresponding
eigenfunctions, or normal modes, are

Xnπ
L

= Dnπ
L

sin
nπx

L
.

Hence, solutions to the wave equation that satisfy the homogeneous boundary conditions are

yn(x, t) =

(
An cos

nπct

L
+ Bn sin

nπct

L

)
sin

nπx

L
.

Since the wave equation is linear, we may superimpose solutions to get the general solution

y(x, t) =

∞∑
n=1

(
An cos

nπct

L
+ Bn sin

nπct

L

)
sin

nπx

L
.

Note that the solution has the form of a Fourier series. To satisfy the initial conditions, we require
that

y(x, 0) = f(x) =

∞∑
n=1

An sin
nπx

L
,

∂y

∂t
(x, 0) = g(x) =

∞∑
n=1

Bn
nπc

L
sin

nπx

L
.

An and Bn can be found using the orthogonality of sin
ˆ L

0

sin
nπx

L
sin

mπx

L
dx =

L

2
δnm .

Hence for an integer m > 0,

2

L

ˆ L

0

f(x) sin
mπx

L
dx =

2

L

ˆ L

0

( ∞∑
n=1

An sin
nπx

L

)
sin

mπx

L
dx

=

∞∑
n=1

2An

L

ˆ L

0

sin
nπx

L
sin

mπx

L
dx

=

∞∑
n=1

Anδmn

= Am .

Similarly,

Bm =
2

mπc

ˆ L

0

g(x) sin
mπx

L
dx .
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10.4.2 Waves on a Drum

Consider the wave propagating on the surface of a drum, on a region Ω = {(r, θ) | r ∈ [0, 1], θ ∈
[0, 2π)}, where (r, θ) are the plane polar coordinates. This is an initial-boundary value problem

∂2ψ

∂t2
= c2∇2ψ (x, t) ∈ Ω× (0,∞)

ψ(x, t) = 0 (x, t) ∈ ∂Ω× (0,∞)

ψ(x, 0) = f(x)

∂ψ

∂t
(x, 0) = g(x)

 x ∈ Ω .

(††)

For simplicity, we will assume f = f(r) and g = g(r), so we expect ψ = ψ(r, t). Try the solution of
the form

ψ = R(r)T (t) ,

and the wave equation becomes
T̈

c2T
− (rR′)′

rR
= 0 .

There must be a constant λ such that {
−(rR′)′ = λrR

T̈ + λc2T = 0 .

The R equation is the Bessel equation of order zero. We know that the solution nonsingular at r = 0
are

Rk(r) = J0(j0kr) , λk = j20k , for k = 1, 2, . . .

The solutions to the T equation are then

Tk(t) = Ak cos(j0kct) +Bk sin(j0kct) .

This gives the following general solution that satisfies the homogeneous boundary conditions

ψ(r, t) =

∞∑
k=1

J0(j0kr)[Ak cos(j0kct) +Bk sin(j0kct)] .

To match the initial conditions, we require

f(r) =

∞∑
k=1

AkJ0(j0kr) ,

g(r) =

∞∑
k=1

Bkcj0kJ0(j0kr) .

We can solve these equations by the orthogonality conditions for Bessel functions
ˆ 1

0

J0(j0kr)J0(j0lr)r dr =
1

2
J ′
0(j0k)

2δkl .

This allows us to find Ak and Bk as follows

Ak =
2

J ′
0(j0k)

2

ˆ 1

0

J0(j0kr)f(r)r dr ,

Bk =
2

cj0kJ ′
0(j0k)

2

ˆ 1

0

J0(j0kr)g(r)r dr .
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10.4.3 Energy Conservation and Uniqueness of Solution

For the wave equation on the string, define the energy

E(t) =
1

2
µ

ˆ L

0

(
∂y

∂t

)2

dx+
1

2
T

ˆ L

0

(
∂y

∂x

)2

dx ,

where the former part is the kinetic energy and the latter part is the potential energy. For simplicity,
take µ = 1, then T = c2, and the energy simplifies to

E(t) =
1

2

ˆ L

0

[(
∂y

∂t

)2

+ c2
(
∂y

∂x

)2
]
dx .

This can be generalised to higher dimensions

E(t) =
1

2

ˆ
Ω

[(
∂ψ

∂t

)2

+ c2|∇ψ|2
]
dV ,

where ψ satisfies the wave equation for higher dimensions

∂2ψ

∂t2
= c2∇2ψ (x, t) ∈ Ω× (0,∞)

ψ(x, t) = 0 (x, t) ∈ ∂Ω× (0,∞)

ψ(x, 0) = f(x)

∂ψ

∂t
(x, 0) = g(x)

 x ∈ Ω .

(††)

Theorem 10.6. The energy is conserved for a solution of the wave equation.

Proof. Consider how E(t) changes as ψ evolves with t.

Ė(t) =

ˆ
Ω

[
∂ψ

∂t

∂2ψ

∂t2
+ c2∇ψ · ∇∂ψ

∂t

]
dV

= c2
ˆ
Ω

[
∂ψ

∂t
∇2ψ +∇ψ · ∇∂ψ

∂t

]
dV

= c2
ˆ
Ω

∇ ·
(
∂ψ

∂t
∇ψ

)
dV

= c2
ˆ
∂Ω

∂ψ

∂t
∇ψ · n dS .

Since ψ(x, t) = 0 for x ∈ ∂Ω,
∂ψ

∂t
= 0 for x ∈ ∂Ω ,

so the integral vanishes. □
Theorem 10.7. The solution to the wave equation (††) is unique.

Proof. Suppose the solution is not unique. Let ψ1 and ψ2 solve (††).

Set ψ = ψ1 − ψ2. By linearity, ψ satisfies (††), but with initial conditions f = g = 0. Energy
associated with ψ is

E(t) =
1

2

ˆ
Ω

(
∂ψ

∂t

)2

+ c2|∇ψ|2 dV

= E(0) = 0 ,

so
∂ψ

∂t
= |∇ψ| = 0

throughout Ω and t ≥ 0, i.e. ψ is constant. Since ψ = 0 on ∂Ω, ψ = 0 everywhere. ψ1 = ψ2, i.e. the
solution is unique. □
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10.5 Diffusion Equation

10.5.1 1D Diffusion of Chemical

Consider the problem of a solvent occupying the region between x = 0 and x = L. Suppose that at
t = 0, there is no chemical in the solvent. Suppose also for t > 0, the concentration of the chemical
is maintained at C0 at x = 0, and is 0 at x = L. This is an initial, boundary value problem

∂C

∂t
= D

∂2C

∂x2
(x, t) ∈ (0, L)× (0,∞)

C(0, t) = C0 t ∈ (0,∞)

C(L, t) = 0 t ∈ (0,∞)

C(x, 0) = 0 x ∈ (0, L) .

(†)

Seek solutions to (†) of the separable form

C(x, t) = X(x)T (t) .

On substitution we obtain
XṪ = DTX ′′ ,

and after arrangement we have
1

D

Ṫ (t)

T (t)
=
X ′′(x)

X(x)
= λ ,

where λ is again a constant. We therefore have{
Ṫ −DλT = 0

X ′′ − λX = 0 ,

with again three cases to consider.

• λ = 0. In this case {
Ṫ (t) = 0

X ′′(x) = 0
=⇒

{
T = a0

X = β0 + γ0x

where α0, β0 and γ0 are constants. Combining these results we obtain (with α0 = 1 wlog)

C = β0 + γ0x .

• λ = σ2 > 0. {
Ṫ −Dσ2T = 0

X ′′ − σ2X = 0
=⇒

{
T = ασ exp

(
Dσ2t

)
X = βσ coshσx+ γσ sinhσx ,

where ασ, βσ and γσ are all constants. We therefore obtain

C = exp
(
Dσ2t

)
(βσ coshσx+ γσ sinhσx) .

• λ = −k2 < 0. {
Ṫ +Dk2T = 0

X ′′ + k2X = 0
=⇒

{
T = αk exp

(
−Dk2t

)
X = βk cos kx+ γk sin kx ,

where αk, βk and γk are all constants. We therefore obtain

C = exp
(
−Dk2t

)
(βk cos kx+ γk sin kx) .
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Note that the separable solutions with λ 6= 0 depend on time, while the solution with λ = 0 does
not. The cases λ ≤ 0 are suitable for the initial and boundary conditions, so we need to consider all.

We may first try to fit the λ = 0 solution to the boundary condition. We call this part of the total
solution C∞(x), then

C∞(x) = C0

(
1− x

L

)
,

which is just a linear variation in C from C0 at x = 0 to 0 at x = L.

Write
C(x, t) = C∞(x) + C̃(x, t) ,

where C̃ is a sum of the separable time-dependent solutions with λ 6= 0. Then from (†), the conditions
for C̃ is 

∂C̃

∂t
= D

∂2C̃

∂x2
(x, t) ∈ (0, L)× (0,∞)

C̃(0, t) = C̃(L, t) = 0 t ∈ (0,∞)

C̃(x, 0) = −C0

(
1− x

L

)
x ∈ (0, L) .

The homogeneous boundary conditions are satisfied by λ = −k2 < 0 if βk = 0 and γk sin kL = 0,
with

k =
nπ

L
.

The corresponding eigenfunctions are

Xn = Γn sin
nπx

L
,

where Γn = γnπ
L

.

Since the equation is linear, we can add them to get the general solution

C̃(x, t) =

∞∑
n=1

Γn exp

(
−n

2π2Dt

L2

)
sin

nπx

L
.

The Γn are fixed by the initial condition

−C0

(
1− x

L

)
=

∞∑
n=1

Γn sin
nπx

L
.

Hence
Γm = −2C0

L

ˆ L

0

(
1− x

L

)
sin

mπx

L
dx = −2C0

mπ
.

The solution is thus given by

C = C0

(
1− x

L

)
−

∞∑
n=1

2C0

nπ
exp

(
−n

2π2Dt

L2

)
sin

nπx

L

=

∞∑
n=1

2C0

nπ

(
1− exp

(
−n

2π2Dt

L2

))
sin

nπx

L
.

Remarks.

• As t→ ∞,
C → C0

(
1− x

L

)
= C∞(x) .

• This solution is odd and has a period of 2L. We are in effect solving the 2L-periodic diffusion
problem where C is initially zero. Then, at t = 0+, C is raised to 1 at 2nL+ and lowered to −1
at 2nL−, and kept zero everywhere else.
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10.5.2 Heating along a Square Sheet

Consider the heat distributed over a square Ω = {(x, y) | x ∈ (0, L), y ∈ (0, L)} with heat loss on its
boundary. This is an initial-boundary value problem

∂φ

∂t
= κ∇2φ (x, t) ∈ Ω× (0,∞)

φ(x, 0) = f x ∈ Ω

φ(x, t) = 0 (x, t) ∈ ∂Ω× (0,∞) .

(††)

We write φ = T (t)X(x)Y (y) to find

Ṫ

κT
=
X ′′

X
+
Y ′′

Y
= −µ .

This gives us a set of differential equations
Ṫ + κµT = 0

X ′′ + λX = 0

Y ′′ + (µ− λ)Y = 0 .

T equation solves to
T (t) = Ae−µκt .

The boundary conditions are X(0) = X(L) = Y (0) = Y (L) = 0, so

Xn(x) = sin
(nπx
L

)
, λn =

(nπ
L

)2
, n = 1, 2, . . .

Ym(y) = sin
(mπy

L

)
, µmn − λn =

(mπ
L

)2
, m = 1, 2, . . .

We therefore have the general solution that satisfies the homogeneous boundary conditions

φ(x, y, t) =

∞∑
n,m=1

Amne
−κµmnt sin

(nπx
L

)
sin
(mπy

L

)
,

where
µmn =

(nπ
L

)2
+
(mπ
L

)2
.

Using the orthogonality, the initial condition gives

Amn =
4

L2

ˆ L

0

ˆ L

0

sin
(nπx
L

)
sin
(mπy

L

)
f(x, y) dx dy .

Because µmn increase quadratically with m and n, as t increases, the dominant contribution comes
from the first m = n = 1 mode.

φ(x, y, t) ∼ A11e
− 2κπ2t

L2 sin
(πx
L

)
sin
(πy
L

)
as t→ ∞ .

10.5.3 Energy Loss and Uniqueness of Solution

For a heat equation problem as in (††), the total energy is defined as

Q(t) =
1

2

ˆ
Ω

φ2 dV .
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Note that
dQ

dt
=

ˆ
Ω

φ
dφ

dt
dV = κ

ˆ
Ω

φ∇2φ dV .

Since we have

∇ · (Ψ∇Ψ) = ∇Ψ · ∇Ψ+Ψ∇ ·∇Ψ

= |∇Ψ|2 +Ψ∇2Ψ ,

the integral becomes
dQ

dt
= κ

ˆ
∂Ω

φ∇φ · dS − κ

ˆ
Ω

|∇φ|2 dV .

The first term vanishes since φ = 0 on the boundary, so

Q′(t) = −κ
ˆ
Ω

|∇φ|2 dV ≤ 0 .

Theorem 10.8. The solutions to heat equations with initial and boundary conditions are unique.
Proof. Assume there are two solutions, φ1 and φ2 to a heat equation with inhomogeneous boundary
conditions and initial conditions. Then ψ = φ1−φ2 would satisfy the heat equation with homogeneous
boundary conditions and zero initial data. Since Q(0) = 0, we can get

Q(t) ≤ 0 .

But clearly Q(t) ≥ 0 by definition, so Q(t) = 0 for all t.ˆ
Ω

ψ2 dV = 0 .

This is only possible when ψ = 0, and so φ1 = φ2. The solution is unique. □

10.6 Laplace’s Equation and Poisson’s Equation

10.6.1 Uniqueness of Solutions of the Poisson’s Equation

Theorem 10.9. The solution to Poisson’s equation in a domain Ω with a Dirichlet boundary
condition on its boundary ∂Ω is unique.{

∇2Φ(x) = ρ(x) x ∈ Ω

Φ(x) = f(x) x ∈ ∂Ω .

Proof. Suppose that there are two solutions, Φ1(x) and Φ2(x). Let Ψ = Φ1 − Φ2, then Ψ satisfies
Laplace’s equation with zero boundary conditions.

Now consider

∇ · (Ψ∇Ψ) = |∇Ψ|2 +Ψ∇2Ψ

= |∇Ψ|2 .

Therefore, ˆ
Ω

|∇Ψ|2 dV =

ˆ
Ω

∇ · (Ψ∇Ψ)dV

=

˛
∂Ω

Ψ∇Ψ · dS

= 0

since Ψ = 0 on ∂Ω. This integral can only be 0 if ∇Ψ = 0 everywhere in Ω, so Ψ is a constant. Since
Ψ is 0 on ∂Ω, Ψ can only be 0 throughout Ω. The solution must be unique. □
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Theorem 10.10. The solution to a Poisson’s equation in a volume Ω with a Neumann boundary
condition on its boundary ∂Ω is unique up to a constant.

∇2Φ(x) = ρ(x) x ∈ Ω

∂Φ

∂n
:= n(x) · ∇Φ = f(x) x ∈ ∂Ω .

Proof. Note that

∂Ψ

∂n

∣∣∣∣
∂Ω

= (∇Φ1 · n)|∂Ω − (∇Φ2 · n)|∂Ω = f(x)− f(x) = 0 ,

then the rest of the proof is similar to the above. □

10.6.2 Poisson’s Equation on a Semi-infinite Rod

Consider uniformly heating a semi-infinite rod with x ≥ 0 and 0 ≤ y ≤ 1. This is an initial, boundary
value problem: 

∇2θ = −1 (x, y) ∈ (0,∞)× (0, 1)

θ(x, 0) = θ(x, 1) = 0 x ∈ (0,∞)

θ(0, y) = 0 y ∈ (0, 1)

lim
x→∞

∂θ

∂x
= 0 y ∈ (0, 1) .

(†)

Let us first find out a particular solution independent of x. Poisson’s equation then reduces to

d2θs
dy2

= −1 ,

which has solution
θs = a0 + b0y −

1

2
y2 ,

where a0 and b0 are constants. Using the boundary conditions on y, we obtained the particular
solution

θs =
1

2
y(1− y) ≥ 0 .

Define φ = θ − θs. Now by linearity, we only need to solve the following boundary value problem

∇2φ = 0 (x, y) ∈ (0,∞)× (0, 1)

φ(x, 0) = φ(x, 1) = 0 x ∈ (0,∞)

φ(0, y) = −1

2
y(1− y) y ∈ (0, 1)

lim
x→∞

∂φ

∂x
= 0 y ∈ (0, 1) .

(††)

By writing φ(x, y) = X(x)Y (y) and substituting into (††), it follows that

X ′′(x)

X(x)
= −Y

′′(y)

Y (y)
= λ ,

so that {
X ′′ − λX = 0

Y ′′ + λY = 0 .

This leaves us with three possibilities
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(i) λ = 0.
φ = (A0 +B0x)(C0 +D0y) .

(ii) λ = σ2 > 0.
φ = (Aσ coshσx+Bσ sinhσx)(Cσ cosσy +Dσ sinσy) .

(iii) λ = −k2 < 0.
φ = (Ak cos kx+Bk sin kx)(Ck cosh ky +Dk sinh ky) .

The boundary conditions φ(x, 0) = 0 and φ(x, 1) = 0 implies that only solutions proportional to
sinnπy are appropriate. Hence we try λ = n2π2 where n is an integer. The eigenfunctions are thus

φn = (Ane
nπx + Bne−nπx) sin(nπy) ,

where An and Bn are constants. However, if boundary conditions as x→ ∞ are to be satisfied then
An = 0. Hence the solution has the form

φ =

∞∑
n=1

Bne−nπx sin(nπy) .

Bn are fixed by the first boundary condition

−1

2
y(1− y) =

∞∑
n=1

Bn sin(nπy) .

Using the orthogonality relations, it follows that

Bm = 2
(−1)m − 1

m3π3
,

and hence
θ =

1

2
y(1− y)−

∞∑
l=0

4

π3(2l + 1)3
sin((2l + 1)πy)e−(2l+1)πx .

10.6.3 Laplace’s Equation in Plane Polar Coordinates

In the plane polar coordinates, the Laplace’s equation is

∇2Ψ =
1

r

∂

∂r

(
r
∂Ψ

∂r

)
+

1

r2
∂2Ψ

∂ϕ2
= 0 .

Remark. The same equation arises in cylindrical polar coordinates (r, ϕ, z) when ∂Ψ
∂z = 0.

If we consider separable solutions of the form Ψ(r, ϕ) = R(r)Φ(ϕ), then the Laplace’s equation
reduces to

Φ

r

∂

∂r

(
r
∂R

∂r

)
+
R

r2
∂2Φ

∂ϕ2
= 0 .

Rearrangement gives
r

R

∂

∂r

(
r
∂R

∂r

)
= − 1

Φ

∂2Φ

∂ϕ2
.

The LHS is a function of r only and the RHS is a function of ϕ only, so both must equal to a constant
λ.
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The equation for Φ(ϕ) gives
∂2Φ

∂ϕ2
+ λΦ = 0 ,

and so

Φ(ϕ) =

{
A+Bϕ λ = 0

A cos
√
λϕ+B sin

√
λϕ λ 6= 0 .

In some cases Ψ corresponds to some physical quantity, and so Ψ must be periodic:

Ψ(r, ϕ) = Ψ(r, ϕ+ 2π) .

However, in some situations, Ψ is not a physical quantity (e.g. potential) but ∇Ψ is. This more
general case requires

Φ′(ϕ) = Φ′(ϕ+ 2π) ,

which gives
λ = n2 , n ∈ N .

Hence,

Φn(ϕ) =

{
A+Bϕ n = 0

A cosnϕ+B sinnϕ n 6= 0, n ∈ Z .

Returning to R(r), the equation
r

R

d

dr

(
r
dR

dr

)
= n2

=⇒ r2R′′ + rR′ − n2R = 0

gives the solutions

Rn(r) =

{
C +D ln r n = 0

Crn +Dr−n n 6= 0 .

Combining R and Φ gives

Ψn(r, ϕ) = Rn(r)Φn(ϕ) =

{
(C0 +D0 ln r)(A0 +B0ϕ) n = 0

(Cnr
n +Dnr

−n)(An cosnϕ+Bn sinnϕ) n ∈ N .

The ϕ ln r combination has to be excluded because it does not satisfy the periodic requirement of
∇Ψ.

Theorem 10.11. The general solutions to Laplace’s equation in planar polar coordinates are

Ψ = A0 +B0ϕ+ C0 ln r +

∞∑
n=1

(Anr
n + Cnr

−n) cosnϕ+

∞∑
n=1

(Bnr
n +Dnr

−n) sinnϕ ,

or equivalently

Ψ = A0 +B0ϕ+ C0 ln r +

∞∑
n=−∞, n ̸=0

rn(An cosnϕ+Bn sinnϕ) .

Example. Steady state temperature distribution in a cylinder.

An infinitely long cylinder of radius a centred at the origin is heated on its boundary with the
boundary conditions

T (a, ϕ) =

{
T0 0 ≤ ϕ < π

−T0 π ≤ ϕ < 2π .
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The steady-state temperature T (r, ϕ) for r < a satisfies

∇2T = 0 .

The temperature T must be finite and single-valued, so a general solution would be given by

T = A0 +

∞∑
n=1

rn(An cosnϕ+Bn sinnϕ) .

At r = a,

T (a, ϕ) = A0 +

∞∑
n=1

an(An cosnϕ+Bn sinnϕ) ,

which is a Fourier series. Applying the boundary conditions gives the final solution of

T (r, ϕ) =
4T0
π

∞∑
n=1

r2n−1

(2n− 1)a2n−1
sin[(2n− 1)ϕ] .

Example. 2D fluid flow past a circular barrier.

Find the 2D velocity field u of an ideal (irrotational and non-viscous), incompressible fluid in
steady flow past a circular barrier of radius r0. The fluid has constant velocity U = U x̂ at infinity.

The fluid flow can be described by a velocity potential Φ such that u = ∇Φ, satisfying the
Laplace’s equation

∇2Φ = 0 .

At infinity we require ∇Φ = U x̂, so

Φ → Ux = Ur cosϕ .

It also implies that, in our general solution, B0 = C0 = Bn = An ̸=1 = 0 and A1 = U , with arbitrary
A0. Therefore, we may write our general solution as

Φ(r, ϕ) = Ur cosϕ+

∞∑
n=1

r−n(Cn cosnϕ+Dn sinnϕ) .

At the surface of the cylinder, the flow must be tangent to it, so the radial component of the fluid
must be 0.

∂Φ

∂r

∣∣∣∣
r=r0

= U cosϕ−
∞∑
n=1

nr
−(n+1)
0 (Cn cosnϕ+Dn sinnϕ) = 0 .

This is true for all Φ, so we must have

Dn = Cn>1 = 0 , C1 = Ur20 .

Therefore, we have the solution

Φ(r, ϕ) =

(
r +

r20
r

)
U cosϕ = U · r

(
1 +

r20
r2

)
,

u(r, ϕ) =

(
1 +

r20
r2

)
U− 2r20

r4
(U · r)r .
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10.6.4 Laplace’s Equation in Spherical Polar Coordinates with Axial Symmetry

In spherical polar coordinates (r, θ, ϕ), when Ψ(r, θ, ϕ) is axisymmetric (∂Ψ∂ϕ = 0), the Laplace’s
equation is

∇2Ψ =
1

r2
∂

∂r

(
r2
∂Ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Ψ

∂θ

)
= 0 .

If we look for separable solutions of the form Ψ(r, θ) = R(r)Θ(θ), then we must have

1

R

d

dr

(
r2

dR

dr

)
= − 1

Θ sin θ

d

dθ

(
sin θ

dΘ

dθ

)
= λ ,

where λ is a constant.

The equation of Θ(θ) gives
d

dθ

(
sin θ

dΘ

dθ

)
= −λ sin θΘ .

By the substitution of u = cos θ, we have

− sin θ
d

du

(
− sin2 θ

dΘ

du

)
= −λΘsin θ ,

which simplifies to
d

du

[
(1− u2)

dΘ

du

]
+ λΘ = 0 .

This is the Legendre’s equation.

Lemma 10.12. The Legendre’s equation,

d

dx

[
(1− x2)

dy

dx

]
+ λy = 0 ,

has solutions non-singular at x = ±1 only if λ = ℓ(ℓ + 1), where ℓ ∈ N0. The resulting polynomial
solutions are referred to as Legendre’s polynomials, Pℓ(x), with conventional normalisation of Pℓ(1) =
1.

Therefore, we obtain the Solutions

Θℓ(θ) = Pℓ(cos θ) ,

where Pℓ(x) are the Legendre polynomials.

The equation of R(r) gives
r2R′′ + 2rR′ − ℓ(ℓ+ 1)R = 0 ,

which has the solutions
Rℓ(r) = Arℓ +Br−(ℓ+1) .

Theorem 10.13. The general solutions to Laplace’s equation in spherical polar coordinates with
axial symmetry are

Ψ(r, θ) =

∞∑
ℓ=0

(Aℓr
ℓ +Bℓr

−(ℓ+1))Pℓ(cos θ) .

Remark. In the non-axisymmetric case, a similar analysis would give an extra equation involving ϕ,
and the Legendre polynomials would be replaced by the associated Legendre polynomials, which are
the solutions of the associated Legendre’s equation.
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Laplace’s equation in spherical polar coordinates is

∇2Ψ =
1

r2
∂

∂r

(
r2
∂Ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Ψ

∂θ

)
+

1

r2 sin2 θ

∂2Ψ

∂ϕ2
= 0 .

Consider solutions of the form Ψ = R(r)Θ(θ)Φ(ϕ), substitution gives

sin2 θ

R

d

dr

(
r2

dR

dr

)
+

sin θ

Θ

d

dθ

(
sin θ

dΘ

dθ

)
= − 1

Φ

d2Φ

dϕ2
= λ1

=⇒ 1

R

d

dr

(
r2

dR

dr

)
= − 1

Θ sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

λ1

sin2 θ
= λ2 .

Solving this system of ODEs gives us the final solution.

Example. A hollow conducting sphere of radius a, centred at the origin, has its top hemisphere held
at an electric potential Φ = V0. The bottom hemisphere, separated from the top by an insulating
layer, is earthed (Φ = 0). Find the electric potential Φ inside and outside the sphere.

The problem is to find the axisymmetric solution to

∇2Ψ = 0

with boundary conditions

Ψ(a, θ) =

{
V0 0 < θ < π

2

0 π
2 < θ < π .

Inside the sphere, Φ must be finite at r = 0, so Bℓ = 0 ∀ℓ in the general solution.

Φ(r, θ) =

∞∑
ℓ=0

Aℓr
ℓPℓ(cos θ) .

Using the orthogonality of the Legendre polynomials and by writing u = cos θ, the boundary
conditions give

ˆ 1

−1

Φ(a, θ)Pm(u) du =

ˆ 1

−1

∞∑
ℓ=0

Aℓa
ℓPℓ(u)Pm(u) du

=

∞∑
ℓ=0

Aℓa
ℓ 2

2m+ 1
δℓm

= Ama
m 2

2m+ 1
.

=⇒ Ama
m =

2m+ 1

2

ˆ 1

−1

Φ(a, θ)Pm(u) du

=
2m+ 1

2
V0

ˆ 1

0

Pm(u) du .

Therefore, inside the sphere,

Φ(r, θ) =

∞∑
ℓ=0

2ℓ+ 1

2aℓ
V0

ˆ 1

0

Pℓ(u) du r
ℓPℓ(cos θ) ,

where the integrals can be evaluated.

Outside the sphere, we require that Φ is bounded as r → ∞, so Aℓ = 0 ∀ℓ. Using a similar
method, we may obtain that

Φ(r, θ) =

∞∑
ℓ=0

2ℓ+ 1

2a−(ℓ+1)
V0

ˆ 1

0

Pℓ(u) du r
−(ℓ+1)Pℓ(cos θ) .
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10.7 General Method

• In the case of an inhomogeneous equation, use the principle of superposition to seek a particular
solution to reduce the equation to one that is homogeneous.

• Seek separable solutions to the homogeneous equation.

• In the case of inhomogeneous boundary conditions consider seeking a separable solution to
reduce the boundary conditions to ones that are homogeneous.

• Use the boundary conditions to rule out certain separable solutions and to identify eigenvalues.

• Using the principle of superposition, seek a solution that is a sum of eigenfunctions.

• Determine unknown constants using the boundary conditions.
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11 Cartesian Tensors

11.1 Vectors

A vector is a particular example of a tensor: a first-order tensor. Before discussing the general tensor,
it will be useful to review vectors.

A vector has a physical meaning, direction and magnitude, independent of the coordinate system,
but we can also think of a vector as a set of components, (v1, v2, v3) with respect to some coordinate
system. The components will generally be different in different coordinate systems, but the vector
will be the same.

For any coordinate system with a basis of unit vectors {ei}, we can write a vector v as

v = viei .

In an orthonormal coordinate system, ei · ej = δij , so

vi = ei · v .

In particular, we shall consider only Cartesian coordinate systems: orthonormal coordinate systems
where {ei} are independent of position.

11.1.1 Transformation of Basis

In a Cartesian coordinate system,
v = viei ,

and in a different set of Cartesian coordinate system with basis vectors {e′i},

v = v′ie
′
i , with v′i = e′i · v .

We also have
v′i = e′i · v = e′i · ejvj = Rijvj ,

where the matrix R with entries Rij is defined by

Rij = e′i · ej .

Therefore,
v′i = Rijvj or v′ = Rv ,

where v′ and v are column vectors with components v′i and vi. Note also that

e′i = (e′i · ej)ej = Rijej .

Reversing the argument gives that

vi = ei · v = ei · v′je′j = (e′j · ei)v′j = Rjiv
′
j = RT

ijv
′
j .

We therefore have
v = RTRv ,

so
RTR = I ,

i.e. R is orthogonal.
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Definition 11.1. A Cartesian vector v is a set of coefficients vi, defined with respect to a set of
orthonormal basis vectors {ei}, such that the coefficients v′i with respect to another orthonormal
basis {e′i} are given by

v′i = Rijvj .

Example. Consider the differential operator

∇ = ei
∂

∂xi
.

Since xi = Rjix
′
j and Rji is constant, we have

∂xj
∂x′i

=
∂Rkjx

′
k

∂x′i
= Rkj

∂x′k
∂x′i

= Rkjδki = Rij ,

so using the chain rule,
∇′
i =

∂

∂x′i
=
∂xi
∂x′i

∂

∂xj
= Rij

∂

∂xj
= Rij∇j .

Therefore, ∇ is a vector.

Remark. For more general straight line coordinate systems, RT 6= R−1, and then ∇ is not a vector.
One has then to distinguish between vectors and co-vectors, but there is no such distinction for
Cartesian coordinates.

11.1.2 Axial-vectors

An orthogonal matrix has determinant ±1. Those with detR = 1 are rotation matrices (proper
rotations) and those with detR = −1 are the composition of a rotation with a reflection in some
plane (improper rotations).

If we transform a basis {ei} to {e′i}, and then to {e′′i }, the components of a vector will then
transform as

v′i = R
(1)
ij vj , v

′′
i = R

(2)
ij v

′
j ,

=⇒ v′′i = R
(2)
ij R

(1)
jk vk = Rikvk ,

where R = R(2)R(1) and detR = detR(2) detR(1).

Remark. If both R(1) and R(2) are proper rotations, then so is the composite transformation R =
R(1)R(2). We could then consistently restrict our attention to proper rotations. They form a subgroup
SO(3) of the orthogonal group O(3).

This is not true for improper rotations.

Definition 11.2. A Cartesian axial-vector, or pseudo-vector, a, is a set of coefficients ai defined with
respect to a set of orthonormal basis vectors {ei} such that the coefficients a′i with respect to another
orthonormal basis {e′i} are given by

a′i = detRRijaj .

When detR = 1, i.e. we don’t change the handedness of the coordinate system, this is the same as
for a vector. However, it differs in sign when detR = −1.

Example. An example of an axial-vector is the angular momentum

J = r× p ,
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of a particle with momentum p at position r. Compare the behaviour of p and J under a reflection
in the xy-plane:

p′i =

p′xp′y
p′z

 =

 px
py
−pz

 =

1 0 0
0 1 0
0 0 −1

pxpy
pz

 = Rijpj .

J ′
i =

J ′
x

J ′
y

J ′
z

 =

−Jx
−Jy
Jz

 = −

1 0 0
0 1 0
0 0 −1

JxJy
Jz

 = detRRijJj .

Remark. We will see later that the cross product of two vectors is an axial-vector. Because ∇ is a
vector, the curl of a vector is an axial-vector.

11.2 Tensors

Tensors are generalisations of vectors. They have some physical meaning independent of the
coordinate basis and we can measure their components in some coordinate system.
Example. The electric current density J arising when an electric field E is applied to a material with
isotropic conductivity sigma is given by

J = σE .

However, the conductivity of a material may be anisotropic. Then we may have

Ji = σijEj ,

where σij are the components of the conductivity tensor. In a different basis,

J ′
i = σ′

ijE
′
j .

From the transformation law for vectors,

J ′
i = RilJl = RilσlmEm = RilσlmR

T
mjE

′
j .

Therefore, for arbitrary R and E′
j ,

σ′
ij = RilσlmR

T
mj = RilRjmσlm .

This can also be written in matrix notation as

σ′ = RσRT .

Having two indices, σ is a tensor of rank two.

Definition 11.3. A Cartesian tensor T of rank (order) n is a set of coefficients Ti1...in labelled by n
indices defined with respect to a set of orthonormal basis vectors {ei}, and such that the coefficients
with respect to another orthonormal basis {e′i : e′i = Rijei} are given by the transformation law

T ′
i1...in = Ri1j1 . . . RinjnTj1...jn .

Remark. A tensor of rank zero is a scalar. A tensor of rank one is a vector.

Definition 11.4. A Cartesian pseudo-tensor E of rank n is a set of coefficients Ei1···n labelled by n
indices defined with respect to a set of orthonormal basis vectors {ei}, and such that the coefficients
with respect to another orthonormal basis {e′i : e′i = Rijei} are given by the transformation law

E′
i1...in = detRRi1j1 . . . RinjnEj1...jn .

When detR = 1, i.e. we don’t change the handedness of the coordinate system, this is the same for
a tensor. However, it differs in sign when detR = −1.
Remark. A pseudo-tensor of rank zero is a pseudo-scalar, a scalar that changes signs under reflections.
e.g. a · (b× c). A pseudo-tensor of rank one is a pseudo-vector.
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11.2.1 Kronecker Delta, δij, and Levi–Civita Symbol εijk.

The Kronecker delta, δij , is a rank two tensor defined without reference to a frame: its component
should be the same in all frames.

δ′ij = δij

We can check that it does indeed transform in the way of a tensor.

δ′ij = RipRjqδpq = RipRjp = RipR
T
pj = δij ,

as RRT = I.

Likewise, the Levi–Civita symbol, εijk, should be the same in all coordinate systems. It only has
one independent non-zero component which we may choose to be ε123 = 1. If it transforms as a
tensor, we would have

ε′123 = R1pR2qR3rεpqr ,

which is the definition of the determinant of a 3 × 3 matrix R. However, this would imply that
ε′123 = −1 under a reflection, which is not true. The Levi–Civita symbol instead transforms as a
pseudo-tensor:

ε′123 = detRR1pR2qR3rεpqr = (detR)2 = 1 = ε123 ,

and ε′123 = 1 in all frames as required. Therefore, εijk is a pseudo-tensor of rank 3.

Remark. δij and εijk are examples of isotropic tensors.

11.2.2 Inertia Tensors

Consider a rigid body of variable density ρ(x) within a volume V rotating with angular velocity ω.
Then the angular momentum of an infinitesimal mass element dm = ρ(x) dV is

dmx× v = dmx× (ω× x) = dm (|x|2ω − (ω · x)x) .

The total angular momentum J is given by

Ji =

ˆ
V
ρ(x)(xkxkωi − ωjxjxi) dV =

ˆ
V
(xkxkδij − xjxi)ωj dV = Iijωj ,

where I is the inertia tensor of the rigid body, given by

Iij =

ˆ
V
ρ(x)(xkxkδij − xixj) dV .

It can be checked that I is a rank 2 tensor.

11.2.3 Electric and Magnetic Susceptibility Tensor

Consider an electric insulator (dielectric) in an external electric field E. No current flows because the
charges are not free to move. However, the field does induce an electric polarisation density (dipole
moment density) P, given by

Pi = ϵ0χijEj ,

where χ is the electric susceptibility tensor. A related quantity is the molecular polarisability, α, that
gives the dipole moment of a molecule induced by a local electric field.

pi = ϵ0αijE
local
j .

180



11 Cartesian Tensors IB Mathematical Methods

The magnetic susceptibility is defined in a similar way:

Mi = ξMij Hj ,

where M is the magnetisation (magnetic dipole moment per unit volume) and H is the magnetic
field, both of which are pseudo-vectors.

Note that the electric susceptibility, molecular polarizability and magnetic susceptibility are all
tensors.

11.2.4 Stress and Elastic Strain Tensors

In an elastic body, a local deformation due to applied forces (stresses) can be described by an elastic
strain tensor

eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
,

where u(x) is the displacement vector of a small volume element whose unstrained position is x.

The elements Tij of the stress tensor, T, are defined as the xj component of forces acting on a
plane perpendicular to the xi axis. A generalisation of Hooke’s law gives, for certain materials,

Tij = Cijklekl ,

where C is the rank 4 stiffness tensor.

11.2.5 Piezo-electric Strain Tensor

The application of stress to certain materials produces an electric polarisation that results in an
electric field. The polarisation density P is related to the applied stress T by

Pi = DijkTji ,

where D is the rank 3 piezo-electric strain tensor.

11.3 Properties of Tensors

11.3.1 Tensors as Maps

We first pick a set of coordinates, and the transformation law then requires that the tensor transforms
nicely so that, ultimately, nothing depends on these coordinates. If that is the case, surely there should
be a definition of a tensor that does not rely on coordinates at all.

Theorem 11.5. A tensor T of rank p is a multi-linear map that maps p vectors to a number in R.
T : V p → R.

T(a,b, . . . , c) = Ti1i2...ipai1bi2 . . . cip ∈ R .

Multi-linearity means that T is linear in each of the entries individually.

Proof. A tensor defined so does transform as a tensor.

T(a,b, . . . , c) = T ′
i1i2...ipa

′
i1b

′
i2 . . . c

′
ip

= (Ri1j1Ri2j2 . . . RipjpT
′
i1i2...ip)(Ri1k1a

′
k1)(Ri2k2b

′
k1) . . . (Ripkpc

′
kp)

= Tj1j2...jpaj1bj2 . . . cjp ,

since R is orthogonal. □
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Rather than thinking of a tensor as a map from many vectors to R, it is often more convenient to
think of it as a map from some lower-rank tensor to another.

ai = Tij1...jp−1
bj1 . . . cjp−1

.

This is the way that tensors typically arise in physics or applied mathematics, where the most common
example is a rank 2 tensor, defined as a map from one vector to another

u = Tv =⇒ ui = Tijvj .

Second-order tensors are usually given the name matrix but for the equation u = Tv to make sense, T
must transform as a tensor. This is inherited from the transformation rules of the vectors: u′i = Rijuj
and v′i = Rijvj , giving

u′i = T ′
ijv

′j with T ′
ij = RikRjlTkl .

Written as a matrix equation, this is
T′ = RTRT .

11.3.2 Tensor Operations

Definition 11.6. If A and B are tensors or rank n, then we define sum of two tensors, C = A+ B,
to be

Ci1...in := Ai1...in +Bi1...in .

Proposition 11.7. The sum of the scalar multiples of two tensors of rank n is a tensor of rank n.

Proof.

C ′
i1...in = α′A′

i1...in + β′B′
i1...in

= αRi1j1 . . . RinjnAj1,...,jn + βRi1j1 . . . RinjnBj1...jn

= Ri1j1 . . . RinjnAj1...jn(αAi1...in + βBi1...in)

= Ri1j1 . . . RinjnCi1...in

do transforms as a tensor. □

Definition 11.8. The tensor product (outer product) of two tensors, A and B, of rank n and m
respectively, is defined as

Ci1...inin+1...in+m
:= Ai1...inBin+1...in+m .

This is denoted as
C = A⊗ B .

Proposition 11.9. If A is a tensor of rank n and B is a tensor of rank m, then their tensor product
C = A⊗ B is a tensor of rank n +m. If instead A is a tensor of rank n and B is a pseudo-tensor of
rank m, then their tensor product C = A⊗ B is a pseudo-tensor of rank n+m.

Remark. We can write a tensor as

T = Ti1i2...in ⊗ ei1 ⊗ ei2 · · · ⊗ ein .

Proposition 11.10 (Inner product). If T is a tensor of rank n, then if we contract two indices
(set equal and sum over), we get a tensor of rank n− 2. If ik = il, then

Ti1...ik−1ikik+1...il−1ikil+1...in = Si1...ik−1ik+1...il−1il+1...in .
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Proof.

S′
α1...αk−1αk+1...αl−1αl+1...αn−2

= T ′
α1...αk−1αkαk+1...αl−1αkαl+1...αn

= Rα1i1 . . . Rαkik . . . Rαkil . . . RαninTi1...ik...il...in

= (RαkikRαkil)Rα1i1 . . . RαninTi1...ik...il...in

= δikilRα1i1 . . . RαninTi1...ik...il...in

= Rα1i1 . . . RαninSi1...in .

□
Examples.

(i) If T is a tensor of rank two, then from the definition of the inner product, T11 = tr(T) is a
scalar.

(ii) Suppose u and v are vectors, then from the definition of the outer product, Tij = uivj is a
tensor of rank two. It follows that Tii = uivi = u · v is a scalar.

(iii) If A is a rank-two tensor and u is a vector, then vi = Aijuj is a vector, since 2 + 1− 2 = 1.

(iv) If A and B are tensors of rank two, then Cij = AikBkj is a tensor of rank two, since 2+2−2 = 2.

(v) The cross product of two vectors,

u× v = εijkeiujvk

is an axial-vector, since εijk is a rank-three pseudo-tensor and 3 + 2 + 1 + 1− 6 = 1.

11.3.3 Symmetric and Anti-symmetric Tensors

Definition 11.11. A tensor T is symmetric in a pair of indices α and β if

T...α...β... = T...β...α... ,

and is anti-symmetric in α and β if

T...α...β... = −T...β...α... .

A tensor that is (anti-)symmetric in all pairs of indices is said to be totally (anti-)symmetric.

Proposition 11.12. Symmetry and anti-symmetry are invariant under a change of coordinate.

Proof. If Tijk... is symmetric in i and j, then

T ′
ijk... = RipRjqRkr . . . Tpqr...

= RipRjqRkr . . . Tqpr...

= RjqRipRkr . . . Tqpr...

= T ′
jik... .

□

Proposition 11.13. If Sijk.. is symmetric in, say, i and j, and Apqr... is anti-symmetric in, say, p
and q, then

Sijk...Aijr... = 0 .

Proof.

Sijk...Aijr... = −Sjik...Ajir...
= −Sijk...Aijr... .

=⇒ Sijk...Aijr... = 0 .

□
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Remarks.

• The Kronecker delta δij is symmetric, and the Levi–Civita symbol εijk is anti-symmetric, in
any pair of indices.

• The inertia tensor and strain tensors are symmetric from their definitions.

• In most situations, but not all, the stress tensor is also symmetric. The conductivity tensor and
susceptibility tensors are usually symmetric.

11.4 Rank Two Tensors

Since a rank two tensor only has one pair of indices, if it is symmetric or anti-symmetric in these
indices we can refer to the tensor as symmetric or anti-symmetric. The matrices corresponding to
symmetric and anti-symmetric rank two tensors are symmetric and anti-symmetric respectively.

ST = S if S is symmetric;
AT = −A if A is anti-symmetric.

Proposition 11.14 (Symmetric / anti-symmetric decomposition). Any rank two tensor Tij
can be uniquely decomposed into the sum of a symmetric and an anti-symmetric tensor:

Tij = Sij +Aij ,where Sij =
1

2
(Tij + Tji) and Aij =

1

2
(Tij − Tji) .

Proposition 11.15 (Duality). An anti-symmetric 2-tensor A is equivalent to an axial-vector

ωk =
1

2
εklmAlm .

ω is its dual vector, such that
Av = ω × v .

Proof.

εijkωk =
1

2
εijkεklmAlm =

1

2
(δilδjm − δimδjl)Alm

=
1

2
(Aij −Aji) = Aij ,

So we must have Av = ω × v. Since εijk is a pseudo-tensor, ω must be an axial-vector. □

Remark. An anti-symmetric 2-tensor has three independent components, and can be written as

Aij = εijkωk =

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0


in terms of its dual vector.

Proposition 11.16 (Symmetric tensor decomposition). Any symmetric rank two tensor, S,
has a unique decomposition in terms of a symmetric traceless tensor, S̃, and a scalar multiple of
the identity I.

S = S̃+
1

3
tr(S)I = S̃+

1

3
QI ,

where Q is the trace of S.

Proof.
tr(S̃) = tr(S)− 1

3
tr(S) tr(I) = 0 .

S̃ is traceless and clearly symmetric. Using the transformation law of tensors, it can be shown further
that tr(S̃) is traceless in any Cartesian coordinate system. □
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Corollary. Any 3× 3 matrix can be decomposed as

Tij = S̃ij + εijkωk +
1

3
δijQ .

Example. An elastic body is subjected to a simple shear so that the displacement u(x) at position
x = (x, y, z) is given by u = (γy, 0, 0) for some constant γ.

We can decompose ∂ui

∂xj
into symmetric and anti-symmetric parts,

∂ui
∂xj

=

0 γ 0
0 0 0
0 0 0

 =

 0 1
2γ 0

1
2γ 0 0
0 0 0

+

 0 1
2γ 0

− 1
2γ 0 0
0 0 0

 ,

where the symmetric part is the strain tensor eij , and the anti-symmetric part can be written as
εijkωk, where ω = (0, 0, 12γ).

This also corresponds to writing

u =

(
1

2
γy,

1

2
γx, 0

)
+

(
1

2
γy,−1

2
γx, 0

)
.

The first term corresponds to a stretch at 45◦ to the x and y axis, while the second term is a
rotation.

11.4.1 Diagonalisation of Symmetric Rank Two Tensor

Suppose that Sij is a symmetric rank two tensor with components relative to a coordinate system
with basis vectors {ei}. The matrix of components, S, is symmetric, i.e. Hermitian. We know that
S has real eigenvalues λi and orthonormal vectors e′i, which can be rearranged in a right-handed set.

Now transform from the coordinate system with the basis ei to e′i. The transformation matrix R
is the matrix with the components of e′i as rows, i.e.

Rij = e′i · ej .

Hence,
SRT = S(e′1|e′2|e′3) = (λ1e

′
1|λ2e′2|λ3e′3) .

Lemma 11.17. We can diagonalise a symmetric matrix S with some appropriate rotation of the
coordinate axes.
Proof.

S′ = RSRT

=

— e′1
T —

— e′2
T —

— e′3
T —


 | | |
λ1e

′
1 λ2e

′
2 λ3e

′
3

| | |


=

λ1 0 0
0 λ2 0
0 0 λ3

 .

□
Definition 11.18. The eigenvalues λi of a symmetric real tensor are known as its principal values.
Remark. The principal values do not depend on the frame: they are the properties of tensors, not
the coordinate system.
Definition 11.19. The Cartesian coordinate axes for which Sij is diagonal, i.e. the eigenvectors of
Sij , are known as the principal axes.
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11.5 Isotropic Tensors

Definition 11.20. A tensor or a pseudo-tensor is invariant under some rotation R if its components
are the same under the rotation, i.e.

T ′
i1...in = Ri1j1 . . . RinjnTi1...in = Ti1...in .

Definition 11.21. If a tensor or a pseudo-tensor is invariant under any rotation, then it is called
isotropic.

Remarks.

• Isotropic tensors do not have any ‘preferred’ direction. For example, the conductivity of an
isotropic medium is an isotropic tensor.

• Isotropic means the same in all directions, and homogeneous means the same at all points in
space.

Theorem 11.22. Consider the non-zero isotropic tensors in R3.

(i) All tensors of rank zero (scalars) are isotropic.

(ii) There are no rank one isotropic tensors.

(iii) The only second order isotropic tensors are scalar multiples of δij .

(iv) The only third order isotropic tensors are the scalar multiples of εijk.

Proof. The idea is simply to look at how tensors transform under a bunch of specific rotations by π
or π/2 about certain axes.

(i) Trivial.

(ii) Consider a tensor of rank 1, so that

T ′
i = RijTj , where R =

−1 0 0
0 −1 0
0 0 1

 .

Requiring T ′
i = Ti gives T1 = T2 = 0. A similar argument, using a different R, also gives T3 = 0.

(iii) For a tensor of rank 2, consider the transformation

T ′
ij = R̃ikR̃jlTkl , where R̃ =

 0 1 0
−1 0 0
0 0 1

 .

The rotation gives T ′
13 = T23 and T ′

23 = −T13 so if T ′
ij = Tij , we must have T13 = T23 = 0.

Meanwhile T ′
11 = T22. Similar arguments tell us that all off-diagonal elements must vanish

and all diagonal elements must be equal: T11 = T22 = T33 = λ for some constant λ. Hence
Tij = λδij .

(iv) For a rank 3 tensor we have

T ′
ijk = RilRjpRkqTlpq , where R =

−1 0 0
0 −1 0
0 0 1

 .

We find that T ′
133 = −T133 and T ′

111 = −T111. Similar arguments show that an isotropic tensor
must have Tijk = 0 unless i, j, k are all distinct.
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Meanwhile, if we pick

R̃ =

 0 1 0
−1 0 0
0 0 1

 ,

then we get T ′
123 = −T213. We end up with the result that Tijk is isotropic if and only if

Tijk = µεijk for some constant µ. □

11.5.1 Application to Integrals

Example. Integration over a sphere

Consider the integral over the sphere

X =

ˆ
r≤a

xρ(r) dV or Xi =

ˆ
r≤a

xiρ(r) dV .

Relabelling the integration variables we can write

Xi =

ˆ
r′≤a

x′iρ(r
′) dV ′ .

Now make the substitution x′i = Rijxj for a rotation matrix R. The integration volume and the
function ρ is spherically symmetric, so ρ(r′) = ρ(r) and dV ′ = dV , and since R is an orthogonal
matrix,

Xi = Rij

ˆ
r≤a

xjρ(r) dV = RijXj = X ′
i .

From the definition of a vector, Definition 11.1, this equation says that Xi = X ′
i, i.e. X is an isotropic

vector. However, the only isotropic vector is the zero vector, so we deduced that

X = 0 .

Example. A rank 2 tensor integral over a sphere

Consider the integral
Kij =

ˆ
r≤a

xixjρ(r) dV .

A similar argument as above shows that, using the definition of a rank two tensor (Definition 11.3),

Kij = RikRjlKkl = K ′
ij ,

which means that K is an isotropic tensor, and so

Kij = λδij

for some scalar λ. Take the trace to deduce that

λ =
1

3
tr(K) =

1

3

ˆ
r≤a

xixiρ(r) dV

=
1

3

ˆ
r≤a

r2ρ(r) dV ,

and hence,
Kij =

(ˆ
r≤a

1

3
r2ρ(r) dV

)
δij .
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Example. A rank two tensor integral over all space

Consider the integral,
Kij =

ˆ
V
xixje

−r2 dV ,

where V is all of space. Using the result derived above,

Kij =

(ˆ
V

1

3
r2e−r

2

dV

)
δij

=
1

2

√
π3δij .

Example. An inertia tensor

Consider the inertia tensor of a sphere of radius a and mass M . The density per unit volume is
ρ = 3M/4πa3. Hence we have

Iij = ρ

ˆ
V
(xkxkδij − xixj) dV

=
3M

4πa2

(ˆ
V
r2 − 1

3
r2 dV

)
δij

=
M

2πa3

(ˆ
r≤a

r2 dV

)
δij

=
2M

a3

ˆ a

0

r4 dr δij

=
2

5
Ma2δij .

11.6 Tensor Fields

Definition 11.23. A tensor field is the assignment of a tensor T to every point x

T : Rn → Rm .

Remark. A scalar field is a rank 0 tensor field, and a vector field is a rank 1 tensor field.

11.6.1 Tensor Differential Operators

Given a tensor field, we can always construct higher rank tensors by taking derivatives.

Proposition 11.24. For a scalar field ϕ(x), its gradient ∇ϕ is a vector field.

Proof. For two orthonormal bases {ei} and {e′i}, any vector can be decomposed as

v = viei = v′ie
′
i .

If we expand x in this way,

x = xiei = x′ie
′
i =⇒ xi = (ei · e′j)x′j =⇒ ∂xi

∂x′j
= ei · e′j .

Here ei ·e′j is the rotation matrix that takes us from one basis to the other. Meanwhile, we can always
expand one set of basis vectors in terms of the other:

ei = (ei · e′j)e′j =
∂xi
∂x′j

e′j .
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This tells us that we could equally as well write the gradient as

∇ϕ =
∂ϕ

∂xi
ei =

∂ϕ

∂xi

∂xi
∂x′j

e′j =
∂ϕ

∂x′j
e′j .

If you work in a different primed basis, then you have the same definition of gradient. The components
transform correctly under a rotation, so ∇ϕ is indeed a vector. □

We can extend the result above to any suitably smooth tensor field. We can differentiate it by any
number of times to get a new tensor field of higher order.

Proposition 11.25. If a suitably smooth tensor field T(x) of rank p is differentiated q times, we will
get a new tensor field of rank p+ q:

Xi1...iqj1...jp =
∂

∂xi1
. . .

∂

∂xiq
Tj1...jp(x) .

Proof. In a new basis, we have x′i = Rijxj , where Rij = e′i · ej , and so

∂x′i
∂xj

= Rij =⇒ ∂

∂x′i
=
∂xj
∂x′i

∂

∂xj
= Rij

∂

∂xj
.

X(x) is indeed a tensor field. □

Examples.

(i) The divergence of a vector field F is a scalar field ∂
∂xi

Fi, since the contraction of a rank 2 tensor
is a zeroth tensor.

(ii) The curl of a vector field F is an axial-vector field, εijk ∂
∂xj

Fk, since the double contraction of a
rank 5 pseudo-tensor field is a pseudo-vector field.

(iii) The Laplacian of a scalar field, ∂
∂xi

∂
∂xi

Φ, is a scalar field.

(iv) The derivative of a rank 2 tensor, σ, is a rank 3 tensor field, ∂
∂xi

σjk.

We can implement any of the tensorial manipulations that we met previously for tensor fields.
Consider the rank 2 tensor field

Tij(x) =
∂Fi
∂xj

defined for a vector field F(x). We have seen that any rank 2 tensor can be decomposed into various
pieces. There is an anti-symmetric piece

Aij(x) = εijkBk(x) , where Bk =
1

2
εijk

∂Fi
∂xj

= −1

2
(∇× F)k ,

a trace piece
Q =

∂Fi
∂xi

= ∇ · F ,

and a symmetric traceless piece

S̃ij(x) =
1

2

(
∂Fi
∂xj

+
∂Fj
∂xi

)
− 1

3
∇ · F .

11.7 A Unification of the Integral Theorems (Non-examinable)

It is obvious that the three integral theorems in the vector calculus are closely related. We will show
how they can be presented in a unified framework in this section.
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11.7.1 Integrating in Higher Dimensions

This unified framework will give us integral theorems in any dimension Rn. Note that the divergence
theorem already holds in any Rn. However, Stokes’ theorem is restricted to surfaces in R3 since the
cross product is only defined in R3. Therefore, we must first extend the cross product into higher
dimensions.

Definition 11.26. The Levi–Civita symbol in n dimensions is defined as

εa1a2...an :=


1 if (a1, a2, . . . , an) is an even permutation of (1, 2, . . . , n)
−1 if (a1, a2, . . . , an) is an odd permutation of (1, 2, . . . , n)
0 otherwise .

Using this, we can define the cross product in any dimension Rn.

Definition 11.27. A cross product is a map from two vectors in Rn to an anti-symmetric rank (n−2)
tensor.

(a× b)i1...in−2
= εi1...inain−1

bin .

Remark. The Levi–Civita symbol can be thought of as a map from anti-symmetric rank p tensors to
anti-symmetric rank (n− p) tensor by contracting indices,

ε : Ti1...ip 7→ 1

(n− p)!
εi1...inTin−p+1...in .

This map is known as a Hodge dual.

Next, we need to think about what this has to do with integration. We have found two natural
ways to integrate vector fields in R3.

• Line integral. ˆ
C
F · dx . (†)

This captures the component of the vector field tangent to the line. We can perform this
procedure in any dimension Rn.

• Surface integral. ˆ
S
F · dS , (††)

where dS points in the direction normal to the surface. The integration captures the component
of the vector field normal to the surface and only makes sense in R3. This is because it is only
in R3 that a two-dimensional surface has a unique normal.

Let us expand dS to clearly see what is going on. For a parameterised surface x(u, v), the vector
area element is

dS =
∂x

∂u
× ∂x

∂v
du dv ,

or, in component forms,
dSi = εijk

∂xj
∂u

∂xk
∂v

du dv .

Rather than thinking of equation (†) as the integral of a vector field projected normal to the
surface, instead think of it as the integral of an anti-symmetric rank 2 tensor Fij = εijkFk integrated
tangent to the surface. We then have ˆ

S
F · dS =

ˆ
S
Fij dSij ,

190



11 Cartesian Tensors IB Mathematical Methods

where
dSij =

1

2

(
∂xi
∂u

∂xj
∂v

− ∂xi
∂v

∂xj
∂u

)
du dv .

This is the same equation as before, just with the epsilon symbol viewed as part of the integrand Fij
rather than as part of the measure dSi. Note that we have retained the anti-symmetry of the area
element dSij that was inherent in our original cross product definition of dS. Strictly speaking this
is not necessary because we are contracting with anti-symmetric indices in Fij , but it turns out that
it is best to think of both objects Fij and dSij as individually anti-symmetric.

This new perspective suggests a way to generalise to higher dimensions. In the line integral (†)
we are integrating a vector field over a line. In the surface integral (††), we are really integrating an
anti-symmetric 2-tensor over a surface. The key idea is that one can integrate a totally anti-symmetric
p-tensor over a p-dimensional subspace.

• Generalisation of line integral (†). Let Ω ⊂ Rn be a p-dimensional subspace. We can then
integrate an anti-symmetric p-tensor over Ω

ˆ
Ω

Ti1...ip dSi1...ip .

• Generalisation of the surface integral (††). First map the anti-symmetric p-tensor to an anti-
symmetric (n − p)-tensor using the Hodge dual, then this can be integrated over an (n − p)-
dimensional subspace Ω̃ ⊂ Rn:

ˆ
Ω̃

Ti1...ipεi1...ipj1...jp dS̃j1...jn−p .

11.7.2 Differentiating Anti-symmetric Tensors

We have already noted in Proposition 11.25 that we can differentiate a p-tensor once to get a tensor
of rank p + 1, but in general differentiating loses the anti-symmetry property. There is a way to
restore it so that when we differentiate a totally anti-symmetric p tensor, we end up with a totally
anti-symmetric (p+ 1)-tensor.

First consider a scalar field. This is trivial since its gradient is an vector field by Proposition 11.24,
and this is automatically ‘anti-symmetric’ because there is nothing to anti-symmetrise.

If we are given a vector field F, we can differentiate and then anti-symmetrise using the operation

(DF)ij :=
1

2

(
∂Fi
∂xj

− ∂Fj
∂xi

)
.

Remark. This is formally known as the differential form and is usually written as dF , but the notation
dF is loaded with all sorts of other connotations which are best ignored at this stage. Hence we will
temporarily use the notation DF here.

In R3, this anti-symmetric differentiation is equivalent to the curl using the Hodge map

(∇× F)i = εijk(DF)jk .

Now we can extend this definition to any anti-symmetric p-tensor. We can always differentiate
and anti-symmetrise to get a (p+ 1)-tensor defined by

(DT)i1...ip+1
=

1

p+ 1

(
∂Ti1...ip
∂xip+1

+ p further terms
)
,
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where the further terms involve replacing the derivative ∂
∂xip+1

with one of the other coordinates ∂
∂xj

so that the whole derivative is fully anti-symmetric.

Note that with this definition of D, a second derivative of a p-tensor is a (p+ 2)-tensor, but this
tensor always vanishes

(DDT)i1...ip+2
= 0

for any tensor T. This is because we will have two derivatives contracted with an epsilon and is the
higher dimensional generalisation of the statements that ∇×∇ϕ = 0 and ∇ ·∇× F = 0.

Remark. Here our anti-symmetric derivative obeys D2(−) = 0. We can link this with the fact that the
boundary of a boundary is always zero. If a higher dimensional space (a manifold) M has boundary
∂M then ∂2M = ∂(∂M) = 0. Conceptually, these two ideas are very different but one can’t help but
be struck by the similarity of the equations D2(anything) = 0 and ∂2(anything) = 0, even though
they are acting on very different objects. It turns out that this similarity is pointing at a deep
connection between the topology of spaces and the kinds of tensors that one can put on these spaces.
In mathematical terms, this is the link between homology and cohomology

Finally, we can now state the general integration theorem.

Theorem 11.28 (The general integration theorem). Given an anti-symmetric p-tensor T, then
ˆ
Ω

(DT)i1...ip+1
dSi1...ip+1

=

ˆ
∂Ω

Ti1...ip dSi1...ip ,

where dim(Ω) = p+ 1 and hence dim(∂Ω) = p.

Remark. This is a unification of all integration theorems. It contains the fundamental theorem of
calculus (when p = 0), the divergence theorem (when p = n − 1) and Stokes’ theorem (when p = 1
and Rn = R3).
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12 Further Contour Integrations

12.1 Residues

Lemma 12.1. Any function holomorphic and single-valued throughout an annulus α < |z − z0| < β
centred on z = z0 has a unique Laurent series about z = z0 that uniformly converges for all values of
z within any compact subset of the annulus

f(z) =

∞∑
n=−∞

an(z − z0)
n .

Remark. If f(z) has a single isolated singularity at z = z0, then α > 0 can be made arbitrarily small.

Definition 12.2. The coefficient a−1 in the Laurent series is called the residue of the function at the
pole, denoted as

res
z=z0

f(z) .

Proposition 12.3. For a function f with a simple pole at z = z0,

res
z=z0

f(z) = lim
z→z0

(z − z0)f(z) .

Proof.
lim
z→z0

(z − z0)f(z) = lim
z→z0

[a−1 + a0(z − z0) + a1(z − z0)
2] = a−1 .

□

Proposition 12.4. For a function f with a pole of order N at z = z0,

res
z=z0

f(z) = lim
z→z0

[
1

(N − 1)!

dN−1

dzN−1

(
(z − z0)

Nf(z)
)]
.

Proof.

lim
z→z0

[
1

(N − 1)!

dN−1

dzN−1

(
(z − z0)

Nf(z)
)]

= lim
z→z0

[
1

(N − 1)!

dN−1

dzN−1

(
a−N + · · ·+ a−1(z − z0)

N−1 + a0(z − z0)
N + . . .

)]
= lim
z→z0

[a−1 +Na0(z − z0) + . . . ]

= a−1 .

□

12.2 Calculus of Residues

Lemma 12.5. Let f(z) be analytic within a simply connected domain U except for an isolated
singularity at z = z0. Let γ be a simple closed contour in U counterclockwise around z0. Then˛

γ

f(z) dz = 2πi res
z=z0

f(z) .

Proof. Since the Laurent series of f converges uniformly in z ∈ U \ {z0},
˛
γ

f(z) dz =

˛
γ

∞∑
n=−∞

an(z − z0)
n

=

∞∑
n=−∞

˛
γ

an(z − z0)
n .
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Consider each term of the Laurent series separately.

For n ≥ 0, each term is holomorphic throughout U , so by Cauchy’s theorem,
˛
γ

an(z − z0)
n dz = 0 .

For n < 0, shrink the contour to a circle of radius ϵ about z0 and substitute z = z0+ϵe
iθ to obtain

˛
γ

an(z − z0)
n dz =

˛
|z−z0|=ϵ

an(z − z0)
n dz

=

ˆ 2π

0

anϵ
neinθiϵeiθ dθ

= ianϵ
n+1

ˆ 2π

0

ei(n+1)θ dθ

=

ianϵ
n+1

[
ei(n+1)θ

i(n+ 1)

]2π
0

if n ≤ −2

ianϵ
n+12π if n = −1

=

{
0 if n ≤ −2

2πia−1 if n = −1
as ϵ→ 0 .

Therefore, summing over the results, we have
˛
γ

f(z) dz =

∞∑
n=−∞

˛
γ

an(z − z0)
n dz = 2πia−1 = 2πi res

z=z0
f(z) .

□

Theorem 12.6 (Residue theorem). Let f be meromorphic on a simply-connected domain U . Let
γ be a simple closed counterclockwise contour in U encircling a finite number of isolated singularities
at z = z1, z2, . . . , zn and there is no singularity on γ, then

˛
γ

f(z) dz = 2πi

n∑
k=1

res
z=zk

f(z) .

Proof. Consider a new contour γ′ by joining γ with contours around each singularity γk using ‘bridges’
of width ϵ as shown. γ′ does not enclose any pole so

˛
γ′
f(z) dz = 0 .
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At the limit ϵ→ 0, the ‘bridges’ in the two opposite directions cancel out, so γ′ = γ −
∑
k γk, and by

Lemma 12.5, we have
˛
γ′
f(z) dz =

˛
γ

f(z) dz −
∑
k

˛
γk

f(z) dz

=

˛
γ

f(z) dz − 2πi
∑
k

res
z=zk

f(z) = 0 .

Therefore we have ˛
γ

f(z) dz = 2πi
∑
k

res
z=zk

f(z) .

□

12.3 The Point at Infinity

Some functions tend to a definite limit as z → ∞ irrespective of the direction from which the infinity
is approached. e.g. f(z) = 1/z goes to 0 as |z| → ∞. Therefore, it sometimes makes sense to think of
∞ as a single point, as illustrated by the stereographic projection of the complex plane onto Riemann
sphere.

Definition 12.7. Stereographic projection may be applied to a unit n-sphere Sn in an (n + 1)-
dimensional Euclidean space En+1. If Q is a point of Sn and E is a hyperplane in En+1, then the
stereographic projection of a point P ∈ Sn−{Q} is the point P ′, intersection of the line QP with E.
The hypersphere of projection is the Riemann sphere.

Remark. The point Q in stereographic projection is projected to all points on a circle of infinite
radius. We can think of this as a single point at infinity.

Definition 12.8. The extended complex plane C∞ := C ∪ {∞}

Remark. Stereographic projection is a smooth, bijective function from the entire sphere except for
the centre of projection to the entire plane. It maps circles on the sphere to circles or lines on the
plane, and is conformal (angle-preserving).

The Riemann sphere of the extended complex plane is shown below.

Q

P
C∗

We can study the behaviour of f(z) near the point at infinity by defining a new complex variable,

ζ =
1

z
.
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The point at infinity in the z-plane is the origin in the ζ-plane, and vice versa. Setting

g(ζ) = f

(
1

ζ

)
,

we can find a Laurent expansion for g about ζ = 0. If g has a singularity at ζ = 0 then f has this
singularity at infinity.
Remark. Care must be taken when combining the idea of a point at infinity with the residue theorem
because the residue is not strictly a property of f but of f dz. For example, if γ is the anticlockwise
unit circle in the z-plane, then

1

2πi

˛
γ

dz

z
= 1 .

But γ is also the clockwise unit circle in the ζ-plane. γ may also be viewed as a simple closed contour
that encloses the point at infinity in the z-plane. The integral is therefore equal to minus the sum of
the residues outside γ. As 1/z has no singularities in the complex plane away from z = 0, the residue
at z = ∞ must be −1, even though the function 1/z is not singular there.

12.4 Applications of the Calculus of Residues

12.4.1 Integrals Involving Trigonometric Functions

Consider the integral

I =

ˆ 2π

0

dθ

2(a− cos θ)
,

where a > 1 is a real constant. Consider the substitution

z = eiθ .

This gives us dz = iz dθ and cos θ = 1
2 (z + z−1), while the integral between θ ∈ [0, 2π] corresponds

to the integral over z around a unit circle γ in the complex plane. Then

I =

˛
γ

dz

2iz
(
a− 1

2 (z + z−1)
)

= i

˛
γ

dz

z2 − 2az + 1

= i

˛
γ

dz

(z − z+)(z − z−)
,

where the integrand has simple poles at z± = a±
√
a2 − 1.

Since a > 1, it follows that z− ∈ (0, 1) and z+ > 1. Hence the pole z− is inside γ and z+ is outside
it. The residue is

i

z− − z+
= − i

2
√
a2 − 1

,

so from the residue theorem (Theorem 12.6),

I =
π√
a2 − 1

.

12.4.2 Closing a Contour at Infinity

Suppose that we wish to calculate the integral

I =

ˆ ∞

0

dx

x2 + 1
.

196



12 Further Contour Integrations IB Mathematical Methods

Consider ˛
γ

dz

z2 + 1
=

˛
γ0+γR

dz

(z + i)(z − i)
,

where γ = γ0 + γR consists of two parts: first a contour, γ0, from −R to R along the real axis, and a
second contour, γR, counterclockwise along a semicircle of radius R in the upper half plane.

The integrand has two simple poles, but only the one at z = i is enclosed by γ. Hence, from the
residue theorem (Theorem 12.6),

˛
γ

dz

z2 + 1
=

˛
γ0+γR

dz

(z + i)(z − i)
= 2πi

1

2i
= π .

We also have that, using the symmetry of the integrand,
ˆ
γ0

dz

z2 + 1
≡
ˆ R

−R

dz

z2 + 1
= 2

ˆ R

0

dz

z2 + 1
→ 2I as R→ ∞ .

Finally, we consider the value of the integral along γR. On this semicircle, the integrand is O(R−2),
while the contour has length πR. Hence,∣∣∣∣ˆ

γR

dz

z2 + 1

∣∣∣∣ ≤ ˆ
γR

|dz|
min |z2 + 1|

≤ πR

R2 − 1
→ 0 as R→ ∞ .

Combining the above result and taking the limit R→ ∞, we conclude that

I =
π

2
.

Remark. This method can be easily generalised to contour integrals containing multiple poles.

12.5 Multi-valued Functions and Branch Cuts

Not all complex functions have a single value for each complex point z = reiθ. For instance, the
complex function log z = ln r + iθ has infinitely many values, or branches, since θ can take infinitely
many values.

If a contour γ does not enclose the origin, then we can always choose some range of θ so that
ln z is continuous and single-valued. However, if the contour γ encloses the origin, then ln z on the
contour can only be multivalued or discontinuous.

Definition 12.9. A point that cannot be encircled by a curve where the function is continuous and
single-valued is called a branch point. The function has a branch point singularity at that point.

In order to make a function with a branch point continuous and single-valued on a curve, it is necessary
that the curve does not encircle the branch point. To do this, we have to introduce a branch cut that
no curve is permitted to cross. Having a branch cut, a branch of a function is defined such that in
the neighbourhood of the branch point, values of θ in a 2π range are chosen.

Remark. If a curve did cross the cut, the function would be discontinuous and not analytic.

Example. The canonical branch cut for log z is along the half real axis from −∞ to the origin, so
that θ ∈ (−π, π). With this choice of branch cut, the value of log z is called the principal value of the
logarithm, often denoted as Log z.

Remarks.

• log z has an infinite number of branches.
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• The complex logarithm is holomorphic everywhere on each branch except on the branch cut.

• The function is single-valued and continuous on any curve that does not cross the cut.

• Branch cuts need not be straight lines. Any continuous non-intersecting curve from the branch
point to infinity can be a branch cut.

Corollary. Multivalued functions have no Laurent expansions about the branch points, since any
annulus |z − z0| ∈ (α, β) would be crossed by the branch cut so the function would not be analytic
in the annulus.

Remark. Riemann introduced a different idea where the different branches of a function are regarded
as separate copies of the complex plane C stacked onto each other and each connected to its neighbours
at the respective branch cuts. This is known as the Riemann surface.

Example. Consider
f(z) =

√
z2 − 1 =

√
z − 1

√
z + 1 ,

a function that has two branch points at z = ±1. Setting

z − 1 = r1e
iθ1 and z + 1 = r2e

iθ2 ,

we see that
f(z) =

√
r1r2e

1
2 i(θ1+θ2) .

If z1 is enclosed by a small curve γ1, then

θ1 → θ1 + 2π , θ2 → θ2 and 1

2
(θ1 + θ2) →

1

2
(θ1 + θ2) + π .

Hence f(z) changes the sign. The same applies to a small curve γ2 encircling z = −1. However, going
around a curve γ3 encircling both branch points has the effect of

θ1 → θ1 + 2π , θ2 → θ2 + 2π and 1

2
(θ1 + θ2) →

1

2
(θ1 + θ2) + 2π .

Hence f(z) does not change the sign.

Therefore, we can introduce a branch cut that goes from z = −1 to z = 1, with the simplest case
being a cut on the real axis. Alternatively, we can introduce two separate branch cuts, one from each
branch point to infinity.

Remark. The two branch cuts to infinity can be seen as a single branch cut that happens to pass
through the point at infinity. This is because the cuts can be smoothly deformed. In general, when
there is more than one branch point, we may need more than one branch cut.

12.6 Contour Integration around a Branch Cut

Evaluate the integral
I =

ˆ ∞

0

xα

1 +
√
2x+ x2

dx ,

where α ∈ (−1, 1).

Consider the contour integral ˛
γ

zα

1 +
√
2z + z2

dz .

The integrand has a branch point at z = 0, and simple poles at z1 = e
3
4πi and z2 = e

5
4πi.
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We usually find it is appropriate to choose a branch cut along the integration range, i.e. along
the positive real axis in this case; we then define the branch by choosing 0 ≤ θ < 2π, where z = reiθ.

It is then necessary to use a ‘keyhole contour’, γ, in order to avoid the branch point and the branch
cut. We consider the individual contributions from each part of the contour, γ = γ1 + γR + γ2 + γϵ
in turn.

γR

γϵ γ1

γ2

The contribution from the contour γ1 just above the branch cut is
ˆ R

ϵ

xα

1 +
√
2x+ x2

dx→ I

as ϵ→ 0 and R→ ∞.

Substituting z = re2πi, the contribution from the contour γ2 just below the branch cut is
ˆ ϵ

R

rαe2παi

1 +
√
2r + r2

dr → −e2παiI

as ϵ→ 0 and R→ ∞.

For γϵ, substitute z = ϵeiθ, we obtain
ˆ
γϵ

zα

1 +
√
2z + z2

dz = ϵα+1

ˆ 0

2π

ei(α+1)θ

1 +
√
2ϵeiθ + ϵ2e2iθ

i dθ → 0 as ϵ→ 0 .

For γR, substitute z = Reiθ, we obtain
ˆ
γR

zα

1 +
√
2z + z2

dz = Rα+1

ˆ 2π

0

ei(α+1)θ

1 +
√
2Reiθ +R2e2iθ

i dθ

= Rα−1

ˆ 2π

0

ei(α+1)θ

R−2 +
√
2R−1eiθ + e2iθ

i dθ → 0 as R→ ∞ .

Therefore, as ϵ→ 0 and R→ ∞,˛
γ

zα

1 +
√
2z + z2

=

˛
γ1+γR+γ2+γϵ

zα

(z − z1)(z − z2)
dz → (1− e2παi)I .

Because both poles are inside γ, the residue theorem gives

res
z=z1

zα

(z − z1)(z − z2)
=

zα1
z1 − z2

=
e

3
4παi

e
3
4παi − e

5
4παi

,
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res
z=z2

zα

(z − z1)(z − z2)
=

zα2
z2 − z1

=
e

5
4παi

e
5
4παi − e

3
4παi

,

(1− e2παi)I = 2πi

(
e

3
4παi

i
√
2

− e
5
4παi

i
√
2

)
,

and so
I =

√
2π

sin
(
απ
4

)
sin(απ)

.
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13 Transform Methods

13.1 Jordan’s Lemma

Consider
lim
R→∞

ˆ
γ

g(z)eiλz dz ,

where

(i) λ is a real positive constant;

(ii) g(z) is holomorphic in the upper half-plane except possibly at a finite number of poles;

(iii) the contour γ is a semicircle of radius R in the upper half-plane: γ : [0, π] → C, θ 7→ Reiθ.

Lemma 13.1. The upper bound for the contour integral is given by∣∣∣∣ˆ
γ

g(z)eiλz dz

∣∣∣∣ ≤ π

λ
MR ,

where
MR = sup

θ∈[0,π]

∣∣g(Reiθ)∣∣ ,
with equality when g vanishes everywhere.

Proof. Since on γ, ∣∣eiλz∣∣ = ∣∣e−λR sin θ
∣∣ ,

we have ∣∣∣∣ˆ
γ

g(z)eiλz dz

∣∣∣∣ ≤ ˆ
γ

∣∣eiλzg(z)∣∣|dz|
=MRR

ˆ π

0

e−λR sin θ dθ

= 2MRR

ˆ π
2

0

e−λR sin θ dθ .

Using the inequality that for θ ∈ [0, π/2],

1 ≥ sin θ

θ
≥ 2

π
,

ˆ
γ

g(z)eiλz dz ≤ 2MRR

ˆ π
2

0

e−λR
2θ
π dθ

=
πMR

λ
(1− e−λR)

≤ πMR

λ
,

with equality when g is identically 0. □

Remark. An analogous statement for a semicircular clockwise contour in the lower half-plane holds
when λ < 0.

Remark. For the case λ = 0, this reduces to the ML estimation lemma (Lemma 6.23).
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Lemma 13.2 (Jordan’s Lemma). If g(z) → 0 uniformly on γ as R→ ∞, i.e. if

lim
R→∞

MR = 0 ,

then
lim
R→∞

ˆ
γ

g(z)eiλz dz = 0 .

Proof. It follows trivially from Lemma 13.1. □

13.1.1 Example of Jordan’s Lemma

Consider
I =

ˆ ∞

−∞

sinx

x
dx .

Note that the singularity at the origin is removable. Since sin z = 1
2i (e

iz − e−iz), we can apply
Jordan’s lemma by splitting up the integral.

I =
1

2i

(ˆ ∞

−∞

eiz

z
dz −

ˆ ∞

−∞

e−iz

z
dz

)
= Im

(ˆ ∞

−∞

eiz

z

)
.

But now the contour passes through a pole, so instead consider the limit

I = Im

[
lim
ϵ→0

lim
R→∞

(ˆ ϵ

−R

eiz

z
dz +

ˆ R

ϵ

eiz

z
dz

)]
.

Define the contour Γ = γR + γ− + γϵ + γ+, where
γR : θ 7→ Reiθ , θ ∈ [0, π]

γ− : t 7→ t , t ∈ [−R,−ϵ]
γϵ : θ 7→ ϵei(π−θ) , θ ∈ [0, π]

γ+ : t 7→ t , t ∈ [ϵ, R] .

Then since Γ does not enclose any pole, from Cauchy’s theorem (Theorem 6.26),
˛
Γ

eiz

z
dz =

ˆ
γR

eiz

z
dz +

ˆ
γ−

eiz

z
dz +

ˆ
γϵ

eiz

z
dz +

ˆ
γ+

eiz

z
dz

= 0 .

On γϵ, z = ϵei(π−θ), so
ˆ
γϵ

eiz

z
dz =

ˆ 0

π

exp
(
iϵeiθ

)
ϵeiθ

iϵeiθ dθ

= −i
ˆ π

0

∞∑
r=0

irϵreirθ

r!
dθ

= −i
ˆ π

0

1 +O(ϵ)dθ .

Thence,

lim
ϵ→0

ˆ
γϵ

eiz

z
dz = −iπ .
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Further, from Jordan’s lemma, we know that

lim
R→∞

ˆ
γR

eiz

z
dz = 0 .

Hence, taking the double limit ϵ→ 0 and R→ ∞, we have

I = Im lim
ϵ→0

lim
R→∞

(
−
ˆ
γR

eiz

z
dz −

ˆ
γϵ

eiz

z
dz

)
= Im(iπ) = π .

Remark. Similar methods can be used to evaluate
ˆ ∞

−∞

sin2 x

x2
dx .

13.2 Fourier Transform Methods

Here, we will state a more precise version of the Fourier transform that allows us to incorporate
techniques of contour integrations.

Definition 13.3. The Cauchy principal value of the integral of an integrable function f in the range
(−∞,∞) is given by

PV

ˆ ∞

−∞
f(x) dx ≡

 ∞

−∞
f(x) dx := lim

R→∞

ˆ R

−R
f(x) dx .

Remark. Some functions do not have integral from −∞ to ∞ in the normal sense, but have Cauchy
principal value. For example,  ∞

−∞

x

1 + x2
dx = 0

but ˆ ∞

−∞

x

1 + x2
dx

does not converge.

Definition 13.4. Let f : R → C be absolutely integrable, i.e.
´∞
−∞ |f(x)| dx exists, has bounded

variation and a finite number of discontinuities. The Fourier transform of a function f(x) is

f̃(k) ≡ F [f(x)] :=

 ∞

−∞
f(x)e−ikx dx .

Remark. Sometimes we can take the Fourier transform of functions that do not satisfy the requirement
of absolute integrability, like f(x) = 1. These can be handled using distributions.

f̃(k) = 2πδ(k) .

Theorem 13.5 (Fourier inversion theorem). The inverse Fourier transform acting on f̃(k),

1

2
(f(x+) + f(x−)) =

1

2π

 ∞

−∞
f̃(k)eikx dk ,

returns f(x) when it is continuous while giving the average value of the left and right hand side limits
at a discontinuity.
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13.2.1 Fourier Transform using Contour Integration

Example. Consider the inverse Fourier transform of

f(x) =
1

a+ ix
,

where a > 0 is a constant. Let γ0 be the contour from −R to R in the real axis, γR be the semicircle
of radius R in the upper half-plane, γ′R be the semicircle in the lower half-plane. We let γ = γ0 + γR
and γ′ = γ0 + γ′R.

γR

γ0

γ′R

×

We can see that f(x) has only one single pole at x = ia, so we get
˛
γ

f(x)e−ikx dx = 2πi res
x=ia

e−ikx

i(x− ia)
= 2πeka .

While we have ˛
γ′
f(x)e−ikx dx = 0 .

Now, if k < 0, applying Jordan’s lemma with λ = −k to γR gives that
ˆ
γR

f(x)e−ikx dx→ 0 as R→ ∞ .

Hence,

f̃(k) =

 ∞

−∞
f(x)e−ikx dx

= lim
R→∞

ˆ
γ0

f(x)e−ikx dx

= lim
R→∞

(ˆ
γ

f(x)e−ikx dx−
ˆ
γR

f(x)e−ikx dx

)
= 2πeka .

For k > 0, we close the contour in the lower half plane. Since there is no singularity, we get
ˆ ∞

−∞
f(x)e−ikx dx = 0 .
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Therefore,

f̃(k) =

{
0 k > 0

2πeak k < 0 .

13.2.2 Damped Harmonic Oscillator

Consider the equation for the amplitude x(t) of a driven damped harmonic oscillator,

ẍ(t) + 2γẋ(t) + ω2
0x(t) = f(t) , (†)

where f(t) is the forcing function, ω0 > 0 is real, and γ > 0 is real and represents the effects of
damping.

Assume that x(t) → 0 as |t| → ∞ so that we can define Fourier transform, and its inverse, of x(t)
as

x̃(ω) =

ˆ ∞

−∞
x(t)e−iωt dt

x(t) =
1

2π

ˆ ∞

−∞
x̃(ω)eiωt dω ,

where we use ω as the Fourier variable when the function depends on t as is conventional.

By Proposition 3.5, we have
F [ẋ(t)] = iωx̃(ω)

F [ẍ(t)] = −ω2x̃(ω) .

Take Fourier transform on both sides of (†), we have

(−ω2 + 2iγω + ω2
0)x̃(ω) = f̃(ω) .

It follows that
x̃(ω) = f̃(ω)g̃(ω) ,

where

g̃(ω) =
−1

ω2 − 2iγω − ω2
0

=
−1

(ω − ω+)(ω − ω−)
and ω± = iγ ±

√
ω2
0 − γ2 .

We can find x(t) by taking the inverse Fourier transform

x(t) =
1

2π

ˆ ∞

−∞
f̃(ω)g̃(ω)eiωt dω .

Recall that the convolution theorem (Theorem 3.10) states

h(t) =

ˆ ∞

−∞
f(s)g(t− s) ds ⇐⇒ h̃(ω) = f̃(ω)g̃(ω) .

Hence, we deduce that
x(t) =

ˆ ∞

−∞
f(s)g(t− s) ds ,

where, with τ = t− s,

g(τ) = F−1[g̃(ω)] = − 1

2π

ˆ ∞

−∞

eiωτ

(ω − ω+)(ω − ω−)
dω .
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Remark. This is equivalent to a solution using the Green’s function G(t, s) = g(t− s) of

L =
d2

dt2
+ 2γ

d

dt
+ ω2

0 .

To complete the solution to the problem, we now have to determine g(τ) by integrating over ω.
We will do this by employing a contour integral in the complex ω plane.

If τ < 0, we choose a contour γ that goes along the real axis and is closed with a semicircle in
the lower half-plane (γ∞). If τ > 0 we instead close the contour with a semicircle in the upper half
plane. Since, by our assumption, g̃(ω) → 0 as |ω| → ∞, Jordan’s lemma (Lemma 13.2) implies that
in both cases the integral over the semicircle will vanish. It then follows that

g(τ) =
1

2π

ˆ ∞

−∞
g̃(ω)eiωτ dω

=
1

2π

(ˆ ∞

−∞
g̃(ω)eiωτ dω +

ˆ
γ∞

g̃(ω)eiωτ dω

)
=

1

2π

˛
γ

g̃(ω)eiωτ dω .

As long as ω0 is real, so that ω2
0 > 0, poles of g̃(ω) at ω = ω± are both in the upper half plane.

Therefore, from the residue theorem,

g(τ) = 0 when τ < 0 .

In other words, g(t− s) is zero if t < s. Suppose that the forcing term is not switched on until t = 0,
i.e. suppose that f(t) = 0 for t < 0, it follows that

x(t) =

ˆ ∞

0

f(s)g(t− s) ds = 0 for t < 0 .

Remark. This means that there is no response until the forcing term is switched on. This is a
causal behaviour, i.e. effect follows cause and not the other way around. The Green’s function,
G(t, s) = g(t− s) is said to be a causal Green’s function.

For τ > 0, there are two simple poles within γ. As we assume that γ 6= ω0, the residue at ω = ω±
are given by

res
ω=ω±

(
1

2π
g̃eiωτ

)
=

−eiω±τ

2π(ω± − ω∓)
= ∓e

−γτe±iτ
√
ω2

0−γ2

4π
√
ω2
0 − γ2

.

• Underdamped Oscillator. For γ < ω0, the oscillator is said to be underdamped. We can deduce
that

g(τ) =
e−γτ√
ω2
0 − γ2

sin

(
τ
√
ω2
0 − γ2

)
for τ > 0 .

Remark. Suppose that there is a unit impulse at t = 0, i.e. f(t) = δ(t). It follows that
x(t) = g(t), and hence the response to an impulsive force is oscillatory with an amplitude that
dies away exponentially over a time of order 1/γ.
For γ � ω0, the main effect of the damping term is to cause the oscillation to slowly reduce in
amplitude rather than change phase.

• Overdamped Oscillator. For γ > ω0, the oscillator is said to be overdamped. We can deduce
that

g(τ) =
e−γτ√
γ2 − ω2

0

sinh

(
τ
√
γ2 − ω2

0

)
for τ > 0 .
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• Critically Damped Oscillator. When γ = ω0, the oscillator is critically damped. For τ > 0,
there is a double pole at ω = iγ inside the contour γ. From Proposition 12.4, we have

res
ω=iγ

(
1

2π
g̃eiωτ

)
= res
ω=iγ

(
− eiωτ

2π(ω − iγ)2

)
= lim
ω→iγ

(
d

dω

(
−e

iωτ

2π

))
= − iτe

−γτ

2π
.

Hence, the residue theorem yields

g(τ) = τe−γτ for τ > 0 .

13.2.3 Gaussian Integration Lemma

Lemma 13.6 (Gaussian integration lemma). For any constant c ∈ C,ˆ ∞

−∞
e−(u+c)2 du =

√
π .

Proof. Let c = a+ bi. Extend the integral to the complex plane, and define a new complex variable
z = u+ c. Then

I =

ˆ ∞

−∞
e−(u+c)2 du =

ˆ
γi

e−z
2

dz ,

where the contour γi is the horizontal line in the complex z plane with Im z = Im c = b.

The integrand e−z
2 is analytic everywhere and so the integral of e−z2 around any closed contour

is zero.

Consider the rectangular counterclockwise contour with vertices at ±R and ±R+ ib, R ∈ R.

Apply Cauchy’s theorem to this contour to obtain

0 = lim
R→∞

˛
γR

e−z
2

dz

= lim
R→∞

[ˆ R

−R
e−z

2

dz +

ˆ b

0

e−(R+iy)2i dy +

ˆ −R+ib

R+ib

e−z
2

dz +

ˆ 0

b

e−(−R+iy)2i dy

]

=
√
π − I + lim

R→∞
2e−R

2

ˆ b

0

ey
2

sin(2Ry) dy .

In the limit R→ ∞ the final term tends to zero, and so we deduce that, for any c ∈ C,

I =

ˆ ∞

−∞
e−(u+c)2 du =

√
π .

□

13.2.4 Solutions to Partial Differential Equations

Consider the initial-boundary value problem of the heat distribution on an infinite bar:
∂θ

∂t
= λ

∂2θ

∂x2
(x, t) ∈ R× (0,∞)

θ(x, 0) = f(x) x ∈ R
∂θ

∂x
→ 0 as x→ ±∞, t ∈ (0,∞) .
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Take the Fourier transform of the equation, we have

∂θ̃

∂t
= −λk2θ̃ .

The solution of this equation is
θ̃(k, t) = θ̃0(k)e

−λk2t .

Applying the initial condition, we have θ̃0(k) = f̃(k). Rewrite the expression of the transformed
solution as

θ̃(k, t) = f̃(k)G̃(k, t) ,

where
G̃(k, t) = e−λk

2t .

By the convolution theorem, the solution is

θ(x, t) = θ(x) ∗G(x, t) =
ˆ ∞

−∞
θ0(y)G(x− y, t) dy ,

where using the substitution u =
√
λtk, G(x, t) can be evaluated as

G(x, t) =
1

2π

ˆ ∞

−∞
eikx−λkt

2

dk

=
e−

x2

4λt

2π
√
λt

ˆ ∞

−∞
exp

(
−
(
u− ix

2
√
λt

)2
)
du

=
e−

x2

4λt

√
4πλt

by the Gaussian integration lemma. Hence,

θ(x, t) =
1√
4πλt

ˆ ∞

−∞
f(y) exp

(
− (x− y)2

4λt

)
dy .

Let us consider the specific case f(x) = H(x), the Heaviside step function.

Recall the error function:

Definition 13.7. The error function is defined as

erf(x) :=
2√
π

ˆ x

0

e−t
2

dt

such that erf(−∞) = −1 and erf(∞) = 1.

Then, using the substitution v = y−x√
4λt

,

θ(x, t) =
1√
4πλt

ˆ ∞

0

exp

(
− (x− y)2

4λt

)
dy

=
1√
π

ˆ ∞

− x√
4λt

e−v
2

dv

=
1√
π

[ˆ ∞

0

e−v
2

dv +

ˆ x√
4λt

0

e−v
2

dv

]

=
1

2

[
1 + erf

(
x√
4λt

)]
.
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13.3 Laplace Transforms (Non-examinable)

The main shortcoming of Fourier transforms is the restriction to absolutely integrable functions.
Many systems encountered in the real world involve growing functions, such as et, which we cannot
manage with Fourier transforms, not even by resorting to distributional theory.

The Laplace transform provides a handle to treat such functions in a manner analogous to the
Fourier domain. Furthermore, we will see that Laplace transforms have a natural way of incorporating
boundary conditions, which makes them very suitable for solving ordinary differential equations.

13.3.1 Laplace Transform and Analytic Continuation

Definition 13.8. Let f(t) be a function defined for all t ≥ 0. The Laplace transform of f(t) is given
by

F (s) = L{f(t)} (s) :=
ˆ ∞

0

f(t)e−st dt ,

s ∈ C provided that the integral exists.

Remark. A sufficient condition for the existence of a Laplace transform is that f(t) grows no more
than exponential.

Let us consider a very important example. By direct integration, we can find

L{1} (s) =
ˆ ∞

0

e−st dt =
1

s
,

which may look completely trivial. However, notice that this integral only converges for Re(s) > 0.
Despite this, we may still extend the domain of the Laplace transform function F (s) to the entire
range where it is defined analytically. This process is the analytic continuation. In this case, we
extended the domain of the Laplace transform from U ′ = {z ∈ C | Re(z) > 0} to U = C \ {0}, where
the uniqueness of the extended function is guaranteed by the analyticity of the transformed function.

Here are some further examples.

• We can integrate by parts to find

L{t} (s) =
ˆ ∞

0

te−st dt =

[
− t

s
e−ts

]∞
t=0

+

ˆ ∞

0

1

s
e−st dt =

1

s2
.

• For a constant λ, we can directly integrate

L
{
eλt
}
(s) =

ˆ ∞

0

e(λ−s)t dt =
1

s− λ
.

Again, this integral is only defined if Re(s) > Re(λ), but we can analytically continue the
function for all s ∈ C except s = λ.

• Using the previous result, we find that

L{sin t} = L
{

1

2i
(eit − e−it)

}
(s) =

1

2i

(
1

s− i
− 1

s+ i

)
=

1

s2 + 1
.

13.3.2 Properties of the Laplace Transform

Proposition 13.9. The Laplace transform has the following properties.
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(i) Linearity. For constants α, β ∈ C,

L{αf + βg} = αL{f}+ βL{g} .

(ii) Translation. For real constant t0 ∈ R,

L{f(t− t0)H(t− t0)} (s) = e−st0F (s) .

(iii) Scaling. For constant λ > 0,
L{f(λt)} (s) = 1

λ
F
( s
λ

)
.

(iv) Shifting. For a constant s0 ∈ C,

L
{
esotf(t)

}
(s) = F (s− s0) .

(v) Transform of a derivative.
L{f ′(t)} (s) = sF (s)− f(0) .

By repeatedly applying this formula, we find

L{f ′′(t)} (s) = sL{f ′(t)} (s)− f ′(0) = s2F (s)− sf(0)− f ′(0)

and so forth.

(vi) Derivative of a transform.
F ′(s) = L{−tf(t)} (s) .

More generally,
F (n)(s) = L{(−t)nf(t)} (s) .

(vii) Asymptotic limit.
lim
s→∞

sF (s) = f(0) ,

lim
s→0

sF (s) = f(∞) ,

provided that the limit limt→∞ f(t) exists.

Proof.

(i) Follows from the linearity of integrals.

(ii) Setting t̃ = t− t0, we have
ˆ ∞

0

f(t− t0)e
−st dt =

ˆ ∞

−t0
f(t̃)e−s(t̃+t0) dt̃

= e−st0
ˆ ∞

−t0
f(t̃)e−st̃ dt̃ .

So
ˆ ∞

0

f(t− t0)H(t− t0)e
−st dt = e−st0

ˆ ∞

−t0
f(t̃)H(t̃)e−st̃ dt̃

= e−st0
ˆ ∞

0

f(t̃)e−st̃ dt̃ = e−st0F (s) .

(iii) Define t̃ = λt, we find
ˆ ∞

0

f(λt)e−st dt =

ˆ ∞

0

f(t̃)e−
s
λ t̃

1

λ
dt̃ =

1

λ
F
( s
λ

)
.
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(iv) ˆ ∞

0

es0tf(t)e−st dt = F (s− s0) .

(v) ˆ ∞

0

f ′(t)e−st dt = [f(t)e−st]∞t=0 −
ˆ ∞

0

−sf(t)e−st dt = sF (s)− f(0) .

Once again, we encounter the subtlety of analytic continuation. The proof breaks down if the
integral

´∞
0
f(t)e−st dt does not exist. The relation still holds for analytically continued Laplace

transforms, though.

(vi) Differentiating the definition of the Laplace transform gives

F ′(s) =

ˆ ∞

0

−tf(t)e−st dt = L{−tf(t)} .

(vii) We have
sF (s) = f(0) +

ˆ ∞

0

f ′(t)e−st dt .

By requirement, the limit limt→∞ f(t) exists, so f(t) and f ′(t) do not grow faster than
exponential. For s→ ∞, the integral on the right-hand side therefore vanishes and we obtain

lim
s→∞

sF (s) = f(0) .

In the limit s→ 0, on the other hand, we have e−st → 1, the integral just becomes
´∞
0
f ′(t) dt,

and we recover
lim
s→0

sF (s) = f(∞) .

□

Example. Previously, we have
L{1} =

1

s
.

From Proposition 13.9 (vi), we find

L{tn} (s) = (−1)n
dn

dsn
1

s
=

n!

sn+1
.

Remark. We can generalise this formula to obtain the generalisation of factorials into C.

Definition 13.10. The Euler’s gamma function is defined for complex number n ∈ C \ Z≤0 as

Γ(n) :=

ˆ ∞

0

e−ttn−1 dt

such that
Γ(n) = L

{
tn−1

}
(1) =: (n− 1)! .

13.3.3 The Inverse Laplace Transform

Theorem 13.11 (Inverse Laplace transform). For a given function F (s), its inverse Laplace
transform that recovers f(t) is given by the Bromwich inversion formula

f(t) =
1

2πi

ˆ α+i∞

α−i∞
F (s)est ds ,

where α is a real constant chosen such that the Bromwich inversion contour γ = {s ∈ C | Re(s) = α}
lies to the right of all singularities of F (s).
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Proof. Since f(t) has a Laplace transform, we have f(t) = 0 for t < 0 and f does not grow faster
than exponential. We can therefore choose an α ∈ R such that

g(t) = f(t)e−αt

decays exponentially as t→ ∞ and therefore has a Fourier transform

g̃(ω) =

ˆ ∞

−∞
f(t)e−αte−iωt = F (α+ iω) .

This enables us to apply the inverse Fourier transform, so

g(t) =
1

2π

ˆ ∞

−∞
F (α+ iω)eiωt dω .

Substitute s = α+ iω, we obtain

f(t)e−αt =
1

2πi

ˆ α−i∞

α+i∞
F (s)e(s−α)t ds

f(t) =
1

2πi

ˆ α+i∞

α−i∞
F (s)est ds .

The additional requirement that the contour Re(s) > α lies to the right of all singularities of F (s)
fixes a constant of integration and thus ensures that f(t) = 0 for t < 0. □

In practice, the Laplace transform and its inverse are often applied to functions with a finite number
of singularities. This simplifies the inverse Laplace transform considerably.

Theorem 13.12 (Inverse Laplace transform). Let F (s) be the Laplace transform of a function
f(t) and have only a finite number of isolated singularities sk ∈ C. Let F (s) → 0 as |s| → ∞. Then
f(t) = 0 for t < 0 and for t > 0,

f(t) =

n∑
k=1

res
s=sk

(F (s)est) .

Proof. First, let us consider the case t < 0 and construct the contour γ̄ = γ0 + γ̄R as shown below.

×
×

×
×

α− iR

α+ iR

γ0
γ̄R

By Jordan’s lemma, ∣∣∣∣ˆ
γ̄R

F (s)est ds

∣∣∣∣→ 0 as R→ ∞ .
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×
×

×
×

α− iR

α+ iR

γ0
γR

Therefore, ˆ
γ0

F (s)est ds =

ˆ
γ̄

F (s)est ds

in the limit R→ ∞. The contour does not enclose any singularities of the integrand, so by Cauchy’s
theorem, we get f(t) = 0 for t < 0.

For t > 0, let us consider the contour γ = γ0+γR enclosed on the left of the vertical line as shown
below.

Since F (s) only has a finite number of isolated singularities, we will enclose all of them as R→ ∞.
As before, the contribution of γR vanishes as R → ∞ by Jordan’s lemma. We can use the residue
theorem to compute f(t) using the Bromwich inversion formula

f(t) =
1

2πi
lim
R→∞

ˆ
γ0

F (s)est ds

=
1

2πi
lim
R→∞

ˆ
γ

F (s)est ds

=

n∑
k=1

res
s=sk

(F (s)est) .

□

Example. Consider
F (s) =

1

s− 1
,

which has a simple pole at s = 1. For t > 0, we have

f(t) = res
s=1

(
est

s− 1

)
= et .

Example. Consider
F (s) = s−n

n ∈ N, we have a pole of order n at s = 0. We have

f(t) = res
s=0

(
est

sn

)
= lim
s→0

[
1

(n− 1)!

dn−1

dsn−1
est
]
=

tn−1

(n− 1)!
.
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13.3.4 Solving Differential Equations using Laplace Transform

Example. Consider the ODE

tf̈(t)− tḟ(t) + f(t) = 2 , f(0) = 2 , ḟ(0) = −1 .

The transform of this ODE gives

−s2F ′(s)− 2sF (s) + f(0) + sF ′(s) + F (s) + F (s) =
2

s
,

which organises to
sF ′(s) + 2F (s) =

2

s
.

This equation can be easily solved, with a general solution

F =
2

s
+
A

s2
.

Inverse Laplace transform gives
f(t) = 2 + At ,

where the boundary condition determines A = −1.

Similar methods can be applied to partial differential equations as well.

13.3.5 The Convolution Theorem

Recall that the convolution of two functions f, g : R → R is defined as

(f ∗ g)(t) =
ˆ ∞

−∞
f(t− u)g(u) du .

Note that if f(t) and g(t) vanishes for t < 0, then

(f ∗ g)(t) =
ˆ t

0

f(t− u)g(u) du .

Theorem 13.13 (The convolution theorem). The Laplace transform of a convolution is given
by

L{f ∗ g} (s) = L{f} (s) · L{g} (s) = F (s)G(s) .

Proof.

L{f ∗ g} (s) =
ˆ ∞

0

[ˆ t

0

f(t− u)g(u) du

]
e−st dt

=

ˆ ∞

0

[ˆ ∞

u

f(t− u)g(u)e−st dt

]
du

by swapping the order of integration. Defining x = t− u, we obtain

L{f ∗ g} (s) =
ˆ ∞

0

[ˆ ∞

0

f(x)g(u)e−sxe−su dx

]
du

=

ˆ ∞

0

[ˆ ∞

0

f(x)e−sx dx

]
g(u)e−su du = F (s)G(s) .

□
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Example. Suppose that we wish to find the inverse of

H(s) =
1

s(s2 + 1)
.

Set F (s) = s−1 and G(s) = (s2 + 1)−1, so that f(t) = 1 and g(t) = sin t. We have

L−1

{
1

s(s2 + 1)

}
(t) = 1 ∗ sin t =

ˆ t

0

sinu du = 1− cos t .

Example. Consider the ODE

4f̈(t) + f(t) = h(t) , f(0) = 3 , ḟ(0) = −7 .

We can transform this equation to

4
[
s2F (s)− sf(0)− ḟ(0)

]
+ F (s) = H(s) ,

which simplifies to
F (s) =

3s

s2 + 1
4

− 7

s2 + 1
4

+
H(s)

4

1

s2 + 1
4

.

We can directly inverse transform the first two terms, and the inverse transform of the third term
can be solved using the convolution theorem. We have

f(t) = 3 cos
t

2
− 14 sin

t

2
+

1

4
h(t) ∗

(
2 sin

t

2

)
= 3 cos

t

2
− 14 sin

t

2
+

1

2

ˆ t

0

sin
u

2
h(t− u) du .
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14 Partial Differential Equations on Unbounded Domains

14.1 Well-posedness (Non-examinable)

Claim 14.1. Hadamard famously declared that a problem is well-posed if

(i) a solution exists;

(ii) the solution is unique;

(iii) the solution depends continuously on the initial and boundary data.

Points (i)-(ii) are self-explanatory, but (iii) is far more subtle. If the initial and/or boundary data for
a problem lie in a space X and the solution lies in Y , then the solution to a generic initial-boundary
value problem on Ω× (0,∞) describes an abstract map

St : X → Y .

We will offer some examples.

Example. Consider the differential equation

dx

dt
= −κx , x(0) = x0 .

It has solution
X0(t) = x0e

−κt .

The solution clearly exists and is unique. If we consider the same problem but with initial data
x(0) = x1, then

|X1(t)−X0(t)| = e−κt|x1 − x0| .

Therefore, if we measure the ‘closeness’ of solutions in terms of uniform norm:

‖f‖∞ := sup
x

‖f(x)‖ ,

we clearly have
‖X1 −X0‖∞ ≤ |x1 − x0| .

So if two solutions start close, then they will always remain “close”. The problem is well-posed.

Example. Consider the initial-boundary value problem for the backward heat equation on Ω = (0, π).
∂φ

∂t
+ κ∇2φ = 0 (x, t) ∈ Ω× (0,∞)

φ = f (x, t) ∈ Ω× {t = 0}
φ = 0 (x, t) ∈ ∂Ω× (0,∞) .

When f(x) = 0, we have the solution φ = 0. For f(x) = fn(x) = 1
n sin(nx), we have the solution

φn(x, t) =
1
n sin(nx)eκn

2t. Note that

‖f − fn‖∞ =
1

n
→ 0 as n→ ∞ .

So the initial data for these solutions gets arbitrarily close. However, for arbitrary t = T ,

‖φ(x, T )− φn(x, T )‖∞ =
1

n
eκn

2T → ∞ as n→ ∞ .

This problem is not well-posed, even locally in time.
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14.2 Method of Characteristics (Non-examinable)

In this section, we will study problems of the form{
a(x, y)∂u∂x + b(x, y)∂u∂y = c(x, y, u) (x, y) ∈ R2

u = f on curve C .

These are called quasi-linear partial differential equations, since c might be non-linear in u. Consider
the vector field

v =

(
a(x, y)
b(x, y)

)
.

Then we have
a(x, y)

∂u

∂x
+ b(x, y)

∂u

∂y
= v · ∇u ,

the directional derivative of u along the vector field v at the point.

Definition 14.2. The integral curves of a vector field v are defined as

dx

dt
= v .

Remark. The integral curve goes along the vector field v, with a parameter t along the curve.

We call these the characteristic curves for the PDE. Suppose that we have solved these equations
for x(t) and y(t) with the initial conditions (x(0), y(0)) = (x0, y0) ∈ C. This will give us a family
of characteristic curves crossing C at t = 0. Define z(t) to be the value of u(x, y) evaluated on the
characteristic curve:

z(t) = u(x(t), y(t)) ,

by chain rule, we have

dz

dt
=

dx

dt

∂u

∂x
+

dy

dt

∂u

∂y

= a
∂u

∂x
+ b

∂u

∂y

= c(x(t), y(t), z) .

This gives us an ordinary differential equation for z, with initial value z0 = u(x0, y0) = f(x0, y0).

C

s t

(x, y)

To get the solution at an arbitrary point (x, y), we find the characteristic curve that goes through
it and trace the solution back to the curve C. This will mean inverting a relationship between (x, y)
and (s, t), where s is the coordinate along C and t is the coordinate along a characteristic curve.

We will want to make sure the vector field v = (a, b) is not tangent to the curve C on which
the initial data is on, otherwise we would not be able to carry the initial data off the curve C along
characteristic curves to an arbitrary point (x, y). If n denotes the normal to the curve C, this condition
is n · v 6= 0 for (x, y) ∈ C. This is called the non-characteristic condition.
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Example. Consider the problem  (x2 + 1)
∂u

∂x
+
∂u

∂y
= u+ 1

u(0, y) = f(y) .

The characteristic curves are given by

dx

dt
= x2 + 1

dy

dt
= 1 ,

with initial data on the curve
(x(0), y(0)) = (0, s) .

This gives the solution {
x = tan t

y = s+ t .

The z-equation is
dz

dt
= z + 1 ,

which gives the solution
z = (1 + z0)e

t − 1 ,

where z0 is the initial value
z0 = u(x0, y0) = u(0, s) = f(s) .

This gives the solution
z(t, s) = (1 + f(s))et − 1 .

Invert (t, s) → (x, y): {
t = arctanx

s = y − arctanx

to obtain the solution
u(x, y) = [1 + f(y − arctanx)]earctan x .

14.3 Higher-dimensional Fourier Transform (Non-examinable)

Definition 14.3. For f : Rn → C, its Fourier transform is defined as

f̃(λ) :=

ˆ
e−iλ·xf(x) dnx .

Theorem 14.4. The inverse Fourier transform is given by

f(x) =
1

(2π)n

ˆ
eiλ·xf̃(λ) dnλ .

Definition 14.5. The convolution of two functions f, g : Rn → C is

(f ∗ g)(x) :=
ˆ
f(x− y)g(y) dny .

Theorem 14.6 (The convolution theorem).

Fx→λ[(f ∗ g)(x)] = f̃(λ)g̃(λ) .

Proposition 14.7.

Fx→λ

[
∂α1

∂xα1
1

∂α2

∂xα2
2

. . .
∂αn

∂xαn
n
f(x)

]
= (iλ1)

α1 . . . (iλn)
αn f̃(λ) .
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14.4 Green’s Function for the Heat Equation (Non-examinable)

Definition 14.8. If the domain of a problem is all of Rn space, then the Green’s function is known
as the fundamental solution.

We will solve the forced heat equation on Rn:
∂u

∂t
− κ∇2u = F (x, t) (x, t) ∈ Rn × (0,∞)

u(x, 0) = f(x) x ∈ Rn .
(†)

We will split this problem into two parts.

(a) Zero forcing and non-zero initial data.
∂u

∂t
− κ∇2u = 0 (x, t) ∈ Rn × (0,∞)

u(x, 0) = f(x) x ∈ Rn .
(†a)

(b) Zero initial data and non-zero forcing.
∂u

∂t
− κ∇2u = F (x, t) (x, t) ∈ Rn × (0,∞)

u(x, 0) = 0 x ∈ Rn .
(†b)

Definition 14.9. The heat kernel in n dimensions is defined as

K(x; t) :=
1

(4πκt)
n
2
exp

[
−|x|2

4κt

]
.

Proposition 14.10. For each t > 0, the Fourier transform of the heat kernel is

K̃(λ; t) = e−κt|λ|2 .

Proof. If
g(x) =

1

(2π)
n
2
e−

|vbx|2
2 ,

then

g̃(λ) =

ˆ
e−iλ·xg(x) dnx

=

ˆ
dx1 . . .

ˆ
dxn

[
1√
2π
e−iλ1x1−x2

1

]
. . .

[
1√
2π
e−iλnxn−x2

n

]
= e−

λ2
1
2 . . . e−

λ2
n
2

= e−
|λ|2
2 .

Then

K̃(λ, t) =
1

(4πκt)
n
2

ˆ
e−iλ·x− |x|2

4κt dnx

=
(2κt)

n
2

(4πκt)
n
2

ˆ
e−i(λ

√
2κt)·x− |x|2

2 dnx x′ =
x√
2κt

, then drop the primes

=

ˆ
e−i(λ

√
2κt)·xg(x) dnx

= g̃(λ
√
2κt)

= e−κt|λ|2 .

□
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Using this result, we can find the solution to equation (†a).

Proposition 14.11. The solution to equation (†a) is

u(x, t) = (K ∗ f)(x) =
ˆ
K(x− y, t)f(y) dny .

Proof. Take the Fourier transform of (†a) to get
∂ũ

∂t
+ κ|λ|2ũ = 0

ũ(λ, 0) = f̃(λ) .

Solving this differential equation gives

ũ(λ, t) = ũ(λ, 0)e−κ|λ|2t

= f̃(λ)K̃(λ, t) .

Therefore, by the convolution theorem, u(x, t) = (K ∗ f)(x). □

Proposition 14.12. The solution to equation (†b) is

u(x, t) =

ˆ t

0

[ˆ
K(x− y, t− s)F (y, s) dny

]
ds .

Proof. Take the Fourier transform of (†b) to get
∂ũ

∂t
+ κ|λ|2ũ = F̃ (λ, t)

ũ(λ, 0) = 0 .

This differential equation is equivalent to

∂

∂t

[
eκ|λ|2tũ(λ, t)

]
= eκ|λ|2tF̃ (λ, t) ,

and so

ũ(λ, t) =

ˆ t

0

e−κ(t−s)|λ|2 F̃ (λ, s) ds

=

ˆ t

0

K̃(λ, t− s)F̃ (λ, s) ds .

The result follows from the convolution theorem. □

Theorem 14.13. The solution to the heat equation in Rn of the form (†) is

u(x, t) = (K ∗ f)(x) +
ˆ t

0

[ˆ
K(x− y, t− s)F (y, s) dny

]
ds .

Proof. Principle of superposition. □

If we set
G(x, t;y, s) = K(x− y, t− s)H(t− s)

and assume that F (x, t) = 0 for t < 0, then we can write solution to (†b) as

u(x, t) =

¨
G(x, t;y, s)F (y, s) dnx ds .

This is the Green’s function we have seen before.
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Theorem 14.14. The Green’s function for the heat equation on Rn with vanishing initial data is

G(x, t;y, s) = K(x− y, t− s)H(t− s)

=


1

[4πκ(t− s)]
n
2
exp

[
− |x− y|2

4κ(t− s)

]
t > s

0 t < s .

Proof. The Green’s function should satisfy the equation

∂G

∂t
− κ∇2G = δ(x− y)δ(t− s) ,

or equivalently its Fourier transform

∂G̃

∂t
+ κ|λ|2G̃ = e−iλ·yδ(t− s) .

Our proposed Green’s function has Fourier transform

G̃(λ, t;y, s) = H(t− s)K̃(λ; t− s)e−iλ·y = H(t− s)e−iλ·ye−κ(t−s)|λ|2 .

This function clearly solves the Fourier transformed equation for t > s and t < s.

If we integrate the transformed equation over (s− ϵ, s+ ϵ) and take ϵ→ 0, we should require

G̃(λ, t;y, s)
∣∣∣t=s+
t=s−

= e−iλ·y .

This is satisfied by the proposed Green’s function since

G̃(λ, s+;y, s) = e−iλ·y and G̃(λ, s−;y, s) = 0 .

□

14.4.1 Duhamel’s Principle

The fact that the same function K(x, t) appeared in both the solution to the homogeneous equation
with inhomogeneous boundary conditions (†a), and the solution to the inhomogeneous equation with
homogeneous boundary conditions (†b) is not a coincidence.

To see this, let us return to the problem (†a) but now suppose we impose the initial condition

u(x, s) = f(x)

at time t = s rather than t = 0. A simple translation shows that for times t > s, the problem is
solved by

u(x, t) =

ˆ
K(x− y, t− s)f(y) dny . (∗a)

On the other hand, the solution for the forced problem (†b) takes the form

u(x, t) =

ˆ t

0

[ˆ
K(x− y, t− s)F (y, s) dny

]
ds . (∗b)

Now suppose that for each fixed time t = s, we view the forcing term F (y, t) as an initial condition
imposed at t = s. The integral in square brackets above represents the effect of this condition
propagated to time t as in (∗a). Finally, the time integral in (∗b) expresses the solution to the forced
problem as the accumulation (superposition) of the effects from all these conditions at times s earlier
than t, each propagated for time interval t− s up to time t. The upper limit t of this integral arose

221



14 Partial Differential Equations on Unbounded Domains IB Mathematical Methods

from the step function H(t− s) in the Green’s function and expresses causality: the solution at time
t depends only on the cumulative effects of conditions applied at earlier times s < t.

The relation between solutions to homogeneous equations with inhomogeneous boundary condi-
tions and inhomogeneous equations with homogeneous boundary conditions is known as Duhamel’s
principle.

14.5 Green’s Function for the Wave Equation (Non-examinable)

Consider the general initial value problem for the wave equation on Rn.
∂2u

∂t2
− c2∇2u = F (x, t) (x, t) ∈ Rn × (0,∞)

u(x, 0) = f(x) x ∈ Rn

∂u

∂t
= g(x) x ∈ Rn .

(†)

We again split the problem into two parts.

(a) Zero forcing and non-zero initial data.
∂2u

∂t2
− c2∇2u = 0 (x, t) ∈ Rn × (0,∞)

u(x, 0) = f(x) x ∈ Rn

∂u

∂t
= g(x) x ∈ Rn .

(†a)

(b) Zero initial data and non-zero forcing.
∂2u

∂t2
− c2∇2u = F (x, t) (x, t) ∈ Rn × (0,∞)

u(x, 0) = 0 x ∈ Rn

∂u

∂t
= 0 x ∈ Rn .

(†)

We will use the function Φ(x, t) defined implicitly by

Φ̃(λ, t) :=
sin c|λ|t
c|λ|

,

and so by Fourier inversion theorem,

Φ(x, t) = Iλ→x

[
sin c|λ|t
c|λ|

]
=

1

(2π)n

ˆ
eiλ·x sin c|λ|t

c|λ|
dnλ .

The computation of this function is difficult in arbitrary dimensions. It depends on whether n is even
or odd. We will consider two important cases.

Proposition 14.15. In R,

Φ(x, t) =
1

2c
(H(x+ ct)−H(x− ct)) .

Proof. Note that

H(x+ ct)−H(x− ct) =

{
1 |x| < ct

0 otherwise .

It is easy to check that its Fourier transform is Φ̃. □
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Proposition 14.16. In R3,

Φ(x, t) =
1

4πc
[δ(|x| − ct)− δ(|x|+ ct)] .

Proof. We will compute the inverse Fourier transform using spherical polar coordinates

λ = (r sin θ cosϕ, r sin θ sinϕ, r cos θ) .

We will align the λ3 axis with the direction of x, so x · λ = r|x| cos θ. Consider
ˆ
|λ|<R

eiλ·xΦ̃(λ, t) d3λ =

ˆ 2π

0

dϕ

ˆ π

0

dθ

ˆ R

0

dr
sin rct

rc
e−i|x|r cos θr2 sin θ

= 2π

ˆ π

0

dθ

ˆ R

0

dr
sin(rct)

i|x|c
∂

∂θ

(
e−i|x|r cos θ

)
= 2π

ˆ R

0

dr
sin(rct)

i|x|c

(
ei|x|r − e−i|x|r

)
=

4π

c|x|

ˆ R

0

dr sin(rct) sin(r|x|) .

The integrand is even, so we can replace
´ R
0

with 1
2

´ R
−R. Using

sinA sinB =
1

2
[cos(A−B)− cos(A+B)] =

1

2
Re
[
ei(A−B) − ei(A+B)

]
gives

Φ(x, t) = lim
R→∞

1

(2π)3

ˆ
|λ|
eiλ·xΦ̃(λ, t) dnλ

= lim
R→∞

π

(2π)3c|x|

ˆ R

−R
dr
(
eir(|x|−ct) − eir(|x|+ct)

)
=

π

(2π)3c|x|
[2πδ(|x| − ct)− 2πδ(|x|+ ct)] ,

and the result follows. □

In both cases, we can write
Φ(x, t) = Φ+(x, t)− Φ−(x, t) .

When n = 3,
Φ±(x, t) =

δ(|x| ∓ ct)

4πc|x|
.

They are often referred to as the advanced and retarded parts of Φ(x, t).

Note that when t > 0, Φ−(x, t) = 0.

Proposition 14.17. The solution to (†a) is given by

u(x, t) = (Φ ∗ g)(x, t) + ∂

∂t
(Φ ∗ f)(x, t) .

Proof. Taking the Fourier transform of (†a) gives
∂2ũ

∂t2
+ c2|λ|2ũ = 0

ũ(λ, 0) = f̃(λ)

∂ũ

∂t
= g̃(λ) .
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The differential equation has a general solution

ũ(λ, t) = A(λ) sin(c|λ|t) +B(λ) cos(c|λ|t) ,

and the initial condition give
B(λ) = f̃(λ) , A(λ) =

1

c|λ|
g̃(λ) .

We have
ũ(λ, t) = Φ̃(λ, t)g̃(λ) + f̃(λ) cos(c|λ|t) = Φ̃(λ, t)g̃(λ) +

∂

∂t

(
Φ̃(λ, t)f̃(λ)

)
.

The result follows from the convolution theorem. □

Let us focus on the term

(Φ ∗ g)(x) =
ˆ

Φ(y, t)g(x− y) dny

in the solution. The contribution from the advanced part, relevant for t > 0, in the case n = 3 is

(Φ+ ∗ g)(x) = 1

4πc

ˆ
δ(|y| − ct)

y
g(x− y) dny =

1

4πc2t
g(x− y) dS .

The integral is equivalent to
t

4π(ct)2

ˆ
|x−y|=ct

g(y) dS = t× ḡ ,

where ḡ is the average of g over the sphere of radius of ct centred at x.

It turns out, in odd dimensions, this part of the solution always looks a bit like this. It always
involves the spherical mean of g over a sphere of radius ct centred at x. This can be interpreted as a
spherical wavefront emanating from the point x and travelling at speed c.

In even dimensions, the solution at (x, t) involves integrals over the ball {y : |x− y| ≤ ct}.

Remark. These observations allow us to conclude the following very different nature of waves in an
even or odd dimensional universe. In odd dimensions, if it is pitch black outside and someone flashes
a torch from x0 at time t = 0, you will see an instantaneous flash of light at time t = |x0|

c . However,
in an even-dimensional world you would see a flash at t = |x0|

c but it would not instantaneously
disappear: instead, it would slowly fade away.

Proposition 14.18. The solution to (†b) is

u(x, t) =

ˆ t

0

[ˆ
Φ(x− y, t− s)F (y, s) dny

]
ds .

Proof. Taking the Fourier transform of (†b) gives
∂2ũ

∂t2
+ c2|λ|2ũ = F̃ (λ, t)

ũ(λ, 0) = 0

∂ũ

∂t
= 0 .

So we want the Green’s function G = G(t; s) for the operator

L =
d2

dt2
+ c2|λ|2 .

This is
G(t; s) =

sin(c|λ|(t− s))

c|λ|
= Φ̃(λ, t− s) .
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Therefore,

ũ(λ, t) =

ˆ t

0

Φ̃(λ, t− s)F̃ (λ, s) ds ,

and the result follows from the convolution theorem. □

Theorem 14.19. The solution to the wave equation in Rn of the form (†) is

u(x, t) = (Φ ∗ g)(x, t) + ∂

∂t
(Φ ∗ f)(x, t) +

ˆ t

0

[ˆ
Φ(x− y, t− s)F (y, s) dny

]
ds .

Proof. Principle of superposition. □

Like the heat equation, if we define F (x, t) = 0 for t < 0 and introduce the function

G(x, t;y, s) = H(t− s)Φ(x− y, t− s) ,

then the solution to (†b) can be written as

u(x, t) =

¨
G(x, t;y, s)F (y, s) dny ds .

We call G the Green’s function for the Wave equation on Rn with vanishing initial data. It satisfies

∂2G

∂t2
− c2∇2G = δ(x− y, t− s) .

14.6 Green’s Function for the Laplacian

Lemma 14.20. A 1D real Green’s function is symmetric.

G(x; ξ) = G(ξ;x) .

Proof.

G(x; ξ) =

∞∑
n=1

1

λn
yn(x)y

∗
n(ξ) ,

where λn and yn are the eigenvalues and eigenfunctions of the differential operators. It is obvious
that for real y(x),

G(x; ξ) = G(ξ;x) .

□

Corollary. Real Green’s function is symmetric.

G(x;y) = G(y;x) .

To find the Green’s function of the Laplacian on a bounded domain Ω with Dirichlet boundary
conditions, we would naturally require{

∇2G(x;y) = δ(x− y) x ∈ Ω

G(x;y) = 0 x ∈ ∂Ω .

However, if we are solving Poisson’s equation with Neumann boundary conditions, then instead
of requiring ∂G

∂n = 0 on ∂Ω, we can only require

∂G

∂n
≡ n(r) · ∇G =

1

A
on ∂Ω ,

where A =
¸
∂Ω

dS is the surface area. This is because a zero flux on the boundary is impossible.
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Proof.
˛
∂Ω

∇G · n dS =

ˆ
Ω

∇2G dV

=

ˆ
Ω

δ(x− y) dV = 1 .

□

Remark. However, when the domain Ω is the whole Rn space, we still require ∂G
∂n = 0 since A→ ∞.

We are interested in the Green’s function for the Rn space with Dirichlet boundary conditions,
also known as the fundamental solutions, such that{

∇2G(x;y) = δ(x− y)

|G(x;y)| → 0 as |x| → ∞ .

Taking the Fourier transform of the equation gives

G̃(λ;y) = −e
−iλ·y

|λ|2
.

We need the following result.

Proposition 14.21. For α > 0 and x ∈ Rn, we have

Fx→λ[|x|−α] = Cn,α|λ|α−n .

Proof. Let fα(x) = |x|−α, we have

f̃α(λ) =

ˆ
|x|−αe−iλ·x dnx .

If we make a change of variables x = RTx′, where R is a rotation matrix, then since det{R} = 1, after
dropping the primes, we have

f̃α(λ) =

ˆ ∣∣RTx
∣∣−αe−iλ·(RTx) dnx

=

ˆ
|x|−αe−i(Rλ)·x dnx = f̃α(Rλ) .

Therefore, f̃α is rotation invariant. We can just write λ = |λ|u for any unit vector u, and the result
will not depend on the direction of u. Making the substitution x′ = |λ|x and dropping primes we get

f̃α(λ) =

ˆ
|x|−αe−i|λ|(m·x) dnx

= |λ|−n
ˆ

|λ|α|x|−αe−i(m·x) dnx = Cn,α|λ|α−n ,

where Cn,α is only dependent on n and α. □

If n > 2, set α = n− 2, there is a constant cn such that

1

|λ|2
= cnFx→λ

[
|x|2−n

]
.
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Theorem 14.22. The free space Green’s function for the Laplacian on Rn with n > 2 is

G(x;y) = − 1

(n− 2)‖Sn−1‖
× 1

|x− y|n−2 ,

where
∥∥Sn−1

∥∥ is the surface area of an n− 1 sphere, given by

‖Sn−1‖ =
2π

n
2

Γ(n2 )
.

In particular, for n = 3,
G(x;y) = − 1

4π

1

|x− y|
.

Proof. Let F (x) = cn|x|2−n, then

G̃(λ;y) = −e−iλ·yF̃ (λ) = −Fx→λ[F (x− y)] .

Therefore,
G(x;y) = − cn

|x− y|n−2 .

To find cn, note that
−∇2

(
|x|2−n

)
=
δ(x)

cn
,

so integrating over |x| ≤ 1 and using the divergence theorem gives
1

cn
= −

ˆ
|x|=1

∇
(
|x|2−n

)
· dS = (n− 2)

ˆ
|x|=1

dS = (n− 2)×
∥∥Sn−1

∥∥ .
□

We need to use a different method to obtain the Green’s function in R2.
Proposition 14.23. For R2, the Green’s function for the Laplacian is given by

G(x;y) =
1

2π
ln |x− y|+ C .

Proof. By translation invariance of the Laplacian, it is enough to consider the case y = 0. For y = 0,
we have |x| = r, so

∇2G =
1

2π
∇2 ln r

=
1

2π

1

r

∂

∂r

(
r
∂

∂r
ln r

)
= 0 .

We need to check that what happens at x = 0. By the divergence theorem, for any ϵ > 0,ˆ
|x|<ϵ

∇2 ln rd2x =

ˆ
|x|=ϵ

∇ ln r · dS

=

ˆ 2π

0

er
ϵ

· erϵ dθ = 2π .

We have ∇2 ln |x| = 0 for all |x| 6= 0 andˆ
|x|<ϵ

∇2 ln |x| d2x = 2π

for any ϵ > 0. Therefore
∇2 ln |x| = 2πδ(x)

and so
G(x;y) =

1

2π
ln |x− y|+ C .

□
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Remark. It is impossible for the 2D Green’s function to vanish at x → ∞. We can control the finite
x at which G vanishes by adjusting the arbitrary constant C.

14.7 The Method of Images

Now we are using the method of images to find the Green’s function of laplacian on a domain Ω that
is not the full Rn space.

14.7.1 3D Half Space

Suppose that we want to find the Green’s function for a domain Ω with Dirichlet boundary conditions,
where Ω is the half-space of R3 with z > 0.

The Green’s function satisfies
∇2G = δ(x− y) for x ∈ Ω

G = 0 on z = 0

G = 0 as |x| → ∞ , x ∈ Ω .

The uniqueness of the solution allows us to solve this using a trick: remove the boundary at z = 0,
consider all of space and add a point source of opposite sign, an image source, at the image point
y′ = (x′, y′,−z′).

The Green’s function satisfies

∇2G = δ(x− y)− δ(x− y′) ,

which, by superposition of the fundamental solutions, gives

G(x;y) = − 1

4π|x− y|
+

1

4π|x− y′|
.

We can check that this solution satisfies all the conditions, and therefore, by the uniqueness of the
solution, Green’s function is

G(x;y) = − 1

4π

(
1

|x− y|
− 1

|x− y′|

)
.

If instead we impose Neumann boundary conditions at z = 0:

∂G

∂n
=
∂G

∂z
= 0 at z = 0 ,

and still require G → 0 as |x| → ∞, x ∈ Ω, then we need a point charge of the same sign at the
image point. The Green’s function is

G(x;y) = − 1

4π

(
1

|x− y|
+

1

|x− y′|

)
.

14.7.2 2D Quarter Plane

Suppose now we want to find Green’s function for a domain Ω with Dirichlet boundary conditions,
where Ω is the quarter plane of R2 with x > 0, y > 0.
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The Green’s function now satisfies
∇2G = δ(x− y1) for x ∈ Ω

G = 0 on x = 0

G = 0 on y = 0

G = 0 as |x| → ∞ , x ∈ Ω .

We then need three image charges: two of the opposite sign at y2 = (−x0, y0), y3 = (x0,−y0) and
one of the same sign at y4 = (−x0,−y0). By superposition of the fundamental solutions, we have

G(x;y0) =
1

2π
ln

|x− y1||x− y4|
|x− y2||x− y3|

.

14.7.3 Sphere

Suppose now we want to find the Green’s function for a domain Ω : |x| < a in R3, under Dirichlet
boundary conditions.

The Green’s function satisfies {
∇2G = δ(x− y) for x ∈ Ω

G = 0 for |x| = a .

The image source would be of the strength − a
|y| at the inverse point of the source

y′ =
a2

|y|2
y .

The Green’s function is therefore

G(x;y) = − 1

4π

(
1

|x− y|
− a

|y||x− y′|

)
.

Proof. at |x| = a,

|x− y′| =
√

|x|2 + |y′|2 − 2x · y′

=

√
a2 +

a4

|y|2
− 2

a2

|y|2
x · y

=
a

|y|

√
|y|2 + a2 − 2x · y

=
a

|y|
|x− y| .

Therefore, G(x;y) = 0 at the boundary |x| = a. □

14.7.4 Circle

Suppose now we want to find the Green’s function for a domain Ω : |x| < a in R2, under Dirichlet
boundary conditions.

The image point is the inverse point again, with y′ = a2

|y|2y, but now the image just needs to have
the strength −1 as we are able to adjust the constant C. The Green’s function is

G(x;y) =
1

2π
ln

|x− y|
|x− y′|

+ C ,

where the constant C is chosen to ensure that G = 0 on the circle |x| = a.
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14.8 The Integral Solution of Poisson’s Equation

To find the solution of Poisson’s equation with an arbitrary source distribution, we will need Green’s
identity.

Theorem 14.24 (Green’s first identity). Suppose Ω ⊂ Rn is a compact set with boundary ∂Ω,
and let ϕ, ψ : Ω → R be a pair of functions on Ω that are regular throughout Ω.ˆ

Ω

ϕ∇2ψ + (∇ϕ) · (∇ψ) dV =

ˆ
∂Ω

ϕ∇ψ · n dS ,

where n is the outward pointing normal to ∂Ω.

Proof. Apply product rule and divergence theorem.ˆ
Ω

∇ · (ϕ∇ψ) dV =

ˆ
Ω

ϕ∇2ψ + (∇ϕ) · (∇ψ) dV

=

ˆ
∂Ω

ϕ∇ψ · n dS .

□

Theorem 14.25 (Green’s second identity). Suppose Ω ⊂ Rn is a compact set with boundary
∂Ω, and let ϕ, ψ : Ω → R be a pair of functions on Ω that are regular throughout Ω.ˆ

Ω

ϕ∇2ψ − ψ∇2ϕ dV =

˛
∂Ω

(ϕ∇ψ − ψ∇ϕ) · n dS =:

˛
∂Ω

ϕ
∂ψ

∂n
− ψ

∂ϕ

∂n
dS .

Proof. Interchange ϕ and ψ in the Green’s first identity to obtainˆ
Ω

ψ∇2ϕ+ (∇ψ) · (∇ϕ) dV =

ˆ
∂Ω

ψ∇ϕ · n dS ,

then subtract from the Green’s first identity. □

Remark. We will apply the Green’s second identity to the fundamental solution. However, G(x,y) is
singular at y so it is not clear whether the identity is valid, because the divergence theorem usually
requires functions to be regular throughout Ω.

Consider Poisson’s equation in a domain Ω with inhomogeneous Dirichlet boundary conditions:{
∇2ϕ = ρ(x) x ∈ Ω

ϕ(x) = f(x) x ∈ ∂Ω .
(†)

We will first directly apply Green’s identity with ψ = G in a less rigorous way, which givesˆ
Ω

(ϕ∇2G−G∇2ϕ) dV =

˛
∂Ω

(ϕ∇G−G∇ϕ) · n dS

=⇒
ˆ
Ω

(ϕδ(x− y)−Gρ(x)) dV =

˛
∂Ω

(f(x)∇G− 0×∇ϕ) · n dS

=⇒
ˆ
Ω

ϕ(x)δ(x− y) dV =

ˆ
Ω

ρ(x)G(x;y) dV +

˛
∂Ω

f(x)(∇G · n) dS .

Theorem 14.26. The integral solution of the Poisson’s equation in domain Ω with Dirichlet
boundary condition {

∇2ϕ = ρ(x) x ∈ Ω

ϕ(x) = f(x) x ∈ ∂Ω
(†)

is given by
ϕ(y) =

ˆ
Ω

ρ(x)G(x;y) dV +

˛
∂Ω

f(x)
∂G(x;y)

∂n
dS .
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Proof (Non-examinable). Here is the formal proof. To remove the singularity issues of the Green’s
function, consider a ball Bϵ of radius ϵ� 1 centred at the singular point x = y. Let Ω′ be the region

Ω′ = Ω−Bϵ .

Now the Green’s function is perfectly regular everywhere in Ω′, so we can apply Green’s second
identity with ψ = G to getˆ

Ω′
ϕ∇2G−G∇2ϕ dV = −

ˆ
Ω′
Gρ(x) dV

=

ˆ
∂Ω′

ϕ∇G · n−G∇ϕ · n dS

=

ˆ
∂Ω

ϕ∇G · n dS +

ˆ
Sn−1
ϵ

ϕ∇G · n−G∇ϕ · n dS ,

where the first equality follows since ∇2G = 0 in Ω′. Note that on the inner boundary, a sphere of
radius ϵ, the outward-pointing unit normal is n = −r̂. As ϵ → 0, the Green’s function approaches
the fundamental solution so

G|Sn−1
ϵ

= − 1

(n− 2)
∥∥Sn−1

ϵ

∥∥ 1

ϵn−2
,

n · ∇G|Sn−1
ϵ

= − 1

‖Sn−1‖
1

ϵn−1
.

The measure on an (n− 1)-sphere of radius ϵ is dS = ϵn−1 dΩn, where dΩn is an integral over angles.
Therefore, we have

−
ˆ
Sn−1
ϵ

G∇ϕ · n dS =
ϵ∥∥Sn−2
ϵ

∥∥
ˆ

n · ∇ϕ dΩn .

Since ϕ is regular at y, the value of this integral is bounded, so this term vanishes as ϵ→ 0. Also,ˆ
Sn−1
ϵ

ϕ∇G · n dS = − 1∥∥Sn−1
ϵ

∥∥
ˆ
ϕ dΩn = −ϕ̄ ,

where ϕ̄ is the average value of ϕ on the sphere surrounding y. As ϵ→ 0, this ϕ̄→ ϕ(y). Putting all
these together we find that, as ϵ→ 0 so that Ω′ = Ω,

ϕ(y) =

ˆ
Ω

Gρ(x) dV +

ˆ
∂Ω

ϕ∇G · n dS .

This is the result as claimed. □

If we want Ω to be all space, we can use the fundamental solution for G but we need to ensure that
the surface integral → 0.

Corollary. The solution to the Poisson’s equation on all space:{
∇2ϕ = ρ(x) x ∈ Rn

ϕ(x) = 0 |x| → ∞

is given by
ϕ(y) =

ˆ
Ω

ρ(x)G(x;y) dV .

Corollary. The solution to the Laplace’s equation{
∇2ϕ = 0 x ∈ Ω

ϕ(x) = f(x) x ∈ ∂Ω

is given by
ϕ(y) =

˛
∂Ω

f(x)
∂G(x;y)

∂n
dS .
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An integral solution of Poisson’s equation with Neumann boundary conditions
∇2ϕ = ρ(x) x ∈ Ω

∂ϕ

∂n
= f(x) x ∈ ∂Ω

can also be derived. From Green’s identity
ˆ
Ω

(ϕ∇2G−G∇2ϕ) dV =

˛
∂Ω

(ϕ∇G−G∇ϕ) · n dS ,

we have
ϕ(y) =

ˆ
Ω

ρ(x)G(x,y) dV +
1

A

˛
∂Ω

ϕ(x) dS −
˛
∂Ω

f(x)G(x;y) dS .

Theorem 14.27. The integral solution of the Poisson’s equation over full Ω = Rn domain with
Neumann boundary condition 

∇2ϕ = ρ(x) x ∈ Ω

∂ϕ

∂n
= f(x) x ∈ ∂Ω

(†)

is given by
ϕ(y) =

ˆ
Ω

ρ(x)G(x;y) dV −
˛
∂Ω

f(x)G(x;y) dS .

as long as the surface integral over ϕ is finite.

Remark. The solution also works with finite Ω and ∂Ω although it contains an integral of the unknown
Φ because this is essentially a constant term. Since we are dealing with a problem with Neumann
boundary conditions, the solution is determined up to an unknown constant and such an integral
term will not affect our result. In a problem with the Neumann boundary condition, we only care
about ∇ϕ.

Example. Solve the electric potential ϕ of a charged wire of length 2L with charged density µ per
unit length, lying along the z axis from z = −L to z = L.

We have the Poisson’s equation
∇2ϕ = ρ(x)

with

ρ(x) =

{
µ
ϵ0
δ(x) for − L ≤ z ≤ L

0 otherwise .

The Green’s function is the fundamental solution, so the integral solution is

ϕ(y) =

ˆ
R3

ρ(x)

4πϵ0|x− y|
d3x

=
µ

4πϵ0

ˆ L

−L
dz

¨
δ(x)

|x− y|
dx dy

=
µ

4πϵ0

ˆ L

−L

dz√
x′2 + y′2 + (z − z′)2

,

which, after a substitution of z − z′ =
√
x′2 + y′2 sinhu and relabelling, gives

ϕ =
µ

4πϵ0

[
sinh−1 L− z√

x2 + y2
+ sinh−1 L+ z√

x2 + y2

]
.
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Example. Solution of Laplace’s equation in 3D half space.

Find the solution of Laplace’s equation in the 3D half-space with z > 0 subject to the Dirichlet
boundary condition ϕ = f(x, y) on z = 0.

Ω it the half-space, and the bounding surface ∂Ω is the z = 0 plus the hemisphere at ∞. We can
neglect the hemisphere at ∞ since ϕ→ 0 there. Hence, the integral solution is given by

ϕ(y) =

˛
∂Ω

f(x)
∂G

∂n
dS .

The Green’s function, derived previously using the method of image, is

G(x,y) = − 1

4π

(
1

|x− y|
− 1

|x− z|

)
.

We have

∂G

∂z

∣∣∣∣
z=0

= − 1

4π

∂

∂z

{
1√

(x− x′)2 + (y − y′)2 + (z − z′)2

− 1√
(x− x′)2 + (y − y′)2 + (z + z′)2

}∣∣∣∣∣
z=0

= − z′

2π[(x− x′)2 + (y − y′)2 + z′2]
3
2

dx dy ,

and so
ϕ(y) =

z′

2π

ˆ ∞

−∞

ˆ ∞

−∞

f(x, y)

[(x− x′)2 + (y − y′)2 + z′2]
3
2

dx dy .
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15 Group Theory

15.1 Mappings

These alternative terminologies are common when talking about groups.

Definition 15.1. A map f : X → Y is one-to-one (injective) if f(x1) = f(x2) implies x1 = x2. f
maps distinct elements to distinct elements.

Definition 15.2. A map f : X → Y is onto (surjective) if for every y ∈ Y , there is at least one
x ∈ X such that f(x) = y.

15.2 Groups

Definition 15.3. A group is a triple (G, · , I) of a set G, a binary operation · on G, and an element
I ∈ G such that the following axioms are satisfied:

(G0) Closure. ∀g1, g2 ∈ G, g2 · g1 ∈ G;

(G1) Associativity. ∀g1, g2, g3 ∈ G, g3 · (g2 · g1) = (g3 · g2) · g1;

(G2) Identity. ∃I ∈ G such that ∀g ∈ G, g · I = I · g = g;

(G3) Inverse. ∀g ∈ G, ∃g−1 ∈ G such that g · g−1 = g−1 · g = I.

Remarks.

• Sometimes axiom G0 is not stated since it is implied in the definition of binary operations.

• It is common to abbreviate the group (G, · , I) as G, and group product g2 · g1 as g2g1.

• A set of elements with two binary operations can form more complicated algebraic structures,
including rings and fields.

Definition 15.4. A set R together with two binary operations and two identities, one for each
operation, (R,+, e, ·, u), is a ring if elements in R satisfy the ring axioms:

(R0) Closure. ∀a, b ∈ R, a+ b, a · b ∈ R;

(R1) Associativity. ∀a, b, c ∈ R, a+ (b+ c) = (a+ b) + c, a · (b · c) = (a · b) · c;

(R2) Additive commutativity. ∀a, b ∈ R, a+ b = b+ a;

(R3) Distributivity. ∀a, b, c ∈ R, a · (b+ c) = a · b+ a · c, (a+ b) · c = a · c+ b · c;

(R4) Additive identity. ∃e ∈ R such that ∀a ∈ R, e+ a = a;

(R5) Multiplicative identity. ∃u ∈ R, u 6= e such that ∀a ∈ R, u · a = a · u = a;

(R6) Additive inverse. ∀a ∈ R, ∃b ∈ R such that a+ b = e.

Definition 15.5. A ring F is a field if it is commutative in multiplication and any non-zero element
has a multiplicative inverse:

(F7) Multiplicative commutativity. ∀a, b ∈ F, a · b = b · a.

(F8) Multiplicative inverse. ∀a ∈ F, a 6= e, ∃b ∈ F such that a · b = u.

Remark. Common fields include Q, R and C under addition and multiplication.
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Proposition 15.6. The identity of a group is unique.

Proof. Assume group G has two distinct identities I, I ′, then

II ′ = I = I ′ ,

which contradicts our assumption. □

Proposition 15.7. A group element’s inverse is unique.

Proof. Assume some g ∈ G has two distinct inverses h, k, then

gh = I and kg = I

=⇒ (kg)h = k(gh) = kI = k

=⇒ Ih = k so h = k ,

which contradicts our assumption. □

Proposition 15.8. The inverse of a product is given by

(g2g1)
−1 = g−1

1 g−1
2 .

Proof.

g−1
1 g−1

2 g2g1 = g−1
1 Ig1

= g−1
1 g1

= I .

□

15.2.1 Commutativity and Order

Definition 15.9. A group (G, ·, I) is Abelian if for all g1, g2 ∈ G, we have g1g2 = g2g1. Otherwise,
the group is non-Abelian.

Definition 15.10. A group is finite if it contains a finite number of elements. The order of a finite
group is the number of elements it contains, denoted as |G|.

An infinite group has infinitely many elements.

Definition 15.11. The order of a group element g ∈ G is the least integer q such that gq = I. For
any finite group,

q ≤ |G| .

15.3 Symmetry of the Square

Groups arise naturally in the study of symmetries. Let us first consider an n-gon lying on the complex
plane C.

Definition 15.12. An isometry is a rigid motion or transformation which preserves distances
between points.

Let set Dn consist of the isometries of C that send the n-gon to itself. If f, g : C → C are isometries
that send the n-gon to itself, then so is the composition f ◦ g, so ◦ defines a binary operation on Dn.
Let I ∈ Dn be the isometry I(x) = x.
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m2

m1
m4 m3

R

Theorem 15.13. (Dn, ◦, I) is a group, called the nth dihedral group. It has order 2n.

Remark. Most pure mathematicians will confusingly denote this group as D2n, based on its order.

Let us consider the group of transformations which represent the symmetries of the square. Let
rotations of 0◦, 90◦, 180◦, 270◦ anticlockwise be I, R, R2, R3 respectively. Let reflections under four
axes of symmetry be m1, m2, m3, m4 respectively.

This is then the 4-fold dihedral group, D4. This is an example of a point group, for which the
operations leave one point fixed.

Each reflection is its own inverse:

m2
1 = m2

2 = m2
3 = m2

4 = I ,

and for rotations,
RR3 = R2R2 = R4 = I .

Definition 15.14. There is a minimal subset from which all other group elements can be obtained
by composition. We say the group is generated by such a subset, and the members of the subset are
called the generators of the group.

Example. For instance, the subset {R,m1} generates the group as follows:

{I, R, R2, R3, m1, m2, m3, m4} = {R4, R, R2, R3, m1, R
2m1, R

3m1, Rm1} .

15.3.1 Group Table

We can construct a table for all g2g1, where g1 are on the top row and g2 are on the leftmost column.
For the D4 group, the group table is:

I R2 R R3 m1 m2 m3 m4

R2 I R3 R m2 m1 m4 m3

R R3 R2 I m4 m3 m1 m2

R3 R I R2 m3 m4 m2 m1

m1 m2 m3 m4 I R2 R R3

m2 m1 m4 m3 R2 I R3 R

m3 m4 m2 m1 R3 R I R2

m4 m3 m1 m2 R R3 R2 I
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By observing the group table, we can notice that each row and column is a complete rearrangement
of the group elements. This is the rearrangement theorem.

Theorem 15.15 (Rearrangement theorem). Let G = {g1, . . . , gn} be a group, then ∀g ∈ G,

gG = {gg1, . . . , ggn}

contains each element of the group once and only once.

Proof. ∀gα ∈ G, ∃gβ ∈ G such that ggβ = gα (just let gβ = g−1gα), so gG contains all elements in G.

Also, the set gG has no repeated element, since if ggβ = gg′β , then

g−1ggβ = g−1gg′β =⇒ gβ = g′β .

□

Corollary. We also have that, ∀g ∈ G,

Gg = {gig | gi ∈ G} = G .

15.3.2 Subgroups

Definition 15.16. Let (G, ·, I) be a group and H ⊆ G, then (H, ·, I) is a subgroup of G, denoted
H ≤ G if

(i) I ∈ H;

(ii) for all h1, h2 ∈ H, h1 · h2 ∈ H;

(iii) (H, ·, I) is a group.

A subgroup H ≤ G is proper if H 6= {I} and H 6= G.

Remark. To exclude the case that H = G, we use H < G.

Example. Proper subgroups of D4.

By examining the group table of D4, we can spot 5 order-2 subgroups:

{I, R2}, {I, m1}, {I, m2}, {I, m3}, {I, m4} ,

and an order-4 cyclic subgroup, C4:
{I, R, R2, R3} .

In addition, there are two other order-4 subgroups:

{I, R2, m1, m2} and {I, R2, m3, m4} ,

which are called Klein four-group or Vierergruppe, denoted by K4 or V4.

15.3.3 Cyclic Groups

Definition 15.17. A cyclic group is a group G that can be generated by a single group element g.
A finite cyclic group of order n is denoted as Cn.

A finite cyclic group of order n contains group members

{I, g, g2, . . . , gn−1} ,

and it follows that I = gn.
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15.4 Homomorphism

Definition 15.18. If (H, ·H , IH) and (G, ·G, IG) are groups then a function ϕ : H → G is called a
homomorphism if for all a, b ∈ H, we have

ϕ(a ·H b) = ϕ(a) ·G ϕ(b) .

Remark. A homomorphism is a map between groups that preserves group operations but is not
necessarily 1-1 or onto.

Definition 15.19. If ϕ : H → G is a homomorphism, then

• the image of ϕ is
Im(ϕ) := {g ∈ G | g = ϕ(h) for some h ∈ H} .

• the kernel of ϕ is
ker(ϕ) := {h ∈ H | ϕ(h) = IG} .

Lemma 15.20. If ϕ : H → G is a homomorphism, then

(i) ϕ(IH) = IG,

(ii) for all h ∈ H, we have ϕ(h−1) = ϕ(h)−1.
Proof.

(i)
ϕ(IH) ·G ϕ(IH) = ϕ(IH ·H IH) = ϕ(IH)

=⇒ ϕ(IH) = IG .

(ii)
ϕ(h) ·G ϕ(h−1) = ϕ(h ·H h−1) = ϕ(IH) = IG

ϕ(h−1) ·G ϕ(h) = ϕ(h−1 ·H h) = ϕ(IH) = IG

These are the defining properties of ϕ(h)−1, so ϕ(h−1) = ϕ(h)−1. □

Example. Let G = (R,+,0) and G′ = U(1), the multiplicative group of unit-magnitude complex
numbers. Define a mapping ϕ : R → U(1) such that for x ∈ R,

ϕ(x) = eix .

This is a homomorphism because

ϕ(x+ y) = ei(x+y) = eixeiy = ϕ(x)ϕ(y) .

The kernel of ϕ is ker(ϕ) = {2Nπ | N ∈ Z} = {. . . , −2π, 0, 2π, . . . }

Proposition 15.21. If ϕ : H → G is a homomorphism, then Im(ϕ) ≤ G and ker(ϕ) ≤ H.

Proof. We have ϕ(IH) = IG ∈ Im(ϕ). Im(ϕ) is closed because for any g1 = ϕ(h1), g2 = ϕ(h2) ∈ Im(ϕ),
g1g2 = ϕ(h1h2) ∈ Im(ϕ). Also, the inverse exists for all elements in Im(ϕ) by Lemma 15.20.

We have IH ∈ ker(ϕ). If h1, h2 ∈ ker(ϕ), then h1h2 ∈ ker(ϕ) since it must be mapped to IG.
Also, if h ∈ ker(ϕ), then h−1 ∈ ker(ϕ) since ϕ(h−1) = (ϕ(h))−1 = I−1

G = IG, so ker(ϕ) ≤ H. □

Definition 15.22. If a homomorphism ϕ : H → G is invertible then it is an isomorphism, written
G ∼= H.

Remark. Two groups are usually considered identical if there is an isomorphism between them.

The following theorem is useful for checking whether a homomorphism is an isomorphism.
Theorem 15.23. If ϕ : H → G is a homomorphism, then it is an isomorphism if and only if
Im(ϕ) = G and ker(ϕ) = IH .
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15.5 Group Actions (Non-examinable)

We motivated our definition of a group G as the symmetries of an object X, but when defining a
group we abstracted the properties that symmetries of an object have and there was no longer an X.

It is now the time to take the object that our groups acting on back.

Definition 15.24. An action of a group (G, · , I) on a set X is a function ∗ : G×X → X satisfying

(A1) Identity. For all x ∈ X we have I ∗ x = x.

(A2) Associativity. For all a, b ∈ G and x ∈ X we have (a · b) ∗ x = a ∗ (b ∗ x).

Examples.

(i) Any group acts on any set by the trivial action g ∗ x = x.

(ii) Any group acts on the set X = G by the left regular action g ∗ g′ = g · g′ and the right regular
action g ∗ g′ = g′ · g.

(iii) The dihedral group acts on the set of vertices of the regular n-gon.

Definition 15.25. Let G act on X. The orbit of x ∈ X is the set

G ∗ x := {y ∈ X | y = g ∗ x for some g ∈ G} .

The stabiliser of x ∈ X is
Gx := {g ∈ G | g ∗ x = x} .

Theorem 15.26 (Orbit-stabiliser theorem). Let a finite group G act on a set X.

|G| = |Gx||G ∗ x| .

Definition 15.27. The symmetric group of a set X, Sym(X) is the group whose elements are all the
bijection functions from the set to itself ϕ : X → X, and whose group operation is the composition
of functions.

Theorem 15.28. The action ∗ of a group G on a set X is the same as the homomorphism

ρ : G→ Sym(X)

g 7→ tg ,

where tg is the function

tg : X → X

x 7→ g ∗ x .

Theorem 15.29 (Cayley’s theorem). Any group is isomorphic to a subgroup of some symmetric
group.

Proof. Consider the left regular action of G on the set X = G. By the construction in Theorem 15.28,
this corresponds to a homomorphism ρ : G→ Sym(G). The image Im(ρ) of ρ is a subgroup of Sym(G),
and we may consider as a homomorphism ρ : G → Im(ρ). If g ∈ ker(ρ) then g ∗ h = h for all h ∈ G,
but as g ∗ h = g · h it then follows that g = I, so ker(ρ) = {I}. It then follows that ρ : G→ Im(ρ) is
an isomorphism, so G is isomorphic to Im(ρ), which is a subgroup of Sym(G). □
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15.6 Cosets and Lagrange’s Theorem

15.6.1 Cosets

Definition 15.30. A left coset of a subgroup H ≤ G is an orbit of the right regular action of H on
G. We write G/H for the set of orbits of this action, and call it the set of left cosets. If g ∈ G then
its left coset is

gH := {g′ ∈ G | g′ = gh for some h ∈ H} .

A right coset of H ≤ G is an orbit of the left regular action of H on G, and we write H\G for the
set of right cosets.

Proposition 15.31. For a subgroup H of an Abelian group G, the left coset gH and the right coset
Hg are identical.

Proof. Trivial by the definition of Abelian groups. □

Proposition 15.32. A subgroup H of G and its left (or right) cosets partition G.
Proof.

(i) Two cosets are either disjoint or equal.

Suppose g1H and g2H have one element in common: g1h1 = g2h2. Then

g1H = g2h2h
−1
1 H = g2H

since h2h−1
1 ∈ H. So if there is one element in common, the cosets are identical.

(ii) Two cosets g1H and g2H are identical if and only if g−1
1 g2 ∈ H.

If g−1
1 g2 = h ∈ H, then

g1H = g1hH = g1g
−1
1 g2H = g2H .

Conversely, if g1H = g2H,
H = g−1

1 g2H ,

so g−1
1 g2h ∈ H ∀h ∈ H, so g−1

1 g2 ∈ H.

(iii) Every element of G is in some coset.

Since H contains I, then for any element g ∈ G, the coset gH contains g. □

15.6.2 Lagrange’s Theorem

Theorem 15.33 (Lagrange’s theorem). Let G be a finite group and let H ≤ G, then

|G| = n|H|, n ∈ Z .

Proof. This follows immediately from Proposition 15.32. □

Corollary. The order of every element of G also divides |G|.

Proof. Any g ∈ G generates a cyclic subgroup of G. □

Proposition 15.34. Any group of prime order is cyclic.

Proof. Let G be a group of order p, where p is a prime number, and g ∈ G, g 6= I. Consider
the subgroup H of G generated by g, which must be a cyclic group with order greater than 1. By
Lagrange’s theorem, a subgroup of G can only have order 1 or p, so the group generated by g must
be G itself, and so G is cyclic. □
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15.7 Conjugacy Class

15.7.1 Conjugacy Class

Definition 15.35. Two group elements g1, g2 ∈ G are conjugate to each other if there exists some
group element g such that

g2 = gg1g
−1, or equivalently g2g = gg1 .

The conjugate action of G on a subgroup H ≤ G is

g ∗ h := ghg−1 .

Definition 15.36. An equivalence relation is a binary relationship between elements of a set, written
g1 ∼ g2, which satisfies

(i) Reflexivity: g1 ∼ g1.

(ii) Symmetry: g1 ∼ g2 implies g2 ∼ g1.

(iii) Transitivity: If g1 ∼ g2 and g2 ∼ g3, then g1 ∼ g3.

Proposition 15.37. Conjugacy is an equivalence relation.

Proof.

(i) Choose g = I.
g1 = Ig1I

−1 .

(ii) Suppose that g2 = gg1g
−1, then for g′ = g−1,

g1 = g′g2g
′−1 .

(iii) If g2 = gag1g
−1
a and g3 = gbg2g

−1
b , then

g3 = gg1g
−1 ,

where g = gbga. □

Definition 15.38. The conjugacy relation partitions any group G into disjoint equivalence classes
called conjugacy classes. Elements in the same class are conjugate, and elements in different classes
are not.

Proposition 15.39. For a group G,

(i) For any g ∈ G, a ∈ G, gag−1 is in the same conjugacy class as a.

(ii) The identity of any group is a conjugacy class by itself.

(iii) Each element of an Abelian group is in a class by itself.

Proof.

(i) Trivial by definition.

(ii) For any g ∈ G,
gIg−1 = gg−1 = I .

(iii) For any g1, g2 in an Abelian group G,

g2g1g
−1
2 = g2g

−1
2 g1 = g1 ,

so g1 can only be a conjugacy class by itself. □
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Example. Conjugacy classes of D4.

I R2 R R3 m1 m2 m3 m4

R2 I R3 R m2 m1 m4 m3

R R3 R2 I m4 m3 m1 m2

R3 R I R2 m3 m4 m2 m1

m1 m2 m3 m4 I R2 R R3

m2 m1 m4 m3 R2 I R3 R

m3 m4 m2 m1 R3 R I R2

m4 m3 m1 m2 R R3 R2 I

The 5 conjugacy classes are:

{I}, {R2}, {R, R3}, {m1, m2}, {m3, m4} .

15.7.2 Normal Subgroup

Definition 15.40. A subgroup H of G is a normal subgroup if for every h ∈ H, g ∈ G,

ghg−1 ∈ H .

We write H ⊴G to mean H is a normal subgroup of G, and H ◁G to exclude H = G.

The normal subgroup H ⊴G is proper if it is not {I} or G.

Remark. A normal subgroup consists of complete conjugacy classes of the group.

Proposition 15.41. Any subgroup of an Abelian group is normal.

Proof. Let H be a subgroup of an Abelian group G. For all g ∈ G and h ∈ H we have

ghg−1 = gg−1h = h .

□

Proposition 15.42. The left and right cosets of H are identical if and only if H ⊴G.

Proof.
gHg−1 = H ⇐⇒ gH = Hg .

□

Proposition 15.43. If ϕ : H → G is a homomorphism, then ker(ϕ)⊴H.

Proof. We have ker(ϕ) ≤ H by Proposition 15.21. ker(ϕ) is normal in H since for k ∈ ker(ϕ) and
h ∈ H,

ϕ(hkh−1) = ϕ(h)ϕ(k)ϕ(h−1) = ϕ(h)IGϕ(h)
−1 = IG ,

so hkh−1 ∈ ker(ϕ). □
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15.7.3 Quotient Groups

We can try to define a group operation on the cosets of H ≤ G by

(g1H) · (g2H) := (g1g2)H ,

but we must be worried about where this is well-defined: the same coset may be represented by many
elements of G, and we must show that the answer obtained does not depend on which representative
of each coset we choose.

If g1H = g′1H and g2H = g′2H, then we must have g1 = g′1h1 and g′2 = g2h2. Then

g′1g
′
2H = g1h1g2h2H = g1h1g2H = g1g2(g

−1
2 h1g2)H ,

which is equal to g1g2H (for which the product is therefore well-defined) if and only if g−1
2 h1g2 ∈ H

holds for all g2 ∈ G and h1 ∈ H. Therefore, H must be normal in G.
Theorem 15.44. If H is a normal subgroup of G, then

(g1H) · (g2H) := g1g2H

is a well-defined binary operation on the set G/H of left cosets, and (G/H, ·, IH) is a group.

Proof. The binary operation is well-defined, as shown above. The associativity is satisfied since

(g1H · g2H) · g3H = (g1g2H) · g3H
= (g1g2g3)H

= g1H · (g2H · g3H) .

The identity is IH since gH · IH = (g · I)H = gH, and we also have the inverse: gH · g−1H =
(g · g−1)H = IH. (G/H, ·, IH) is a well-defined group. □
Definition 15.45. If H is a normal subgroup of G, then the quotient group is the set G/H of left
cosets with the group structure described in Theorem 15.44.

Theorem 15.46 (The first isomorphism theorem). Let ϕ : G→ H be a homomorphism. Then
the mapping

ρ : G/ ker(ϕ) → Im(ϕ)

g ker(ϕ) 7→ ϕ(g)

is well-defined and is a group isomorphism.

Proof. From Proposition 15.43, ker(ϕ)⊴G, so we have a quotient group G/ ker(ϕ).

If g ker(ϕ) = g′ ker(ϕ), then g′ = gk for some k ∈ ker(ϕ). Thus

ϕ(g′) = ϕ(g · k)
= ϕ(g) · ϕ(k)
= ϕ(g) · I = ϕ(g) ,

and hence ρ(g ker(ϕ)) = ρ(g′ ker(ϕ)), which means that ρ is well-defined.

We have

ρ(a ker(ϕ) · b ker(ϕ)) = ρ(ab ker(ϕ))

= ϕ(a) · ϕ(b)
= ρ(a ker(ϕ)) · ρ(b ker(ϕ)) ,

so ρ is a homomorphism,

The function ρ is surjective, as the set Im(ϕ) consists, by definition, of the elements of the form
ϕ(g). If ρ(a ker(ϕ)) = IH then ϕ(a) = IH , so a ∈ ker(ϕ), but then a ker(ϕ) = IG ker(ϕ). Thus the
kernel of ρ is {IG ker(ϕ)}, so ρ is injective, and is therefore an isomorphism. □
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Example. Consider a homomorphism ϕ : D3 → C2, where

{ID, R,R2,m1,m2,m3} 7→ {IC , IC , IC , a, a, a}.

The kernel of ϕ is
K = {ID, R,R2} = C3 .

We can check that D3/C3 is isomorphic to C2.

15.8 The Permutation Groups

15.8.1 Permutation Groups and Permutations

Definition 15.47. The finite symmetric group, or the permutation group, Sn, is the symmetric group
of a finite set of n elements.

Proposition 15.48. The order of a permutation group Sn is

|Sn| = n! .

Proposition 15.49. For n > 1, Sn−1 is a subgroup of Sn.

Remark. Just think of leaving the nth element fixed and permuting the other n− 1 elements.

Since a permutation is a bijection of a set to itself, it can be represented using the following convention.

Definition 15.50. Cauchy’s two-line notation is a notation of permutations putting each element
in the first row and its image below in the second row. If σ ∈ Sn is a permutation of the set
X = {x1, x2, ..., xn}, then

σ =

(
x1 x2 . . . xn

σ(x1) σ(x2) . . . σ(xn)

)
.

Remark. The inverse permutation is easily found by swapping the two rows.

σ−1 =

(
σ(x1) σ(x2) . . . σ(xn)
x1 x2 . . . xn

)
.

Remark. We can omit the columns referring to the unchanged objects, and swap the order of any
columns.

Example. (
2 3 1 4 5
3 1 2 4 5

)
≡
(
2 3 1
3 1 2

)
≡
(
1 2 3
2 3 1

)
.

Definition 15.51. For a permutation group Sn acting on a set of objects X = {ai}ni=1, a k-cycle

(a1 a2 . . . ak) ∈ Sn ,

on the elements a1, a2, . . . , ak ∈ {x1, x2, . . . , xn} is the permutation given by(
a1 a2 . . . ak
a2 a3 . . . a1

)
.

Remark. Remember that σ ∈ Sn is a bijection function acting on a set X.

For example, let a1, a2, . . . , ak ∈ {1, 2, . . . , n}, then the k cycle

(a1 a2 . . . ak)(i) =


aj+1 if i = aj for j < k

a1 if i = ak

i if i 6= aj for any j .
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Lemma 15.52.

(i) Cycles can be cycled. (a1 a2 . . . ak) = (ak a1 . . . ak−1).

(ii) Disjoint cycles commute. If σ = (σ1 . . . σm) and τ = (τ1 . . . τn) are disjoint cycles ({σi}mi=1 ∩
{τj}nj=1 = ∅), then

στ = τσ .

Theorem 15.53. Any permutation can be uniquely decomposed into disjoint cycles up to

• cycling the terms in a cycle;

• reordering the cycles.

Proof. Consider a general permutation σ ∈ Sn:

σ =

(
1 2 3 . . . n
p1 p2 p3 . . . pn

)
.

In this notation, we can rearrange the n columns in any order without changing the meaning of the
permutation. Move the second column corresponding to p1, and the third column corresponding to
the second row of the second column, etc., until there is a subset of columns on the left arranged in
the k-cycle form:

σ =

(
1 p1 pr . . . pt . . .
p1 pr ps . . . 1 . . .

)
.

Repeat this process to the remaining columns until all the columns have been arranged in groups of
k-cycle forms. The k-cycles constructed in this way are necessarily disjoint. □

Definition 15.54. The cycle shape of a permutation σ ∈ Sn is the list of numbers (n2, n3, . . . )
specifying the number of 2-cycles, 3-cycles, etc. in the unique decomposition of σ into disjoint cycles.

Lemma 15.55. If σ ∈ Sn, then

σ(a1 a2 . . . ak)σ
−1 = (σ(a1) σ(a2) . . . σ(ak)) .

Proof. If σ−1(i) /∈ {a1, a2, . . . , ak}, then

σ(a1 a2 . . . ak)(σ
−1(i)) = σσ−1(i) = i .

For the right hand side, as i /∈ {σ(a1), σ(a2), . . . , σ(ak)}, (σ(a1) σ(a2) . . . σ(ak)) also fixes i.

If σ−1(i) = aj , then

(σ(a1 a2 . . . ak)σ
−1)(i) = (σ(a1 a2 . . . ak))(σ

−1(i))

= (σ(a1 a2 . . . ak))(aj)

= σ(aj+1) ,

which is also the result of applying (σ(a1) σ(a2) . . . σ(ak)) to i = σ(aj). □

Theorem 15.56. Elements τ, τ ′ ∈ Sn are conjugate if and only if they have exactly the same cycle
shape.

Proof. If
τ = (a11 a

1
2 . . . a1k1)(a

2
1 a

2
2 . . . a2k2) . . . (a

r
1 a

r
2 . . . arkr )

is the disjoint cycle decomposition of τ , then for σ ∈ Sn, by Lemma 15.55, we have

στσ−1 = (σ(a11) σ(a
1
2) . . . σ(a

1
k1))(σ(a

2
1) σ(a

2
2) . . . σ(a

2
k2)) . . . (σ(a

r
1) σ(a

r
2) . . . σ(a

r
kr )) ,

which have an identical cycle shape.
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Conversely, if τ and τ ′ have exactly the same cycle shape, write

τ = (a11 a
1
2 . . . a1k1)(a

2
1 a

2
2 . . . a2k2) . . . (a

r
1 a

r
2 . . . arkr )

τ ′ = (b11 b
1
2 . . . b1k1)(b

2
1 b

2
2 . . . b2k2) . . . (b

r
1 b

r
2 . . . brkr ) .

Define a function σ : {1, 2, . . . , n} → {1, 2, . . . , n} by

σ(aij) = bij ,

then by construction, τ ′ = στσ−1, so τ and τ ′ are conjugate.

15.8.2 Transpositions

Definition 15.57. A 2-cycle is called a transposition.

Proposition 15.58. An n-cycle can be decomposed into (n− 1) 2-cycles.

Proof.

(a1 a2 . . . an) = (a1 an)(a1 a2 . . . an−1)

= (a1 an)(a1 an−1) . . . (a1 a3)(a1 a2) .

□

Remark. Note that these 2-cycles are not disjoint and therefore non-commutative.

Definition 15.59. A permutation σ ∈ Sn is odd if it is a composition of an odd number of 2-cycles,
and is even if it is a composition of an even number of 2-cycles. The evenness and oddness is called
the parity of the permutation.

The sign of the permutation is

sign(σ) := (−1)#of transpositions in the composition of σ .

Lemma 15.60. Every permutation σ ∈ Sn is a composition of transpositions, and the sign of a
permutation is unique. That is, the function

sign : Sn → {−1, 1}

is well-defined.

Theorem 15.61. The function sign : Sn → {−1, 1} = C2 is a homomorphism.

Proof. If σ can be written as a composition of a transpositions and τ can be written as a composition
of b transpositions, then στ can be written as a+ b transpositions. Thus,

sign(στ) = (−1)a+b = (−1)a(−1)b = sign(σ) · sign(τ) .

□

Definition 15.62. The alternating group An is the subgroup of Sn consisting of even permutations.

Corollary. An is the kernel of the homomorphism sign : Sn → C2, so is a normal subgroup of Sn by
Proposition 15.43.
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16 Representation Theory

16.1 Group of Matrices

Definition 16.1. The nth general linear group over F is

GL(n,F) := ({X ∈ Matn×n(F) | det(X) 6= 0}, · , In×n) ,

where Matn×n(F) := {n× n matrices with entries in F} and F is usually R or C.

It can be easily confirmed that GL(n,F) satisfies the axioms of groups.

Lemma 16.2. The mapping

det : (GL(n,F), · , In×n) → (F \ {0},×, 1)

is a group homomorphism.

Proof. This is because the determinant satisfies

det(A · B) = det(A)× det(B) .

□

Definition 16.3. The nth special linear group over F is

SL(n,F) := ({X ∈ Matn×n(F) | det(X) = 1}, · , In×n) .

Proposition 16.4. SL(n,F) is a normal subgroup of GL(n,F).

Proof. SL(n,F) is the kernel of the map det : GL(n,F) → F \ {0}. □

Remark. det : GL(n,F) → F \ {0} is surjective, so by the isomorphism theorem, we have

GL(n,F)
SL(n,F)

∼= F \ {0} .

Remark. The group GL(n,F) acts on Fn, where we think of Fn as column vectors, via

GL(n,F)× Fn → Fn

(A,v) 7→ Av .

This corresponds to a homomorphism

ρ : GL(n,F) → Sym(Fn) ,

which is injective, and whose image consists of those bijections Fn → Fn which are linear maps. This
gives an isomorphism from GL(n,F) to the group of invertible linear maps from Fn to itself.

Definition 16.5. The nth orthogonal group is

O(n) := {X ∈ GL(n,R) | XTX = In×n} ,

and the nth special orthogonal group is

SO(n) := {X ∈ SL(n,R) | XTX = In×n} .

Definition 16.6. The nth unitary group is

U(n) := {X ∈ GL(n,C) | X†X = In×n} ,

and the nth special unitary group is

SU(n) := {X ∈ SL(n,C) | X†X = In×n} .
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16.2 Representation

Definition 16.7. A representation of a group G acting on a vector space V over a field F is a group
homomorphism from G to GL(V ). It is a map

ρ : G→ GL(V )

such that
ρ(g1g2) = ρ(g1)ρ(g2)

for all g1, g2 ∈ G. We will denote the representation as (ρ, V ), or simply ρ.

16.2.1 Faithful Representation

Definition 16.8. A representation of a group G is faithful when the kernel of the mapping from G
to GL(V ) is {I}.

Remark. This is equivalent to saying that the homomorphism from G to GL(V ) is injective (one-to-
one). Under such constraint, the group G will be isomorphic to a subgroup of GL(V ).

Example. A faithful representation of D4 is

ρ(I) = I =

(
1 0
0 1

)
ρ(R) = R =

(
0 −1
1 0

)
ρ(R2) = R2 =

(
−1 0
0 −1

)
ρ(R3) = R3 =

(
0 1
−1 0

)
ρ(m1) = m1 =

(
−1 0
0 1

)
ρ(m2) = m2 =

(
1 0
0 −1

)
ρ(m3) = m3 =

(
0 −1
−1 0

)
ρ(m4) = m4 =

(
0 1
1 0

)
Remark. Underlying vector space.

Imagine an arbitrary vector x in the plane of the square with its tail at the centre. A left-
multiplication by the matrices in the faithful representations of D4 groups performs exactly the
corresponding symmetry operations to x.

It can be seen that the two Vierergruppen leave some subspaces of R2 unchanged. The
Vierergruppe {I, R2, m1, m2} leaves invariant the two subspaces of R2 consisting of the scalar
multiples of (1, 0)T and (0, 1)T. The Vierergruppe {I, R2, m3, m4} leaves invariant the two subspaces
of R2 consisting of the scalar multiples of (1, 1)T and (−1, 1)T.

16.2.2 Regular Representation

Claim 16.9. Any finite group can be represented faithfully by matrices.

Remark. This is a consequence of Cayley’s theorem (Theorem 15.29). Since the symmetric group Sn
has a natural faithful permutation representation as the group of n× n matrices with entries only 0
and 1, and exactly one 1 in each row and column (see the regular representation below), it follows
that every finite group is a matrix group.

We will demonstrate this by constructing the regular representation of a group.

Consider a group G of order n. Map the identity in the group I ∈ G to the n× n identity matrix
In×n. We are then able to form a set of (n− 1) other matrices by rearranging the rows of the identity
matrix in such a way as to correspond to the group table.
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Example. The Regular Representation of D3.

We can work out the regular representation of D3 from the group table.

I R R2 m1 m2 m3

R R2 I m3 m1 m2

R2 I R m2 m3 m1

m1 m2 m3 I R R2

m2 m3 m1 R2 I R

m3 m1 m2 R R2 I

ρ(I) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ρ(R) =


0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0



ρ(R2) =


0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0

 ρ(m1) =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0



ρ(m2) =


0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0

 ρ(m3) =


0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0



The row of g in the group table is obtained by multiplying the row vector (I,R,R2, m1,m2,m3)
on the left of ρ(g). For example,

(I,R,R2,m1,m2,m3)ρ(R) = (R,R2, I,m3,m1,m2) .

If we multiply the column vector (I,R,R2, m1,m2,m3)
T by ρ(g) on the right, then we get the

row corresponding to g−1. For example,

ρ(R)


I
R
R2

m1

m2

m3

 =


R2

I
R
m2

m3

m1

 .

Remark. Note that the traces of all the matrices above vanish, except for the identity matrix ρ(I) = I.

tr(ρ(g)) =

{
|G| if g = I

0 otherwise .
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Note also that the determinants are all ±1, with a positive sign for the identity and the rotations
and a negative sign for the reflections. This corresponds to the sign of the permutations if we think
of rotations as permuting the 3 vertices.

Remark. For the regular representation of any g ∈ G, we have

(ρ(g))n = I ,

where n is the order of G. This follows from the isomorphism g 7→ ρ(g) and that gn = I for every
g ∈ G. This restricts the determinants of the regular representation

det(ρ(g))
n
= 1 ,

i.e. det(ρ(g)) is an nth root of unity.

16.3 Equivalence and Inequivalence

Definition 16.10. If (ρ, V ) and (ρ′,W ) are representations of G, we say a linear map ϕ : V →W is
a G-linear map if

ϕ ◦ ρ(g) = ρ′(g) ◦ ϕ

for all g ∈ G. The vector space of G-linear maps between two representations (ρ, V ) and (ρ′,W ) of
G is denoted as HomG(V,W ).

Definition 16.11. If the G-linear map ϕ between two representations (ρ, V ) and (ρ′,W ) is an
isomorphism (and therefore is invertible), then

ρ′(g) = ϕ ◦ ρ(g) ◦ ϕ−1

for all g ∈ G. We then say that ϕ intertwines ρ and ρ′.

Remark. ϕ ∈ HomG(V,W ) is an intertwining map precisely if ϕ is a bijection.

We often write the intertwining maps between representations as matrices.

Definition 16.12. The two sets of matrices {ρ(gi)}ni=1 and {ρ′(gi)}ni=1 representing a group G are
called equivalent if there exists a invertible matrix S such that, for all i,

ρ′(gi) = Sρ(gi)S
−1 .

Such transformation from ρ to ρ′ is called a similarity transformation. If no such S exists, then the
two representations are inequivalent.

Remark. This corresponds to a change of basis in the underlying vector space.

Example. Two equivalent representations of C4.

Consider the two representations of the C4 group:

ρ(I) =

(
1 0
0 1

)
ρ(g) =

(
0 1
−1 0

)
ρ(g2) =

(
−1 0
0 −1

)
ρ(g3) =

(
0 −1
1 0

)
,

and
ϕ(I) =

(
1 0
0 1

)
ϕ(g) =

(
i 0
0 −i

)
ϕ(g2) =

(
−1 0
0 −1

)
ϕ(g3) =

(
−i 0
0 i

)
.

These two representations are equivalent because they are related by

S =

(
1 1
i −i

)
, S−1 =

1

2

(
1 −i
1 i

)
.
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Example. Two inequivalent representations of C4.

Consider the two representations of the C4 group:

ρ(I) =

(
1 0
0 1

)
ρ(g) =

(
0 1
−1 0

)
ρ(g2) =

(
−1 0
0 −1

)
ρ(g3) =

(
0 −1
1 0

)
,

and
ψ(I) =

(
1 0
0 1

)
ψ(g) =

(
i 0
0 i

)
ψ(g2) =

(
−1 0
0 −1

)
ψ(g3) =

(
−i 0
0 −i

)
.

The two representations are now inequivalent. The only solution of S for ρ(g2)S = Sψ(g2) has
det S = 0, and so any choice of S would be non-invertible.

Example. One-dimensional representations of Cn.

Consider the cyclic group of order n, Cn:

Cn = {I, g, . . . , gn−1} .

Let
ω = exp

(
2πi

n

)
,

then Cn has a faithful representation defined by

ρ(I) = 1 ρ(g) = ω ρ(g2) = ω2 . . . ρ(gn−1) = ωn−1 .

Now consider the cyclic group of prime order, Cp, where p is a prime number. Then we can find
p− 1 one-dimensional faithful representations of Cp, given by

ρq(I) = 1 ρq(g) = ωq ρq(g
2) = ω2q . . . ρq(g

p−1) = ωq(p−1) ,

for q ∈ {1, 2, . . . , p− 1}. All these representations are faithful since

ρq(g
r) 6= ρ(I)

for all q, r ∈ {1, 2, . . . , p− 1}, and they are all clearly inequivalent.

Example. Quaternions.

The quaternions form an order-8 group Q8. It can be faithfully represented by 2 × 2 matrices.
The elements of Q8 can be denoted as {±1,±I,±J ,±K}, where

1 =

(
1 0
0 1

)
I =

(
0 1
−1 0

)
J =

(
0 i
i 0

)
K =

(
i 0
0 −i

)
.

There are some properties of Q:

(i) Q8 has three order-4 subgroups, all isomorphic to C4.

(ii) Q8 has only one order-2 subgroup.

(iii) All the subgroups of Q8 are normal

(iv) Q8 is not Abelian.

We can observe the Hamilton’s relations:

I2 = J 2 = K2 = IJK = −1 ,

and further we have
IJ = K = −JI .
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16.4 Characters

Definition 16.13. For a representation of a groupG, ρ : G→ GL(V ), where V is a finite-dimensional
vector space over F, the character of ρ is the function χρ : G→ F given by

χρ(g) = tr(ρ(g)) .

Example. Character of regular representations.

In regular representations, a group G of order n is represented by n matrices of dimensions n×n.
Only the representation of the identity is tr(I) = n, while others are traceless. Therefore, the character
of the regular representation of G is

{n, 0, 0, ..., 0} .

Theorem 16.14. Two finite-dimensional complex representations of a finite group have the same
character if and only if they are equivalent.

Proof. We will prove the theorem in one direction only. Traces are invariant under cyclic permutations
of matrices.

tr(ABC . . .MN) = AijBjk . . .MmnNni = tr(BC . . .MNA) .

Therefore,
tr
(
Sρ(g)S−1

)
= tr

(
ρ(g)S−1S

)
= tr(ρ(g)) .

□

Example. Representations of the cyclic group C4.

We have three representations of C4:

ρ(I) =

(
1 0
0 1

)
ρ(g) =

(
0 1
−1 0

)
ρ(g2) =

(
−1 0
0 −1

)
ρ(g3) =

(
0 −1
1 0

)
,

ϕ(I) =

(
1 0
0 1

)
ϕ(g) =

(
i 0
0 −i

)
ϕ(g2) =

(
−1 0
0 −1

)
ϕ(g3) =

(
−i 0
0 i

)
,

ψ(I) =

(
1 0
0 1

)
ψ(g) =

(
i 0
0 i

)
ψ(g2) =

(
−1 0
0 −1

)
ψ(g3) =

(
−i 0
0 −i

)
.

The representations ρ and ϕ are equivalent, while ψ is inequivalent to them. The characters of these
representations are

χρ = {2, 0,−2, 0} ,

χϕ = {2, 0,−2, 0} ,

χψ = {2, 2i,−2,−2i} .

We can see that, as stated in Theorem 16.14, the characters are the same for equivalent representations
and different for inequivalent representations.

Proposition 16.15. Characters are the same within a conjugacy class.

Proof. If g1, g2 ∈ G are conjugate, then there exists some g ∈ G such that

g2 = gg1g
−1 .

Consider the faithful representation ρ of G,

ρ(g2) = ρ(g)ρ(g1)(ρ(g))
−1 .

=⇒ tr(ρ(g2)) = tr(ρ(g1)) ,

so g2 and g1 have the same character. □
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16.5 Reducibility

Definition 16.16. Given two matrices M and N, their direct sum is given by

M⊕ N =



0 · · · 0

... . . . ...
0 · · · 0

0 · · · 0

... . . . ...
0 · · · 0

M

N


.

Definition 16.17. The direct sum of two representations ρ : G → GL(U) and ϕ : G → GL(V ) is
given by

ρ⊕ ϕ : G→ GL(U ⊕ V )

g 7→ ρ(g)⊕ ϕ(g)

Proposition 16.18. If ρ : G → GL(U) and ϕ : G → GL(V ) are two finite-dimensional
representations of a group G, then the direct sum of the two representations ψ = ρ ⊕ ϕ is also a
representation of G.

Proof.

ψ(gi)ψ(gj) = (ρ(gi)⊕ ϕ(gi))(ρ(gj)⊕ ϕ(gj))

= (ρ(gi)ρ(gj))⊕ (ϕ(gi)ϕ(gj))

= ρ(gigj)⊕ ϕ(gigj)

= ψ(gigj) .

□

Corollary. The direct sum of multiple representations of G,
n⊕
i=1

ρi : G→ GL

(
n⊕
i=1

Vi

)

g 7→
n⊕
i=1

ρi(g) ,

is also a representation of G.

We know that smaller dimensional representations can combine to form larger ones. How can we
know if a representation can be broken down into smaller representations or not (reducibility)?

Definition 16.19. Let ρ : G→ GL(V ) be a representation of G. A linear subspace W ⊆ V is called
G-invariant if for all g ∈ G and w ∈W ,

ρ(g)w ∈W .

Definition 16.20. If ρ : G→ GL(V ) is a representation ofG and the subspaceW of V isG-invariant,
then we may define a representation ρW : G→ GL(W ) by

ρW (g)w = ρ(g)w for w ∈W .

We call ρW a subrepresentation of ρ.

Remark. All representations can form a subrepresentation with the trivial G-invariant subspaces,
including the whole vector space V , and {0}.
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Definition 16.21. A representation
ρ : G→ GL(V )

is said to be irreducible if it has only trivial subrepresentations in V and {0}. If there is a proper
(nontrivial) invariant subspace, then ρ is said to be reducible.

Proposition 16.22. Suppose ρ : G → GL(V ) is a representation, and V = U ⊕W . Then ρ is a
direct sum of two subrepresentations (ρU , U) and (ρW ,W ) if and only if there is a basis v1, . . . ,vd of
V such that v1, . . . ,vr is a basis of U and vr+1, . . . ,vd is a basis for W and the matrices ρ(g) are all
block diagonal.

Example. Representations of Vierergruppe.

Consider the following two representations of V4.

ρ(I) =

(
1 0
0 1

)
ρ(g1) =

(
−1 0
0 −1

)
ρ(g2) =

(
−1 0
0 1

)
ρ(g3) =

(
1 0
0 −1

)
,

ϕ(I) =

(
1 0
0 1

)
ϕ(g1) =

(
−1 0
0 −1

)
ϕ(g2) =

(
0 −1
−1 0

)
ϕ(g3) =

(
0 1
1 0

)
.

Note that the ρ representation is diagonal, so ρ is reducible to two 1-dimensional representations.
ϕ is an equivalent representation of ρ, related by a similarity transformation:

ρ(g) = Sϕ(g)S−1 , where S =

(
1 1
−1 1

)
.

This similarity transformation corresponds to a rotation of 45◦. Since the representation ρ has
invariant subspaces Uρ = span((1, 0)), Wρ = span((0, 1)), the representation ϕ should have invariant
subspaces Uϕ = span((1, 1)), Wϕ = span((1,−1)).

We have seen that the direct sum of representations of G forms block diagonal matrices, which is
a reducible representation. However, the inverse statement is not necessarily true. The matrices of
reducible representation need not be fully block-diagonal.

For example, consider the product of two block-triangular matricesa1 b1 e1
c1 d1 f1
0 0 h1

a2 b2 e2
c2 d2 f2
0 0 h2

 =

a1a2 + b1c2 a1b2 + b1d2 a1e2 + b1f2 + e1h2
c1a2 + d1c2 c1b2 + d1d2 c1e2 + d1f2 + f1h2

0 0 h1h2

 .

We can see that the matrix multiplication of the upper-left 2× 2 block and lower-right 1× 1 block is
preserved. Therefore, this 3-dimensional representation can be reduced to a two-dimensional and a
one-dimensional representation: (

a b
c d

)
and

(
h
)
.

However, note that there is only one invariant subspace, which is spanned by (1, 0, 0) and (0, 1, 0).
Vectors proportional to (0, 0, x3) will not remain in the space spanned by (0, 0, 1).
Proposition 16.23. Suppose ρ : G → GL(V ) is a representation and W ≤ V , then (ρW ,W ) is a
subrepresentation, and ρ is therefore reducible, if and only if there is a basis v1, . . . ,vd of V such
that v1, . . . ,vr is a basis of W and the matrices ρ(g) are all upper-block-triangular.

ρ(g) =

 0 · · · 0

... . . . ...
0 · · · 0

ρW (g) A(g)

ρU(g)


.
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Remark. In this case, (ρ, V ) is not a direct sum of (ρW ,W ) and (ρU , U), and (ρ, V ) is said not fully
reducible.

Definition 16.24. A representation is fully reducible if it is block diagonal and can be written as a
direct sum of its subrepresentations.

Remark. This is the case when we include infinite groups. If we only consider the finite groups, we
can state something further.

However, before we proceed, here is a quick caveat. Throughout this chapter, we will only consider
fields F = R or C, which are of characteristic zero. This means that in their algebraic structures,

1 + 1 + · · ·+ 1 6= 0 ,

where 1 is the multiplicative identity and 0 is the additive identity of the field.

Here is a quick glance of how we will proceed.

Theorem 16.25 (Maschke’s theorem). Let G be a finite group and let (ρ, V ) be a representation
of G over a field F of characteristic zero. Suppose W ≤ V is a G-invariant subspace. Then there is a
G-invariant complement to W , i.e. a G-invariant subspace U of V such that V = U ⊕W .

Corollary (fully reducibility). If G is a finite group, and (ρ, V ) is a reducible representation of G
over a field of characteristic zero. Then V =

⊕r
i=1Wi is a direct sum of representations with each

Wi irreducible.

Remark. For a finite group, reducible is equivalent to fully reducible. This is because, for finite
groups, every finite-dimensional representation is equivalent to a unitary representation.

16.5.1 Group-invariant Inner Product and Unitarity

Definition 16.26. Recall that if V is a complex vector space then a Hermitian inner product is a
map (−,−) : V × V → C satisfying

(i) Sesquilinear. For a, b ∈ C, x,y, z ∈ V ,

(ax+ by, z) = a∗(x, z) + b∗(y, z) ,

(x, ax+ bz) = a(x,y) + b(x, z) .

(ii) Hermitian.
(x,y) = (y,x)∗ .

(iii) Positive definite. For all x ∈ V \ {0},

(x,x) > 0 .

Remark. The standard inner product on Cn is given by

〈x|y〉 =
n∑
i=1

x∗i yi .

Definition 16.27. Let (ρ, V ) be a representation of G. A Hermitian inner product on a V is G-
invariant if

(ρ(g)x, ρ(g)y) = (x, y)

for all g ∈ G and x,y ∈ V .
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Definition 16.28. We say that a representation (ρ, V ) of a group G is unitary if there is a basis of
V such that the corresponding map G→ GL(n,C) has an image inside U(n).

Lemma 16.29. A representation (ρ, V ) of G is unitary if and only if V has a G-invariant inner
product.

Proof. If (ρ, V ) is unitary then let e1, . . . , en be a basis for V such that ρ(g) ∈ U(n) for all g ∈ G. It
is easy to check that  n∑

i=1

λiei,

n∑
j=1

µjej

 =

n∑
i=1

λ∗iµi

defines a G-invariant inner product on V .

Conversely, if V has a G-invariant inner product (−,−), we can find an orthonormal basis
v1, . . . ,vn for V . Then (−,−) corresponds to the standard inner product with respect to this basis.
So if the inner product is G-invariant, then

(v1,v2) = (ρ(g)v1, ρ(g)v2) = (ρ(g)†ρ(g)v1,v2)

for all g ∈ G and v1,v2 ∈ V , and so
ρ(g)†ρ(g) = I ,

which implies that ρ is unitary. □

Theorem 16.30 (Weyl’s unitary trick). If (ρ, V ) is a complex representation of a finite group G,
then there is a G-invariant Hermitian inner product on V , and (ρ, V ) is unitary.

Proof. Pick any Hermitian inner product (e.g. choose a basis {ei} for V and use the standard inner
product). Define the new inner product [−,−] by

[x,y] =
∑
g∈G

〈ρ(g)x|ρ(g)y〉 .

It is easy to see that [−,−] is Hermitian because 〈−|−〉 is defined so.

The Hermitian inner product defined so is G-invariant because for any h ∈ G and x,y ∈ V ,

[ρ(h)x, ρ(h)y] =
∑
g∈G

〈ρ(h)ρ(g)x|ρ(h)ρ(g)y〉

=
∑
g′∈G

〈ρ(g′)x|ρ(g′)y〉

= [x,y]

by Cayley’s theorem (Theorem 15.29). Then by Lemma 16.29, the representation (ρ, V ) is unitary.□

Remark. The restriction of G being finite comes from the summation and the application of Cayley’s
theorem.

Corollary. Every finite subgroup G of GL(n,C) is conjugate to a subgroup of U(n).

Proof. If G ≤ GL(n,C), then the inclusion map ρ : G→ GL(n,C) is a representation. By the unitary
trick, ρ is a unitary representation. There is P ∈ GL(n,C) such that Pρ(g)P−1 ∈ U(n) for all g ∈ G.
□

Remark. All finite groups can be seen as groups of generalised rotations and reflections within a
complex vector space, representable by unitary matrices. Here, generalised rotations and reflections
mean group actions in the underlying vector space which preserve the length (metric induced by inner
product, defined as [x,x]1/2) and orthogonality.

256



16 Representation Theory IB Mathematical Methods

Finally, combining all the statements we made before in this chapter, we can prove the Maschke’s
theorem.

Theorem 16.31 (Maschke’s theorem). Let (ρ, V ) be a representation of a finite group G in
V equipped with an inner product (−,−). For any G-invariant subspace W < V , its orthogonal
complement, defined as

W⊥ := {v ∈ V | (v,w) = 0 for all w ∈W} ,

is also an invariant subspace.

Proof. First, W⊥ is indeed a subspace of V over F. Suppose that w ∈ W and w1,w2 ∈ W⊥. For
a, b ∈ F,

(w, aw1 + bw2) = a(w,w1) + b(w,w2) = 0 ,

so aw1 + bw2 ∈W⊥.

Then, for g ∈ G, w ∈ W and w′ ∈ W⊥, and by the unitarity of representations of a finite group
(Theorem 16.30), we have

(w, ρ(g)w′) = (ρ(g)ρ(g−1)w, ρ(g)w′)

= (ρ(g−1)w,w′)

= 0 ,

since ρ(g−1)w ∈W .

Hence, ρ(g)w′ ∈W⊥ for all g ∈ G, and so W⊥ is a G-invariant subspace of V . □

Corollary. The following statements of the representation (ρ, V ) of a finite group G are equivalent:

(i) (ρ, V ) is reducible.

(ii) (ρ, V ) is fully reducible (reduction to block diagonal form).

(iii) V has mutually orthogonal G-invariant subspaces.

16.5.2 Schur’s Lemma

Lemma 16.32 (Schur’s lemma). Suppose (ρV , V ) and (ρW ,W ) are irreducible representations of
G, where both V and W are vector spaces over an algebraically closed field F (e.g. C). Then

(i) every element of HomG(V,W ) is either 0 or an isomorphism;

(ii) the only nontrivial G-linear maps are the scalar multiples of the identity.

Proof (Non-examinable).

(i) Let ϕ be a non-zero G-linear map from V to W . Let x ∈ kerϕ < V , then for any g ∈ G,

ϕ(ρV (g)x) = ρW (g)ϕ(x) = 0 .

Therefore, ρV (g)x is in the null space of ϕ, so kerϕ is a invariant subspace of ρV (g). Since ρV
is irreducible, the invariant subspace kerϕ must be {0}, so ϕ is injective.
Similarly 0 6= Imϕ ≤ W so Imϕ = W since ρW is irreducible. Thus ϕ is both injective and
surjective, so an isomorphism.

(ii) Suppose ϕ ∈ HomG(V,W ) is non-zero. Then by (i) ϕ is an isomorphism so V = W . Since
F is algebraically closed we may find λ an eigenvalue of ϕ. Then ϕ − λIV has non-zero and
Ginvariant kernel and so the map is zero. Thus ϕ = λIV as required. □
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Remark. This means that if the two irreducible representations ρα and ρβ are inequivalent, then only
a zero map X = 0 satisfies

Xρα = ρβX .

If the two irreducible representations are equivalent, then X can only be a multiple of the identity
map (X = λI).

Corollary. Every irreducible complex representation of an Abelian group G is one-dimensional.

Proof. Let (ρ, V ) be a complex irreducible representation of G. For each g ∈ G, ρ(G) ∈ HomG(V, V )
as G is Abelian. So by Schur’s lemma, ρ(g) = λgIV for some λg ∈ C. This is irreducible only if V is
one-dimensional. □

Theorem 16.33 (The great orthogonality theorem). Let G be a finite group with |G| elements.
Let {ρi(g)}mi=1 be the set of the inequivalent irreducible representations of G, with dimensions {ni}mi=1.
For any two of these representations, ρα and ρβ , the matrix elements satisfy∑

g∈G
(ρα(g))ij(ρβ(g

−1))kl =
|G|
nα

δαβδilδjk .

Proof (Non-examinable). This follows from Schur’s lemma. Let ρα and ρβ be two irreducible unitary
representations with dimensions nα and nβ . Consider an arbitrary nα × nβ matrix X, and let

A =
∑
g∈G

ρα(g)Xρβ(g
−1) =

∑
g∈G

ρα(g)Xρ
†
β(g) .

Now multiply by ρα(h) on the left of A for any h ∈ G to get

ρα(h)A =
∑
g∈G

ρα(h)ρα(g)Xρβ(g
−1)

=
∑
g∈G

ρα(h)ρα(g)Xρβ(g
−1)ρβ(h

−1)ρβ(h)

=
∑
g∈G

ρα(hg)Xρ
†
β(g)ρ

†
β(h)ρβ(h)

=
∑
g∈G

ρα(hg)X(ρβ(h)ρβ(g))
†ρβ(h)

=

∑
g∈G

ρα(hg)Xρβ((hg)
−1)

ρβ(h)
= Aρβ(h)

by the rearrangement theorem (Theorem 15.15).

Consider the two cases:

• If ρα and ρβ are inequivalent, then by Schur’s lemma, A = 0. Therefore,∑
g∈G

ρα(g)Xρ
†
β(g) = 0 .

Choose X to be the matrix such that Xmn = δmjδnk, then the expression reduces to∑
g∈G

(ρα(g))ij(ρβ(g
−1))kl = 0 .

258



16 Representation Theory IB Mathematical Methods

• If ρα and ρβ are equivalent, then by Schur’s lemma, A = λIn×n. Taking traces on both sides
gives

nαλ =
∑
g∈G

tr
(
ρ(g)Xρ(g−1)

)
=
∑
g∈G

tr
(
Xρ(g)ρ(g−1)

)
= |G| trX .

Therefore, we have ∑
g∈G

ρ(g)Xρ(g−1) =
|G|
nα

In×n trX .

Take Xmn = δmjδnk and write in index notation, we get∑
g∈G

(ρ(g))ij(ρ(g
−1))kl =

|G|
nα

δilδjk .

Combining the two cases gives the theorem. □

16.6 Unfaithful Representations

Although our focus will be mainly drawn on faithful representations, we still need to consider
unfaithful representations that are merely homomorphic (and not isomorphic) to G.

Proposition 16.34. The mapping from any group G to the trivial group C1 = {I}:

ϕ : G→ C1 ,

g 7→ I ∀ g ∈ G

is a homomorphism.

Proof. Trivially,
ϕ(g2g1) = ϕ(g2)ϕ(g1) = I ∀ g2, g1 ∈ G .

□

The kernel of this homomorphism is the set of all the group elements G, and all the elements in G
can have the same trivial representation

ϕ(g) =
(
1
)
.

Remark. In the trivial representation, the representations of the group elements can also be the
identity matrix of any dimension.

Example. There are also some non-trivial unfaithful mapping of D4. Consider the mapping D4 →
C2, where the faithful representation of C2 is taken to be

(
1
)

and
(
−1
)
. We have the unfaithful

representations of D4:

{I,R,R2, R3,m1,m2,m3,m4} 7→ {(1), (1), (1), (1), (−1), (−1), (−1), (−1)}

{I,R,R2, R3,m1,m2,m3,m4} 7→ {(1), (−1), (1), (−1), (1), (1), (−1), (−1)}
{I,R,R2, R3,m1,m2,m3,m4} 7→ {(1), (−1), (1), (−1), (−1), (−1), (1), (1)} .

The kernels of the three representations are the normal subgroups of D4: C4 and two
Vierergruppen respectively.
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Remark. Examining the 1-dimensional representations of a group is instructive since

• All 1D representations are irreducible.

• Any two distinct 1-dimensional representations are inequivalent.

Proof. We always have D = SDS−1 if all these matrices are 1D, since 1D matrices are
commutative in multiplication. □

• The trace of the representation is the entry in the 1× 1 matrix.

16.7 Character Table

Definition 16.35. A character table is a list of the characters of all the inequivalent irreducible
representations.

I g1 · · · gi · · · gr

χ1 1 1 · · · 1 · · · 1

...
...

χj · · · · · · · · · χj(gi) · · · · · ·

...
...

χr
...

Note that it is common to put the trivial representation in the first row.

Before we continue stating the properties of the character table, we need some definitions and
lemmas.

Definition 16.36. We say a function f : G → F is a class function if f(hgh−1) = f(g) for all
g, h ∈ G, i.e. the function outputs the same result for the group elements in the same conjugacy
class.

We will write CG for the F-vector space of class functions on G.

Remark. The character, χ : G→ F is a class function by Proposition 16.15.

We can make CG, the space of class functions into a Hermitian inner product space.

Definition 16.37. Define the Hermitian inner product in CG to be

〈f1|f2〉G :=
1

|G|
∑
g∈G

f1(g)f2(g)
∗ .

Remark. Let |cg| be the number of elements in the same conjugacy class of g ∈ G. Select one element
from each conjugacy class to form the set {g1, g2, . . . , gr}, then the inner product simplifies to

〈f1|f2〉G :=

r∑
i=1

|cg|
|G|

f1(gi)f2(gi)
∗ .
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Theorem 16.38 (Character orthogonality). If χα, χβ are the characters of the irreducible
representations (ρα, Vα), (ρβ , Vβ) of G, then

〈χα|χβ〉 =

{
1 if ρα ∼= ρβ

0 if χα and χβ are inequivalent .

Proof. Set i = j and k = l and sum over repeated indices in the great orthogonality theorem
(Theorem 16.33) using

δjlδjl = δjj = nα ,

we find ∑
g∈G

χα(g)χβ(g)
∗ = |G|δαβ .

□

Finally, we can state the following properties of the character table.

Theorem 16.39. Let {χi}mi=1 be the characters of the inequivalent irreducible representations,
{(ρi, Vi)}mi=1, of the group G with order n.

(i) The sum of characters for all the group elements of a representation, excluding the trivial
representation, is zero. ∑

g∈G
χi(g) =

{
n for i = 1

0 for i 6= 1 .

(ii) Characters are the same within the same conjugacy class.

χi(g) = χ(hgh−1) for g, h ∈ G .

(iii) The rows of the character table form orthogonal vectors. For i, j ∈ {1, 2, ...,m},

∑
g∈G

χi(g)
∗χj(g) =

{
0 if i 6= j

n if i = j .

(iv) The number of inequivalent irreducible representations is equal to the number of conjugacy
classes.

(v) The columns of the character table of different conjugacy classes form orthogonal vectors. Let
|cg| denote the number of elements conjugate with g ∈ G. For g, h ∈ G,

m∑
i=1

χi(g)
∗χi(h) =

{
n

|cg| if g ∼ h

0 otherwise .

(vi) The sum of the squares of the dimensions of all the representations is equal to the order of the
group.

m∑
i=1

(dimF Vi)
2 = n .

(vii) The dimension of each representation divides n.

n = k dimF Vi , k ∈ N .

We can prove some parts of the above theorem.
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Proof.

(i) This follows from the orthogonality of the characters (Theorem 16.38). Let ρβ be the trivial
irreducible representation such that χβ(g) = 1 for all g ∈ G, then the equation above simplifies
to ∑

g∈G
χα(g) = |G|δαβ =

{
|G| if ρ(α) is trivial
0 otherwise .

(ii) A direct result of Proposition 16.15.

(iii) Equivalent to Theorem 16.38.

(iv) A full proof is beyond the scope of the course. Here is the outline. (iii) already shows that {χi}
is an orthonormal set in CG. By Schur’s lemma, we can also show that χi spans CG. Therefore,
{χi} forms an orthonormal basis for the space of class functions CG. A direct corollary is this
theorem.

(v) Let X be the character table (keeping only one column in a conjugacy class) thought of as a
matrix: Xij = χi(gj) and let D be the diagonal matrix whose diagonal entries are |G|/|cG|.
Orthogonality of the characters (Theorem 16.38) tells us that∑

k

|cg|
|G|

X∗
ikXjk = δij ,

X∗D−1XT = I .

Since X is square (by (iv)), we can write the above equation as

D−1X† = X−1 =⇒ X†X = D .

This is equivalent to ∑
k

χk(gi)
∗χk(gj) = δij

|G|
|cgi |

.

(vi) Let ni be the dimension of the irreducible representation (ρi, Vi). Let ρreg be the regular
representation of G with character χreg. Then χreg(g) = |G| when g = I and χreg(g) = 0
otherwise. Therefore we have

〈χreg|χi〉 = ni

for all i. Since

χreg =

m∑
i=1

niχi ,

(see decomposition formula later), we have, for the identity element,

χreg(I) =

m∑
i=1

n2i ,

m∑
i=1

n2i = n .

Alternatively, take the inner product of the first column with itself. By (v),
m∑
i=1

(dimVi)
2 =

m∑
i=1

χi(I)
2 = |G| .

(vii) We will not prove this. □

Corollary. All groups of orders less than or equal to 4 are Abelian.
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Proof. From (iii), every nontrivial irreducible representation of G has a dimension less than or equal
to
√

|G| − 1, so |G| < 5 means that every irreducible representation has a dimension of 1. If all
representations of G commute, G can only be Abelian. □

Remark. The only group of order 5 is C5 up to isomorphism, which is also Abelian. Therefore, the
smallest non-Abelian group is actually D3 (or its isomorph S3) of order 6.

Example. Character table of D4.

For D4, we have 5 inequivalent irreducible representations: a trivial representation, 3 one-
dimensional representations and a two-dimensional representation. The character table is given as
follows.

D4 I R2 R R3 m1 m2 m3 m4

χ1 1 1 1 1 1 1 1 1

χ2 1 1 1 1 −1 −1 −1 −1

χ3 1 1 −1 −1 1 1 −1 −1

χ4 1 1 −1 −1 −1 −1 1 1

χ5 2 2 0 0 0 0 0 0

All six statements of Theorem 16.39 can be checked.

Example. Cyclic group of prime order, Cp.

For the cyclic group of prime order p, we have p one-dimensional inequivalent representations.
Writing the pth root of unity

ω = e
2πi
p ,

we have the character table

Cp I g . . . gp−1

χ1 1 1 . . . 1

χ2 1 ω . . . ωp−1

...
...

...
...

...
χq 1 ωq−1 . . . ω(p−1)(q−1)

...
...

...
...

...
χp 1 ωp−1 . . . ω(p−1)2

16.8 Decomposition of a Reducible Representation

Definition 16.40. The tensor product of two matrices

A =


A11 A12 · · · A1q

A21 A22 · · · A2q

· · · · · ·
. . . ...

Ap1 Ap2 · · · Apq

 , B =


B11 B12 · · · B1n

B21 B22 · · · B2n

· · · · · ·
. . . ...

Bm1 Bm2 · · · Bmn


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is defined as the (pm)× (qn) matrix

A⊗ B :=


A11B A12B · · · A1qB

A21B A22B · · · A2qB

· · · · · ·
. . . ...

Ap1B Ap2B · · · ApqB

 ,

where each AijB is a m× n block given by

AijB :=


AijB11 AijB12 · · · AijB1n

AijB21 AijB22 · · · AijB2n

· · · · · ·
. . . ...

AijBm1 AijBm2 · · · AijBmn

 .

Denote the irreducible representations of G by ρ1, . . . , ρk. Let P be a reducible representation of G,
then P can be decomposed into irreducible representations as the direct sum

P = m1ρ1 ⊕m2ρ2 ⊕ · · · ⊕mkρk =

k⊕
i=1

miρi ,

where mi ∈ Z>0 are the multiplicities. Therefore, the matrix P (g) can be written, after a similarity
transformation by a g-independent matrix S, as

SP (g)S−1 = Im1
⊗ ρ1(g)⊕ Im2

⊗ ρ2(g)⊕ · · · ⊕ Imk
⊗ ρk(g)

=

k⊕
i=1

(Imi ⊗ ρi(g)) ,

where Imi
is the mi ×mi identity matrix. This produces mi copies of each ρi(g) along the diagonal

after similarity transformations. Since the character is invariant under similarity transformation, by
taking the trace of the above decomposition, we have

χP (g) =

k∑
i=1

miχi(g) . (†)

We can use this to find m1, . . . ,mk without finding the appropriate similarity transformations.
Theorem 16.41. The multiplicity mi of the decomposition of P into irreducible representations ρi
with characters χi is given by

mi =
1

|G|
∑
cgj

∣∣cgj ∣∣χP (gj)χi(gj)∗ .
Proof. Sum over all the g for equation (†), multiply by χj(g

−1), then use the orthogonality of the
characters (Theorem 16.38).∑

cgj

∣∣cgj ∣∣χP (gj)χi(gj)∗ =
∑
g

χP (g)χj(g
−1)

=
∑
g

k∑
i=1

miχi(g)χj(g
−1)

=

k∑
i=1

mi|G| 〈χi|χj〉

= mi|G| .

□
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17 Small Oscillations

17.1 Pendulum

17.1.1 Simple Pendulum

Consider a simple pendulum of a string of length l with a mass m hanging at the end. The string
makes an angle θ with the vertical. The equation of motion, obtained from Newton’s second law or
conservation of energy, is

mlθ̈ = −mg sin θ .
For small θ, by the approximation sin θ ≈ θ, we have

θ̈ = −g
l
θ ,

a simple harmonic oscillator equation. Defining ω2 = g/l, we have the solution

θ = C sinωt+D cosωt ,

or alternatively
θ = A sinω(t− t0) ,

where A is the amplitude and θ0 = ωt0 is the phase.

17.1.2 Coupled Pendula

Consider two pendula of length l and mass m connected by a massless spring with spring constant k.
The two pendula make angles θ1 and θ2 with vertical respectively, and they are of distance b apart
in equilibrium.

For small oscillations, the extension or compression of the spring away from its equilibrium length
b is approximated to be

x = l(θ2 − θ1)

for sufficient accuracy. This can be shown by setting the origin O at the pivot of the first pendulum.
Then the positions of the two pendula are

x1 =

(
l sin θ1
−l cos θ1

)
and x2 =

(
b+ l sin θ2
−l cos θ2

)
.

Using the small angle approximations

sin θ ≈ θ , cos θ ≈ 1− θ2

2
,

we can find

|x2 − x1| − b =
√
(b+ l sin θ2 − l sin θ1)2 + (l cos θ1 − l cos θ2)2 − b

≈
√
(b+ lθ2 − lθ1)2 +O(θ4)− b

≈ l(θ2 − θ1) .

The equations of motion, from Newton’s second law, are{
mlθ̈1 = −mgθ1 + kl(θ2 − θ1)

mlθ̈2 = −mgθ2 + kl(θ1 − θ2) ,

where the small angle approximation has been used for the gravitational terms as well.

In general, solutions for θ1 and θ2 are complicated. However, special solutions to the system can
be found.
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Definition 17.1. There are periodic solutions to the coupled equations, described by a single
frequency, called the harmonic solutions. These are called the normal modes of the oscillation. The
frequencies corresponding to the normal modes of the oscillation are called the normal frequencies.

In the case of the coupled pendula, there are two normal modes.

(i) In phase solution, θ1 = θ2. In this case, the spring exerts no force since its length does not
change. Each equation reduces to the same form:{

mlθ̈1 = −mgθ1
mlθ̈2 = −mgθ2 ,

as if the two pendula were uncoupled. Therefore, we have

θ1 = θ2 = A sinω(t− t0) with ω2 =
g

l
,

where A and t0 are arbitrary.

(ii) 180◦ out of phase solution, θ1 = −θ2. Each equation is again reduced to the same form:{
mlθ̈1 = −(mg + 2kl)θ1

mlθ̈2 = −(mg + 2kl)θ2 ,

with solutions
θ1 = −θ2 = B sinΩ(t− t1) with Ω2 =

g

l
+

2k

m
.

Here B and t1 are also arbitrary.

Each of the two special cases describes a harmonic motion with a single, pure frequency:

(i)

ω =

√
g

l
.

(ii)

Ω =

√
g

l
+

2k

m
.

Theorem 17.2. The general solution of a coupled oscillation can be written as a linear combination
of the normal modes.

For example, in this case, the solutions can be written as{
θ1 = A sinω(t− t0) +B sinΩ(t− t1)

θ2 = A sinω(t− t0)−B sinΩ(t− t1) .

This works because the system of differential equations is linear, so the principle of superposition
applies, and we have four arbitrary constants that we can specify.

Remark. If Ω/ω is an irrational number, then the general solution is not periodic. Special linear
combinations, like θ1 ± θ2, are periodic. These are called the normal coordinates for the system.
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17.1.3 Lagrangian Dynamics and Coupled Pendula

Modify the double pendula problem slightly so that m1 6= m2. We will use Lagrange’s equations to
work out the general theory. We take our generalised coordinates to be θ1 and θ2. The Lagrangian
of the system is

L = T − V ,

which satisfies Lagrange’s equations (Theorem 9.14)

d

dt

(
∂L

∂θ̇i

)
− ∂L

∂θi
= 0

for i ∈ {1, 2}.

For the coupled pendula, the kinetic energy is

T =
1

2
m1v

2
1 +

1

2
m2v

2
2

=
1

2
m1l

2θ̇21 +
1

2
m2l

2θ̇22 .

For small oscillation angle θi, the gravitational potential energy can be approximated to be

Vgi = migl(1− cos θi) ≈
1

2
miglθ

2
i ,

and the elastic potential energy stored in the spring is approximately

Ve =
1

2
kl2(θ2 − θ1)

2 .

Therefore, we have
V =

1

2
m1glθ

2
1 +

1

2
m2glθ

2
2 +

1

2
kl2(θ2 − θ1)

2

and
L =

1

2
m1l

2θ̇21 +
1

2
m2l

2θ̇22 −
1

2
m1glθ

2
1 −

1

2
m2glθ

2
2 −

1

2
kl2(θ2 − θ1)

2 .

Substitute the Lagrangian into Lagrange’s equations, we have{
m1lθ̈1 = −m1gθ1 − kl(θ1 − θ2)

m2lθ̈2 = −m2gθ2 + kl(θ1 − θ2) ,

or, in matrix form, (
m1l 0
0 m2l

)(
θ̈1
θ̈2

)
=

(
−m1g − kl kl

kl −m2g − kl

)(
θ1
θ2

)
. (†)

This matrix equation can be rewritten as

Tq̈ = −Vq ,

where
q =

(
θ1
θ2

)
, T =

(
m1l

2 0
0 m2l

2

)
and V =

(
m1gl + kl2 −kl2

−kl2 m2gl + kl2

)
.

Note that we have multiplied both sides by l so that we can write the Lagrangian as a matrix equation
with the degrees of freedom expressed as a column vector:

L =
1

2
Tij θ̇iθ̇j −

1

2
Vijθiθj =

1

2
q̇TTq̇− 1

2
qTVq .
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We want to find the normal modes of this system, so we try solutions with a single, pure frequency
of the form (

θ1
θ2

)
=

(
a1
a2

)
eiωt ,

with constants a1, a2. Substitute this into the equation (†), we have

−ω2

(
m1l 0
0 m2l

)(
a1
a2

)
=

(
−m1g − kl kl

kl −m2g − kl

)(
a1
a2

)
,

or equivalently, (
ω2m1l −m1g − kl kl

kl ω2m2l −m2g − kl

)(
a1
a2

)
= 0 .

This equation has non-trivial solutions only if the matrix determinant vanishes, i.e.∣∣∣∣ω2m1l −m1g − kl kl
kl ω2m2l −m2g − kl

∣∣∣∣
= (ω2l − g)[m1m2(ω

2l − g)− (m1 +m2)kl]

= 0 ,

which has solutions
ω2
1 =

g

l
and ω2

2 =
g

l
+
k(m1 +m2)

m1m2
.

Corresponding to each of the solutions, there is a pair of amplitudes(
a
(1)
1

a
(1)
2

)
and

(
a
(2)
1

a
(2)
2

)
,

which can be determined up to an overall normalisation. For ω1,(
−kl kl
kl −kl

)(
a
(1)
1

a
(1)
2

)
= 0 ,

which solves to be a(1)1 = a
(1)
2 . This corresponds to θ1 = θ2: the masses are swinging in phase. For

ω2, (
m1

m2
kl kl

kl m2

m1
kl

)(
a
(2)
1

a
(2)
2

)
= 0 ,

which implies m1a
(2)
1 = −m2a

(2)
2 . Here the two masses are swinging 180◦ out of phase, with scaled

amplitudes.

The normal coordinates can be found by taking linear combinations of the rows of the equation
(†) to isolate one of the two normal modes. We can get

m1θ̈1 +m2θ̈2 = −g
l
(m1θ1 +m2θ2) ,

with oscillating frequency ω1 = g
l , and

θ̈1 − θ̈2 = −
[
g

l
+ k

(
1

m1
+

1

m2

)]
(θ1 − θ2) ,

with oscillating frequency ω2 = g
l +k

(
1
m1

+ 1
m2

)
. Therefore, the normal coordinates are m1θ1+m2θ2

and θ1 − θ2, corresponding to the normal frequencies ω1 and ω2 respectively.
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17.2 General Theory of Small Oscillations

Consider a system with N degrees of freedom, represented by N generalised coordinates

{qi} = {q1, q2, . . . , qN} .

We can represent this as an N -component vector q.

Let V (q) be the potential energy of the system, and assume, without loss of generality, that the
coordinates have been chosen so that q = 0 is a position of stable equilibrium. Expand V (q) in
Taylor series

V (q) = V (0) +
1

2

∂2V

∂qi∂qj

∣∣∣∣
q=0

qiqj +O(q3i )

= V (0) +
1

2
Vijqiqj + . . .

We have therefore implicitly defined Vij as the components of the constant, symmetric matrix V of
second derivatives evaluated at q = 0. Since this is an equilibrium point, the first derivatives of V
vanish at this point and V is positive definite.

Similarly, let us assume we can write kinetic energy as

T =
1

2
Tij q̇iq̇j ,

where Tij are components of a constant, symmetric matrix. We assume T is taken to be positive
definite, that is all modes of oscillation contribute to kinetic energy at the lowest order.

Theorem 17.3. For a system with N degrees of freedom, represented by N generalised coordinates,
{qi}, if the potential energy and kinetic energy can be represented as

V (q) = V (0) +
1

2
Vijqiqj ,

T =
1

2
Tij q̇iq̇j ,

where T and V are symmetric, positive definite matrices, then the equations of motion are given by
the N coupled second-order linear ODEs

Tij q̈j + Vijqj = 0 . (†)

Proof. The Lagrangian of the system is

L = T − V =
1

2
Tij q̇iq̇j −

1

2
Vijqiqj .

Using Lagrange’s equations (Theorem 9.14), the equations of motion are obtained. □

17.2.1 Normal Modes

Normal modes are special solutions of the equations of motion (†) which oscillate with a single, pure
frequency. To find them, we assume solutions of the form

qi(t) = Qi sinω(t− t0)

or similarly with complex exponentials. Note that Qi have to be independent of t. Substitute this
into (†) yields

−ω2TijQj + VijQj = 0 ,
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or in matrix notation,
(−ω2T+ V)Q = 0 , (††)

where

Q =


Q1

Q2

...
QN

 .

Since we are interested in non-trivial solutions where Q is non-zero, we must have

det
(
−ω2T+ V

)
= 0 .

The left-hand side is a polynomial of degree N in ω2, and the solutions are the squares of the normal
frequencies. This is referred to as the characteristic equation.

Remark. We might find equation (††) resembles the eigenvector equation, so we can see ω2 as some
sort of generalised eigenvalue, with Q being the eigenvector.

Let the normal frequencies, defined as the positive square roots of the generalised eigenvalues, be
{ωi} and let the corresponding generalised eigenvectors be {Q(i)}, i = 1, . . . , N . The general solution
is

q(t) =

N∑
m=1

A(m)Q(m) sinωm(t− t
(m)
0 ) , (∗)

where the constant A(m) is the amplitude of the mth normal mode and ωmt
(m)
0 is the phase.

In the case where ωm = 0, the normal mode is called a zero mode. The corresponding term in the
solution is obtained by taking the limit

lim
ωm→0

A(m)Q(m) sinωm(t− t
(m)
0 ) = B(m)Q(m)(t− t

(m)
0 ) ,

where we defined a new constant B(m) = ωmA
(m).

Remark. The constant B(m) is determined by the initial conditions, corresponding to an A(m) that
diverges in the ωm → 0 limit.

17.2.2 Orthogonality

Proposition 17.4. Two eigenvectors Q(m) and Q(n) with unequal normal frequencies are orthogonal.

Proof. From (††), we have
(−ω2

mT+ V)Q(m) = 0 ,

(−ω2
nT+ V)Q(n) = 0 .

Left multiply the first and second equations by the row vectors −(Q(n))T and −(Q(m))T respectively.
Note that T and V are symmetric matrices, so

Q
(n)
i VijQ

(m)
j = Q

(m)
i VijQ

(n)
j ,

and therefore we have
(ω2
m − ω2

n)(Q
(m))TTQ(n) = 0 .

By supposition, ωm 6= ωn, so we must have (Q(m))TTQ(n) = 0. Therefore, Q(m) and Q(n) are
orthogonal with respect to T.

If ωm = ωn, then there exists linearly independent Q(m) and Q(n). An orthogonal pair can always
be constructed using Gram–Schmidt orthogonalisation. □
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Theorem 17.5. The generalised eigenvectors Q(m) form an orthonormal set of generalised eigenvec-
tors.

Proof. By scaling Q(m) such that (Q(m))TTQ(m) = 1, we have a set of generalised eigenvectors
{Q(m)} such that

(Q(m))TTQ(n) = δmn .

We then say that the {Q(m)} form an orthonormal set of generalised eigenvectors. □

17.2.3 Normal Coordinates

Definition 17.6. Normal coordinates α(m)(t) are linear combinations of the original generalised
coordinates qj(t) which oscillates at a single, pure frequency ωm and satisfy the simple harmonic
equation.

Proposition 17.7. The normal coordinates are given by

α(n)(t) = Q
(n)
i Tijqj(t) .

Proof. Multiplying the jth component of the general solution (∗) by Q
(n)
i Tij , summing over j and

using orthogonality, we find

α(n)(t) = Q
(n)
i Tijqj(t) = A(n) sinωn(t− t

(n)
0 ) .

□

Alternative proof. Since Q(m) are linearly independent, we can write

qi(t) =

N∑
m=1

α(m)(t)Q
(m)
i .

Substitute this into the equation (†) gives
N∑
m=1

[
α̈(m)(t)TijQ

(m)
j + α(m)(t)VijQ

(m)
j

]
= 0 .

Using (††), we have
N∑
m=1

[
α̈(m)(t) + ω2

mα
(m)(t)

]
TijQ

(m)
j = 0 .

Multiplying by Q(n)
i and using the orthogonality, we must have

α̈(m)(t) + ω2
mα

(m)(t) = 0

for each m. The solution to this differential equation is

α(m)(t) = A(m) sinωm(t− t
(m)
0 ) .

The α(m)(t) are the normal coordinates. They can be written in terms of the qi(t) using
orthonormality:

qi(t)TijQ
(n)
j =

N∑
m=1

α(m)(t)Q
(m)
i TijQ

(n)
j

=

N∑
m=1

α(m)(t)δmn

= α(n)(t) .

□
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17.3 Examples

17.3.1 Vibrations in a CO2 Molecule

Consider a carbon atom of mass M in the centre, connected with two oxygen atoms of mass m on
opposite sides by springs of spring constant k. Treat the molecule as 1D and the motion as linear.

Denote the equilibrium positions of the two oxygen atoms by X1 and X3, and the position of
the carbon atom as X2. Denote displacements from these equilibrium positions by x1, x2 and x3
respectively. Then the kinetic energy is

T =
1

2
mẋ21 +

1

2
Mẋ22 +

1

2
mẋ23 ,

so

T =

m 0 0
0 M 0
0 0 m

 .

The potential energy is
V =

1

2
k(x2 − x1)

2 +
1

2
k(x3 − x2)

2 ,

so

V = k

 1 −1 0
−1 2 −1
0 −1 1

 .

By solving
det
(
V − ω2T

)
= 0 ,

the normal frequencies are found to be

ω2
1 = 0 , ω2

2 =
k

m
, and ω2

3 =
k

mM
(2m+M) .

We can then use
(V − ω2

mT)Q(m) = 0

to find the three Q(m), then use (Q(m))TTQ(m) = 1 for normalisation. The results are as follows.

• ω2
1 = 0 implies

Q(1) =
1√

2m+M

1
1
1

 .

This is a zero mode describing the rigid translation of the molecule.

• ω2
2 = k

m implies

Q(2) =
1√
2m

 1
0
−1

 .

This corresponds to the reflection-symmetric mode where the oxygen atoms oscillate in opposing
directions while the carbon atom is stationary.

• ω2
3 = k

mM (2m+M) implies

Q(3) =

[
2m

(
1 +

2m

M

)]− 1
2

 1
− 2m
M
1

 .

Here the oxygen atoms oscillate in phase, and the carbon atom oscillates in the opposing
direction.
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The normal coordinates can be found from Proposition 17.7.

α(1)(t) =
(
x1 x2 x3

)m 0 0
0 M 0
0 0 m

 1√
2m+M

1
1
1


=
mx1 +Mx2 +mx3√

2m+M
= B1(t− t

(1)
0 ) ,

α(2)(t) =

√
m

2
(x1 − x3) = A2 sinω2(t− t

(2)
0 ) ,

α(3)(t) =
x1 − 2x2 + x3√

2
m + 4

M

= A3 sinω3(t− t
(3)
0 ) .

17.3.2 Triangular Spring System

Consider three identical masses sitting on the vertices of an equilateral triangle connected by identical
springs.

m m

m
q1

q2

q3

q4

q5

q6

Taking the centre of mass as the origin, we have

x1 = l

(
0,

1√
3

)
+ (q1, q2) ,

x2 = l

(
1

2
,− 1

2
√
3

)
+ (q3, q4) ,

x3 = l

(
−1

2
,− 1

2
√
3

)
+ (q5, q6) .

The kinetic energy is

T =
1

2
m(ẋ2

1 + ẋ2
2 + ẋ2

3) =
1

2
m(q̇21 + q̇22 + q̇23 + q̇24 + q̇25 + q̇26) ,

so the matrix T is diagonal:
Tij = mδij .

The potential energy is

V =
1

2
k[(|x1 − x2| − l)2 + (|x2 − x3| − l)2 + (|x3 − x1| − l)2] .

Assume small oscillations. We can write, say,

x1 − x2 = l

(
−1

2
,

√
3

2

)
+ (q1 − q3, q2 − q4)

= z+ ϵ ,
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where l = |z| � |ϵ|. Taylor expansion gives

|z+ ϵ| =
√
z · z+ 2z · ϵ+ ϵ · ϵ ≈ l

(
1 +

z · ϵ
l2

)
.

Hence, the potential energy is expanded to

V =
k

2

[
−1

2
(q1 − q3) +

√
3

2
(q2 − q4)

]2
+
k

2
(q3 − q5)

2 +
k

2

[
−1

2
(q5 − q1)−

√
3

2
(q6 − q2)

]2
,

and so the matrix V is given by

V =
k

4



2 0 −1
√
3 −1 −

√
3

0 6
√
3 −3 −

√
3 −3

−1
√
3 5 −

√
3 −4 0√

3 −3 −
√
3 3 0 0

−1 −
√
3 −4 0 5

√
3

−
√
3 −3 0 0

√
3 3

 .

Solving the characteristic equation

det
(
V − ω2T

)
= 0

is too tedious in this case. However, we can guess most of the normal modes using the symmetries of
the problem.

First of all, there are some zero modes, corresponding to the non-oscillatory rigid motions. The
system can translate in two dimensions:

Q(1) =


1
0
1
0
1
0

 and Q(2) =


0
1
0
1
0
1

 .

Similarly, the system can rotate about its centre:

Q(3) =



1
0

− 1
2

−
√
3
2

− 1
2√
3
2


.

By symmetry, we expect there would be a mode where the masses expand and contract at the
same frequency in the radial direction. This is expressed by the eigenvector

Q(4) =



0
1
√
3
2

− 1
2

−
√
3
2

− 1
2


,
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which has a normal frequency of ω2 = 3k
m .

For a mode with reflection symmetry, we can try the form

Q(5) =


0
−1
β
γ
−β
γ

 ,

which works with β =
√
3
2 and γ = 1

2 , and the normal frequency can be found out to be ω2 = 3k
2m .

Using orthogonality, we can find out the last normal mode:

Q(6) =



1
0

− 1
2√
3
2

− 1
2

−
√
3
2


,

with ω2 = 3k
2m .

17.4 Normal Modes and Group Representations

Consider an oscillating system with the Lagrangian of the form

L =
1

2
q̇TTq̇− 1

2
qTVq .

If the system has a symmetry group G, then the action of a symmetry transformation g ∈ G on the
vector of generalised coordinates is

q → ρ(g)q .

If q has N components, then ρ is an N -dimensional representation of G. Since g is a symmetry
operation on the system, the kinetic and potential energies must transform so that L is invariant.
For all g ∈ G, {

ρ(g)TTρ(g) = T

ρ(g)TVρ(g) = V .

By Weyl’s unitary trick (Theorem 16.30), we can always find a basis such that all the representations
ρ(g) are unitary. Since the coordinates are real, we can choose such a basis so that ρ(g) are orthogonal,
and {

ρ(g)−1Tρ(g) = T

ρ(g)−1Vρ(g) = V .
(†)

Often the representation ρ is reducible, so the matrices ρ(g) may be transformed into block-diagonal
form by a similarity transformation

Sρ(g)S−1 =


ϕ(1)(g) 0 · · · 0

0 ϕ(2)(g) · · · 0
...

... . . . 0
0 0 · · · ϕ(k)(g)

 .
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For simplicity, let us assume here that each of the irreducible representations ϕ(i) are different from
each other. Note that the matrices along the diagonal are square, of dimensions {nα}kα=1. Transform
equations (†), we have {

Sρ(g)−1Tρ(g)S−1 = STS−1

Sρ(g)−1Vρ(g)S−1 = SVS−1

=⇒

{
(STS−1)(Sρ(g)S−1) = (Sρ(g)S−1)(STS−1)

(SVS−1)(Sρ(g)S−1) = (Sρ(g)S−1)(SVS−1) .

Rewriting T̃ = STS−1 and Ṽ = SVS−1, and since Sρ(g)S−1 is block diagonal, we have

T̃(Sρ(g)S−1) =


T(11) T(12) · · · T(1k)

T(21) T(22) · · · T(2k)

...
... . . . ...

T(k1) T(k2) · · · T(kk)



ϕ(1)(g) 0 · · · 0

0 ϕ(2)(g) · · · 0
...

... . . . 0
0 0 · · · ϕ(k)(g)



=


T(11)ϕ(1)(g) T(12)ϕ(2)(g) · · · T(1k)ϕ(k)(g)
T(21)ϕ(1)(g) T(22)ϕ(2)(g) · · · T(2k)ϕ(k)(g)

...
... . . . ...

T(k1)ϕ(1)(g) T(k2)ϕ(2)(g) · · · T(kk)ϕ(k)(g)

 ,

(Sρ(g)S−1)T̃ =


ϕ(1)(g) 0 · · · 0

0 ϕ(2)(g) · · · 0
...

... . . . 0
0 0 · · · ϕ(k)(g)



T(11) T(12) · · · T(1k)

T(21) T(22) · · · T(2k)

...
... . . . ...

T(k1) T(k2) · · · T(kk)



=


ϕ(1)(g)T(11) ϕ(1)(g)T(12) · · · ϕ(1)(g)T(1k)

ϕ(2)(g)T(21) ϕ(2)(g)T(22) · · · ϕ(2)(g)T(2k)

...
... . . . ...

ϕ(k)(g)T(k1) ϕ(k)(g)T(k2) · · · ϕ(k)(g)T(kk)

 .

Therefore, we must have
T(αβ)ϕ(β)(g) = ϕ(α)(g)T(αβ) .

If the block diagonal elements of Sρ(g)S−1 are different, then by Schur’s Lemma (Lemma 16.32),{
T̃(αβ) = tαδαβ Iα

Ṽ(αβ) = vαδαβ Iα ,

where ti, vi ∈ R, and Ii is the ni × ni identity matrix. Therefore,

STS−1 =


t1I1 0 · · · 0
0 t2I2 · · · 0
...

... . . . ...
0 0 · · · tkIk ,



SVS−1 =


v1I1 0 · · · 0
0 v2I2 · · · 0
...

... . . . ...
0 0 · · · vkIk

 .

Once the kinetic and potential energy matrices are diagonalised in this way, finding the normal
modes is straightforward. The normal frequencies are

ω2
α =

vα
tα
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with degeneracy nα. The generalised eigenvectors of normal modes span the invariant subspace of
the underlying vector space acted on by the corresponding irreducible representation of the symmetry
group.

If an irreducible representation ϕ(α)(g) occurs with multiplicity mα > 1, then the corresponding
diagonal block of tα and vα are replaced by an mα ×mα block matrix. T and V are not completely
diagonal, but finding the normal modes reduces to solving separate generalised eigenvalue problems
for each α.

17.4.1 Example: CO2 Molecule Revisited

We will, again, only consider the 1D motions of the atoms in a CO2 molecule. Its symmetry group
is therefore G = {I,m}. The action of the group on the coordinates q = (x1, x2, x3) is given by the
representation ϕ, where

ϕ(I)

x1x2
x3

 =

x1x2
x3

 =⇒ ϕ(I) =

1 0 0
0 1 0
0 0 1

 ,

ϕ(m)

x1x2
x3

 =

−x3
−x2
−x1

 =⇒ ϕ(m) =

 0 0 −1
0 −1 0
−1 0 0

 .

The character of this representation is

χϕ(I) = 3 , χϕ(m) = −1 .

The character table of this group is

G I m

χρ(1) 1 1

χρ(2) 1 −1

so the representation is decomposed into

ϕ = ρ(1) ⊕ 2ρ(2) .

This corresponds to the single symmetric mode (Q(2)) and two anti-symmetric modes (Q(1) and Q(3))
as seen before.

17.4.2 Example: Equilateral Triangle Revisited

Consider the 2D vibration of an equilateral triangle, which belongs to the symmetry group D3 =
{I,R,R2,m1,m2,m3}. Using the coordinate as before, we can find out the representation

ϕ(I) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,
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ϕ(m1) =


−1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 1
0 0 −1 0 0 0
0 0 0 1 0 0

 ,

ϕ(R) =



0 0 0 0 1
2

√
3
2

0 0 0 0 −
√
3
2 − 1

2
1
2

√
3
2 0 0 0 0

−
√
3
2 − 1

2 0 0 0 0

0 0 1
2

√
3
2 0 0

0 0 −
√
3
2 − 1

2 0 0


,

with character
χϕ(I) = 6 , χϕ(m1) = 0 , χϕ(R) = 0 .

We have the character table of D3:

D3 I R R2 m1 m2 m3

χρ(1) 1 1 1 1 1 1

χρ(2) 1 1 1 −1 −1 −1

χρ(3) 2 −1 −1 0 0 0

and the representation is decomposed as

ϕ = ρ(1) ⊕ ρ(2) ⊕ 2ρ(3) .

The trivial representation ρ(1) is the symmetric breathing mode (Q(4)). ρ(2) corresponds to the
rigid rotation (Q(3)) since it is unchanged by R, but reversed by m. The two translations (Q(1) and
Q(2)) corresponds to a two-dimensional irreducible representation ρ(3). The final ρ(3) corresponds to
another pair of degenerate non-zero modes (Q(5) and Q(6)).

This is demonstrated by the transformations of the normal mode eigenvectors. For the two
translational modes (Q(1) and Q(2)), we have

ρ(m1)

 | |
Q(1) Q(2)

| |

 =

 | |
Q(1) Q(2)

| |

(−1 0
0 1

)
,

ρ(R)

 | |
Q(1) Q(2)

| |

 =

 | |
Q(1) Q(2)

| |

( − 1
2

√
3
2

−
√
3
2 − 1

2

)
.

The other pair of doubly degenerate modes
(
Q(6) Q(5)

)
transforms just as

(
Q(1) Q(2)

)
. For the

rotation and dilation modes, we have

ρ(m1)Q
(3) = −Q(3) ,

ρ(R)Q(3) = Q(3) ,

ρ(m1)Q
(4) = Q(4) ,

ρ(R)Q(4) = Q(4) .
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