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1 Introduction II Principles of Quantum Mechanics
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Figure 1: A particle’s trajectory in phase space. Observables are represented by functions f : R2¢ —
R, evaluated along a given particle’s trajectory.

1 Introduction

In classical mechanics, a particle’s motion is governed by Newton’s laws. These are second order
ODEs, so to determine the fate of our particle we must specify two initial conditions. We could
take these to be the particle’s initial position x(tg) and velocity v(tg), or its initial position x(¢o)
and momentum p(tg). Once these are specified the motion is determined (provided of course we
understand how to describe the forces that are acting). This means that we can solve Newton’s
second law to find the values (x(t), p(t)) for t > to. So as time passes, our classical particle traces out
a trajectory in the space M of possible positions and momenta, as sketched in figure 1. The space M
is known as the phase space and in our case, for motion in three dimensions, M is just RS. In general
M comes with a rich geometry known as a Poisson structure; you'll study this structure in detail if
you are taking the Part II courses on Classical Dynamics or Integrable Systems, and we’ll touch on
it later in this course, too.

Classical observables are represented by functions

f:M—R
(x,p) — f(x,p)- (1.1)

For example, we may be interested in the kinetic energy T = p?/2m, potential energy V (x), angular
momentum L = x X p, or a host of other possible quantities. A priori, these functions are defined
everywhere over M, but if we want to know about the energy or angular momentum of our specific
particle then we should evaluate them not at some random point (x,p) € M, but along the particle’s
phase space trajectory. For example, if at time ¢ the particle has position x(¢) and momentum p(t),
then its angular momentum is x(¢) X p(¢). Thus the values of the particle’s energy, angular momentum
etc. may depend on time, though of course our definition of these quantities does not. In this way,
everything we could possibly want to know about a single, point like particle is encoded in its phase
space trajectory.

But that is not our World. To the best of our current experimental knowledge, our world
is quantum, not classical. Initially, these experiments were based on careful studies of atomic
spectroscopy and blackbody radiation, but nowadays I'd prefer to say that the best evidence of
quantum mechanics is simply that we use it constantly in our daily lives. Each time you listen to
music on your stereo, post a photo on Instagram or make a call on your phone you're relying on
technology that’s only become possible due to our understanding of the quantum structure of matter.
Whenever you plug something into the mains, you’re using electricity that’s in part generated by
nuclear reactions in which quantum mechanics is essential, while much of modern medicine relies
on new drugs designed with the benefit of the improved understanding of chemistry that quantum
mechanics provides.
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Figure 2: In Quantum Mechanics, complete knowledge of a particle’s state is determined by a vector
in Hilbert space. Observables are represented by Hermitian linear operators O : H — H.

In such a quantum world, instead of a phase space trajectory, everything we could want to
know about a particle is encoded in a vector ? in Hilbert space H. As you met in IB Quantum
Mechanics, this state vector evolves in time according to Schrodinger’s equation. In the quantum
world, observables are represented by certain operators O. The operators you saw in IB Quantum
Mechanlcs had the same sort of form as observables in classical mechanics, such as the kinetic operator
T=p / 2m or angular momentum operator L = % x p. However, rather than being functions, these
operators are (roughly) linear maps

O:H—H. (1.2)

Again, in the first instance these operators are defined throughout #, but if we're interested in
knowing about the energy or angular momentum of our particular quantum particle, then we should
find out what happens when they act on the specific ©» € H that describes the state of our particle
at time ¢.

In the following chapters we’ll study what Hilbert space is and what its operators do in a more
general framework than you saw last year, building your insight into the mathematical structure of
quantum mechanics. Much of this is just linear algebra, but the Hilbert spaces we’ll care about in
Quantum Mechanics are often infinite-dimensional, so we also make contact with Functional Analysis.
Furthermore, although last year you ‘guessed’ the form of quantum operators by analogy with their
classical counterparts, we’ll see that at a deeper level many of them can be understood to have their
origins in symmetries of space and time; the operators just reflect the way these symmetry transforms
act on Hilbert space, rather that on (non-relativistic) space-time. In this way, Quantum Mechanics
makes contact with Representation Theory.

So, mathematically, much of Quantum Mechanics boils down to a mix of Functional Analysis
and Representation Theory. It’s even true that it provides a particularly interesting example of
these subjects. But this is not the reason we study it. We study Quantum Mechanics in an
effort to understand and appreciate our world, not some abstract mathematical one. You're all
intimately familiar with vector spaces, and you’re also very good at solving Sturm-Liouville type
eigenfunction/eigenvalue problems. But the real skill is in understanding how this formalism relates
to the world we see around us.

It’s not obvious. Newton’s laws are (at least generically) non-linear differential equations and we
can’t superpose solutions. General Relativity teaches us that spacetime is not flat. So it’s not at
all clear that our particle should in fact be described by a point in a vector space, any more than it
was obvious to Aristotle that bodies actually stay in uniform motion unless acted on by a force, or
clear to the Ancients that the arrival of solar eclipses, changes of the weather, or any other natural
phenomenon are actually governed by calculable laws, rather than the whims of various gods. For this
reason, instead of emphasizing how weird and different Quantum Mechanics is, I'd prefer to make you
appreciate how it actually underpins the physics you're already familiar with. No matter how good
you are at solving eigenvalue problems, if you don’t see how these relate to your everyday physical
intuition, knowledge you’ve built up since first opening your eyes and learning to crawl, then you
haven’t really understood the subject.
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2 Hilbert Space

The realm of Quantum Mechanics is Hilbert space!, so we’ll begin by exploring the properties of
these. This chapter will necessarily be almost entirely mathematical; the physics comes later.

2.1 Definition of Hilbert Spaces

Hilbert space is a vector space H over C equipped with a complete inner product. Let’s take a moment
to understand what this means; much of it will be familiar from IB Linear Algebra or IB Methods.

Saying that H is a vector space means that it is a set on which we have an operation of addition
+:H X H — H, obeying

e commutativity. V¥ + ¢ = ¢ + Y,
e associativity. ¥+ (¢ +x) = (¥ + @) + x;
e identity. 310 € H s.t. v +0=1

for all ¥, ¢, x € H. Furthermore, we can multiply our vectors by numbers in C called scalars. This
multiplication - : C X H — H is

o distributive over H. c¢- (Y + @) =c- ¥ + ¢ - ¢;
o distributive in C. (a+0b)-¢Yp=a-9+b-¢

for all a,b,c € C. In addition, H comes equipped with an inner product. This is a map ( , ):
H X H — C that obeys

o conjugate symmetry. (¥, ¢) = (¢,1)";

linearity. (¢, a1h) = a(e,);

additivity. (¢,0 + x) = (¢,%) + (¢, X);

o positive definiteness. (1,1) > 0, with equality iff 1) = 0.

Note that the first two of these imply (ad,v) = a*(¢,%) so that ( , ) is antilinear in its first
argument?. Note also that (,1) = (1,1)* so it is necessarily real. Whenever we have inner product,
we can define the norm of a state to be

[l = v (@, ¢). (2.1)

These properties ensure that the Cauchy—-Schwarz inequality

(@, 0)* < llol* [l]1* (2.2)
holds.
As always, a set of vectors {¢1, ¢, ..., ¢} is linearly independent if the only solution to
11+ copa+ -+, =0 (2.3)

n this course, we’ll focus on Dirac’s formulation of QM, which is based on Hilbert space. This is by far the most
commonly used approach. However, there are some other approaches to QM (notably deformation quantization and
the theory of C*-algebra) in which Hilbert spaces do not play a prominent role. We won’t discuss any of them.

2In the math literature, the inner product is often taken to be linear in the first entry and antilinear in the second.
We will follow the QM convention, which is opposite.
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for¢; e Cis ¢ = -+- = ¢, = 0. The dimension of the vector space is the largest possible number of
linearly independent vectors we can find. If there is no such largest number, then we say the vector
space has infinite dimension. A set of vectors {¢1, d2,...,¢n} is orthonormal with respect to the
inner product (, ) if

0 ifa#bd
a = 24
(60:60) {1 LT (24
A set {¢1, P2, ..., ¢Pn} forms a basis of an n-dimensional Hilbert space if every ¢) € H can be uniquely

expressed as a sum
Y= cidi, (2.5)
i=1

with some coefficients ¢; € C. The basis is usually taken to be orthonormal. In this case, we can
easily determine these coefficients by taking the inner product with ¢;, since

n

(Gi,0) = [ 65, it | =D ci(bin ) =c (2.6)

Jj=1 J
by linearity and orthonormality.

Quantum mechanics makes use of both finite and infinite dimensional Hilbert spaces, as we’ll see.
In the infinite dimensional case, we have to decide what we mean by an ‘infinite linear combination’ of
(e.g. basis) vectors. Not every such infinite sum makes sense, because infinite sums such as Y .2, ¢;¢;
might not converge. Technically, we consider the partial sums Sy = vazl c;¢; of just the first N
terms, and say that the Cauchy sequence {S7,Ss,...} converges in the norm if there is some vector
¥ to which it converges in the sense that
lim ||Sy — ¥ =0. (2.7)
N—oco
To say that H is complete (or complete in the norm) means that every Cauchy sequence {57, 52, ...}
indeed converges in H. This captures the heuristic idea that there are no points ‘missing’ from .
Importantly, it also allows us to analyse: being able to differentiate vectors in H requires that we can
take limits, and to do this we need to know whether the limits exist.

The interplay between the vector space structure and this requirement of completeness can be very
subtle in infinite dimensions — you’ll see much more of this if you take the Part II course on Linear
Analysis or (next term) Functional Analysis. In this course, we’ll largely ignore such subtleties, not
because they’re not interesting, but because they’re a distraction from all the interesting physics we
need to learn.

2.1.1 Examples

Let’s now look at a few examples of Hilbert spaces, pointing out where they’re relevant to physics.
The simplest case is when H is finite dimensional. In this case, as a vector space we have H = C”

for some n. You might think we still have lots of choice in picking an inner product, but it turns out
that finite dimensional Hilbert space is always isomorphic to one with inner product

(v,u) = Z vl U, (2.8)

and corresponding norm

(2.9)
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Here {u;} are just complex numbers — the components of the vector u in the canonical basis.

In physics, finite dimensional Hilbert spaces often arise as idealizations or “toy models”. We
may wish to illustrate some quantum phenomenon by first considering an especially simple case
that has only finitely many (perhaps just two) different things it can do. Alternatively, we may be
concerned with just a finite dimensional subspace of a larger physical system. For example, we may
be interested in states at a particular energy level of a degenerate Hamiltonian, which can easily be
finite dimensional. Also, we’ll see later that the angular behavior of systems with a fixed (and finite)
total angular momentum is also captured by a finite dimensional Hilbert space.

A simple infinite dimensional generalisation of this is the space of infinite sequences of complex

number u = (uq,us,...) such that
o0

> luil* < 0. (2.10)
i=1
This space is known as ¢? and, heuristically, you can think of it as “C™ with n = co”. The inner
product between two such sequences u and v is defined as

oo

(v,u) =Y vfu, (2.11)

=1

as an obvious generalisation of the finite dimensional case. The Cauchy—Schwarz inequality gives
|(v,u)| < ||v| |[u]l < oo, so this inner product converges provided the norms do. Again, the notion of
completeness of ¢2 with respect to this norm enables us to meaningfully take limits and, ultimately,
differentiate vectors u € £2.

In physics, ¢? arises in many places. For example, the space of energy eigenstates in an infinite
square well, or in the harmonic oscillator potential, may be thought of ¢2. Similarly, the space of
bound states (E < 0) of the hydrogen atom is £2, though the scattering states (E > 0) are not.

We’ll often also meet infinite dimensional vector spaces that are spaces of functions, such as the
wavefunctions you dealt with throughout IB Quantum Mechanics. Given two functions ¢, ¢ : R — C,
we can define linear combinations a4+ b¢ for any a,b € C in the obvious way

(a +b0)(x) = ap(x) + bo(x), (2.12)

where the multiplication and addition on the right-hand side are just those in C, so spaces of functions
are naturally infinite dimensional vector spaces (as you saw in IB Methods). To turn this space of
functions into a Hilbert space, we first give it the norm

ol = / dz [(z)? (2.13)

and require that |[¢|| < oo, i.e. the integral converges. In physics, functions for which ||¢|| < co holds
are called normalisable. Note that just asking (2.13) to converge is not a very strong restriction,
and so our normed function space contains a very wide class of functions, including all piecewise
continuous functions that decay sufficiently rapidly as |z| — oo, and even some functions that are
singular for some discrete values of x, provided these singularities are not strong enough to cause the
integral to diverge3.

3The requirement that the space be complete in the norm (2.13) is rather subtle. If || — ¢|| = 0, then we must
identify 1 and ¢ as the same object in our space. This does not necessarily mean that they’re identical as functions,
because e.g. they could take different at some discrete points z; C R, as the non-zero value of 1) — ¢ at these discrete
points would not contribute to the norm (2.13). In particular, any function that is non-zero only at a set of points that
has a Lebesgue measure zero should be identified with the zero function. The resulting space is known as L?(R,dx) or
sometimes just L? for short. (The L stands for Lebesgue, and is an example of a more general type of normed function
space.) L2 (R,dz) consists of equivalence classes of Cauchy sequences of functions that are convergent in the norm. In
this course we’ll mostly gloss over such technicalities, and they’re certainly non-examinable. For a deeper discussion of
Hilbert space, see the Part II Linear Analysis and Functional Analysis courses.
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Finally, we take the inner product between two functions ¢ and ¢ whose norms are finite to be

(6.0) = / dz $(z)" (), (2.14)

and again this converges by Cauchy—Schwarz. In physics, we often call ¢ (z) the wavefunction of the
particle, and sometimes call (¢, %) the overlap integral between two wavefunctions.

2.1.2 Dual Spaces

As with any vector space, the dual H* of a Hilbert space H is the space of linear maps H — C. That
is, an element ¢ € H* defines a map ¢ : ¢ — p(v) for every ¢ € H, such that

© :ar + bipa — ap(1) + bp(hs) (2.15)
for all 91,12 € H and a,b € C.

One way to construct such a map is to use the inner product. Given some state ¢ € H, we can
define an element (¢, ) € H* which acts on ¢ € H by

(&, ) — (d,9), (2.16)

i.e. we take the inner product of ¢ € H with our chosen element ¢. The linearity properties of the
inner product transfer to ensure that (¢, ) is indeed a linear map — note that since the inner product
is antilinear in its first entry, it’s important that our chosen element ¢ to sit in this first entry. In
IB Linear Algebra you proved that, in finite dimensions, every element of H arises this way. That is,
any linear map ¢ : H — C can be written as (¢, ) for some ¢ € H. This means in particular that
the inner product (, ) provides a vector space isomorphism

H=H,
o (9, )=09". (2.17)

The notation T is known as the Hermitian conjugate that transform a vector ¢ € H into its dual
¢t € H. Comfortingly, the same result also holds in infinite dimensions?, but it’s non-trivial to
prove and is known as the Riesz Representation Theorem. The isomorphism H* = H is what is
special about Hilbert spaces among various other infinite dimensional vector spaces, and makes them
especially easy to handle.

2.1.3 Dirac Notation and Continuum States

From now on, in this course we’ll use a notation for Hilbert spaces that was introduced by Dirac
and is standard throughout the theoretical physics literature. Dirac denotes an element of H as [i)),
where the symbol “| )” is known as a ket. An element of the dual space is written (¢| and the symbol
“( ]” is called a bra. The relation between the ket |¢) € H and the bra (¢| € H* is what we would
previously have written as ¢ versus (¢, ). We can again use Hermitian conjugate to transform a ket
into a bra: |¢>T = (@], or vice versa, ((b|Jr = |¢). The inner product between two states |1}, |¢) € H
is then written (¢|y)) forming a bra-ket or bracket. Note that everything above implicitly uses the

4We should really be more careful here, though we won’t be concerned with the following subtleties in this course.
In infinite dimensions we distinguish the algebraic dual space — the space of all linear functionals ¢ : H — C from the
continuous dual, where the number (1)) is required to vary continuously as 1 varies in H. The Riesz Representation
Theorem applies to the continuous dual. For example, the algebraic dual also contains distributions such as the Dirac
delta, §, acting as & : ¢ — ¥(0)“= [, dz(z)y(x)”, with ¢ € L2(R,dz). Certainly §(z) is not itself square-integrable,
so is not in the Hilbert space. However, since L%(R,dx ) contains discontinuous functions, 6[¢)] does not have to vary
smoothly with ¢. Functional analysis is almost always interested in the continuous dual, and thus this is often called
just the dual space.
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isomorphism H* = H provided by the inner product, building it into the notation. Recall also that
in all physics courses, {¢|v) is antilinear in (¢|.

Given an orthonormal basis {|e;)} of H, at least in the cases H = C" or H 2 (2, in Dirac notation
we can expand a general ket |¢)) € H as

= Z%‘ l€:) (2.18)

in terms of this basis. Then the inner product of x, v € H can be expanded as

(xly) = me (ejlei) = me (2.19)

as usual.

It’s very useful to be able to extend this idea also to function spaces. In this case, we introduce a
continuum basis with elements |a) labelled by a continuous variable a, normalised so that

(a'|a) = d(a’ — a) (2.20)

using the Dirac §-function. To expand a |¢) in a continuum basis, we need to replace the summation
n (2.18) and write

) = / da(a)|a) , (2.21)

where t(a) is the component of |a). The point of the normalisation (2.20) is that

(x|¥) = /db /dax /db /dax )o(b—a)= /dax(a)*w(a), (2.22)

which is just the inner product (and also norm) we defined for L?(R,da) before. Indeed, a key
example of a continuum basis is the position basis {|x)}, where x € R. Expanding a general state |¢)
as an integral gives

) = / da’ (e 1) (2.23)

We see that the complex coefficients are

() = / da' (a') (2la’) = (). (2.24)

In other words, the position space wavefunctions we’re familiar with are nothing but the coefficients
of a state |¢) € H in a particular position continuum basis.

As always, we could equally choose to expand this same vector in different bases. For example,
our state 1)) = [, dz¢)(x) |z) from above can equally be expanded in the momentum basis as |¢)) =

Jzdp ¥ (p) |p), where the new coefficients v (p) = (p|)) are the momentum space wavefunction. Later,
we’ll show that (z|p) = e*P/" /\/21h, so these two sets of coefficients are related by

dpel ™/ Map(p), (2.25)

(xlp) = / dp () (zlp) = F

(plY) = /dmw (plz) = / da e 7P/ Mo (1) (2.26)

Equations (2.25) and (2.26) are just the statements that the position and momentum space
wavefunctions are each other’s Fourier transforms, again familiar from IB Quantum Mechanics.

The real point I wish to make is that the fundamental object is the abstract vector 1) € H. All
the physical information about a quantum system is encoded in its state vector |¢); the wavefunctions
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¥(x) or ﬁ(p) are merely the expansion coefficients in some basis. Like any other choice of basis, this
expansion may be useful for some purposes and unhelpful for others.

Finally, a technical point. Although using continuum bases such as {|z)} and {|p)} is convenient,
because it emphasizes the similarities between the finite and infinite-dimensional cases, it blurs the
analysis. In particular, if (z'|z) = §(2’ — x) then the norm

ll2)II* = 8(z — z) = 6(0). (2.27)

So whatever these objects |z) are, they certainly do not lie in our Hilbert space. It is possible to
make good mathematical sense of these by appropriately enlarging our spaces to include spaces of
distributions, but for the most part (and certainly in this course) physicists are content to say that
continuum states such as |z) are allowable as basis elements, but call them non-normalizable states:
actual physical particles are never represented by a non-normalizable state.

2.2 Operators

A linear operator A is a map A : H — H that is compatible with the vector space structure in the
sense that

Aler [91) + 2 |12)) = c1 A1) + c2A[ta) (2.28)

in Dirac notation®. All the operators we meet in Quantum Mechanics will be linear, so henceforth
we’ll just call them “operators”. Operators form an algebra: given two such linear operators A, B,
we define their sum aA + B as

(@A +BB) : [v) > aA ) + BB ) (2.29)
for all a, 8 € C and all |[¢) € H, and take their product AB to be the composition
AB: ) — Ao B) = A(B [¥)) (2.30)

for |¢) € H. One can check that both the sum and product of two linear operators is again a linear

0perator6.

The operator algebra is associative, so A(BC) = (AB)C, but not commutative and in general
AB # BA so the order in which the operators act is important. The difference between these two
actions is known as the commutator

[A,B] = AB — BA. (2.32)
The commutator obeys the following properties:

o anti-symmetry. [A, B] = —[B, A];

5Here we are being a little sloppy again. In the infinite dimensional case, it often happens that operators are not
defined on the whole of H, but just on some domain Dom A C H which depends on the operator itself. For example, the
momentum operator P acts on position space wavefunctions ¥ (z) € L?(R,dz) by —ihd/0x. If 1(z) is discontinuous,
then it could be that [dz |¢’|? diverges even though [ dax [|? itself is finite. Understanding the correct domain of
various operators is an important part of functional analysis. We’ll largely ignore such subtleties in this course.

6 A linear operator is bounded if, for all |¢) € H,

AT < M) (2.31)

for some M > 0. The space of such bounded linear operators on H is denoted as B(#). Bounded linear operators thus
map normalisable states to normalisable states, and so act on the whole Hilbert space . This usually makes them the
nicest ones to deal with. One of the reasons we’ll be largely ignoring the analysis aspects of Hilbert space in this course
is that the operators we commonly deal with in quantum mechanics, such as the position and momentum operators
X and P, are unbounded. (For example, even when its wavefunction is correctly normalised, a particle can be located
at arbitrarily large x € R3, or have arbitrarily large momentum.) Tt’s of course possible to handle such unbounded
operators rigorously, but doing so involves an extra layer of technicality that would take us too far afield here. For
further discussion, see that Part II course on Analysis of Functions.
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o linearity. (a1 A1 + asAs, B] = a1[A1, B] + az[As, B] Vai, a3 € C;
o Leibniz identity. [A, BC| = [A, B]C + B[A, CY;
o Jacobi identity. [A,[B,C]]+ [B,[C, A]] + [C,[A, B]] = 0.

These are easy to verify from the definitions. Commutators of operators arise frequently in quantum
mechanics.

A state [¢)) € H is said to be an eigenstate of an operator A if
Al) = AlY) , (2.33)

where the number A\ € C is known as its eigenvalue. Thus, if 1) is an eigenstate of A, acting on |))
with A returns exactly the same vector, except that it is rescaled by a number that may depend both
on the state and the particular operator. The set of all eigenvalues of an operator A is sometimes
called the spectrum of A, while the number of linearly independent eigenstates having the same
eigenvalue is called the degeneracy of this eigenvalue.

One place where Dirac notation is particularly convenient is that it allows us to label states by
their eigenvalues. We let |¢) denote an eigenstate of some operator @) with eigenvalue ¢, so that
Qlg) = qlq). For example, a state that is an eigenstate of the position operator X with position
x € R3 (representing a particle that is definitely located at x) is written |x), while the state |p) is an
eigenstate of the momentum operator P with eigenvalue p. There’s a potential confusion here: |x)
does not refer to the function x, but rather a state in 4 whose only support is at x. We saw above
that the wavefunction corresponding to |x) was really a ¢ function.

In this course, I'll mostly use the convention that operators are written using capital letters,
with their eigenvalues being labelled by the same letter in lowercase. However, I won’t stick to this
religiously; a notable and deeply ingrained exception is to use FE for the eigenvalues of the Hamiltonian
operator H.

The extra structure of the inner product on H allows us to also define the Hermitian conjugate
or adjoint At of an operator A by

(@l AT = (Alo)" , (2:34)
or, equivalently,
(o]ATw) = (416N ) = Wl Al8)" (2.35)
for all |¢), [¢) € H. One can easily check that”
(A+B) = A"+ B", (AB)" = (BA)T, (aA)! = a* AT and (AT = 4, (2.36)

from which it follows that [4, B]f = [Bf, Af]. Note also that the adjoint of the eigenvalue equation
Ala) =ala) is
(a| AT = (a| a*, (2.37)

where AT is taken to act to the left on the dual vector (al.

An operator Q is called Hermitian® if Qf = Q, so that (¢|Q[)) = (¥|Q|#)™ for all |¢), [¢) € H.
Hermitian operators are very special and have a number of important properties. Firstly, suppose |¢)

7 At least for the finite dimensional case. We’ll assume without being careful that it holds in the infinite dimensional
case too.

8The terminology Hermitian is used in the physics literature, coming from the fact that if  is finite dimensional, we
can represent linear operators obeying Qf = Q by Hermitian matrices. In functional analysis, we’d have to be a little
more careful about exactly which states we allow our operator to act on. For example, differentiating a non-smooth
but square-integrable function will typically sharpen its singularities and may render it non-normalisable. Thus the
momentum operator —iiid/dz may take a state in H = L2(R,dz) out of L?(R,dz), and to keep analytic control
we should first limit the states on which we allow the momentum operator to act. Being more careful, we’d say that
operators obeying (4] Q|@) = (¢] Q [¢)" for all |¢) 1) € Dom @ C Dom Q' C # and Dom Q dense in M are symmetric,
while symmetric operators for which Dom Q = Dom QT are called self-adjoint. The distinction between operators that
are self-adjoint and those that are merely symmetric is a little technical, but has important consequences for their
spectrum and the existence of eigenstates. See e.g. this Wikipedia page for a basic discussion with examples. We’ll
largely ignore such subtleties in our course.


https://en.wikipedia.org/wiki/Self-adjoint_operator
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is an eigenstate of a Hermitian operator ) with eigenvalue ¢, then

q{qlq) = (dlQlq) = (gl Qla)" = ¢" (qla) , (2.38)

so ¢ = ¢*. Hence, the eigenvalues of a Hermitian operator are real. Second, suppose |¢1) and |g2) are
both eigenstates of (Q with distinct eigenvalues ¢; and go. Then

(1 — ¢2) (n1la2) = (@] Q1 |g2) — (@] Qg2) =0, (2.39)

where the first equality uses the fact that ¢ is real and the second uses the fact that () is Hermitian.
Since ¢1 # g2 by assumption, we must have (q1|g2) = 0, so the eigenstates of Hermitian operators
with distinct eigenvalues are orthogonal, and after rescaling, we can choose them to be orthonormal.

In the finite dimensional case, you proved in IB Linear Algebra that the set of eigenvectors of a
given Hermitian operator form a basis of H; that is, they form a complete, orthonormal set. This
property allows us to express Hermitian operators in a form that is often useful. If {|n)} is an
orthonormal basis of eigenstates of a Hermitian operator @, with eigenvalues {\, }, then we can write

Q= Z)\n |n) (n| , (2.40)
where we think of this as acting on [¢)) € H by

Q) = Anln) (nfy) . (2.41)

Note that indeed Q |n) € H, since the (n|y) are just numbers in C, whereas each term in the sum
also involves |n) € H. In particular, expressing [¢) in this basis as 1)) = > cp, |m) gives

QlyY) = Z)\ Cm |n) (nlm) = Z)\ cnn) . (2.42)

One reason this representation of @ is useful is that it allows us to define functions of operations.
We set
Q) = fOw)In) (nl, (2.43)

provided f(A;,) is defined for all eigenvalues \,, of the original operator. For example, the inverse of
an operator (Q is the operator
1
=3 = Im) (] (2.44)

provided A,, # 0 for all n, while
Q=Y n(\,)n) (n] (2.45)

when the eigenvalues of () are all positive.

A particularly important example of this is that we can represent the identity operator Id on H
as

=" o) (o] or 14 = [ dg la) (] (2.46)

where {|n)} or {|g)} are any bases of H respectively for discrete or continuous labels. This is often
convenient for moving between different bases. For example, if {|p)} denotes a complete set of
eigenstates of the momentum operator P, with P |p) = p|p), then to represent this operator acting
on a state |¢) in the position basis we write

(2| P|y) = / dp (z|Plp) (pl) = / dp (z}p) pi(p)

dpe™?/Ppy(p) = —ih% [ = /dpei“’/ﬁ@(p)] . (2.47)

F / 27h
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2 Hilbert Space II Principles of Quantum Mechanics

In the first equality here we've squeezed the identity operator Id = [dp |p) (p| in between the
momentum operator P and the general state [i), then used the fact that |p) is an eigenstate of P,
and finally used our previous expression for (x|p) and standard properties of Fourier transforms. We
recognise the integral in the final expression as the position space wavefunction of |¢), so altogether
we have

(«lPh) = ~ih - () (2.48)

or P¢(x) = —ihoy/Ox in IB notation. This and similar manipulations will be used repeatedly
throughout the course, so it’s important to make sure you're comfortable with them.

If H is finite dimensional, we can represent any linear operator on H by a matrix. We pick an
orthonormal basis |n) and define
Apm = (n|Alm) (2.49)

as usual. In particular, inserting the identity operator in the form Id = " |n) (n| shows that the
matrix elements of the product operator AB as

_Z (k|An) (n|B|m) = ZA;m i (2.50)

(AB)jm = (k| AB|m) = <

which just corresponds to usual matrix multiplication. Hermitian operators are represented by
Hermitian matrices, i.e. ones whose elements obey (Af),,, == A% = A,,,,, hence the name.

2.3 Composite Systems

We often have to deal with systems with more than a single degree of freedom. This could be just a
single particle moving in three dimensions rather than one, or a composite system such as a hydrogen
atom consisting of both an electron and a proton, or a diamond which consists of a very large number
of carbon atoms. In the case of a macroscopic object, our system could be made up of a huge number
of constituent parts, each able to behave differently, at least in principle.

It should be intuitively clear that the more complicated our system is, meaning the more
independent degrees of freedom it possesses, the larger a Hilbert space we’ll need if we wish to
encode all its possible states. We’ll now understand how quantum mechanics handles systems with
more than one degree of freedom by taking the tensor product of the Hilbert spaces of its constituent
parts.

2.3.1 Tensor Product of Hilbert Spaces

Hilbert spaces are vector spaces over C, so we can try to define their tensor product in the same
way as we would for any pair of vector spaces. Recall from IB Linear Algebra that if H; and Hs are
two finite Hilbert spaces, with {|eq)}7", a basis of H; and {|f.)}2_; a basis of Ha, then the tensor
product space Hi @ Ho is again a Vector space over C spanned by all pairs of elements |e,) ® |fu)
chosen from the two bases”. It follows that

dim(?—ll &® Hg) = dim(H4) dim(Hg) (2.52)

91f you’re a purist (and the PQM Tripos examiners are not), then there’s something slightly unsatisfactory about
this definition of the tensor product vector space, which is that it apparently depends on a choice of basis on both #;
and Ha. We can do better, just using the abstract vector space structure, as follows. For any pair of vector spaces V'
and W, we first define the free vector space F(V x W) to be the set of all possible pairs of elements chosen from V' and
W. This is a vector space with the sum of a pair (v, w) and a pair (v/,w’) denoted simply by (v,w) + (v',w’) (Do not
confuse the pair (v, w) € F(V X W) with an inner product! Here v and w live in different spaces.) By itself, F(V x W)
does not care that V' and W are already vector spaces. For example, if e; is a basis for V and v = c1e; + caea for
some coefficients c1, c2, the elements (v, w) and c¢1(e1,w) + c2(e2, w) are nonetheless distinct in F(V X W). We'd like

11



2 Hilbert Space II Principles of Quantum Mechanics

provided these are finite. This should be familiar from IB Linear Algebra.

It’s important to stress that, as with any vector space, a general element of H; ® Hs is a linear
combination of its basis elements |e,) ® | f,). In particular, although general elements of H; and Hs
can be written

|1/J1> = Z Ca ‘ea> and W)2> = Z do |fa> ) (253)
a=1 a=1
it is not true that a general element of H; ® Ho necessarily takes the form

[91) ® [¢2) an lea) ® | fa) - (2.54)

Rather, a general element of H, ® Ho is written as

\I’> = Zra,a |€a> oy |fa> . (255)

In particular, elements of the form |¢1) ® |[¢)2) € Hi ® Ha are only specified by dim H; + dim Hs
coefficients, vastly fewer than is required to specify a generic element. Elements of the form |¢)) ®
|¢) are sometimes called simple, while in physics generic elements of the form (2.55) are said to
be entangled. In section 10 we’ll explore some of the vast resources this entanglement opens up
to quantum mechanics; you’ll see much more of it next term if you take the course on Quantum
Information and Computation.

In order to make H; ® Ho a Hilbert space, rather than just a vector space, we must give it an
inner product. We do this in the obvious way. Let ( | ), and ( | ), denote inner products on #;
and Ho. We first define the inner product between each pair of basis elements of Hi ® Hso by

((eal @ (fal)(len) @ |f5)) = (eales)y {falfs)s » (2.56)

and then extend it to arbitrary states |¥) by linearity. Note in particular that if {|e,)} and {f.} are
orthonormal bases of their respective Hilbert spaces, then {|e,) ® | fo)} will be an orthonormal basis
of H1 ® Ha.

The most common occurrence of this is simply a single particle moving in more than one dimension.
For example, suppose a quantum particle moves in R?, described by Cartesian coordinates (x,y). If
{|z)}zer is a complete set of position eigenstates for the z-direction, and {|y)}yer is likewise a
complete set for the y-direction, then the state of the particle can be expanded as

) = / dadyd(ay) [2) 9 1) (2.57)

where {|z) ® |y) }5 yer form a continuum basis of the tensor product space. Note that in general, our
wavefunction is not a simple product ¥ (x,y) # ¥1(x)wa(y) of wavefunctions in the two directions
separately, though it may be possible to write it as the sum of such products, as you met repeatedly
when studying the separation of variables in IB Methods. In this continuum case, the inner product
between any two states is

(xly) = /]R2 . da’ dy' dz dy x (', ') ¥ (z, y) (@' |2) ' |y)
= /]R2 . da’ dy' dx dy X(ZU/, y/)*w(x’ y)5(z — :E/)(S(y _ y/)

= /Rz dz dy x(z,y) ¢(z,y) . (2.58)

to teach the free vector space about the structure inherited from V and W individually. We thus define the tensor
product V@ W to be the quotient F(V X W)/ ~ under the equivalence relations

(0,) + (0, ) ~ (0 +0',10) , (0,0) + (0,0') ~ (v, 0 + ') and e(v,w) ~ (ev, ) ~ (3, cw) (2.51)
for all v € V, w € W and ¢ € C. We denote the equivalence class of the pair (v, w) by v ® w.

12



2 Hilbert Space II Principles of Quantum Mechanics

This is exactly the structure of L?(R?, d?x), and we identify!® L?(R? d?x) = L*(R,dz) ® L*(R,dy).

More commonly in physics, we consider quantum systems that live in R3, described by a Hilbert
space H = L?(R3, d®x) obtained from the tensor product of three copies of the Hilbert space for a
one-dimensional system. We can expand a general state in this Hilbert space as

) = /]R3 dedydzy(z,y,2)|z) @ |y) @ |2) = /IR3 Bxp(x) [x) (2.61)

where the last expression is just a convenient shorthand. Going further, to describe a composite
system such as a hydrogen atom that consists of two particles (an electron and a proton), we need to
take the tensor product of the individual Hilbert spaces of each particle. Thus (neglecting the spin
of the electron and proton) the atom is described by a state

|0) = /RG d®x, d3x, U(xe,%,) [Xe) @ %) (2.62)

where U(x,,%,) = ((Xe] ® (x,]) |¥) is the amplitude for the atom’s electron to be found at x. while
its proton is at x,,.

Once we know the Hilbert spaces appropriate to describe the fundamental constituents of our
system, we can build up the Hilbert space for the combined system by taking tensor products. We
should then ask, “What is the correct Hilbert space to use to describe the fundamental particles in
our system?”. Ultimately, this question can only be determined by carrying out an experiment. For
example, experiments performed by Stern and Gerlach (see section 5.3.2) showed that a single electron
is in fact described by a Hilbert space H, = L?(R3,d%*x) ® C?, formed from the tensor product of
the electron’s position space wavefunction with the two-dimensional Hilbert space C? describing the
electron’s internal degree of freedom. Thus, letting {|1),|{)} be an orthonormal basis of C2, a generic
state of the electron (whether or not it’s part of a hydrogen atom) is

) =l [N+, (2.63)
given in the position representation by
<Xe|\I}> = ¢(Xe) |T> + X(Xe) ‘\L> ) (264)

involving a pair of wavefunction ¢,y € L?(R3,d®*x). We’'ll investigate this in detail in section 5.3.

Let’s now understand how operators act on our composite system. Given linear operators A :
H1 — Hy and B : Hy — Ho, we define the linear operator A ® B : H1 @ Ho — Hi ® Ho by

A®B: |ea) @ |fa) — (Alea) @ (Blea)) , (2.65)

10There is actually one more step in the infinite dimensional case: we must take the completion of L?(R, dz)®L?(R, dy)
in the norm associated to this inner product. There is no problem if our general state ¢ (z,y) can be written as a finite
sum of products of square-integrable wavefunctions, say ¢q(z) and pp(y) on each of the two directions separately, for
then

Ldedy i@l = [ dedy 30 60(@) oy (0) al@)en(o)

a,a’ ,b,b’

b,b’

= {Z /R dwa/(:c)*%(x)} [Z /]R dypb'(y)*pb(y)] < oo, (2.59)

with convergence guaranteed by the properties of the inner product on each copy of L%(R,dxz). However, there are
functions in L?(R?,d?x) that cannot be so expressed as a finite sum. A simple example is the function f : R2 — C
given by

1 when \/z2 4+ y2 < a?

' (2.60)
0 otherwise.

i@y — {
It is obvious that this function is square-integrable over R?, but it cannot be written as a finite sum of products
of functions of z and y respectively. It thus lies in the completion of L2(R,dz) ® L?(R,dy), but not in this space
itself. The Hilbert space completion of H1 ® Ha is often denoted H1&Hz, so more correctly we have L2?(R2,d%x) =
L%(R,dz)®L?(R,dy). We'll ignore such subtleties in this course, saving a proper treatment for the Functional Analysis
course.
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2 Hilbert Space II Principles of Quantum Mechanics

and we extend this definition to arbitrary states in H; ® Ho by linearity. In particular, the operator
A acting purely on H; corresponds to the operator A ® Idy, when acting on the tensor product, and
similarly Idy, ®B acts non-trivially just on the second factor in the tensor product. Note that since
they act on separate Hilbert spaces,

[A® Idy,, Idy, ®B] =0 (2.66)

for any operators A, B, even if these operators happen not to commute when acting on the same
Hilbert space.

As an example, let’s again consider the case of the hydrogen atom, where the Hamiltonian takes
the form

P2 2
H=—°¢ 1d, +1d, P V(Xe, X,). 2.67
2me ® 4 + ®2mp + ( p) ( )

The kinetic terms for the electron and proton each act only on one factor in the tensor product, while

the Coulumbic interaction

e2

V(Xe,X,p) = X =X,

(2.68)

depends on the location of each particle. In this case, since V' depends only on the relative separation
of the two, it’s actually more convenient to view the tensor product differently, writing

HHyd =H.® Hp = Heom @ Hrel (269)

to split it in terms of the states describing the behaviour of the centre of mass and those describing
the relative states. Defining the centre of mass and relative operators

Koo = M’ Pem =P, +P,, (2.70)
Me + My
P.—m.P
X=X, X, p="rc"Mep (2.71)
Me + My
the Hamiltonian becomes
P? P?  ¢?
H — com Idre Idcom e s 272
S © M +Hen @ |30~ | (272)

where M = m, + m, is the total mass and p = mem,/M is the reduced mass. Such calculations
should be familiar from studying planetary orbits in IA Dynamics and Relativity.

Henceforth we’ll often omit the ® symbol — both in states and in operators — when the meaning
is clear.

2.4 Postulates of Quantum Mechanics

So far, we’ve just been doing linear algebra, talking about Hilbert spaces in a fairly abstract way.
Let’s now begin to connect this to some physics.

The first postulate of quantum mechanics says that our system is described (up to a redundancy
discussed below) by some state |¢)) € H, and that any complete set of orthogonal states
{|$1),|d2) ...} is in one-to-one correspondence with all the possible outcomes of the measurement
of some quantity. Further, if a system is prepared in some general state

) = cm|bm) | (2.73)
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2 Hilbert Space II Principles of Quantum Mechanics

then the probability that the measurement will yield an outcome corresponding to the state ¢, is

(gl
(®1Y) (Pnldn)

or equivalently Prob(|1)) — |6n)) = |enl? / (énlén) (¥0]1)). The denominator in the above expression
allows the states |¢) and {¢,} to have arbitrary norm. Notice that Prob(|¢)) — |¢,)) > 0 and also,

since (Y|1)) = 32, €k (Gmldn) = X [em|” (Sm|ém) by the orthogonality of {|¢y,)}, that

N leal® (@aldn) _ (L) _
;Prob(hm — |pn) = zb: O = Wl = 1. (2.75)

Prob(|¢) = [én)) = (2.74)

The probabilities sum to one.

Let us make some remarks. Firstly, note that we’ve not specified exactly which Hilbert space
H we should use; is H to be C", or £2, or L?(R3,d3x), or something else? In fact, the appropriate
choice depends on the system we’re trying to describe. For example, a single point particle with no
internal structure could be described using'! H =2 L?(R?, d3x) whereas to specify the state of a more
complicated system with several degrees of freedom we’ll need a larger Hilbert space, encoding for
example the location of its centre of mass, but also details of the system’s orientation.

Second, the fact that quantum mechanics only predicts the probabilities of obtaining a given
experimental outcome — even in principle — is one of its most puzzling features. Originally, this
probabilistic interpretation of wavefunctions was due to Max Born, and (2.74) is sometimes known
as the Born rule. He found that, solving the Schrodinger equation for scattering a particle of a
generic obstacle in R3, the particle’s wavefunction would typically become very spread out so as to
have appreciable magnitude over a wide region. This is in contrast to our experience of particles
bouncing off targets, each in a certain specific way. For example, recall that when performing his
gold foil experiment to probe the structure of the atom, Rutherford usually observed a-particles
to plough straight through, but occasionally saw them rebound back revealing the presence of the
dense nucleus. Each a-particle was observed at a specific angle from the target, and did not itself
‘spread out’. Reconciling this observation with the behaviour of the wavefunction is what led Born to
suggest that quantum mechanics should be inherently probabilistic. His reasoning was perhaps not
totally sound, and we’ll explore the interpretative meaning of QM further and from a more modern
perspective in section 10.

As a final remark on this postulate, to clean up the basic probability rule (2.74), it’s usually
convenient to assume our states are normalised, meaning that

(Yl) =1, (2.76)
and to expand them in an orthonormal basis {|¢;)}. In this case, the above probability is simply
Prob(|¢) = |¢4)) = [(del¥)|” , (2.77)

while the quantity (¢s|t)) € C itself is often called the probability amplitude, or just amplitude for
short. In what follows, we’ll almost always use this simpler expression, but it’s important to recall
that it only holds in the case of a properly normalised state expanded in an orthonormal basis. Even
when all states are properly normalised, we're still free to redefine [¢)) — el |)) for some constant
phase a. This phase drops out of both the normalisation condition and the Born rule (2.74) for the
probability. Taking into account both the normalisation condition and the phase freedom, in quantum
mechanics, physical states do not correspond to elements |)) € H but rather rays through the origin.
That is, provided [¢) # 0, the entire family of states

la) = Alp), A e C\{0} (2.78)

1 Note that we only require H to be isomorphic to the space L?(R3, d3x ) of normalisable position-space wavefunctions.
We could equally well describe our structureless particle using a momentum space wavefunction, and indeed
L2(R3,d3p) = L?(R3,d3x), with the isomorphism provided by the Fourier transform.
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2 Hilbert Space II Principles of Quantum Mechanics

define the physical system — by tuning |A| = 1/ (p|¢)) we can always find a member of this family
that’s correctly normalised, and the constant phase A cannot affect the probability of any outcome of
a physical system. (This is the redundancy referred to above.) Note in particular that the zero vector
0 never represents a physical state. Geometrically, the equivalence [¢)) ~ A [¢) for all |¢p) € H \ {0}
and all A € C\ {0} means that physical states actually correspond to elements of the projective Hilbert
space PH. As with any projective space, it’s often most convenient to work simply with normalised
vectors |¢) € H themselves, and recall that the overall phase is irrelevant.

The second postulate of quantum mechanics states that observable quantities are represented
by Hermitian linear operators. In particular, upon measurement of a quantity corresponding to
a Hermitian operator (), a state is certain to return the definite value ¢ if and only if it is an
eigenstate of ) with eigenvalue ¢q. Let {|n)} be a complete orthonormal set of eigenstates of some
Hermitian operator @, with @ [n) = g, |n). Then we can expand an arbitrary state |¢) in this basis
as [) = Y, ¢n|n). The expectation value of Q in this state is

@)y = @IQIY) =Y chen (m|QIn) = gnlenl® | (2.79)

m,n

using the orthonormality of the basis. This is just the sum of values of ) possessed by the states |n),
weighted by the probability that |¢)) agrees with |n).

Since operators representing observables are Hermitian, for any such operator we have
(W|Q) = (¥|QTQ¥) = IQ[)II* = 0, (2.80)

and hence

0< (v|@—-(@,)2[v) = (@), - (@) - (2.81)

This shows that (Q?) 62 (Qﬁ), with equality iff ) is an eigenstate of Q. We define the rms deviation
AyQ of @ from its mean <Q>¢ in a state |¢) by

AyQ = \/ (¥]@ - (@,)]¥). (2.82)

This is just the usual definition familiar from probability. As always, it gives us a measure of how
‘spread’ a state is around the eigenstate of (). This implies that we can be sure of the value we’ll
obtain when measuring an observable quantity only if we somehow know that our state is in an
eigenstate of the corresponding operator before carrying out the measurement.

Let me emphasize that these two postulates do not say anything about how the physical process
of actually carrying out a measurement is described in the formalism of QM. (Nor do they even tell us
what constitutes ‘makes a measurement’.) In particular, we do not say that measuring the observable
corresponding to some Hermitian operator ) has anything to do with the mathematical operation
of acting on our state [¢)) with Q. According to the Copenhagen interpretation, if we measure the
observable corresponding () and find the result g, then immediately after this measurement, our
system must be the state |¢), because we've just learned that it does indeed have this value. The
wavefunction is assumed to have collapsed from whatever it was before we measured it to |¢). The
Copenhagen interpretation is the most widely accepted version of quantum mechanics, but it’s not
uncontroversial. We'll try to understand measurement from a deeper perspective in section 10.4.2.

The final postulate of quantum mechanics is that the state |¢)) of our system evolves in time
according to the Schrédinger equation

)
i ) = H 1) (2.83)

where H is some distinguished operator known as the Hamiltonian.
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2.4.1 The Generalised Uncertainty Principle

Suppose we have two Hermitian operators A and B and [)) € H. Let’s define [¢pa) = A[¢) —(A),, |¢)

so that (AyA)2 = |[|[a)|®, and similarly [¢¥g) = By) — (B), [¥). Then the Cauchy-Schwarz
inequality says

(ApA)*(AyB)” = 1) * llvs)I* > [(alts)]” - (2.84)
Expanding the right-hand side, we have

(Walts) = (0|(A = (A),)(B ~ (B),)|0) = (v|AB (), (B),[v) . (2.85)

Since we're considering Hermitian operators A, B, we have (| ABJ1)) = ()| BA|Y)", so

i (altbs) = o (6114, Bllw) (286)

Combining this with the Cauchy—Schwarz inequality gives the generalised uncertainty relation

(2 (2.87)

1
(Au AP (AyB)? = |(balis)” = 7 |(14, B]),
In particular, if [A, B] # 0 we cannot in general find states that simultaneously have definite values for
both the quantities represented by A or B. As a particular case, recall from IB Quantum Mechanics

that the position and momentum operators obey the commutation relation [X, P] = ih. This is the
Heisenberg principle of uncertainty

Ay XAypP = g (2.88)

which states that no quantum state can have a definite value for both position and momentum?!?.

12The inequality is in fact saturated by states whose position space wavefunctions are Gaussians, so despite the
fact that our derivation above neglected several positive semi-definite terms, we cannot place a higher bound on the
minimum uncertainty.
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3 The Harmonic Oscillator

We can now use Dirac’s formalism to study a simple system — the one-dimensional harmonic oscillator
— with which you should already be familiar. Our aim here is not to learn new things about harmonic
oscillators; indeed, we’ll mostly just recover results you’'ve known about since you first heard of simple
harmonic motion. Rather, our aim is to get accustomed to this more abstract approach to quantum
mechanics, seeing how it’s a very powerful way to think about the subject.

The steps we follow in our treatment of the harmonic oscillator will form a good prototype for the
way we’ll approach many other problems in quantum mechanics. We’ll see these same steps repeated
in various contexts throughout the course.

3.1 Raising and Lowering Operators

The Hamiltonian of a harmonic oscillator of mass m and classical frequency w is

P2 1
H=o—t §mw2X2 ; (3.1)

where X and P are the position and momentum operators, respectively. To analyse this, we begin
by defining the dimensionless combination

1 .
A= e (mwX +iP). (3.2)

A is not a Hermitian operator, but since X and P are both Hermitian, we see that the adjoint of A is

Al = \/ﬁ(mwX —iP). (3.3)

Roughly, the motivation for introducing these operators is that they allow us to ‘factorise’ the
Hamiltonian. We have

H 1
_ 42 4
- (3.4)
so we can write our Hamiltonian as
1 1
thw(ATA+2):hw<N+2>, (3.5)
where
N:=ATA. (3.6)

A and A' are often called lowering and raising operators, respectively, whilst N is called the number
operator. The reason for these names will become apparent soon. Notice that computing the spectrum
of H is obviously equivalent to computing the spectrum of V.

Whenever we're presented with some new operators, the first thing to do is to work out their
commutation relations. In this case, the fundamental commutation [X, P] = ik shows that

[A, AT] = %(m%?[x, X] — imw[X, P] + imw[P, X] + [P, P])
= —g, (X, P - [P, X])
=1, (3.7)
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whilst [A, A] = [AT, AT] = 0 trivially. It will also be useful to compute commutators involving N. We
have
[N, AT] = [ATA, AT] = (AT[A, AT] 4 [AT, AT]A) = AT. (3.8)

Similarly, [N, A] = —A by taking the adjoint.

Let’s see what these commutators teach us about the possible energy levels. Suppose that |n) is
a correctly normalised eigenstate of N, so that N |n) = n|n) and (njn) = 1. We have

NAT [n) = (ATN + [N, AT)) [n) = AT(N + 1) [n) = (n + 1) AT |n) , (3.9)
so AT |n) is an eigenstate of N with eigenvalue n + 1. Similarly,
NA|n) = (AN + [N, A]) |n) = (n—1)A|n) , (3.10)

so A|n) is an eigenstate of N with eigenvalue n — 1. Acting with A" thus raises the eigenvalue of
N by one unit, while acting with A lowers it by one, giving the operators their names. The above
algebra shows that if we can find just one energy eigenstate |n), then we can construct a whole family
of them by repeatedly applying either A or AT. The energies of these new states will be (n+ k& + %)hw
for some k € Z. However, we can’t yet conclude that the energy levels are quantised, because we
don’t yet know that there isn’t a continuum of possible starting-points |n) (or indeed any).

This brings us to the second key step: we must investigate the norm of our states. Since N is
Hermitian all its eigenvalues must certainly be real, but in fact they’re also non-negative, because

n=mn(nln) = (n|Nn) = (n|ATAn) = |A|n)|*> > 0, (3.11)

with n = 0 iff A|n) = 0, by the properties of the norm. If A|n) # 0 then it is an eigenstate of N
with eigenvalue n — 1, but we’ve just shown that there are no states in A with negative eigenvalues
for N, so the lowering process must terminate, That will be the case iff n is a non-negative integer.

Putting all these together, we have a ground state |0), we have a ground state |0) of energy hw
and an infinite tower of excited states |n) of energy

1
E, = <n+2)hw, neNy. (3.12)

These energy levels should be familiar from IB Quantum Mechanics.

Acting on an energy eigenstate with the raising operator does not necessarily give us an excited
state that is correctly normalised. In d = 1, energy eigenstates of the harmonic oscillator are non-
degenerate!?, so we must have A' |n) = ¢, |n + 1) for some constant ¢, (which may depend on n).
Taking the norm of both sides shows that

leal? = [|AT ()]

= (n]AAT|n) = ([N +1|n) =n + 1. (3.13)

Therefore, the correctly normalised state is

In+1) = n) (AH"+10) . (3.14)

1 1
At - -
vn+1 V(n+1)!
Likewise, you can check that [n — 1) = 2 A[n) for n > 1, whilst again A4]0) = 0.

We've seen that everything about the energy levels of the harmonic oscillator follows from (i)
the algebra (i.e. the commutation relations) of raising and lowering operators, together with (ii)
considering the norm. Again, we’ll follow these same two steps in analysing the eigenvalues and
eigenstates of various operators throughout this course. This also parallels what you did in IB
Quantum Mechanics: there, by looking for series solutions of Schrédinger’s equation, you could find

13 A proof is given in IB Quantum Mechanics.
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an energy eigenstate for all E € R. However, these eigenstates were only normalizable if the series you
found terminated. It was requiring this termination (i.e. normalisability) that lead to quantization
of the energies.

I hope I've persuaded you that the algebraic approach above is somewhat cleaner and more efficient
than looking for series solutions to Schrodinger’s equation. Nothing has been lost, and we can easily
use Dirac’s formalism to recover the explicit wavefunctions of our eigenstates. For example, in the
position representation, the defining equation A|0) = 0 of the ground state become

0 = V2mhw (x| A|0) = (z|mwX +iP|0) = (mwx + h(i) Yo(x), (3.15)

where t(z) = (2|0) is the position space wavefunction of our ground state. This is a first order
ODE, whose solution is
mw mw o

vow) = () exp(- 102, (3.16)

where the overall constant is fixed by normalisation (0]0) = [dx [o(x)]> = 1 up to phase. This
is the same Gaussian wavefunction for the ground state of the harmonic oscillator familiar form IB
Quantum Mechanics. If needed, the wavefunctions of the excited states may be found by acting
with AT = (mwX — iP)/v2mhw, which in the position representation is the differential operator
i(—a% + x/a), where @« = y/h/mw. You can check that these operators generate the usual

V2
Hermite polynomials.

3.2 Dynamics of Oscillators

At this stage, we’ve learned everything about the set {|n)} of energy eigenstates of the quantum
harmonic oscillator and their corresponding energies E,, = (n + %)ﬁw However, we still haven’t said
anything about the physics of how quantum oscillators actually behave. Classically, we know that
a harmonic oscillator would undergo periodic motion with a period T' = 27/w. Furthermore, the
energy of the classical oscillator is independent of the period, but is proportional to the square of the
amplitude of oscillation. To what extent is the same true of our quantum oscillator?

To say anything about the motion of a quantum system, we need to examine the time-dependent
Schrodinger equation. To get started, first suppose our system is prepared at time ¢ = 0 to be in
some energy eigenstate |n). Then by the time-dependent Schrodinger equation, at a later time ¢ it
will have evolved to

In, t) = eIV FL/2wt |y (3.17)

Consequently, no eigenstate has a time dependence which oscillates at the classical frequency w. Even
worse, no matter which energy eigenstate our oscillator is in, the expected position of the oscillator
at any given time ¢ is

([ X|n, 1) = T2t 029 (0] X ) — (0| X |n) (3.18)

where we’ve used the linearity/antilinearity properties of the inner product. The right-hand side is
independent of time, so none of these states move — our oscillator does not appear to be oscillating.

To find some interesting dynamics, we must consider not a single energy eigenstate, but rather a
superposition. This is a much more realistic assumption: there’s no practical way we could prepare a
macroscopic system to be in just one energy eigenstate. Let’s now suppose our oscillator is prepared
at t = 0 to be in some generic state [1),0) = > ¢, [n). The ¢, should be chosen so that (¢|¢)) =1,
but are otherwise arbitrary. Then at time ¢ this state will have evolved to

oo

[, t) = Z cpe /) (3.19)

n=0
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by the time-dependent Schrédinger equation.

Now let’s examine where we expect to find such a generic state. We have

(W, t| X |, t) <Zc e‘E’”t/'L1 m|> <Zc e iEnt/h n))

= chene TN (m| X |n) (3.20)

m,n
To evaluate the inner product (m|X|n), we write'4

h
— T
X = T (A+AT) (3.22)

in terms of the raising and lowering operators. Recalling that AT [n) = /n+ 1|n+ 1) and A |n) =
Vnln — 1), we have

(m|X|n) = \/%(\/ﬁ@nmf 1)+ vn+1(mn+1)), (3.23)

showing that (m|X|n) is non-zero only when m = n + 1. The double sum in (3.20) thus reduces to

| h ZOO : .
<wa t|X|wa t> = % ( \/ﬁcz_lcne—lwt + \/ﬁcflcn_le“”t)
n=1

=z cos(wt + ¢n) , (3.24)

where the real numbers x,, and ¢,, are defined by

2nh

—Clep = zpelfn . (3.25)
mw

Equation (3.24) shows that (X) oscillates sinusoidally at exactly the classical frequency w whenever
our oscillator is prepared in any generic'® superposition of energy eigenstates. Furthermore, as for
the classical oscillator, the frequency of oscillation is independent of the energy. In the calculation
above, this occurs because the separation between every adjacent pair of energy levels is always fw.

For a macroscopic oscillator, the only non-negligible amplitudes will be those where n =~ n¢ for
some n. > 1. Consequently, a measurement of the energy is certain to yield some value close to
E,, = (na+ %)hw ~ n¢hw. For each eigenstate, we have

h E
n|X?%n) = — (n|AAT + ATAn) = — | 3.26
(| X%|n) = 2 (n] ny = 2o (3.20
so the mean value <X 2> = B, /mw?. Classically, the time average of 22 is proportional to the average
potential energy, which for a harmonic oscillator is just a half of the total energy. Thus, classically we
have <x2> = E/mw? in agreement with the quantum result. The correspondence principle requires
that the quantum and classical results agree for large value of E. They agree even for low energies is

a coincidence due to special symmetries of the harmonic oscillator.

14T do this calculation using techniques of IB Quantum Mechanics, you would have to work in the position
representation and said

(m|X|n) = /:o da (Hm(x)e_’“z/zo‘) " e Hy (x)e /2 (3.21)

where Hj, are the Hermite polynomials of degree n and o = h/mw. This is correct but the integral looks rather
unpleasant to evaluate. Fortunately, our operator formalism means we never even have to try!
15Here, “generic” means we must have non-zero amplitudes c, = (n|y) for at least one pair of adjacent energy levels.
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3.3 Anharmonic Oscillations

Suppose that, instead of the pure harmonic oscillator, we have a potential that has a minimum at
2 = 0 around which it grows approximately quadratically while |2| < a, but then asymptotes to a
constant value at large |z|. Particles of low energy will have position space wavefunctions that are
supported near the minimum of V' (z), so we’d expect the low-lying energy levels to be roughly equal
to those of a corresponding harmonic oscillator. Particles of higher energy would start to see the fact
that the potential is not purely harmonic. In fact, for any such asymptotically constant potential with
a single extremum, the separation between energy levels gets smaller and smaller as we approach the
asymptotic value lim,_, . V(z) of the potential (beyond which we have a continuum of non-bound
states).

Let’s prepare a state to be in two adjacent energy levels, say
[¥) = cn|n) + cnyrIn+1) (3.27)

where |n) is the n*® energy eigenstate of our anharmonic potential, whatever it may be. Since the
potential is symmetric about = = 0, its eigenstates have definite parity so (n|X|n) = 0 for all |n).
Therefore, at time ¢,

(W, )X [1h,t) = cheppr@En=Ens DN () Xy 4 1) 4 ¢f |y el Brn =EUR (4 11 X )
E,i1—F
= 4Re[c} cpy1 (n|X|n 4 1)] cos <”+1h”t> . (3.28)
This is again a sinusoidally oscillating function of time, but now the period T = 27h/(Fpn+1 — Ep)
depends on n since we no longer expect the energy levels to be equally spaced. In fact, since the
energy levels get closer together as n increases, if we give our particle a larger amplitude of oscillation

— and hence more energy — it will take longer to execute a complete an oscillation. This is just
what we’d expect classically.

For example, consider the Pdschl-Teller potential
V(x) = —Vpsech?(kX) (3.29)
for some constant V; > 0 and length scale a = 1/k. This has bound state energy levels

h%k? 9
En:—2 (v—n)*, neZ,0<n<v, (3.30)
m

where v is the positive root of v(v + 1) = 2mV;,/h?k?. The separation between adjacent bound state
energy levels is thus
Eni1— E, = (2(v —n) — )%k /2m,, (3.31)

which decreases as n increases towards v. These formulae break down when n > v, where we enter
the continuum of non-normalisable states.

If Vo > h?k?/2m then the potential is very deep and contains many bound states. in this regime,
we have v &~ /2mVy/h?k? > 1 and so from (3.31) we find that a superposition of low-lying states
will oscillate with a frequency

hk? 2V
RESREARPNY el d (3.32)
m m
For z < 1/k, we may approximate —Vj seChQ(mc) = —V, + Vor?x?, so this frequency is just what

we’d expect for the corresponding harmonic oscillator. On the other hand, a superposition of states
clustered around n = v/2 will oscillate at around half this frequency as neighbouring energy levels in
this region are only separated by about half as much.
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Figure 3: The Poschl-Teller potential V() = —Vj sech?(kz) and its energy levels.

If we include a wider range of states in our initial superposition, then we’ll instead find a sequence
of terms

(0, ¢ X[, 1) =
ot epe BT B g X ) 4 c;"ﬁlcnei(E"“*E")t/h (n+ 1| X|n)
+ ¢ gepe Ensa=E/h (L 31X |n) + ...
o e @ En T Bt/ () Xy 1) (3.33)

The potential is symmetric, so we again have (n + 2k|X|n) = 0 by parity, but this is no longer a
harmonic potential, so we do not generally expect (x + 2k + 1|X|n) = 0. Let’s define a frequency
Q= (Epn 41 — En,), where ng > 1. Provided the ¢,’s are clustered around this large central value
n = ng sufficiently tightly that the difference between adjacent energy levels is roughly constant over
the range of n for which the ¢, are appreciable, then, to reasonable accuracy, all the terms that
contribute to (3.33) oscillate with frequencies that are integer multiples of €, ,. Thus the motion will
be periodic, but anharmonic, just as we expect classically.

If we release the anharmonic oscillator from some large extension xzp, then initially the
wavefunction will be a superposition of many energy levels, with coefficients that ensure (x|¢) =
> Cn (x|n) is sharply peaked around xo. At time ¢, this state will evolve to

|w7t> _ e_iE"clt/hchei(Ebcl_E")t/h ‘n> . (334)

n

Since the separation between energy levels varies, the frequencies appearing in this sum are not all
integer multiples of any Q. Consequently, after a time of order 27 /Qy, most terms in the sum will
have not quite returned to their original values, so the wavefunction at ¢ = 27 /Q will be less sharply
peaked around X. With each subsequent passing of time 27/, the wavefunction will become more
and more diffusely spread. Classically, if we release an oscillator with a rather uncertain value for its
energy, then for a pure harmonic oscillator we always know where to find the oscillator at later times,
since it’s period is independent of the energy. However, for an anharmonic oscillator, the period
depends on the energy, so after a long time our oscillator is equally likely to be located anywhere.
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4 Transformations and Symmetries

While classical physics is firmly rooted in space-time, quantum mechanics takes place in the more
abstract Hilbert space. Actions such as translations or rotations around a given origin have a
straightforward space-time interpretation, but how can these affect a quantum particle living in
Hilbert space?

In this chapter, we’ll return to the general formalism of quantum mechanics. We’ll understand how
transformations such as spatial translations or rotations affect states in Hilbert space, linking together
the world of quantum mechanics with our familiar experience in “normal” space R3. In so doing,
we’ll obtain a deeper appreciation of the origin of many of the most common commutation relations,
including most of the ones you’re familiar with from IB. We'll also understand why the momentum
operator is P = —ihd/dx, a fact which probably seemed rather mysterious in IB Quantum Mechanics.

4.1 Transformations of States and Operations

If we apply a transformation such as a translation or rotation to our physical system, we’d expect
states to be different before and after the transformation. For example, if a particle is prepared in
a state |¢) that is strongly peaked around the origin 0 € R? and we translate our system through
a vector a, after this transformation we should expect to find our particle in a new state |¢)') whose
wavefunction is strongly peaked around x = a. This suggests that the effect of any given spatial
transformation should be represented on Hilbert space by a linear operator

U:-H—H
) — U [) = [¥') , (4.1)

where the operator depends on the specific type of transformation.

Whatever state we start with, after applying the transformation, we still expect to find it
somewhere in space. Thus, properly normalised states should remain so after applying U, or in
other words

1= () = @'|y') = (L|UTU]) (4.2)

for all o)) € H. We’'ll now show that the requirement that Y preserves the norm of our state fixes it
to be a unitary operator'®. The required trick is sometimes called the polarisation identity. We first
write |¢) as ) = |@) + A|x) for some |¢) , |x) € H and some A € C. Equation (4.2) becomes

(@10) + A" (xI#) + A (1x) + [A* (xIx)
= (o|UTU|¢) + N (x|UTU|d) + MNo|UTU|X) + N> (X|UTU|x) . (4.3)

By assumption, <¢{UTU|¢> = (¢|¢) and <X|UTU|X> = (x|x), so this simplifies to

A((olx) = (a|UTU X)) = X (X|UTU[¢) — (xl9)) - (4.4)

In order for this to hold for every |¢) € H, it must continue to hold as we vary A. In particular, as
the phase of A varies, the only way for (4.4) to be satisfied is if

(8lx) = (o|UTU|x) . (4.5)

16Because physical states are represented by rays in #, rather than actual vectors, there is one other possibility,
transformations may be represented by operators that are both anti-linear, in the sense that U(cy |¢1) + c2 |[92)) =
U 1) +c3U |3p2), and anti-unitary, meaning that (x|UTU|¢) = (8|x) = (x|#)* for all |¢) , ¢x € H. Such anti-unitary
operators turn out to be related to reversing the direction of time; we will not discuss them further in this course.
Wigner showed that all transformations are represented by either linear, unitary operators or anti-linear, anti-unitary
ones
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Finally, for this hold for arbitrary states |¢) and |¢)) we must have UTU = Id. Multiplying through
on the right by U~! shows that
Ut=u-t, (4.6)

which says that the adjoint of U is equal to its inverse. Operators with these properties are said to
be unitary'”.

There’s one further condition on our operator U. Transformations of space such as translations
and rotations form a group. For example, the composition of two rotations is again a rotation, the
trivial rotation is the identity, and the inverse of a rotation is a rotation of the same amount around
the same axis, but in the opposite direction. Let’s suppose that our spatial transformations form
a group G. To reflect this group structure, our operators should!'® provide a homomorphism from
group G to the group of unitary operators in the sense that, for all g1, g2 € G,

U(g2)oU(g1) =U(g2-91) and U(lg) = 1%, (4.7)

where - denotes the group multiplication in G and o denotes the composition of linear operators
acting on H. We'll typically suppress these composition symbols from now on. Note that if U; and
U, are such unitary operators, then (UxU;)~! = U7 U5 = UJUS = (UoU)T and so the composite
operator UsU; is also unitary. Note also that the identity operator 14 is trivially unitary.

A particularly important class of transformations are those that depend smoothly on some
parameter §. For example, we can smoothly vary both the axis about which and the angle through
which we rotate, or the magnitude and direction of a translation vector. If § = 0 is trivial
transformation, represented on H by the identity operator, then for infinitesimal transformation
of 66, we have

U(60) = 1 —i60T + O(56%), (4.8)

where T is some operator that is independent of §. The factor —i in this equation is just a convention
for later convenience. T is called the generator of the transformation. For such infinitesimal
transformations, the condition of unitarity of U (4.6) becomes

1+i60TT + O(36%) = 1 +100T + O(56?), (4.9)

which, to first order in 46, gives
T=T1". (4.10)

Thus the generator T' is Hermitian and hence a good candidate for an observable quantity. A finite
transformation can be generated by repeatedly performing an infinitesimal one. Specifically, if we set
96 = /N and transform N times with U(d6), then in the limit N — co we have

: 0 N —i0T
U = A}gnoo (1 - 1NT) =e ) (4.11)
where the exponential of an operator may be defined by (2.43), or equivalently by its power series

expansion. This form of the unitary operator U(#) is especially useful when states are expressed in
terms of the basis of eigenstates of the Hermitian generator T'.

We obtain an important equation by using (4.8) to evaluate |¢') = U(d6) |¢). Subtracting |)
from both sides and dividing through by §6, in the limit 0 — 0 we obtain

9y)

i—— =T . 4.12

LI (112)
There is no assumption here that the wavefunction 1(x) = (x|¢) should be differentiable as a function
of space. We merely say that as our transformation varies smoothly away from the identity, so too
does the state |1) vary smoothly inside H. The rate at which |¢) varies is governed by the generator.

17Note that unitary operators are certainly bounded, and in fact have unit norm in the operator topology.
18 This statement is not quite accurate — there’s an important refinement that we’ll return to later in the course.
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Having described how transformations act on states in H, we should now understand how they
act on operators. Suppose A is some operator whose matrix elements we are interested in. If our
transformation maps [¢)) — [¢/’), then the expectation value of A will be mapped as

(W] Al) — (' |Al) = (p|UT(0)AU(0) ) - (4.13)

Consequently, we can find the expectation value A will take after the transformation by working with
the original states, but instead we can also transform the operator as

Ar— A" =UY(0)AU(9) = U L(9)AU(6), (4.14)
using the fact that U is unitary. This is known as a similarity transform. Note that
[A,B'] = [U'AU,U'BU| =U'[A,BU, (4.15)

so the commutator of two similarity transforms is the similarity transform of the commutator. Also,
similarity transforms do not change the spectrum of any operator: if |¢) is an eigenstate of A with
eigenvalue a, then U~1 |¢) is an eigenstate of A’ with the same eigenvalue.

Finally, for an infinitesimal transformation, we have
UT(30)AU(60) = A +150[T, A] + O(66?), (4.16)

so 0A = i00[T, A]. Thus, while the rate of change of states themselves is given by the action of the
generator, the rate of change of operators under a transformation is determined by the commutator
of the generator with the operator. We’ll see that most of the commutation relations we meet
in quantum mechanics (and certainly all the familiar ones) arise this way. Furthermore, because
Hermitian operators represent observable quantities with which we are familiar, in practice it’s often
easier to understand how a transformation should act on an operator, rather than on the more abstract
notion of a state in Hilbert space.

The above discussion has been rather abstract. Let’s ground it by looking at a few of the most
important examples of transformations and their corresponding generators.

4.2 Translations

When we move an object around, we expect to find it in a new place. Specifically, suppose (¥|X|y) =
xg for some normalised state |¢)). Since xg just labels a spatial point, it must behave under translations
and rotations like any vector. Thus, after the translation we expect our object to be described by
a new state [¢') with (¢/|X]|’) = x¢ + a. The general theory of the previous section asserts that
this translation is represented on Hilbert space by a unitary operator'® U(a) so that |¢') = U(a) [¢).
Therefore we can write the expected location of the translated state as

(W'X[Y) = (@IX[¢) +a= @[(X + 1na)l) (4.17)

where 14 represents the identity operator on H. We’ll often drop the identity operator where it’s
unambiguous. Since this is true for any state [1), the transformed operator may be expressed as

Ul (a)XU(a) = X +aly (4.18)

by (4.14). Let’s be clear what this equation means. In this course, we're interested in quantum
mechanics on R3, so the position operator X : H — H is really a collection of three operators
corresponding to the three coordinates of R3. Taking the standard Cartesian basis of R, in more
detail (4.18) says

U-l(a)XU
U-Ya)YU
U~ a)ZzU

(a) X +azly
@ ]| =|Y+aly] . (4.19)
(a) Z +azly

198trictly, we should label this as Utrans(a) to emphasise that it is the unitary operator generating translations, as
opposed to anything else we might associate to a. We typically drop such additional labels. Exactly which unitary
operator we're talking about should hopefully be clear from the context.
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In other words, conjugating the X (component) operator by U(a) gives a new operator U ~!(a) XU (a) :
H — H that we identify with X +a,, and similarly for Y and Z. If U(a) acted on the position operator
in any other way, it could not represent a translation, so equation (4.18) may be taken as the defining
property of the translation operator, distinguishing it from other unitary transformations.

For an infinitesimal translation da, equation (4.8) states that the translation operator can be
written as?”

U(sa)=1— %(Sa P +0(6a?), (4.20)

where P is Hermitian. I've named this operator P, so I'm not going to be able to fool any of you
that it will turn out to be anything other than the momentum operator. But that’s not how I want
you to think of it yet. By definition, P /A is the generator of infinitesimal translations.

The translation generator P/h must have units 1/(length) so that it makes sense to add the
second term of (4.20) to the first. Because we’ve included a factor of i, our P must have dimensions
of (mass X velocity). In fact, this is just a convention. We could choose to measure masses in units of
1/(length x velocity), using & as a conversion factor for our units. In relativity, the speed of light ¢
provides a further natural conversion factor between lengths and times, so in units of /i/c, masses are
equivalent to inverse lengths. In natural units, we work with length and time scales adapted to Nature
rather than our civilisation, so we set h = 1 and ¢ = 1. In these units, the translation generator is
precisely P. Incidentally, you may be worried about setting i = 1 when it is such a “small” number;
B~ 1.0547 x 10734 J s rad™'. But this is quite wrong. Every atom in the Universe knows that &
is not at all small or insignificant. It only appears small when measured in units such as Joules and
seconds that are relevant for steam engines and pocketwatches. The real, deep question is not why A
appears small, but why humans are so big.

Plugging (4.20) into the defining equation (4.18) for the translation operator we find
i
h

and since this holds for any infinitesimal translation,

[0a-P,X] =da, (4.21)

[X,, Pj] = ihé,; (4.22)

These, as I'm sure you recognise, are the fundamental commutation relations of quantum mechanics.
I'm prepared to bet that the first time you met them (and perhaps even up until now) you thought
they were a weird and mysterious feature of quantum mechanics. Here they’re revealed as little more
than common sense: asking where you are and then translating is not the same as first translating
and then asking where you are. What is weird and quantum about this equation is not that X and
P don’t commute, but the fact that they are operators acting on a Hilbert space.

By repeatedly performing the same infinitesimal translation, we can write

U(a) = exp (—;a : P) (4.23)

for a translation through the finite vector a. Since U(a) provides a homomorphism of this group of
translations to the group of linear operators on H, we have

U(b)U(a) = U(b+a) =U(a+b)=U(a)U(b), (4.24)

where in the second equality we used the fact that a+ b = b + a, stating that the order in which we
perform two translations doesn’t matter?!. Using (4.20) to expand the far left and far right of this
equation to lowest non-trivial order in a;b; shows that the generators P obey

[P, P;]=0foralli,j, (4.25)

20Here, da - P = >; da; P; involves the standard dot product in R3. Note that the result is still an operator on #, a
linear combination of the operators P.

21Here this is of course the statement that the group of spatial translations is (R3,+), where the group operation
“4” is commutative. Groups for which the group operation is commutative are often called Abelian.
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and so they commute with each other. Again, the fundamental meaning of this equation is simply
that translations form an Abelian group — the order of translations doesn’t matter. It only says
anything about our ability to simultaneously know all three components of a particle’s momentum
once we identify P as corresponding to momentum, which we haven’t yet done.

Now let’s think about what the translation operator does to states. Let |x) represent an eigenstate
of the position operator with eigenvalue x, so that X |x) = x |x), with normalisation condition

(x'|x) =0(x' —x) (4.26)

as usual for continuum states?2. This state represents a particle which is definitely located at x € R3.
Applying the translation operator,

X(U(a) [x)) = (X, U(a)] + U(a)X) [x) . (4.27)

We can evaluate the commutator by multiplying (4.18) through by U(a) on the left, finding
[X,U(a)] = U(a)a. Since a is just a constant vector (not an operator on #) it commutes with
the translation operator, so

X(U(a) [x)) = (x+a)(U(a) |x)). (4.28)

As anticipated, our new state U(a) |x) is certainly located at x + a. Consequently, U(a) |x) must be
proportional to the state |x 4+ a), the normalised state that is definitely located at x + a. Setting
U(a) |x) = c|x + a) for some ¢ € C and taking the inner product with another position eigenstate
|x’), we have

es(x' —x —a) = e (x'|x +a) = (x|U(a)lx) = (U (a) )" x)

= <1 Ix' — a>>T |x) = Ci*é(x’ —a—Xx), (4.29)

c

where we used the fact that U(a) is unitary. Comparing both sides shows that \c|2 =1, so cis a pure
phase and without loss of generality we can set ¢ = 1.

Now suppose we consider translating an arbitrary state |1). The position space wavefunction of
this state is simply its coefficient

¥(x) = (x[¢) (4.30)
in the position basis. Thus the wavefunction ¥ans(x) of the translated state |1¢rans) = U(a) [9) is

Yirans(X) = (X|Vprans) = (x|U(Q)|9)) = (Uﬁl(a) 1x)) [¥)
=(x—al|y) =¢(x—a). (4.31)

This says that the wavefunction of the translated state takes the same value at x as the original
wavefunction took at x —a. This is completely natural as we’ve translated our state through a.

In particular, for an infinitesimal translation da, on the one hand we can Taylor expand the
translated wavefunction to find?

Yirans(X) — Y (x) = —da - Vi(x), (4.32)

while on the other hand we expand the operator U(da) to find

Dirans (%) — (x) = <x

1- iﬁaa.P‘¢> — (x[¢h) = _ihaa- (x|P|w) (4.33)

22Technically, |x) is a non-normalisable state, which really means it doesn’t live in the Hilbert space L? (R, d3x ). This
is related to the fact that the position operator X is unbounded — there is no constant M such that [|X [)|] < M |||¢)]|
for all 1) € H. Naively, this means that “the eigenvalue of X can be arbitrarily large”, which is physically reasonable
since our particle may be located very far away. However, in general, unbounded operators do not have any eigenstate
in H, so do not really have eigenvalues. The distinction between bounded and unbounded operators is tremendously
important in functional analysis, but will not play a role in this course.

23 At least if the wavefunction is sufficiently smooth
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using (4.20) to the lowest order in da. Consequently, for any state |¢)) the momentum operator P
acts in the position representation as

(x[PJih) = —ihV(x) . (4.34)

This is just what you would have said in IB Quantum Mechanics last year, here derived from the
point of view of the effect a translation of R? has on states in Hilbert space.

As a special case, let’s apply this argument to the state |p) that obeys®* P |p) = p |p), representing
a particle whose momentum is certainly p. In this case the above argument becomes

Uplx—a) = (x—alp) = (x|U(a)|p) = (x| >*/"|p)
= ¢ la-p/h (x|p) = e_ia'p/hwp(x) . (4.35)

Comparing the first and last expression, we deduce that the position space wavefunction of a
momentum eigenstate must take the form

Pp(x) = CelPx/h (4.36)

for some x-independent factor C' € C. It’s convenient to choose C' to be (27h)~3/2 since in this case
we have

e—ip’-y/h(s(y _ X)eip-x/h

i) = [y dx o) i) (o) = [ dxd’y s

1 —i(p'—p)-x
:/dSX We ('-p) /h=5(p/—p), (437)

so that the momentum eigenstates are normalised in the same way as the position eigenstates (and
in the same way as for any continuum states). Again, the form

1 .

Yp(x) = Welp'x/h (4.38)
of the wavefunction for momentum eigenstates is familiar, but here we’'ve derived it from first
principles rather than using the position space representation (4.34) of the momentum operator.
(We assumed this result earlier when showing that the position and momentum space wavefunctions
are each other’s Fourier transformations.) Note also that |1/)p(x)|2 = 1/(27h)3, so [g, dx |wp(x)|2
diverges, Like position eigenvalues, momentum eigenstates are also non-normalisable.

4.3 Rotations

We now consider the effect rotating R® has on a quantum state |¢)) € H. For a vector v € R?, a
rotation anticlockwise around the axis & by an amount |a| is a linear transformation

R(a) : R® — R?
vi— v = R(a)v (4.39)

that obeys
v.vi=v.v and det(R(a))=+1. (4.40)

The first of these conditions says that rotations preserve lengths, and implies that R(a) must be an
orthogonal transformation. The second ensures that R(a) preserves the orientation. For infinitesimal
rotations, figure 4 shows that

v =v+daxv+0(6a?). (4.41)

24 As with the position operator, the momentum operator P is unbounded, so the “momentum eigenstates” |p) are
necessarily non-normalisable, as we’ll soon see explicitly.
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da X v+ O0(6a?)

—
!

V v

da

o X v

Figure 4: An infinitesimal rotation transforms v — v + da X v.

Note that this obeys (4.40). Given two orthogonal transformations R(a) and R(3), the composite
R(B)R(e) is again an orthogonal transformation with unit determinant. Spatial rotations form a
group, known as SO(3), with the identity being the trivial rotation and the inverse of R(e) being
a rotation of the same amount around the same axis «, but now clockwise. However, in general
R(B)R(a) = R(a)R(B), so the order in which we apply rotations is important and the rotation is
non-Abelian.

As for any group of transformations, in quantum mechanics the group of rotations is represented
on ‘H by unitary operators. We denote the unitary operator corresponding to R(ax) as U(a). U(cx)
acts on the position operator as

U a)XU(a) = R(a)X, (4.42)

where the left-hand side involves composition of operators in H, while the right-hand side is the usual
action of a rotation on the three components of X. For example, if & = az so that the rotation is
around the z-axis in R3, then in more detail (4.42) says

U Ha)XU(a) cosa —sina 0\ /X
U Ha)YU(a) | = [ sina  cosa 0 Y|. (4.43)
U~ (@) Z2U(cx) 0 o 1) \z

Thus, conjugating the operator X by this rotation operator changes it to a new operator
U~ (a)XU(a) on Hilbert space, which we identity with the usual linear combination X cosa —
Y sina. Again, U(a) must act on X this way if it is indeed to correspond to a rotation.

For an infinitesimal transformation, following (4.8) we can write
Ulda) =1 — %m .3+ 0(6a?) (4.44)

for some Hermitian generators J/k. Since angles are dimensionless, J, like /, must have dimensions
of (length x momentum). Later we will see that J corresponds to the angular momentum operator,
though by definition we have that J/% is the generator of rotations. Using this and (4.41) in (4.42)
shows that we have

%[m 3, X] =0 x X, (4.45)

and since this is true for any axis of rotation, we have the commutation relations

[Ji: X;] = ihz €ijk Xk - (4.46)
K

These relations are nothing more than the statement that the operator X transforms as a vector
under rotations. They are the infinitesimal version of (4.40) — they must hold if J is indeed to
generate rotations.

Just as for translations, the mutual commutation relations among the components of J themselves
follow from the fact that the U(a)’s provide a homomorphism from the group?® SO(3) of rotations to
the space of unitary operators on H. However, the non-Abelian nature of the rotation group means we

25 Again, later we’ll see that this statement needs to be slightly refined.
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should expect these commutators to be non-trivial in general. Performing two infinitesimal rotations
through angles da and §3 for any vector v gives

R(OB)R(da)v =R(IB)(v+da X v) = (V+da X V) + 08 X (v+da X V)
=v+daXv+IBXVv+08 X (da X V) (4.47)

to the lowest non-trivial order in da and J3. Consequently, the difference between these rotations
and the two rotations performed in the opposite order is

[R(0B)R(bar) — R(0ax)R(68)] = 68 X (dax X v) — dax X (63 X V)
= (08 X dax) X v
=R(6B X da)v — v (4.48)

using the standard properties of the vector triple product. The right-hand side again involves a
rotation, through 63 X da. Applying the homomorphism U, we obtain

[U(68), U(da)] = UG8 x dar) — 13 (4.49)

for our operators in Hilbert space. Using (4.44), this is

_%[5ﬂ'~],5a-.}]= (08 x dax) - J, (4.50)

i
h
and since this must hold for arbitrary successive infinitesimal rotations, we have

[Ji,Jj] ES ihZGiijk (451)
k

as the commutation relations among the rotation generators.

Again, there’s nothing “weird” or “quantum” about (4.51), beyond the fact that they involve
operators on Hilbert space. In particular, their form just reflects the fact that the order of rotations
around different axes matters, and that the difference between the two ordering is itself a rotation
around the axis perpendicular the original two. Compared to the relations [P;, P;] = 0, the non-
triviality of the commutation relations (4.51) arises purely because SO(3) is a non-Abelian group,
unlike the group of translations. These non-trivial commutation relations do not prevent us from
exponentiating the infinitesimal rotation operator (4.44) to write U(c) = e~ '*"J/" for a finite rotation
around a fixed axis «, because the exponentiation always involve the same component & - J of the
rotation generator, which certainly commutes with itself.

The combined group of translations and rotations of Euclidean space R? is known as the Euclidean
group, denoted E(3) or ISO(3). For translations through a; and as, and rotations R; and Ry, E3 has
the group composition law

(ag,Re) - (a1,R1) = (a2 + Rea1, RaRy) (4.52)

where we note that the second rotation also acts on the first translation. Clearly, both R? and
SO(3) are subgroups of E(3), but the fact that the rotations act non-trivially on previous translations
means that E(3) is the semi-direct product E(3) = R3 x SO(3). This group composition law shows
that rotations and translations do not commute: translating any vector v through a then rotating
around & gives us R(a)(v + a), whereas first rotating then translating gives a + R(a)v instead. In
particular, for infinitesimal translations and rotations we have

R(da)(v + da) — (dJa+ R(da)v) = dax X da (4.53)
independent of v. Applying the homomorphism U, in Hilbert space we obtain commutation relations

[Ur(dax),Ur(0a)] = Ur(dax X da) — 1, (4.54)
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where, for the sake of clarity, we have labelled the translations operator by Ur and rotation operator
by Ug. Equivalently, we have

[T, Pj] = iR €ijuPi (4.55)
k
in terms of the rotation and translation generators.

More generally, and 3-component linear operator V : H — H is said to transform as a vector
under rotations if it obeys U~ !(a)VU(a) = R(a)V for any a. Depending on its behaviour under
parity transformations, which will be discussed in section 4.6, such a vector V could either be a vector
or a pseudovector operator. Just as above, for infinitesimal rotations this implies the commutation
relations

[T, Vil =R eV (4.56)
k

for the components of V and J. We see that X, P and J itself?S each transform as vectors under
rotations. This of course is just what we’d expect for position, momentum and angular momentum
in classical mechanics.

On the other hand, if an operator .S obeys
U Y a)SU(a) =S (4.57)

for any a, so that it is unchanged by the rotation operator, we say S transforms as a scalar under
rotations. Again, depending on its behaviours under parity transformations it could either be a scalar
or a pseudoscalar operator. The corresponding infinitesimal version is

[J,5]=0. (4.58)

Just as we can form a scalar by taking the Euclidean inner product v-w of the two vectors v, w € R3,
we can form scalar operators from Euclidean inner product of two vector operators. Indeed, if
U= a)VU(a) = R(a)V and similarly for W, then
U™ Ha)(V-W)U(e) = (U™ () VU(e)) - (U™ () WU ()
~ (R(@)V) - (R(@)W)
=V.-W (4.59)

by the standard rotational invariance of the dot product. As always, we can write this in terms of
commutators by considering infinitesimal rotations:

To Y ViWi | =Y 1L ViIW, + > Vi, W)
J 7 J

= ihz EijkaWj + ihz Vjeijka

J.k g,k
=ih Y eijn(=ViWi + V;Wi) =0, (4.60)
7.k

where in going to the final line we relabelled the dummy indices j <> k in the first term and used
the antisymmetry of €;;,. Note that our calculations always preserved the order of V and W, so our
result holds irrespective of whether V and W commute or not.

An important special case of (4.58) is to take S = J* = J+J. The fact that the rotation generators
obey the commutation relations

[Ji, Jj) =ih Y €ijpdi and  [J;, 3% =0 (4.61)
k

26This is always true of X and P, but turns out to be a three-dimensional coincidence for J: the rotation group
SO(d) of RY has dimension d(d — 1)/2 and the generators are generically represented by antisymmetric matrices J;;.
When d = 3, a 3 X 3 antisymmetric matrix has 3 independent components, so we can equivalently package the J;; as
vectors through J; = €;;x Jjk-
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means that we cannot find a complete set of simultaneous eigenstates of all of the J;’s, but we can find
a complete set of simultancous eigenstates of J* and any one component of J. Looking ahead to our
interpretation of J as the angular momentum operator, Born’s 2" postulate of quantum mechanics
tells us that we cannot say a particle has a definite angular momentum vector, but we can know the
magnitude of the angular momentum and the amount aligned along any given axis.

4.3.1 Translations Around a Circle

In IB Quantum Mechanics, we defined the orbital angular momentum operator L = X X P which
also has the commutation relations (4.56) with itself and with X and P. We’ll understand the relation
between J and L later, but it’s important to understand that in general J # L. We can understand
L from the present perspective as follows.

When a system is displaced through the vector a, its state is transformed by the unitary operator
U(a) = e~2'P/2 We now imagine successively performing n translations successively through the set
of vectors {aj,as,...,a,}. Each translation is represented by a unitary operator U(a;), so the final
state will be

Ulan)...Ular) [¢) = U(b) [¢) , (4.62)

where b = a; + ...a, is the total displacement vector. Since the net result depends only on the
total translation b, the change in |¢) is independent of the particular path that the system takes. In
particular, if the path is closed so that a; + --- + a,, = 0, then [¢) is unchanged.

Now consider the effect of translating the system around an arc of a circle centred on the origin.
We can approximate the circle by an N-sided regular polygon, with the approximation improving as
N — 00, so we move around a circle by applying a succession of small translations, each in a slightly
different direction. Specifically, if the system initially lies at some location x, making an angle o with
some axis n, then when move it in the plane normal to n to lie at an angle o + d«r, we translate it
through da = dan X x. Thus the associated unitary translation operator obeys

U~ (6a)XU(éa) = X + da(n x X), (4.63)
and so can be written as
U@@:1—#MnxXyP+mm%:1—%mmL+ow&y (4.64)
where
L=XXxP (4.65)

is a Hermitian operator. We now see that L is the generator of circular transformations. (4.64)
contains only one operator n - L, so it inevitably commutes with itself and we can exponentiate to
find U(acirc) = e~ion-L/h for finite translations around our circle.

4.3.2 Spin

The commutation relations [L;, X;|, [L;, P;] and [L;, L;] of the composite operator L all follow from
the more primitive commutation relations [X;, P;], [X;, X;] and [P;, P;]. If we’re only concerned
with these operators, then Uy = e @™ L/ is indistinguishable from the rotation operator U(a) =
e i@ J/I However, if our system has any internal structure, circular translations using the centre
of mass position operator X and centre of mass momentum P are not the same as rotations: the
difference is best explained by a picture, which you can find in figure 5.

We define the spin operator S to be the difference

S=J-L (4.66)
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(a) rotation (b) translation around the circle

Figure 5: The rotation operator U(a) swings a system around the origin and also rotates its
orientation in R®, while a circular translation merely moves the system around a circular path,
without affecting its orientation. The difference is a rotation of the body around its own centre of
mass, reorientating it without changing its location.

so that J = L+ S. From figure 5 we see that difference between rotating an object around some fixed
origin and a translating it’s centre of mass along a circular path is a rotation around the object’s
centre of mass. generates a rotation of the body around its own centre of mass. We thus expect (and
will confirm below) that S generates rotations of a body around its own centre of mass, reorienting
it in space. This is why S is called the spin operator.

In the case of a macroscopic body, made up of many constituent particles, it’s reasonable to
suppose that the spin operator just account for the difference between translating the body as a
whole and translating each individual particle around their own arcs, with slightly different radii
according to where in the body the particle is located. That is,

s£<ZXaxPa>—XxP=Zanpa, (4.67)

where X, and P, are position and translation operators for each individual particle and x, and p,
are their positions and momenta relative to the centre of mass?’. However, for an object consisting
of many particles such a description is clearly going to be very cumbersome. More fundamentally, we
do not know what the “fundamental” constituents of our object really are. (For example, if I sit on a
merry-go-round, is the “right” quantum description of my motion given in terms of my cells, or my
atoms, or protons and neutrons, or quarks and gluons, or bits of string, or ...7) It’s thus crucial that
we can consider objects as a whole in quantum mechanics, just as we can classically. For rotations,
understanding S will allow us to do this. In addition, as we’ll see in section 5.3.1, one of the surprises
of quantum mechanics is that even fundamental particles such as electrons and photons may have an
“intrinsic” spin that (as far as we know) is not related to any composite structure.

Fortunately, commutation relations involving the spin operator S are easy to obtain from the ones
we already have for J and L. Firstly, the fundamental relations

[Ji, X] 1hZe”ka and [J;, Pj] 1hZe”kPk (4.68)
k

show that
[Ji, L] lhz eijil (4.69)

so that the angular momentum operator L also transforms as a vector under rotations. Recalling

27We’ll understand how to properly describe the quantum mechanics of a system with many degrees of freedom (e.g.
many particles) in section 7.
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from IB Quantum Mechanics that [L;, L;] =ik, €;;x Lk, we have
[Si, Sj] = [Ji — Li, Jj — Lyl = [Jiy 3] — [Jis L] — (L4, Jj] + [Li, L]
=ih Y eijn(Je — Li) =ih Y eijnSk. (4.70)
k k

It then immediately follows that [S,Sz] = 0. This algebra — the same as that obeyed by the
components of J and L — confirms that the spin operator S generate some form of rotation. On the
other hand, since [L;, X;] = ih ), €4 Xy and [L;, P;] = ih ), €1 P, we have
(S, X;] = [Ji, X;] — [Li, X;] =0, (4.71)
[Si, Pj] = [Ji, Pj] — [Li, Pj] = 0. (4.72)
These commutation relations confirm that the spin operator has nothing to do with an object’s

location in or motion through space, but is purely to do with rotating its intrinsic orientation. Finally,
since S commutes with both X and P, it also commutes with L:

[Si, L] =0 Vi, j. (4.73)

This allows us to factorize the operator U(a) describing finite rotations as
U(a) — e—ia'J/h _ e—ia-(L—i—S)/h — e—iouL/he—ia-S/h — e—iouS/he—iouL/h ) (474)
As in figure 5, these equations confirm that we can think of a quantum rotation as consisting of a
translation of a body’s centre of mass along an arc centred on the origin together with a simultaneous

rotation of the body around its own centre of mass by the same amount. The order in which we
perform these two operations makes no difference.

4.4 Time Translations

It’s not only transformations of space that are represented on H by unitary operators. Consider
translations in time. These again form an Abelian group, since sending ty to tg + ¢t and then to
to +t + t' gives the same end result as does tg — to +t' +— to +t' +¢t. If we want the total
probability of our particle being found somewhere in R? at all times, then time translation must also
be represented by a unitary operator U(t) : H — H. Since we can translate through an arbitrarily
small time, the time translation operator takes the form

U(t) = exp (;Ht) , (4.75)

where H /i must be Hermitian and is, by definition, the generator of time translations. This generator
must have dimensions 1/(time), so the conventional factor of i means that H itself has dimensions
of energy. Of course, H will turn out to be the Hamiltonian, but for now I'd like you to think of it
more abstractly just as the generator of time translations.

The fact that U(t) represents the effect of a time translation on H means that if a particle is in
some state [1(0)) at time ¢y = 0, translating forward to time ¢ we will find it in the state

[0()) = U (1) [¥(0)) = e~/ 35(0)) . (4.76)
In particular, the difference between |¢(¢)) and the state we find a short time later is
906+ 86) — 6(0)) = — SLH (0) + UGE), (477

or, taking the limit §t — 0,

.0

ihay [9(8) = H[$(2)) - (4.78)
This, famously, is the time dependent Schrodinger equation. It’s just the infinitesimal version of the

statement that all states in H evolve in time according to the action of a unitary operator U(t).
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4.4.1 The Heisenberg Picture

In IB Quantum Mechanics, we were used to the idea that states evolve in time according to the time
dependent Schrodinger equation. However, just as we did for spatial transformations, we can instead
work in a picture where the states are time independent and instead the operators evolve in time. To
see how this works, suppose Og is some operator that contains no explicit time dependence. Then
the amplitude for the state Og [¢)(t)) to agree at time ¢ with the state |x(t)) is

(x®)10sl (1)) = (x(O)[UH () OsU (1) [4(0)) - (4.79)

The right hand side here only makes explicit reference to the initial values of the states |¢) and |x).
Since it holds true for any pair of states, just as above we can obtain the same results by always
working with the initial states and instead evolving the operators as

Op(t) =U"t)OsU(t). (4.80)

The version of quantum mechanics where we use the time dependent Schrodinger equation to evolve
the states in time, leaving operators unaltered, is known as the Schrédinger picture, whereas the
version where the states are fixed at their initial values and instead the operators evolve in time is
called the Heisenberg picture.

In fact, all this has a precise analogue in classical mechanics. Classically, there are also two ways
of thinking about time evolution. On the one hand, we can think of a particle moving in some way
through phase space M. If we know it’s location (x(t),p(t)) € M for every time ¢ we can compute
any quantity we wish, represented by some function f : M — R, by evaluating f at the location of
our particle, obtaining the value f(x(¢),p(¢)). (This is the perspective we took in the Introduction.)
However, Newton’s Laws are deterministic, so, given a force, the entire trajectory is determined by
the initial conditions (xg,py). This suggests a perspective in which the “state” of our particle is
simply a choice of initial conditions. These initial conditions do not themselves evolve, rather, it
is the quantities we measure that vary in time. Thus, instead of thinking of a physical quantity
f as a map from phase space, we treat it just as a map from time, so f : [tp,00) — R. You'll
examine these classical pictures further if you're taking the Classical Dynamics course, in the context
of Hamiltonian mechanics. (It’s really for this reformulation of classical mechanics, not the particular
H, that Hamilton is famous.)

Differentiating (4.79) with respect to ¢ by product rule shows that

iOH@:ii@F%W%U@D:;aﬁ%wHOdKﬂ—U*OﬂHMW
- %[H, On(t), (4.81)

where in the last step we used the fact that [U(t), H] = 0, since U(t) depends only on H. This is the
Heisenberg equation of motion. It’s completely equivalent to the Schrédinger equation, and is also
just a (very important) special case of our general argument of how operators transform under the
action of unitary groups of transformations. More generally, if the original operator Og had some
explicit time dependence of its own — independent of any particular particle’s motion — then we
would obtain a further term in this equation, modifying it to

d 00g i

—Out)=U"'t)—=2U(t)+ —[H,0u(t)]. 4.82
S0R(t) = U () 22U () + +[H, On (1) (482)
For example, we may wish to understand the behaviour of a charged particle in the presence of an
applied electric field. If the electric field is itself changing in time, then the potential in which the
particle moves will be time-dependent even in the Schrédinger picture.
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4.5 Dynamics

So far, we've simply defined some unitary operators U(a), U(a) and U(¢) that are responsible for
translating, rotating or evolving our system through space and time. The commutation relations
of the generators P and J, and their commutation relations with X were determined purely by the
properties of the corresponding group of transformations of R3. However, while we’'ve seen that
commutators such as [H,X], [H,P] and [H,J] are important in the Heisenberg picture, telling us
how these operators change in time, we haven’t yet given any way to actually calculate what such
commutators should be. Similarly, although we’ve said that in the Schrodinger picture, states evolve
in time according to [1(t)) = U(t) |¢(0)), we haven’t given any way to work out what the action of
the generator H on a state should actually be.

To do so, we must specify the dynamics: we must provide a relation H = H(X,P) giving H in
terms of the other operators whose commutators we already understand. The simplest (non-trivial)

example of such relation is?
1
H=_—P? 4.83
5 (4.83)
where m is a constant with dimensions of mass. Equation (4.83) relates how a state evolves in
time (via H) to how its location is translated through space (via P); in other words, it’s telling us
something about how particles move! In particular, with this form of Hamiltonian the difference

between the expected location of a state |¢)) at an initial time and a short time &t later is

(U GOXUG0) ) ~ (X [4) = 26t (LH, X]Jw) + (57
= % (Y|P) + O(6t%). (4.84)

In the limit 6t — 0, we see that the expected velocity of the particle is (¢|P|¢) /m. Equivalently,
since this is true for all |¢)) € H, we can write

d P(t)

—X(t) = —= 4.85

9 xpy =20 (1.85)
in the Heisenberg picture. Furthermore, since [H,P] = 0 for this Hamiltonian, P(¢) = P(0) and all
states travel in uniform motion.

In the real world, we observe that particles do not always travel with constant velocities: they may
slow down, speed up, or change direction as they encounter various obstacles. These obstacles are
typically located at various different points in space. To allow for this, we generalise our dynamical
relation (4.83) to

1

H
2m

P2+ V(X). (4.86)

The first term on the right is the kinetic term and is the contribution to the Hamiltonian due to the
state is traveling through space. The second, potential term is the contribution due to the state’s
location. This familiar form is still a very special case of the general statement H = H(X,P) and
later in the course we’ll meet examples of Hamiltonians that don’t fit this form.

Repeating the calculation we still find that dX(¢)/dt = P(t)/m, but now [H,P] # 0 so the rate
of motion through space will not always be the same. Rather, using (4.81), the Heisenberg picture

28Note that this is the first time we’ve pinned ourselves down to a non-relativistic theory. Up to this point, everything
we’ve said holds good in relativistic quantum mechanics and, suitably interpreted, also in quantum field theory. In
the lectures we studied translations and rotations, and you can extend this to also consider Galilean boosts and can
show that the non-relativistic Hamiltonian is compatible with the Galilean algebra. If one instead wishes to study a
relativistic version of quantum theory, one starts by finding unitary operators representing the action of the Poincaré
group R3! x SO(3,1) of special relativity. The relation (4.83) between H and P does not respect the commutation
relations appropriate for Poincaré symmetry, but of course the dynamical relation H2 = c2P? 4+ m2¢* does. The
difficulty with relativistic quantum mechanics lies not with symmetries, but with interactions. The proper treatment
of these requires Quantum Field Theory, a far deeper subject.
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operators obey
d i
ZP(t) = -
dt ®) h

where VV(t) = U~1(t)(oV/0X)U(t) = —VV(X(t)). Thus the motion slows down or speeds up
according to the gradient of V' (X).

[H,P(t)] =-VV(t), (4.87)

Most of our common intuition about momentum comes from equation (4.87). We “feel” that a
tennis ball traveling with a certain speed has less momentum than a cannonball traveling with the
same speed, and less than the same tennis ball traveling faster, because we’ve known from an early
age that it will cause us less damage to stand in the way of the first tennis ball than either of the
other two. This is really a statement about what our unfortunate bodies will have to do in order to
bring these projectiles to rest (or how much effort we will have to exert to launch them in the first
place). In other words, our intuitive notion of momentum is built on a feeling for the energy our
body will gain as we slow the projectile down during the impact. This energy then excites the atoms
that ultimately make up our nerves, muscles and bones, becoming dissipated through our bodies.
Ultimately, it is the dynamical relation between the Hamiltonian and other operators that justifies us
identifying the operator P /i — by definition, the generator of translations — with our pre-existing
notion of momentum (in units of 7). Only after we specify our dynamics do commutation relations
such as [X;, P;| = ihd;; tell us, via Born’s 2nd postulate of Quantum Mechanics, that a particle cannot
simultaneously be in a state of well-defined position and of well-defined momentum.

We'll often find it useful to write the kinetic term in a slightly different form. Keeping careful
track of the operator ordering, you’ll show in the problem set that

L’= (X xP)- (X x P) =X?*(P? - P?), (4.88)
where for X = X/ || X]],
1 /74 N
P,,_§<X-P+P-X) (4.89)

is the radial angular momentum operator. Consequently, we can write the Hamiltonian (4.86) in
terms of the generator of circular translations and the radial momentum operator P, as
-

—— 4V
2m + 2mX? +

(X), (4.90)

where we note that [L,XQ] = 0, so the order of the second term is irrelevant provided we keep
X? together as a composite operator. (In particular, in the position representation, X? acts as
multiplication by x? = 72, which is certainly unaffected by translation in a circle.) Most of our
intuitive feeling about angular momentum — like our happy childhood hours spent on merry-go-
rounds — is encapsulated in this relation between the Hamiltonian and L?. Again, it’s the form of
the Hamiltonian which is the basis of our identification of the generator L/# of circular transformations
with angular momentum (in units of &).

4.5.1 Symmetries and Conservation Laws

One of the immediate uses of the Heisenberg picture is to deduce a relation between symmetries and
conserved quantities?®. If it happens that an operator @) commutes with the Hamiltonian, then it
IHt/h o the Heisenberg picture operator

also commutes with e~
Q) =U"'HQUt) =U"'UMHQ =Q, (4.91)

coinciding with the Schrédinger operator at all ¢. Infinitesimally, provided @ has no explicit time

dependence, this is
d i

SQ(0) = +[H, Q)] = zU (O[H, QU () = 0. (4.92)

29In Classical Dynamics course, you will see a corresponding relation in Hamilton’s approach to classical physics
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Operators that are time independent even in the Heisenberg picture are said to be conserved. We've
shown that conserved operators are just that commute with the Hamiltonian.

Suppose we prepare a particle to be in an eigenstate of some conversed operator at time ¢ = 0, so
Q |¥(0)) = q|¥(0)). Then at any later time we have

Qy@)) = QU(H) [4(0)) = U(1)Q[4(0)) = qU(#) [¢(0)) = q[¢(t)) (4.93)

so our particle remains in an eigenstate of @ at all subsequent times (provided the state evolves
according to the time-dependent Schrodinger equation). For this reason, it’s usually sensible to
expand our states in a basis of eigenstates of a maximal set of conserved operators, rather than a
maximal commuting set of any old operators. We label the states in this basis by their corresponding
eigenvalues, because the same labelling will remain valid at subsequent times. For example, provided
H has no explicit time dependence®® [H, H] = 0 trivially, so the Hamiltonian itself is always conserved,
and it is often useful to work in a basis of energy eigenstates.

By far the most important source of conserved quantities is symmetries of the Hamiltonian. These
are transformations that leave the Hamiltonian invariant. We’ve seen that a generic unitary operator
U(f) = el representing some transformation of space on H acts on operators as in equation (4.14).
In particular, its action on the Hamiltonian is

H+— U Y 0)HU(9). (4.94)

If the Hamiltonian is invariant under this transformation — i.e. if the transformation is a symmetry
— then
U YO)HU () = H, (4.95)

or equivalently
[T,H]=0 (4.96)

for an infinitesimal symmetry transformation, where T is the Hermitian generator. This is exactly the
same condition (4.92) we had for the generator T to be conserved, so symmetries of the Hamiltonian
correspond to conserved quantities®!. For example, if the Hamiltonian is translationally invariant
then [P, H] = 0, so for such Hamiltonians, momentum will be conserved. Note that it’s not necessary
for the Hamiltonian to be independent of each particle’s position x, if H is to be translationally
invariant, as long as any potential term V(x,,x;) depends only on the relative positions. Similarly,
if the Hamiltonian is rotationally invariant then [J, H] = 0 so angular momentum will be conserved.
In this case, J., J% and H form a set of mutually commuting operators, so we can expand a general
state in a basis {|n,f,m,...)} where the labels (n,¢,m) refer to the eigenvalues of H, J? and J,.
We've left open the possibility that our states have further conserved properties, indexed by further
labels. These will often contain information about the “internal” state of our system.

4.6 Parity

Not all transformations are continuous. In physics, the most prominent example of a discrete
transformation is the parity transformation P, acting on R® as P : x + —x. Since det(P) = —1, this
is different from a rotation, so may have consequences that cannot be deduced by considering only
rotations.

On Hilbert space, parity transformations will still be represented by a unitary operator, but this
operator will no longer involve a parameter that may be taken infinitesimally small. Consequently

30Even if the Hamiltonian does contain explicit time dependence, for example because it describes the dynamics of
a charged particle in a varying electric field, [H(t), H(t)] = O trivially. However, [H(¢'), H(t)] may not vanish as the
form of the Hamiltonian itself changes.

31In the Classical Dynamics or Integrable Systems courses, you’ll meet the corresponding statement in classical
mechanics in called Néther’s theorem.
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there’s no generator associated with parity transformations. Calling the unitary parity operator II,
we have
I 'XII = PX = —-X

as its defining property. Multiplying through on the right by II, we can also write this as
{I,X} =X+ XII=0, (4.97)

where the bracket {A, B} is the anticommutator of A and B. Translating through a then applying
the parity operator P : R? — R? is the same as first applying P, then translating through —a, so

I 'U(a)ll = U(-a), (4.98)

so that the momentum operator also anticommutes with the parity operator: II"'PII = —P. More
generally, if V is any vector that transforms as a vector under rotations, we say V is a vector operator
if also

I 'vii=-Vv, (4.99)

so that {II, V} = 0. If instead
M 'VIl=+V, (4.100)

so equivalently [II, V] = 0, then V is a pseudovector operator (provided it transforms appropriately
under rotations). The most prominent example of a pseudovector operator is the rotation generator
J: since the parity transformation P acts on R? as —Idsw3, rotations obey R(a)P = PR(a), or
P~IR(a)P = R(a). This gives

I 'U ()l = U(a) (4.101)

for the parity and rotation operators in the Hilbert space, or II"*JII = J for the rotation generator.
Likewise, the orbital angular momentum operator obeys

DL =T"1X x P)IT"! = (I'XI) x (IT"'PII) = (-X) x (-P) =L, (4.102)

so it is a pseudovector as in classical mechanics. It follows that the spin operator S =J — L is also a
pseudovector.

Similarly, operators S that are invariant under rotations are scalar operators if in addition I1STI =
S so that they are unchanged under parity, and are pseudoscalar operators if instead ILSTI = S.
(Notice that the signs for scalars and pseudoscalars are the opposite way round to those for vectors
and pseudovectors.) As usual, the parity of a system will be conserved if [H,II] = 0. As a simple
example, if our system is governed by the dynamical relation H = P? /2m+V(X) where the potential
is an even function, then

I 1HI = %(H*PH) IR + TV (XO)TT (4.103)
2

= % + V(I XII) (4.104)
P2

=5+ V(X)=H, (4.105)

so parity is conserved for such Hamiltonians.

Parity transformations form the group G = Z,, since carrying out a non-trivial parity
transformation twice just brings us back to where we were. Thus P, = 1gs and applying our
homomorphism shows that

1% = 14 (4.106)

for the parity operator on Hilbert space, too. Now suppose that |¢) is an eigenstate of II with
eigenvalue 7. Then??

) =11 [v) = il ) = * |[v) | (4.107)

32This argument is adequate for our course, and leads to a correct conclusion, but it hides a number of subtleties.
See e.g. Weinberg The Quantum Theory of Fields, vol. 1, section 4.7 for a fuller discussion.
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so the spectrum of 1T is just {+1,—1}.

If |v) is an eigenstate of a vector operator V, with V|v) = v|v), then from 4.99, the parity
reversed state |v') = I |v) obeys

V|V)=VII|v) = -1V |v) = —VII|v) = —v |[V/) (4.108)

so is also an eigenstate of V, but with opposite sign eigenvalue. In particular, IT|x) is an eigenstate
of the position operator with eigenvalue —x, so

II|x) =c|—x) (4.109)

for some constant ¢ € C. This is not an eigenvalue equation, because the right hand side involves
|—-x) rather than |x). However, we can immediately identify ¢ with n because applying II a second
time gives33

Ix) =117 |x) = ¢? |x) , (4.110)

so again ¢ = 1 and ¢ = +1. More generally, given any state |1/), the wavefunction of the parity
transformed state II |¢) is

(x[TT[) = 07" (=x[v)) = no(—x), (4.111)

S0, up to a sign, the wavefunction of the new state takes the same value at x as the original one did
at —x.

For example, suppose that for some particle, |x) obey II |x) = |—x), with n = +1. Recalling from

IB Quantum Mechanics that the spherical harmonics Y;"(x) obey Y, (—x) = (—1)*Y;"(x), we see

that if this particle is in the state |n, ¢, m) whose wavefunction (x|n,¢,m) = R, (|x])Y;"(x) (where

the radial part R, (r) of the wavefunction determines the energy level n), applying the parity operator
gives

(x|II|n, £,m) = (—x|n, £,m) = (=1)* (x|n, £, m) (4.112)

and consequently II|n, ¢, m) = (—1)¢ |n, £, m).

Parity transformations act in a more complicated way on macroscopic objects, or systems with
some internal structure. This is clear classically: the parity transformation of a book initially located
at x is not simply a book located at —x, but rather a mirror image (simultaneously left-right, up-down
and front-back) of the book. As with the distinction between J and L, for a macroscopic body we
might hope to account for this by defining a separate parity operator for each constituent particle.
However, it turns out that subatomic particles such as the photon or pion have their own “intrinsic”
parities. Thus, whether a given Il-eigenstate has n = +1 or n = —1 depends not only on details of
the spatial wavefunction, but also on the species of particle the state describes.

We'll explore intrinsic parity further in section 7.3.1, but as an example of its use, consider
transitions between different energy levels of an atom. These are usually mediated by electromagnetic
interactions: during such a transition, the atom’s electrons either emit or absorb a photon whose
energy hw is equal to the difference in energy F between the two levels involved in the transition. As
we’ll study in more detail later, when the corresponding wavelength is much larger than the typical
size of the atom, the transition rate I'(i — f) is given by

A(AE)

I'i— f)= a7

(2
[{(FIDIB)" (4.113)
where |i) and |f) are the initial and final states of the atom, and D = ) e,X, is the operator
corresponding to the atom’s electric dipole moment. (The sum runs over all the electrons in the

atom.) Reversing the parity of space affects all the electrons equally, so the parity operator obeys
N-'X,II = —X, for each X,. Thus IIDII = —D.

33Note that it is important here that IT |x) = c¢|—x) for all values of x.
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Now suppose that the initial and final states of the atom are eigenstates of II, with eigenvalues 7;
and 7, respectively. Then3

ning (fIDi) = (f|T~'DII|i) = — (f|D]i) (4.114)

so the amplitude for the transition will vanish unless the initial and final atomic states have opposite
parity, 7;my = 1. In the most common case, just a single electron is involved in the transition and
in this case equation (4.112) shows that n;my = (—1)*!7, where ¢;,¢; are the total orbital angular
momentum quantum numbers of the initial and final states of this electron. Thus, in any radiative
atomic transition involving just a single electron, the orbital angular momentum quantum number ¢
must change by an odd number. If our initial and final states kept track of the photon as well as the
atom, we’d be able to say overall parity is conserved in such transitions if we assign an intrinsic parity
—1 to the photon that is emitted or absorbed in the transition. (The intrinsic parity of the photon
is related to the fact that the electromagnetic vector potential A, whose quantum version provides
the description of the photon, indeed transforms as a vector, not a pseudovector.) In fact, [H,II] =0
holds in general for particles travelling in the presence of any type of electromagnetic interaction.

Having [H,1I] be zero means that if at time ¢ = 0 you set up a system to be a mirror image
of another system, then their subsequent evolution will be identical in the sense that if you observe
them at a later time, they will still be mirror images of one another. Hence, when [H,II] = 0 it is
impossible to tell whether a system is being observed directly or through a mirror. One of the major
surprises of twentieth-century physics was an experiment by Wu et al. in 1957, which showed that
in fact the Hamiltonian of our Universe has [H,II] # 0 — you can see things in a mirror that are
impossible in our World!

34Note that since the parity operator II is unitary, its quantum numbers 1 behave multiplicatively, whilst those of a
Hermitian generator of a continuous symmetry (such as P) behave additively.
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5 Angular Momentum

In the previous chapter we obtained the fundamental commutation relations among the position,
momentum and angular momentum operators, together with an understanding of how a dynamical
relation H = H(X,P) allow us to understand how such quantities evolve in time. However, with
the exception of the parity operator, we have not yet said anything about the spectrum — the set of
possible eigenvalues — of these operators, nor have we been specific about the precise Hilbert space on
which they act. Answering such questions is an important part of the subject of representation theory
in mathematics; the study of how group actions can be realised on a given vector space. In physics,
understanding this will provide essential information about the nature of our quantum system.

To a large extent, both questions are determined by the operator algebra itself. For example,
taking the trace of the commutation relations [X;, P;] = ihd;;jI in any finite dimensional Hilbert
space H gives

dim(?—l)&ij = —%tI‘H(Xin — PJXZ) =0 (51)

for all 7, j by the cyclic property of the trace. So there is no realisation of the position and translation
operators on any non-trivial finite dimensional Hilbert space (and if dim(#H) = 0 then X and P
necessarily act trivially). The above argument fails in an infinite dimensional Hilbert space, where
neither try (I3) nor try (X;P;) is defined. Thus, if we wish to discuss the position and momentum of
a quantum system, we are necessarily in the world of function space.??

On the other hand, taking the trace of the commutation relations
[Ji, Jj] = ihZGiijk (5.2)
k

for the rotation generators just gives
iheijk tI"H(Jk) = tI"H(J,'Jj — Jjjz) =0, (53)

so it is possible to represent each component of J on a finite dimensional Hilbert space in terms of
a traceless matrix36. This is often a useful thing to do, particularly when discussing the internal
structure of a system.

In this chapter, we’ll consider finite dimensional Hilbert spaces H; whose elements transform
among themselves under rotations. In mathematics, the H; are known as irreducible representations
of the rotation group, whilst in physics they’re called multiplets of definite total angular momentum.
This chapter will also substantiate the link between the rotation generators J and the physics of
angular momentum, by examining a simple Hamiltonian for rotating diatomic molecule. We’ll also
flesh out the details of exactly how the orientation of a system is encoded in the amplitudes for it to
be found in different eigenstates of appropriate angular momentum operators.

5.1 Angular Momentum Eigenstates

Let’s begin by seeing how the algebra [J;, J;] =ik, €;rJi determines the spectrum of the angular
momentum operators. Since no two components of J commute, we cannot find a complete set of
simultaneous eigenstates of two components of J. However, since [J,J 2] = 0 we can find a complete
set of simultaneous eigenstates of any one component of J and J%. Without loss of generality, we orient

35Even here we should really be more careful. As mentioned in a previous footnote, X and P are not defined as linear
operators on the whole of a Hilbert space such as L?(R3,d3x), because a state that is initially square-integrable may
not remain so after the application of the unbounded operator X or P.

36This traceless condition in # is closely related to but distinct from the fact that the generators of SO(3) can also
be represented by antisymmetric (hence traceless) matrices acting on R3.
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our coordinate system so that the chosen component of J is J,. We let |3, m) denote a simultaneous
eigenstate of J, and J?, where

J?|B,m) = BR*|B,m)  J.|B,m)=mh|B,m) (5.4)

and the factors of /i are for later convenience. We also choose all the states |3,m) to be properly
normalised. Since they are eigenstates of Hermitian operators, they must then be orthonormal

(B/,m’m,m) = 6,8,8’6mm/ . (55)

Finally, since we are looking for the simplest possible way to realize our commutation relations, we’ll
assume that the states {|3,m)} are non-degenerate; that is, we want a Hilbert space where |5, m) is
the unique eigenstate of J* and J, with the given eigenvalues. We’ll comment more on this assumption
in the next chapter.

We now define
Jy =Jy £iJy, (5.6)

which obey Jl = J+ and so they are each other’s adjoint. As they are built from linear combinations
of the components of J, clearly J4 each commute with J?, while their commutation relations with J,
are

[z, Ju] = [J2, Jo) £, Jy] = iR(Jy F iJ,) = £hJ . (5.7)
We learn that
JQ(']i |B7m>):JiJ2 |va>:h26Ji |va> (58)
and
J.(Jx|8,m)) = ([J, J] + J+J.) |B,m) = (m £ 1)h(J+ |B,m)). (5.9)

These show that the new states Jy |3, m), if not zero, are still eigenstates of both J 2 and J,, with
the same eigenvalues 3h? for J2. However, their .J, eigenvalue is shifted up or down (respectively for
J4 |B8,m) and J_ |8, m)) by one unit of i. We see that the role of Jy in angular momentum is similar
to the role of A and A" for energy of the harmonic oscillator. Again, J, and J_ are often called the
raising and lowering operators. Their role is to rotate our system, aligning more or less of its total
angular momentum along the z-axis without changing the total angular momentum available.

Just as for the harmonic oscillator, examining the algebra of our raising and lowering operators
has told us the separation between angular momentum eigenstates, given a starting point |3, m). To
fix our initial states, we must examine the norm. By assumption, |3, m) itself is correctly normalized
and we compute

17+ 18, m)|1* = (8, m| - T+ |8,m) = (B,m|(Js = iT,)(Jz +17,)|8,m)
= (B,m|I* — J2 — hJ.|8,m) = h*(B — m(m + 1)). (5.10)

But since this is a norm, whatever state |8, m) we started we must have
B—m(m+1)>0, (5.11)

with equality iff Jy |8, m) = 0 is the trivial state. This shows that it cannot be possible to keep
applying Jy, repeatedly raising J, eigenvalue m while leaving 8. There must be some maximum
value of m — let’s call it j — for which J; |5, 7) = 0. This can only be the case if § obeys

B=3(+1) (5.12)
and so is fixed in terms of the maximum allowed value of m.
Similarly for a generic m value we find

|- 18,m)||* = K*(8 — m(m — 1)) (5.13)
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Figure 6: J eigenvectors for j = 2 states. Only the magnitude and the projection along the z axis is
definite so each state is represented by a circle on a sphere. The raising and lowering operators makes
the J more/less aligned with the z axis.

so it also cannot be possible to keep lowering the J, eigenvalue whilst remaining in the Hilbert space.
There must be some minimum value of m, say j’, for which J_ |8,j’) = 0 and this can only be the
case if

B=7("-1). (5.14)
Applying J+ does not change the J 2 eigenvalue (3, so these two values of § must agree. Comparing
them, we obtain a quadratic equation for j’ that we solve in terms of j, finding 5’ = j+1 or j/ = —j.

By definition j’ can’t be greater than j so we must have j' = —j. The eigenvalue 8h% = j(j + 1)h?
is determined by j, so we henceforth label our states as |j,m); this labelling is simple less cluttered
than [j(j +1),m).

Finally, we note that since applying J_ repeatedly will take us from the highest state |7, j) through
|7, —1),... down to |j,—j), so it must be that 2j is a non-negative integer. In other words, the
possible values for j are

1 3 1
j 0,=,1,=,... » ==Np. 5.15
J € { 727 727 } 2 0 ( )
Once the total angular momentum quantum number j is fixed, we have
me{_ja_j+]—7"'7j_17j}' (516)

Thus there is in total of 2j + 1 states in any given multiplet, and H; is the Hilbert space of dimension
2j + 1 spanned by the {|j,m)} for fixed j. We can move between states in 7, using raising and
lowering operators J. which obey

Jy lj,m) = /(G + 1) —m(m—+1)|j,m+1) (5.17)
J_|j.m) =h/j(G+1) —m(m—1)|j,m—1) . (5.18)

These operators only change the J, eigenvalue, not the J* one. They just realign a given system,
placing more (J) or less (J_) of its angular momentum along the z-axis.

5.2 Rotations and Orientations

Note that, since J, and J, can be written in terms of the raising and lowering operators J, rotations
around an arbitrary axis transform states in a given H; into other states in the same #;. Since
Jr = (Jy + J_)/2, we see that when j > 0, the state |j,m) is never an eigenstate of J,. Hence, for
7 > 0, we can never be certain of the outcome of measurements of both J, and J,. This argument
applies equally to Jy, so it’s impossible to be certain of the outcome of measurements of more than one
component of J. If j = 0, every component of J yields zero, but a null vector in R? has no direction.
This situation contrasts with the momentum vector P which can have well-defined direction since all
its components commute with one another.
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In the mathematical literature, states with m = j are known as highest weight states. They play a
key role in the representation theory of any group G, because once we know the highest weight state
the rest of the multiplet can be constructed by applying lowering operators such as J_. Physically, a
highest weight state is one in which the body’s angular momentum is most nearly aligned along the
z-axis. In this state, the ratio of the squared angular momentum that lies in the xy-plane to that
parallel to the z-axis is

(a2 + T5laa)y _ (3,97 = J2]5,4) _ 1 (5.19)

(3, 91J213,3) h2j? j '
As Jp = (J4 + J-)/2 we have (j,j|Jz|j,7) = 0 and similarly (4, j|Jylj,j) = 0. Thus we have no
information about the direction in the xy-plane any angular momentum points.

Macroscopic bodies, for which j7 > 1, have only a tiny fraction of their total angular momentum
in the zy-plane when they’re in state |, j), so the uncertain direction of this component of angular
momentum does not lead to significant uncertainty in the total direction of the angular momentum
vector. By contrast, when j = 1/2, even in state|1/2,1/2) there’s twice as much angular momentum
associated with the zy-plane as with the z-axis and the uncertain direction of this planar component
makes it impossible to say anything more specific than that the angular momentum vector lies
somewhere in the northern, rather than southern, hemisphere. Even when j = 1 and m = 1,
the state |1,1) has as much angular momentum along the xy-plane as it has parallel to the z-axis,
so the direction of the angular momentum vector is still very uncertain. This is no surprise: since
dim(H;) = 25 + 1, when j = 1/2 there are only two independent states the orientation of our body
can take. With such a limited Hilbert space it’s no wonder we only have a fuzzy notion of where the
body’s angular momentum lies.

5.2.1 Rotations of Diatomic Molecules

Our deduction of the possible eigenvalues and eigenstates of J? and J. came from considering
rotations: the states |j,m) simply enable us to describe what happens when an object is rotated
around some axis, as we’ll understand in more detail and with many examples later in the chapter.
In particular, it’s important to understand that a priori these states have nothing to do with the
energy levels of any given particle. As always, there’s no way to tell how rotating an object may or
may not change its energy until we specify a form for the Hamiltonian. In this section, we’ll choose
a simple form of dynamical relation H = H(J) that will enable us to understand an important part
of the dynamics of a diatomic molecule.

For some purposes, a diatomic molecules such as CO molecule can be considered to consist of
two point masses, the nuclei of the oxygen and carbon atoms, joined by a “light rod” provided by
the electrons. Following the analogous formula in classical mechanics, we model the dynamics of this

molecule by the Hamiltonian
L(J2 Jp g2
H:<€U+ v o4 Z>7 (5.20)

where I is the moment of inertia along the z-axis, and similarly for I, and I,. Though motivated
by classical mechanics, the best justification for this form of Hamiltonian is ultimately that it agrees
with detailed experiments.

In our axisymmetric case, we choose coordinates whose origin is at the centre of mass of the
molecule (somewhere between the C and O atoms). Then I, = I, = I, say, whilst I is different. In
fact, since the centre of mass of the C and O atoms lies along the z-axis, the molecule’s moment of
inertia around this axis is negligible, I, < I. We can thus rewrite our Hamiltonian as

1[J? 11
H=-|=+J12(—->]]|. 5.21
T2 (m )] 21
The virtue of expressing H in terms of J* and J. is that our knowledge of the spectrum of these
operators immediately allows us to write down the spectrum of this Hamiltonian: the state |j, m) is
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%m

Figure 7: A simple model of carbon monoxide. By symmetry, I, = I,, whilst I, is much smaller.

an energy eigenstate with

Ejm = %2 [JUIH) +m? (; - })} , (5.22)

with |m| < j. Since I, < I for our diatomic molecule, the coefficient of m? is very much greater than
that of j(j + 1), so states with m # 0 will only occur very far above the ground state. Consequently,
the low lying states have energies of the form

2

Ej:ﬂj

(j+1) (5.23)
for some j. As we saw in the previous section, only discrete values of j are allowed, so the energy
levels are quantized. One can excite a CO molecule, causing it to rotate faster, only by supplying
a definite amount of energy. Similarly, for the molecule to relax down to a state of lower angular
momentum, it must emit a quantized lump of energy.

Carbon monoxide is a significantly dipolar molecule. The carbon atom has a smaller share of
the binding electrons than does the oxygen, with the result that it is positively charged while the
oxygen atom gains negative charge. In Maxwell’s theory of electrodynamics, a rotating electric dipole
is expected to emit electromagnetic radiation. Because we’re in the quantum regime, this radiation
emerges as photons which, as we’ll see later in the chapter, can add or carry away only one unit & of
angular momentum. Thus the energies of the photons that can be emitted or absorbed by a rotating
dipolar molecule are

jh?
Using the relation F = Aw, the angular frequencies in the rotation spectrum of the molecule are
jh
wj = (5.25)

In the case of 12CO, h/2wI evaluates to a frequency v ~ 115.271 GHz and spectral lines occur at
multiples of this frequency. In the classical limit of large j, the molecule’s total angular momentum
|J| =~ jh. This is related to the angular frequency €2 at which the molecule rotates by |J| = IQ.
Comparing to (5.25) we see that in the classical limit, wjs1 = €, so the frequency of the emitted
radiation is just the frequency at which the molecule rotates.

Measurements of the radiation at 115.271 GHz provide one of the two most important probes of
interstellar gas®”. In denser, cooler regions, hydrogen atoms combine to form Hy molecules which
are centrosymmetric and do not have an electric dipole moment when they rotate. Consequently,
these molecules, which together with similarly uncommunicative Helium make up the vast majority
of cold interstellar gas, lack readily observable spectral lines. Astronomers are thus obliged to study
the interstellar medium through the rotation spectrum of the few parts in a million of CO it contains.

37The other key probe is the hyperfine line of atomic hydrogen that will be discussed in section 8.
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5.3 Spin

We saw that the orbital angular momentum operator L and spin operator S each obey an identical
algebra to that of the rotation generators

[Li, Lj] = ihz €ijili [L;, L] =0 (5.26)
k

[Si, S]] = ihZeiijk [SZ, SQ] - 0 (527)
k

as well as [S;, L;] = 0. Since the algebra of the J’s was all we used to deduce their spectra, it follows
immediately that (L%, L.) and (S?,S.) have the same possible spectra as we found for (J*,.J.). Tt
is conventional to label eigenstates of (L%, L,) as |¢,m) and those of (S%,5.) as |s, o), where ¢ and
s correspond to the eigenvalues of L? and S2, respectively, and m and o label the eigenvalues of L,
and S,. (Unfortunately, it’s traditional to label the eigenvalue of both J, and L. by the same letter
m. Which is meant is usually clear from the context.)

5.3.1 Large Rotations
Our claim that the possible values for (j,m) are

1 3
j6{0,271,2,...} and then me{—4,....,5—1,75} (5.28)

was based on examining the algebra [J;, J;] =ik}, € Ji and likewise for (¢,my) or (s,o). In turn,
this algebra originally came from considering the behaviour of objects under very small rotations. We
now check whether these spectra are also compatible with large rotations.

Suppose we rotate the state |j, m) through an amount « around the z-axis. Then
[j,m) — U(az) [j,m) = 7=/ |j,m) = e= ™ |j,m) (5.29)

since it is an eigenstate of J,. Rotations through 27 around any axis return us to our starting point,
so are equivalent to no rotation. Thus, for U(a) to be a homomorphism from SO(3) to the group
of unitary operators on H, we must have U(2ré&) = 14. In particular, when & = lA<, from above we
must have e=2™™ = 1. This is true if m is an integer, but not if it is an odd-half-integer. Since m
is an integer or (odd) half-integer iff j is, we conclude that odd half-integer values of j are in fact
not compatible with the behaviour of objects under large rotations: they are ruled out by our basic
requirement that U (o) represents the action of SO(3) on H.

The fact that global properties of rotations rule out some of the eigenvalues allowed by the rotation
algebra is an example of a phenomenon familiar from IB Methods. The behaviour of function in the
neighbourhood of a point may be governed by some differential equation. The associated differential
operator (if it’s linear) typically has a large spectrum, which is cut down by boundary conditions
or periodicity conditions. For example, on any open set U C R the linear operator —id/dx has
eigenfunctions e'** for any k& € C. However, if we know that globally ¢ : S — C so is periodic,
then k£ must be quantized in units of the circle’s radius. The only difference in our case is that the
non-trivial algebra of the rotation generators already restricted the possible eigenvalues of J* and
J. to be quantized in units of . Global properties of the rotation group still remove some of the
eigenvalues that were allowed locally. More succinctly, states where j € N0—|—% do form representations
of the rotation algebra s0(3), but not of the rotation group SO(3).

In fact, we’ll see that our arguments above have been rather to hasty.
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Figure 8: A schematic picture of the Stern—Gerlach experiment, adapted from the Astronomy Cast
site.

5.3.2 The Stern—Gerlach Experiment

Quantization of angular momentum in units of & was originally proposed by Bohr and Sommerfeld
as a means by which the stability of atomic orbits could be understood; we’ve now seen how
this quantization arises automatically in the full mathematical framework of quantum mechanics.
However, back in 1922 it still seemed very mysterious, so Stern and Gerlach designed and conducted
experiments to check whether angular momentum is really quantized in Nature.

In the Stern—Gerlach experiments, a beam of uncharged atoms of the same type is passed through
a region of slowly varying magnetic field. If the atoms have mass M, the Hamiltonian for this process
.38
is
2

P
H=_—-pu-B 5.30
2M ’ ( )

where B is the applied magnetic field, and p is the magnetic dipole moment of the atom. Ultimately,
the reason the atom can be treated as a magnetic dipole is because of detailed properties of the
distribution of its electrons. It would take us too far afield to explain this precisely, but the dipole
moment arises because the atom has an orientation: a perfectly spherically symmetric atom cannot
have any dipole moment as there is no preferred direction for the “north” or “south” poles. Thus the
dipole moment is only non-zero for atoms that transform non-trivially under S. If the atom is in the
spin s representation, we can write pu = (u/hs)S.

Choosing our coordinates so that the z-axis points along the direction of the magnetic field, the
Hamiltonian becomes

P2 I
H=—-_"—-BS,, 31
2M ks S (5:31)
where B = |B|. The equations of motion obtained using the Heisenberg picture tell us that the

expectation values of position and momentum in any state obey

d _(P) d o
The second of these equations is analogous to the classical F = —VV.

We see that the force experienced by any given atom depends on its value of S,. For a spin s
particle, these are i{—s,—s + 1,...,s} and in particular can be of either sign. If an atom is in the
state |s, s) with all its spin aligned along the direction of B, then it will experience a force pushing

38The potential energy resulting from coupling a magnetic dipole to an applied magnetic field is similar to the
(perhaps more familiar) energy p - E of an electric dipole p in an applied electric field E. Note that the atoms carry
no net electric charge, so there’s no Lorentz force.
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it in the direction of increasing magnetic field. On the other hand, those atoms in the state |s, —s)
will be pushed in the direction of decreasing B, while atoms with o = 0 (when s is an integer) are
unaffected. In total, when an initial beam of atoms in which the spins are randomly aligned passes
through the region of magnetic field, it will be split into 2s + 1 different trajectories. Thus, if the
atoms are perfectly spherical, they will pass through unaffected, whereas if they have s = 1 the
beam will be split into three, corresponding to the three possible eigenvalues {—h,0, i}, if they have
s = 2 the beam will split into five, and so on. Finally, if the atoms have very large spin (and so a
very definite orientation in space) the beam will be split into so many paths that we can no longer
distinguish the individual paths, seeing instead a broad smear. This is the same result we’d expect to
find if angular momentum is not quantised, where the amount by which an atom is deflected would
depend smoothly on its orientation with respect to B.

Stern and Gerlach’s original experiment in fact used silver atoms. Their magnetic was controlled
by a dial. Initially, as B = 0 the atoms all passed straight through. As they turned up the magnetic
field, the beam split into two separate paths. As B was further increased, the separation between these
two beams increased, but no further splitting was observed. Thus, not only is angular momentum
quantized as Bohr and Sommerfeld had predicted, but silver atoms have spin s = %!

5.3.3 Spinors and Projective Representation (Non-examinable)

The Stern—Gerlach experiment shows that, despite our arguments, half integer values of s actually
arise in Nature. In fact, the chemical properties of the elements and the structure of the periodic table,
together with properties of materials such as metals, conductors and insulators depends crucially on
particles having half-integer values of spin. These values are in conflict with our current mathematical
formalism, so we must have made a mistake, imposing too strong a condition that ruled out the
possibility of half-integer spins.

The error lay in our claim that we needed to represent the action a transformation group G on
Hilbert space H, rather than just on projective Hilbert space PH. (Recall that states which differ only
by an overall constant — which does not need to have modulus 1 provided we use the general form
of the Born rule — yield the same results in all experiments. Thus physical systems are represented
by states in projective Hilbert space.) Projectively, it’s enough to require

Ul(g2) o U(gr) = 92900 (g5 - 1) (5.33)

rather than the homomorphism condition (4.7), where ¢(g1, g2) is a real phase. This phase does not
affect which ray in H the state lies in, so leaves the physics unchanged. The operator algebra is
associative, so we must have

U(gs) o (U(g2) oU(g1)) = (U(gs) o U(g2)) o U(g1), (5.34)
which implies the phase obey
?(92,91) + ¢(g3,92 - 91) = ¢(9g3,92) + (g3 - g2, 91) - (5.35)

Phase factors e'?(92:91) obeying this condition are known as cocycles on the group G. One possible
solution of (5.35) is to take

?(g2,91) = B(g2 - 91) — B(g2) — B(g1) (5.36)

for arbitrary smooth function 8 : G — R. This solution is “trivial”, because if ¢(go, g1) takes this
form, then we can define a new unitary transformation operator U’(g) = e#(9)U(g) which obeys our
original condition (4.7). By agreeing to work with the new operator, the phases never arise. The
interesting question is whether there are other, non-trivial solutions to (5.35).

A theorem in group cohomology?® states that it is possible for non-trivial projective representations

39Unfortunately, we won’t prove this here. If you’re interested, you can find a proof (given in the context of quantum
mechanics) in either Weinberg’s The Quantum Theory of Fields, vol. 1 (chapter 2, appendix B), or else in Hall’s
Quantum Theory for Mathematicians.
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(i) (if) A

(iii) A A
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Figure 9: Paths in SO(3) (i) contractible (ii) a loop with angles increasing by 27 that is non-
contractible (iii) a loop with angles increased by 47 but it is again contractible.

to arise for groups that are not simply connected’. In fact, this is the case for SO(3). The topology
of the rotation group can be seen by viewing each rotation as parameterised by a vector a. If we
allow the axis of rotation & to point in any direction, then rotations with || € (0,7) are uniquely
specified. However, when rotating through m we get the same rotation whether rotating around & or
—a&. Thus, we can picture the space of all rotations as a solid, three-dimensional ball |a| < 7, but
with antipodal points on the surface || = 7 identified the same.

The description show that SO(3) contains smooth, closed paths, beginning and ending at the
identity rotation (the origin of the 3-ball) that cannot be continuously shrunk to a point. For example,
consider the loops in figure 9 which all start and end at the identity rotation, i.e. the centre of the
sphere. Figure (i) shows a loop which is contractible; it can obviously be shrunk to a point. On
the other hand, figure (ii) shows a loop for which the angle of rotation all starts at zero, smoothly
increasing to 7 at the point A. At this point it reaches the boundary and reappears at the antipodal
point A’, before continuing to increase to 27 back at the identity. It should be intuitively clear that
this loop cannot be shrunk to a point whilst keeping both its ends fixed at the identity.

Next, consider the loop in figure (iii), along which the angle of rotation increases from 0 to 4,
reaching the boundary of the ball twice, once at A, reappearing at A’ and then again at B reappearing
at B’. By moving the two antipodal pairs, the section of the path between A’ and B can be pulled
across the boundary, smoothly deforming the loop back to the situation as in figure (i). Thus, after
two complete rotations the situation becomes simple once more. In general, the angle along any
closed path must increase by an integer multiple of 27. The resulting loop will be contractible if this
integer is even, but non-contractible if it is odd.

The topological properties of paths in G become important when we consider the behaviour of
U(g) as the group element g varies around a loop L, beginning and ending at some fixed go. It is
quite possible for U(g) to change smoothly with g along L in such a way that the operators at each
end of the loop do not coincide: they may differ by a phase

Ulgo) > arU(go) (5.37)

where the phase ay, depends on the loop. This is consistent with the projective homomorphism (5.33).

40There’s one other possibility: that the Lie algebra g contains central elements (vectors e € g s.t. [e,g] = 0) that
cannot be removed by a redefinition of the generators. This case is not relevant for us.
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To investigate the possibilities for o, let’s specialize to the case in which the operators act on a
Hilbert space of finite dimension N, so that each U(g) can be regarded as an N x N unitary matrix.
We can use up some of the freedom in (5.33) by requiring that each such matrix has unit determinant.
This does not fix things completely, but the residual freedom is discrete:

detU(g) = +1Vge G = NPlor92) — 1 (5.38)

If G is simply connected, meaning that any closed loop is contractible, then the determinant condition
implies az, = 1 for all loops L. This follows straightforwardly using continuity: a7 must be an N*®
root of unity, but if it varies continuously as we vary our loop L and if all such loops are contractible
to the single point gg, then we must have the same matrix at the beginning and ending of each loop,
so oy, = 1.

If G is not simply connected, the same argument still shows that oy, = 1 for any contractible L,
but there may also be non-contractible loops with ay # 1. In this case, we can at least deduce that
ay, = oy, whenever the loops L and L’ are in the same homotopy class, meaning that they can be
smoothly deformed into one another. Furthermore, if loops L and L’ are traversed successively, then

U(go) & arU(go) & ararU(go), so there are self-consistency constraints.

We can now give a unique definition of U(g) for all ¢ in a simply connected Lie group G. Recalling
that U(e) = Idy, we define U(go) by choosing any path from the identity e to gop and demanding that
U(g) changes smoothly along this path. The values along the path are unique by the determinant
and continuity conditions, but the end result U(go) is also unique, because by traversing them in
opposite directions, any two paths e — go can be combined to form a closed loop at gg. This loop is
contractible since our group is simply connected. With this definition, continuity also ensures that all
cocycles are equal to one, so we have a genuine representation (not just a projective representation)

of G.

Carrying out the same construction when G is not simply connected, we’ll encounter paths from
e to go which cannot be smoothly deformed into one another. Thus, starting from U(e) = Idy,
in general we obtain different values for U(gy) depending on the path we take. In this way we're
forced to consider multi-valued functions on G (just as when defining a continuous square root in the
complex plane). The ambiguity, or multi-valuedness, in U(gg) can be resolved only by keeping track
of the path we used to reach g, just as for the complex square root we must keep track of how many
times we’ve encircled the origin to be sure which branch we’re on. Such a multi-valued definition
inevitably means that non-trivial cocyles appear.

As we saw above, the rotation group G = SO(3) is not simply connected, but there are just two
topological classes of loops, depending on whether the net angle of rotation is an even or odd multiple
of 2. Any loop L in the first class is contractible and so has ay, = 1. Any loop L in the second
class is non-contractible, but if we traverse L twice it becomes contractible again. Thus %, = 1 and
L = £1. The finite-dimensional spaces H; on which the rotation operators act are nothing but the
multiplets of total angular momentum j(j + 1)h?, with a basis |j, m) where

me{_ja_j+1a"~aj_1aj}- (539)

Thus dim #; = 2j+1. From the determinant condition (« £)?71 =1 for any loop, but our topological
considerations ay, = £1. If j is an integer then 2j + 1 is odd and it follows that ay, = 1 for all loops,
contractible or not. However, if j is an odd half-integer, then 2j 4+ 1 is even and «aj = —1 is possible
for non-contractible loops. This is exactly the behaviour we found above: under the rotation operator
U(az) = e~iJ=/M 5 generic state in the j multiplet transforms as

W)= D emlim)— U@ ) = D cme™ " |jim) . (5.40)

m=—j m=—j

Any state with j (and hence all m) odd-half-integral changes sign under a rotation through an odd
multiple of 2. The discussion of this section shows that the origin of this unexpected sign is the non-
trivial topology of the rotation group — in our new terminology, we have a projective representation
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of SO(3). These projective representations play an important role in physics, and are often called
Spinors.

We have, finally, obtained the correct mathematical framework in which to describe rotations and
angular momentum in quantum mechanics. The history of the subject developed rather differently
from the exposition we've given here. By the 1920’s, careful studies of atomic spectroscopy had
revealed that many spectral lines were in fact doubled, composed of two lines, very close in frequency.
In 1924 (even before Schrodinger published his famous equation) Pauli proposed that this doubling
indicated that, in addition to the quantum numbers n, ¢, m labelling their energy levels, electrons
possessed a further quantum number that took just two values. A year later, Uhlenbeck and Goudsmit
suggested that this could be associated with some form of internal angular momentum. Their idea
was initially treated with suspicion. If one wished to suppose the electron was a small, rotating
sphere, then for it to have the needed angular momentum 7/2 and yet keep its radius small enough
so that its finite size would not have been detected by experiment*', the surface of the sphere would
need to be travelling faster than light.

Nevertheless, the Stern—Gerlach experiment showed that particles could indeed have spin,
contributing to the Hamiltonian in the presence of a magnetic field in just the same way as would
a classical spinning magnetic dipole. Heisenberg, Jordan and C. G. Darwin then showed that the
internal spin of the electron exactly accounted for the fine splitting of spectral lines that had puzzled
Pauli, as we’ll see in section 8.1.1.

We now understand that spin is an intrinsic property of fundamental particles: the Hilbert space
of a fundamental particle is not simply Hgpat = L*(R3,d3z) describing its spatial wavefunction, but
rather a tensor product Hgpae ® Hs. However we may excite, crash into, or generally interfere with
the motion of an electron or W boson, for as long as they remain electrons and W bosons, their spin
will always be s = % and s = 1, respectively.

5.3.4 Spin Matrices

Since ¢ € {—s,—s + 1,...,s — 1,5}, states of definite total spin s can be described by a finite
dimensional Hilbert space H, = C?"*!. As always, once we pick a basis on H we can describe the
action of linear operators such as S explicitly in terms of matrices. Let’s now carry this out the first
few spin representations, working in the basis {|s, o)} of eigenstates of S..

The simplest case is s = 0, for which the only possible value of ¢ is also zero. This state obeys
e~ 1eS/h|0,0) = |0,0) for any |o). Hence a spin-zero object, like a perfect sphere, is completely
unchanged under any rotation. In view of this, spin-zero particles are known as scalar particles. The
discovery of the Higgs boson, announced on 4" July 2012 at CERN in Geneva, was the first time a
fundamental scalar particle had been observed in Nature.

The next case is s = % Electrons, neutrinos and quarks are fundamental particles of spin %,
whilst protons, neutrons and the silver atoms used by Stern and Gerlach are examples of composite
spin-half particles. When s = %, o can only take one of the two values i%. For shorthand, we let
[1) denote the state |s, o) = ‘%, %> and |}) denote ’%, —%> A generic state of a spin-half system can
thus be expanded as

) =alt) +b[) (5.41)

in this basis, where a,b € C and |a|® + |b]> = 1 so that [¢) is correctly normalised.

41To date, no experiment has ever detected a finite size, or any other non-trivial internal spatial structure in the
electron.
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In this basis, we can write the spin operators themselves as the 2 x 2 matrices

IS 1S
o <<¢|S DERCES ¢>> (5.42)
S, (115,10

s= (s Hsih)
IS 1S
s.= (U0 Bt

ST )
5.44
1s:it (>4
Since |1) and [|) are eigenstates of S, evaluating S, in this basis is immediate. To also evaluate S,
and S,, we note that S, = (S1 +S_)/2 and S, = (S4+ — S_)/2i where Sy are the spin raising and
lowering operators defined just as for Jy. Using (5.17) and (5.18) with j = s = 1 gives Sy ||) = A [1)
and S_ 1) = i |}). In this way, we obtain

h(o 1 h (0 —i h(l1 0
S$_2(1 0)’ Sy_z(i 0)’ SZ_2(O —1)' (5.45)
The coefficients for /2 here are known as the Pauli matrices and usually written as (o4, 0y,0.).

Thus, for s = %, we can write S = %0'.

(5.43)

Proceeding to spin-one, we find three possible values ¢ € {—1,0,1}. Thus the spin-one Hilbert
space is three (complex) dimensional, and when s = 1 we can represent each component of S by a
3 x 3 matrix. In this case, the spin raising and lowering operators Si act as

Sy |1,—1) = V21]1,0) Sy |1,0) = V2h|1,+1) (5.46)
_1,+1) = V2h(1,0) S_|1,0) = V2|1, -1) .
Using this result, one can check that
s (to). s=nfi 0 5) soafoo o] e
V2 010 V2 0 i 0 L 0 0 -1 ' .

Sadly, these matrices don’t have any special name. Examples of fundamental particles with spin-one
are the somewhat unimaginatively named W and Z bosons*2. These are responsible for the weak
interactions that, among other things, allows two hydrogen nuclei to fuse into Deuterium, powering
nuclear fusion in the core of stars.

In just the same way, we can represent each component of the spin operator by a (2s+1) x (2s+1)
matrix for any finite s. Since our basis is adapted to S, the matrix representation of S, will be

S, = hdiag(s,s —1,...,—s+1,—s). (5.48)

Matrices for S; and S, may be constructed using the spin raising and lowering operators as above.
Since S+ only change the z-component of the spin by 1 unit, these matrices are very sparse. One
finds that they have non-zero entries only along the subleading diagonals, given by

h
(S$)U’a = 5[04(0')50’—1,0 + a(U - 1)50'4-1,0}

h (5.49)
(Sy)o o = i[_a(g)aal—l,a + OZ(O’ - 1)50’+1,a] )

where a(0) = /(s — )(s + o + 1). Note that, whatever the value of s, we always have three matrices
(Sz, Sy, S>) describing reorientations around the three independent axes in R3. Note also that each

42 Although the photon carries one unit of A in intrinsic angular momentum, it has only two possible states
corresponding to left- or right- circular polarized light. Because the photon is massless, one needs to consider
representations of the Lorentz group, rather than the spatial rotation group, in order to describe it accurately. We
won’t do this in this course.
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of these matrices is indeed traceless, as required by ifie;j try (Sk) = try([S;, S;]) = 0 as we said at
the beginning of the chapter.

In elementary particle physics (and also in Tripos questions), one rarely encounters spins higher
than 1. Nonetheless, it’s interesting to consider the limits s > 1 of very high spins to see how our
classical intuition emerges. For example, an electric motor that is roughly 1 c¢m in diameter and
weighs about 10 g might spin at ~ 100 revolutions per second. Its intrinsic angular momentum is
then 10 kg m? s~! ~ 1031A. The classical world thus involves huge values of s.

Let’s now show that, when s > 1, there is very little uncertainty in the direction of a system’s
spin. Suppose our system is in the state |s,s) so that its spin in maximally aligned with the z-axis.
Let’s compute (s, s|n - Sls, s) where n = (sin, 0, cos#). That is, we want to know how much spin we
expect to measure along a direction in the zz-plane, inclined at angle 6 to the z-axis. Classically this
would just be hiscosf, the projection of s onto this axis. Quantum mechanically, we have

(s, s|n - S|s,s) =sinf (s, s|Sz|s, s) + cosb (s, s|S,|s, s) = hscos b (5.50)

using the fact that S, = (S4 4+ S_)/2. Thus, on average the quantum result agrees with the classical
intuition. This holds for any value of s, but now let’s ask what the uncertainty in this result is. We
compute

(s,s|(n-8)?

s, s> = sin?0 <s, S‘Si

s, 8) +sinfcos 0 (s,59:9. + 5.5, s) + cos® 6 (s, 5|52

s,s>

1
=1 sin? 0 (S, S_|s,s|S.S_) s, 5+ h?s? cos® O
_2(5 . 2 2 9
=h (281n 0 + s cos 9) , (5.51)
with all other terms vanishing. Consequently
\/«n-SF><n.sﬁV/;hsmﬂ (5.52)

and so, in the classical limit of large s, the relative uncertainty is small compared to (n-S) (ratio

N¢5

5.3.5 Paramagnetic Resonance and MRI Scanners

In the presence of an external magnetic field, a classical magnetic dipole p experiences a torque

5 —HxB. (5.53)

The dipole will thus turn until it aligns itself along the direction of the field, minimizing its energy.
This is familiar from a compass. However, suppose the dipole is already spinning around its centre
of mass, such that p = yL where the constant v is known as the gyromagnetic ratio. Then instead
one finds that the torque causes the dipole to precess around B.

As in our discussion of the Stern—Gerlach experiment, particles such as a proton or electron do
have magnetic dipole moments g = (2u/h)S proportional to their spin. We'll see that in quantum
mechanics, this spin does indeed precess around the direction of an applied magnetic field. This is
the basis of MRI scanners, which have become an enormously important diagnostic tool for both
chemistry and medicine.

We can understand the basic principles of an MRI machine by using our spin matrices. Unlike
the beam of silver atoms in the Stern—Gerlach experiment, here the protons are not free to move,
because they’re held in place by the electromagnetic binding forces of a complex molecule, and this
molecule is also held in a (roughly) fixed place in our cells. Thus we take the Hamiltonian to be

2uB

H = — M = —TSZ, (554)
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with no kinetic term. Again, we’ve chosen the direction of the magnetic field to define the z axis. In
particular, for a spin—% particle such as a proton, the eigenvalues of this Hamiltonian are F+ = FuB,
where B = |B]|.

Initially, we cannot expect the protons in our body to have their spins already aligned along B.
Suppose instead that some proton has its spin aligned along some axis n = (0, sin 8, cos #) inclined at
angle 6 to B. That is, we consider a proton in the state |64) defined by

n-S0) = g 104) . (5.55)

We can always choose to expand this state in terms of our basis {|1),|])}, representing states of
definite spin along z, as

64) = alt) +bll), (5.56)

where |a|” + [b]> = 1. In terms of our Pauli matrices, the eigenvalue equation (5.55) becomes

h . 0 —i\ (a R 1 0 a I (cos —isinf\ (a h(a
g siné (i 0) (b) g eosh (0 1) (b) ~3 (isin9 cose) (b) ~3 <b) - (5:57)

Solving this eigenvalue problem and the normalisation condition yields a = cos g and b = isin g (up
to a possible phase), so a proton whose spin is aligned along the n axis is in the state

64) = cosg 1) + ising 1) - (5.58)

Note that |#;) has the expected behaviour at § = 0 and § = 7, and it yields — |1) as § is continuously
increased to 2m. (It’s straightforward to generalised this example to the case of a state with spin
aligned along an arbitrary axis n.)

o—iHt/h

Applying the time evolution operator U(t) = , we find that at time ¢ the proton’s state

has evolved to

[(8)) = U(#) 6;) = cos gefth/h ) ¢ isin gefim/h n

0 _, 0 ..
cos ie_‘”t/z [1) +isin §e+1“t/2 1), (5.59)

where w = 2uB/h is the Larmor frequency. One can check that this state is an eigenstate of the
spin operator aligned along the axis n(¢) = (sinfsinwt,sinf coswt,cosf), so that at time ¢, the
proton’s spin is definitely aligned along n(t¢). Consequently, as time passes, the spin of any proton
will precess around the direction of B with frequency that is independent of the angle of inclination
i.e. independent of the proton’s initial orientation (provided it was not pointing exactly along B in
the first place). This is exactly the same behaviour as we found classically.

When a material that contains chemically bound hydrogen atoms is immersed in a strong magnetic
field, over time the protons will emit radiation (not accounted for by our above Hamiltonian) so as
to sit in the ground state. Thus, eventually the precession will cease and most of the protons’ spins
will be aligned along the direction of B.

Now suppose that, in addition to the static external B field, we apply a small additional magnetic
field b cos(wt) that varies at the same Larmor frequency w = 2uB/h. The Hamiltonian felt by the
protons will then be

2p

H=—-p-(B+bcoswt) = —(

. B b cos wt) (5.60)

bcoswt -B

if the new field is in the x-direction. The time dependent Schrédinger equation of this system is thus

a\  2pi B becoswt) [a
(b) TR (bcoswt -B ) (b) ’ (5.61)

56



5  Angular Momentum II Principles of Quantum Mechanics

varies with frequency w = 2uB/h. This radiation has just the right energy to excite these protons
into the state where their spin is aligned against B. Consequently, such radiation is readily absorbed
by the sample, whereas radiation at nearby frequencies is not. As we have seen, interference between
the two states causes the spin to precess around the direction of B, and this precessing magnetic
moment couples resonantly to the applied radiation field.

MRI scanners are typically tuned to determine the concentration of a single type of atom, usually
hydrogen. However, in a complex molecule, not every hydrogen nucleus (proton) feels the same
magnetic field, because of additional contributions from the electrons that bind the atoms together
in the molecule. For example, in methanol (CH3OH) the magnetic field experienced by the proton
that is attached to the oxygen atom differs from those experienced by the protons attached to the
carbon atom. Now, the frequency of precession is proportional to the strength of the magnetic
field at the location of the proton, so for any fixed strength of applied magnetic field, methanol has
different resonant frequencies. Clues to the chemical structure of a substance can thus be obtained
by determining the frequencies at which magnetic resonance occurs in a given imposed field. If we
choose B to have a spatial gradient, then only a thin slice of our sample material will have w tuned to
its resonant frequency, so we excite transitions to higher energy levels only in this thin slice. Varying
this field in an orthogonal direction as the nuclear spins decay back down to the ground state allows
us to recover three dimensional images.

5.4 Orbital Angular Momentum

The topological considerations that allowed us to admit half-integer values of s do not apply to /.
To understand this, recall that L could be interpreted as the generator of circular translations —
transformations that translate a state around a circle in space, without adjusting its orientation.
Unlike the space S3/Zs of rotations, in R3 the space of such circular paths is contractible.
Consequently, translation around a circular path always leaves our state unchanged. In particular,
we must have

e~ ZmZL/h 10 ) = 2™ 0 m) = |0, m) (5.62)

so that m € Z and hence ¢ € Ng.

5.4.1 Spherical Harmonics

The commutation relations of the L’s are exactly the same as those of the S’s, so for any finite ¢ we
could choose to represent the orbital angular momentum operators by the same (2¢ 4+ 1) x (20 + 1)
matrices as we obtained above. However, in practical applications we’re usually interested in states
whose orbital angular momentum quantum number ¢ may change, perhaps as a result of the particle
being excited from one energy level to another. Thus it’s more convenient to use a formalism that
allows us to treat all values of ¢ simultaneously. Furthermore, we often want to know about L at the
same time as knowing about linear momentum P or position X, and we have seen that the [X;, P;]
commutation relations do not have any finite dimensional representation and we can only represent
them as operators acting on (wave)functions. Let’s now see how to reconstruct eigenfunctions of
orbital angular momentum — the Legendre polynomials and spherical harmonics you met in IB —
from the operator formalism.

In the position representation, the orbital angular momentum operator become

L=XxP=-ixxV, (5.63)
so that in particular,
L= —in (22— y 2 (5.64)
=T oy Yoz ) '
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In terms of spherical polar coordinates we have (z,y, z) = (rsin 6 cos ¢, r sin 8 sin ¢,  cos 0), so

0 Oz 0 dy 0 0z 0 0] 9
%_%£+%@+%87_ 8 +x y (5.65)
so that L, = —ih-2 55" Thus, using these coordinates, the eigenvalue equation for L, becomes
(x|L.|¢,m) = —1h% (x|, m) = mh (x|¢,m) (5.66)
or 5
—i%W,m(x) = mipy,m(x), (5.67)

where ¢, (x) = (x|¢,m) is the position space wavefunction. This is solved by
bem (%) = K(r,0)e™? (5.68)

for some function K(r,d). Since m € Z, ¢ is a single-valued function of the azimuthal angle ¢.
This is often given as a further reason why only integer values of m (and hence ¢) should be allowed.

A straightforward, though somewhat tedious calculation shows that the raising and lowering
operators

(D
Ly =1L, +iL, = +he®? + — .
+ iL, e (89 1cot06¢) (5.69)

in the position representation. The condition L., = 0 then fixes

Yr.e(x) = R(r)sin® fel® . (5.70)
Applying the lowering operators, one finds that all the other 1 ,,,(x)’s are of the form

Yom(x) = R(r)Y["(0,0), (5.71)

where the spherical harmonics

2041 (¢ —m)! im
m _(_1\m m im
Y, (0, ¢) =(-1) p 7(£+m)!P¢ (cosB)e (5.72)
is given in terms of the associated Legendre polynomials
m 1 m d€+m
P (x) = ﬁ(l —2?)m/? dr (z* —1)". (5.73)
In particular, the spherical harmonics with m = 0 are proportional to the ordinary Legendre

polynomials by

Y2(0) = 4/ 264* L Py (cosh), (5.74)

which are odd or even polynomials in cos @, according to whether £ is odd or even. In particular, the
P;"’s are only single-valued as functions on S 2 when / is an integer, providing another reason why

the half integer values allowed by general considerations of the algebra must in fact be discarded for
L.

We won’t be concerned with the detailed form of these spherical harmonics, though you may wish
to note the orthogonality condition

/ d6de sin Y™ (0, 9) Y™ (60, 6) = 800G (5.75)
SQ

and the fact that
VY0, ) = —L(E+1)Y"(6,9) , (5.76)
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where V? is the Laplacian. Furthermore, since L is invariant under parity, Il 'LII = +L, it follows
that so too are the raising and lowering operators L. Therefore, all states in a given ¢ multiplet
have the same parity. To determine what that parity is, note that in spherical polar coordinates the
transformation x — —x becomes

(r,0,¢) — (r,m—0,¢ +7) (5.77)

so in particular cos@ — — cosf. Since Py(—cosf) = (—1)*Py(cos ), we see that the parity of V) is
odd or even, according to whether ¢ is odd or even, and hence

YO —m o+ m) = (1Y (0, 9) (5.78)
for all spherical harmonics with a given value of £.

It’s occasionally useful to have an alternative form of the spherical harmonics. Consider the
polynomial in R3

3
b)) = > Wik (5.79)
i1z it =1

that is homogeneous of degree ¢. The coefficients ;,;,..,, € C are necessarily totally symmetric in
their indices, and the polynomial is harmonic, i.e. V2% (z) = 0 if ;,;,...;, are traceless on any pair of
indices.

Finally, notice that so far we’ve said nothing about the radial profile of the wavefunction, R(r).
Since this function is certainly spherically symmetric, the rotation generators cannot tell us anything
about it and to determine R(r) we’d need further information, such as the Hamiltonian.
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6 Addition of Angular Momentum

Back in section 2.3, we understood how to describe composite systems using the tensor product of
the Hilbert spaces of the individual subsystems. However, in many circumstances, the basis of the
tensor product formed by taking all possible pairs of basis elements from the individual subspaces is
not the most convenient. A key case is when the subspaces transform under the action of a group G.
We’d like to understand the effect of a G-transformation on the combined space, and the “obvious”
tensor product basis usually obscures this.

In this chapter, we’ll see how this works for the case of the rotation group G = SO(3). Specifically,
suppose two subsystems are each in states of definite total angular momentum — mathematically they
transform in irreducible representations of SO(3) with total angular momentum quantum numbers
j1 and jo, respectively. We'd like to express the tensor product of the subsystems in terms of a sum
of Hilbert spaces,

Hjy @ Hj, = @Hj ) (6.1)
J

where each H; describes a state of the whole system with definite total angular momentum quantum
number ;.43 Physically, to understand this decomposition is to understand how to add the angular
momentum of the two subsystems so as to find the possible values of the combined angular momentum
of the whole system. For example, in a hydrogen atom, both the proton and electron carry angular
momentum 7/2 by virtue of their spins, and further angular momentum may be present depending
on the electrons orbit around the proton. If we wish to treat the atom as a whole, then we’ll be
concerned with the angular momentum of the combined system rather than that of the electron and
proton individually. An even more familiar example is your bike: the total angular momentum comes
from a combination of the back and front wheels which can be independent (at least in principle,
though I don’t recommend trying this while you’re riding along!).

Our second task in this chapter is to fill in a gap left in our knowledge: While we know how to
use the raising and lowering operators Ji to realign a given amount of angular momentum along or
away from some axis, we’ve not yet learnt how to perform a mathematical operation that changes the
total angular momentum of our state. We’ll understand that, as well as states, operators themselves
can carry angular momentum. Applying such an operator to a state yields a new state whose total
angular momentum can differ from that of the original state. We’ll illustrate this using various
physical examples, including radiative transitions induced by an electric dipole moment, and the
special “dynamical” symmetries present in the Coulomb and harmonic oscillator potentials.

6.1 Combining the Angular Momenta of Two States

Suppose we have two subsystems (“gyros”) enclosed in a box, where the first system has total angular
momentum quantum number j;, and the second has total angular momentum quantum number js.
A basis of states of the first system is

{l71,m1)}  where my € {—ji,—j1 +1,....j1}, (6.2)
while the second system may be described in terms of the basis

{|j2,m2>} where mg € {—j2,—j2+1,...,j2}. (63)

431n quantum mechanics we’re concerned with Hilbert space, but in fact the inner product plays very little role in
this story. The whole of this section carries over more generally to the case of representations of a general Lie group G,
where we decompose the tensor product Rj, ® Rj, of two irreducible representations (vector spaces) R;, and Rj, in
terms of a sum € iR of further irreducible representations. You can learn more by taking the Part II Representation
Theory course next term (and more still in the Part III courses).
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The state of the combined system can be expressed as

J1 J2
W)=Y Y Cmims i1 ma) @ G2, ma) (6.4)

mi=—j1 ma=—j2

with some coefficients ¢p,m,. We can choose m; and mso independently, so there are a total of
(271 + 1)(2j2 + 1) states here — this is the dimension of the tensor product H;, ® H;,. We want
to understand how the states (6.4) behave under rotations; that is, we’d like to understand which
linear combinations in (6.4) correspond to a definite amount of angular momentum for the system as
a whole.

Let’s first consider the corresponding classical situation, where we may wish to know the combined
angular momentum of two gyroscopes. Although the total angular momentum of the individual
components is fixed, that of the whole system is variable because it depends on the relative orientation
of the two gyros: if they are aligned with each other, the whole system might be expected to have
total angular momentum labelled by j; + j2, while if the two subsystems are aligned exactly against
each other, then you may expect the system as a whole to have total angular momentum |j; — ja|. It’s
important to realise that were not saying anything at all about how the individual subsystems may or
may not be coupled to one another dynamically that is, we’re not assuming any form of interaction
between them in the Hamiltonian. Rather, we’re just considering the different relative alignments of
their angular momenta that are possible in principle.

Quantum mechanically, the angular momentum operator for the combined system is
J=(J1®13,,) + (13, ®J2), (6.5)
where J; and J5 are the angular momentum operators for the two subsystems. It follows that
=T @1y,)+ (I, ®33) +2(J1 @ J,), (6.6)

where in the final term we take the scalar product of the two spin operators over their spatial indices.
We will often abuse notation by writing

J=J,+Jy, and J*=J2+J5+23,-J,, (6.7)
with the tensor product and identity operators being understood.

We can rewrite the total angular momentum squared operator (6.6) in a way that allows us to
understand its action on states |ji,m1) |j2, m2) (we've again dropped the symbol ®), which form our
basis of (6.4). Using the fact

Je+Jo
- 2

and J, = Q, (6.8)

Jo
2i

we have

2J1 - Jo = 2(JipJog + J1ydoy + J12doz)

Nt Joy o S =i Jog — Jan
=JitJoo +J1_Jop +2J1. s, . (69)

Using this eliminate J; - Jo from (6.6) allows us to write the total angular momentum operator as
=0+ I+ I o+ S Joy + 201,00, (6.10)
where we now understand how each term acts on any state of the form |j1,m1) [jo2, m2).

Let’s consider the action of this operator on states of the whole system. We'll start by examining
the state |j1,71) |j2,j2) in which both gyros are maximally aligned with the z-axis. Since J, =
Ji, 4+ Jo., we have

S N1, g1) 192, J2) = (v + J2) el gu, ga) |d2, d2) (6.11)
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so indeed this state is an eigenstate of J, with the expected eigenvalue. Also, using (6.9) we have
I j1,30) 2o Go) = (3T + I3 + g Joe + JimJoy + 2J12022) 1, 1) |2 )
= (7101 + 1) + j2(d2 + 1) + 2j152)8% 51, 1) |j2, Jo)
= (j1 +72) (1 + 2 + DI j1, 1) |2, J2) - (6.12)
Thus, by setting j = j1 + j2, we may write
7,3) = ld1, 1) |72, j2) (6.13)

since |41, J1) |je, j2) satisfies both the defining equations for a state of total angular momentum labelled
by j1 + je, with it all aligned along z. (This is a highest weight state for j = j; + ja.)

Now that we’ve found one mutual eigenstate of the combined J* and J,, we may easily construct
others by applying the lowering operator J_ = J;_ + Jo_. Acting on the left using (5.18) we have

—15.3) = VG D) =56 =D g = 1) = hy/2i 5,5 - 1) (6.14)
On the other hand, applying J_ = J;_ + Ja_ to the right-hand side gives

(Jim + Jo) |91, 71) lJ2, J2) = R [\/jl(jl +1) — 511 — 1) g1, 51 — 1) 72, J2)

+v/g2(jz + 1) — ja (G2 — 1) |51, 1) |d2, G2 — 1>}
= /251 g1, 91 — 1) g2, J2) + h/232 |1, J1) |g2, 2 — 1) - (6.15)

Comparing the two sides we learn that

1j,j —1) = \/ g1, g1 — 1) G2y go) + \/ 2 i1y 1) g2s iz — 1) (6.16)

Note that the left-hand side is an eigenstate of .J, with eigenvalue (j — 1)k, and indeed the right-hand
side is an eigenstate of J;, + Jo, with eigenvalue (j; 4+ jo — 1)h. A further application of J_ to the
left-hand side and Ji_ + J>_ to the right-hand side would produce an expression for |j, 7 — 2) and so
on.

Since [J%,J_] = 0, all the states we produced by acting on |j,j) with J_ have total angular
momentum quantum number j = j; + jo. This corresponds to the individual angular momenta of
the subsystems always being aligned with each other, with the different |j,m) telling us about how
closely their mutual direction of alignment coincides with the z-axis.

It’s perfectly possible for the individual subsystems to not line up with each other. In such a
configuration the net total angular momentum of the combined system will be less than the maximum
value ji +j2. Let’s seek an expression for the state |j — 1, j — 1) in which the total angular momentum
of the whole system is just less than the maximum possible, but where this angular momentum still
points along the z-axis. It’s trivial to verify that any simple state |j1,m1) |j2, m2) is an eigenstate of
J, = Ji. + Jo,, with eigenvalue (my + ms). We require my +mo = j — 1 = j; + jo — 1, so either
(m1,ma) = (j1 —1,72) or (m1,ma) = (j1,j2 — 1). Also, the state |j — 1,7 — 1) must be orthogonal to
the state |7, 7 — 1) we found since they are each eigenstates of the Hermitian operator J 2 with distinct
eigenvalues. Therefore we must have

o [j2 o [
j—1,j—1) = 7?|31,31—1>|32,g2>— ;wyl,mmrw. (6.17)

Again, this is a highest weight state, now with j = j; + jo — 1. Given this state, we may now proceed
to construct all the states |j;,m) with —j + 1 < m < j — 1 by applying the lowering operator J_.

In order to construct |j —2,j —2), we note that it must be in the span of {|j1,j1 — 2) |Jje, j2),
1, g1 = 1) 2, d2 = 1), 1j1, J1) 2, j2 — 2)}, and that [j,j —2) and |j —1,j — 2) also lie in the span
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of these states. Having constructed both |j,j7 —2) and |j —1,j — 2), the state |j —2,j — 2) are
determined uniquely by orthogonality.

From our classical considerations, it’s reasonable to conjecture that the smallest possible total
angular momentum quantum number of the whole system is |j; — ja|, coming when the two gyros are
aligned against one another. Let’s check this by working out the total number of states the conjecture
leads to. WLOG, we can assume j; > jo. If the combined system has j values running from j; + 7o
to j1 — jo2, then we count a total of

Ji+J2 J1+J2
Yo@i+n=2( > j|+@a+1)
J=Jj1—J2 J=J1—J2
= (21 +1)(2j2 + 1), (6.18)

in agreement with the dimension of the tensor product space we found earlier using the “obvious”
tensor product basis in (6.4). We’ve thus accounted for all the possible states of the system.

The numbers
Cjm (1, ma; jo, ma2) = (J,m| (|1, m1) ® [j2,ma)) (6.19)

are known as the Clebsch—Gordan coefficients. Physically, they represent the amplitude that, when
the total system is in state |j, m), we will find the subsystems to be in states |ji,m1) and |j2, mo)
when we peer inside the box. For example, we have C52(2,1;1,1) = 1/2/3, so if we know our box
contains a gyro of spin 2 and a gyro of spin 1, if the box is in state |3,2) then there’s a 2/3 chance that
the second gyro has its spin maximally aligned with the z-axis with the first significantly inclined,
but only a 1/3 chance that it is the first gyro that is maximally aligned with the z-axis.

Let’s take a look at a few examples to familiarise ourselves with the above general formalism.

6.1.1 jQ0=j

First, the trivial case: if one of the subsystems (say the second) has jo = 0, then it always lies in
|72, m2) = |0,0). Hence the tensor product is trivial

H=2H;, @Ho=H;, C=H,, (6.20)
because we have no choice about the state of the second subsystem. The states

{|.7a m> = |j17m1> ‘070>} (621)

therefore form a basis of the whole system, and are immediately a single irreducible representation
with j = j;.

1 1_
612 1l=100

The first non-trivial case is when j; = jo = 1/2. Physically this is relevant, e.g. to the case of the
ground state of the hydrogen atom where to understand the spin of the whole atom we must combine
the spins of both the proton and the electron. From above, we have

L Dy =M 1)y (6.22)

where the subscripts refer to hydrogen, the electron and the proton, respectively. In this state, the
spins of the electron and proton are aligned with each other, and they each have maximal possible
spin along the z-axis. Applying J_g = J_o + J_, we obtain

B

|1vO>H = \@

(196 195 + 14 19,) (6.23)
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while applying J_px a second time gives

L, =D = e 4y - (6.24)

Since both the electron and proton are in the |]) state here, any further applications of either lowering
operator will annihilate it, in agreement with the action of the total lowering operator J_g on the
state |1, —1)y; of the whole atom.

Let me point out a perhaps surprising feature of this multiplet. In state (6.23), we are certain
to find that the z-component of the spins of the electron and proton are “antiparallel”. This may
seem surprising given that the atom is still in a spin-1 state, corresponding to the spins of the
subsystems being aligned. The resolution of this paradox is that while the z-components are indeed
antiparallel, the components in the zy-plane are aligned, although their precise direction is unknown
to us. Similarly, in both the |1,1) and |1,—1) states, while the z-components of the electron and
proton spins were aligned, their components in the xy-plane were in fact antiparallel. The poor

alignment in the zy-plane accounts for the fact that <J 2> = /2 for the atom, which is less than
the sum of m = /3/4h for the electron and proton individually.
The remaining state of the atom is |0,0), in which the atom has no angular momentum. This
should be orthogonal to (6.23), so we find
1
V2

The change in sign ensures that the electron and proton spins are antiparallel in the zy-plane as well
as in the z direction. In fact, one can check that this state may also be written as

10,00 = == (INe 1, = e 1)) - (6.25)

1
V2

where |1,) and [{,) are eigenstates for J,. Similarly,

10.0) 5 = = (ITa)e by = Wade 112),,) (6.26)

S

|1v0>H = \/5

(e 1)y = Wb )y ) (6.27)

as one can check straightforwardly.

Altogether, combining two states each with angular momentum 1/2, we’ve found a triplet of states
with total angular momentum j = 1:

1
V2

and a singlet with total angular momentum j = 0:

L =M, [L0O)=—(NL+NIN), [L-1)=1N), (6.28)

1
NG

Nota that each state in the triplet is symmetric under exchange of the angular momenta of the two
subsystem, while the singlet state is antisymmetric under this exchange.

10,0) = —= (N 1) = 1) 1) - (6.29)

613 19:=3®;:

If our subsystems have j; = 1 and jo = %, then the total system can have j = % orj = % Let’s start
as always with the highest state

33
2’2

) =L (6.30)
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Applying the lowering operator, we find successively the states

35)- Jamom+ /T (6:1)

‘;1> \fu 1M+ \[Iloli (6.32)
-3y =l (6.3

which completes the j = % quartet. The remaining j = % doublet is

‘; ;> \[H 0) 1) — \/§I171>|¢> (6.34)
’ > \/>|1 i - \/>|10|¢ (6.35)

6.1.4 The Classical Limit

We should expect to recover a classical picture when we combine two systems each with a large amount
of angular momentum. Let’s see how this occurs. Classically, if we add two angular momentum vectors
J1 and j, then the resultant vector has magnitude

3= (1 +32)? =31 +35 + 201 - Ja - (6.36)

If we know nothing about the relative orientations of j; and j,, then all points on a sphere of radius
ljo| centred on the end of j; are equally likely. Consequently, the probability d P that j; and j, have
alignment in the range 6 + df is proportional to the area of a band with polar angle between 6 and
6 + df on the unit sphere. The magnitudes of j, and j, are fixed, so dj* = 2|j;||j|d cos#. Hence
the probability of this alignment is

2rsinfdd || d |j]

dP =
am 2‘J1| |J2‘

(6.37)

and hence

dpP lj
- ==L (6.38)
d|J| 2|.]1| ‘.]2|

In the quantum case, suppose ji, j2 > 1. Then the fraction of states in the combined system with
some amount j of angular momentum is
25 +1 ]
(271 +1)(2j2+1)  2j1j2

(6.39)

provided |j1 — j2| < j < j1 +J2. Thus, if we know nothing about the original state of the subsystems,
the probability that the combined system has total angular momentum j agrees with the classical
probability computed above.

6.2 Angular Momentum of Operators

Suppose that V is a vector operator, so that in particular U~} (a)VU () = R(a)V under rotations,
or

[Ji, V] lhz €k Vi (6.40)
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infinitesimally. We define the spherical components of V by

1 1
—E(Vz +iVy), Vi=—=(V,—-iV,), V'=V,. (6.41)

V2
Then the commutation relations are equivalent to
[Ji, V™ = mhV™, (6.42)

[Jx, V™ = hy/2 — m(m + 1)V™EL, (6.43)

Vi =

6.2.1 The Wigner—Eckart Theorem and Transition Dipole Moment

Wigner—Eckart Theorem states that given a tensor operator T®) and two states of angular momenta

4 and j’, there exists a constant <jHT(k)’

Vi > known as the reduced matriz element such that for all

m, m’ and ¢, we have
-/ /
(o

where Tq(k) is the ¢** component of the spherical tensor operator T® of rank k.

T jm) = o (b 053,m) (| T

j'> , (6.44)

We are not proving it, but we are doing a motivating example.

Let’s say we want to calculate transition dipole moments for an electron transition from a 4d to a 2p
orbital of a hydrogen atom, i.e. the matrix elements of the form (2p, mq|r;|4d, ms), where r; is either
the z, y, or z component of the position operator, and my, mo are the magnetic quantum numbers
that distinguish different orbitals within the 2p or 4d subshell. If we do this directly, it involves
calculating 45 different integrals: there are 3 possibilities for mi: my € {—1,0, 1}, 5 possibilities for
mao: mg € {—2,—1,0,1,2}, and 3 possibilities for i.

The Wigner-Eckart theorem allows one to obtain the same information after evaluating just one
of those 45 integrals (any of them can be used, as long as it is nonzero). Then the other 44 integrals
can be inferred from that first one — without the need to write down any wavefunctions or evaluate
any integrals — with the help of Clebsch—Gordan coefficients, which can be easily looked up in a
table or computed by hand or computer.

The Wigner—Eckart theorem works because all 45 of these different calculations are related to each
other by rotations. If an electron is in one of the 2p orbitals, rotating the system will generally move
it into a different 2p orbital (usually it will wind up in a quantum superposition of all three basis
states, m = 41,0, —1). Similarly, if an electron is in one of the 4d orbitals, rotating the system will
move it into a different 4d orbital. Finally, an analogous statement is true for the position operator:
when the system is rotated, the three different components of the position operator are effectively
interchanged or mixed.

If we start by knowing just one of the 45 values (say, we know (2p, mq|r;|4d, me) = K) and then
we rotate the system, we can infer that K is also the matrix element between the rotated version of
(2p, m1|, the rotated version of r;, and the rotated version of |4d, ms). This gives an algebraic relation
involving K and some or all of the 44 unknown matrix elements. Different rotations of the system
lead to different algebraic relations, and it turns out that there is enough information to figure out
all of the matrix elements in this way.

6.2.2 The Runge—Lenz Vector in Hydrogen

For a spinless particle of mass M in a generic central potential, the Hamiltonian takes the form
P2

H = S+ V(X]). (6.45)
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By definition, any such Hamiltonian is rotationally invariant, so it follows that
[L,H]=0 and [L? H]=0. (6.46)

Since we also have [L;, L?] = 0 we can find a complete set of simultaneous eigenstates of H, L? and
L., so we can label our states as |n,¢,m). The Hamiltonian does not involve L., except through
L2, so the energy level E, ¢.m of such a state must certainly be independent of m. However, the
Hamiltonian does involve L? through the kinetic operator, so we do not generically expect the energy
levels to be independent of £. Physically, if we give our particle more or less angular momentum, it
will whizz round faster or slower. Typically, we’d expect this to change the energy.

Nonetheless, it occasionally happens that a Hamiltonian is invariant under transformations beyond
those inherited from the transformations of the space R? in which the quantum system lives. If the
algebra of the corresponding generators closes, meaning that the commutator of any pair of generators
is equal to another generator (perhaps including the Hamiltonian), then we say we have a dynamical
symmetry. In such cases, it may be possible to change the total angular momentum of a state without
changing its energy, so that states of different orbital angular momentum quantum number ¢ can be
degenerate.

Hamiltonians with dynamical symmetry are very rare: for single particle quantum systems moving
on R? with a central potential, the only cases are the harmonic oscillator and motion in a Coulomb
potential. However, these two cases are so important that it’s worth considering them from this point
of view.

The first case we’ll study is for the Coulomb potential, relevant e.g. to the hydrogen atom.
Classically, conservation of angular momentum in any central potential implies that the motion is
conned to a plane, but the Kepler problem has a further conserved quantity known as the Runge—Lenz

vector r, given by
X

1
2

r=—-e"—+—pXL. 6.47
) TP (6.47)
Conservation of this vector implies that classical bound states have closed orbits; the motion is not
just in a plane, but follows a fixed ellipse. (The observation of a gradual shift in Mercury’s orbit — the
precession of its perihelion — was one of the early confirmations of General Relativity’s modifications

to Newton’s Laws of Gravity.)

Now let’s consider the quantum mechanical case. We construct the Runge-Lenz operator

e? 1
R=—-—X+—PXL-LxP
x| + 2M( X x P)
e? 1 ih
=———X+—PxL-—P. 6.48
x| M (6.48)

Classically, the two terms in brackets on the first line of (6.48) are equal; we’ve written it in this way
to ensure that R = R.

Since R is a vector operator built from X and P, it follows that its commutation relations with
L are

[Li, Rj] = iﬁz il (6.49)
2
so that it transforms as a vector under rotations. Therefore, the Wigner—Eckart theorem says that

(0,0, m!|RY|n, €,m) = Cp (1, ks £,m) (0| R||n) . (6.50)

Furthermore, a somewhat tedious calculation shows that [H,R] = 0 so the Runge—Lenz vector is
conserved. Thus the reduced matrix element (n'||R||n) vanishes unless n’ = n.
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The orbital angular momentum L = X X P is orthogonal to each of the three terms in the
expression of the Runge-Lenz vector (6.48), so R-L =L-R = 0. We also have

L’=XxP)-L=X.(PxL)
3
=P xXL)-X+ > enlXi, PLy]

i,j,k=1
= (P xL)- X+ 2P - X (6.51)
as well as
P-(PxL)=0, (PxL)-P=2iP? (P xL)?=PL?, (6.52)

where we’ve been careful to keep track of operator orders. Using these results, we find that the
length-squared of the Runge-Lenz operator is given by

2H
R? = Z%* + =~ (L* + 1?). (6.53)
1
The point of this expression is that it relates R to H; since we know the spectrum of L2, we can find

the eigenvalues of H if we can find the eigenvalues of R. A rather longwinded calculation shows that
the components of the Runge-Lenz operator obey the commutation relations

2ih
[Ri, R;] = _7HzeijkLk7 (6.54)
H E
where we note that H commutes with L.
We now introduce the operators
Av=t(L+ /L R (6.55)
=72 —2H '

built from the orbital angular momentum operator, the Runge-Lenz operator and the Hamiltonian,
where we recall that functions (such as the square root) of an operator are defined as in (2.43). The
point of introducing these strange-looking combinations is that commutation relations (6.49) and
(6.54) show that the Ay obey the algebra

[Asi, Asj] =ik ejrAsr and [Ap, Ag] =0, (6.56)
K

which we recognise** as two independent copies of the angular momentum so(3). In particular,
just as for the total angular momentum, the eigenvalues of Ai take the form a4 (as + 1)h? where
ay €{0,1/2,1,3/2}, with the eigenvalues of any component of Ay running from —hay to +hay in
integer steps of A.

Since [Ai,H] = 0 we can find simultaneous eigenstates of H, AQi and, say, Ay, and A_,.
However, taking the square of (6.55) and using the fact L-R=R-L =0,

1 Z2e* h2
A2 _ A2 _ 2 (72 P R2) = _ H
o —_4(L tom ) SH 4 (6.57)

In particular, we cannot choose these eigenvalues of Af_ and A? independently, but must have
a4 = a_. Calling the common eigenvalue a, an simultaneous eigenstate of H and Ai obeys

Z%etu 1 , R
3% —<a(a+1)+4>h =—

T (2a+ 1) (6.58)

44For bound states of the Coulomb potential, the spectrum of H is negative-definite, so the operators A are indeed
Hermitian when acting on such states. At energies above the ionisation threshold, the square root in (6.55) means that
A+ can no longer be treated as Hermitian, and this algebra is then better described as sl(2).
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For a any non-negative half integer, 2a + 1 € {1,2,3,... }, so the energy levels can be written as

Z2e*p

These are the energy levels of hydrogenic atoms that you obtained in IB QM. The eigenvalues of
A, and A_, can be chosen independently, and each run from —ah to ah in steps of A. Thus the
degeneracy of the state with energy E, is (2a + 1)? = n?. Again, this is bigger than the degeneracy
of a generic central potential, and the degenerate states transform in representations of the enhanced
50(3) X s0(3) symmetry algebra. The diagonal part of this, generated by L = A, + A_ corresponds
to spatial rotations.

Incidentally, it’s useful to note that the energy levels of a hydrogenic atom can be written as

Z?a?
E,=- 52 MC s (6.60)
where the dimensionless number )
e
= 6.61
4meghe ( )

is known as the fine structure constant. Experimentally, a & 1/137. The significance of this is that,
at least for small atomic number Z, |En / mc2} < 1 providing an a posteriori justification of our use
of non-relativistic quantum mechanics to study the hydrogen atom.

6.2.3 Enhanced Symmetry of the 3D Isotropic Harmonic Oscillator

As a second example, consider an isotropic 3D harmonic oscillator, with Hamiltonian

P2 1 2~ 2

The fact that H is quadratic in X as well as in P means it has an enhanced symmetry beyond the
obvious SO(3) rotational invariance. We can see this from the form

H = hw (Z AT A, + 2) (6.63)

in terms of the raising and lowering operators. Written this way, H is clearly invariant under the
transformations

3
j=1
3
Al = (ADT =" Al (uh) (6.65)
k=1

for any 3 x 3 unitary matrix u. These matrices must be unitary if the new A" is indeed to be the
Hermitian conjugate of the new A’. It is important to realise that, although they are unitary, the
matrices u;; do not act on the Hilbert space of the harmonic oscillator, but just on the spatial indices
of the vector operators A and AT, They thus mix X and P together®®. Note also that the new raising
and lowering operators obey the same commutation relations as the original ones.

A 3 x 3 unitary matrix has 9 independent real components, whereas a rotation in three dimensions
is completely specified by only 3 independent Euler angles, so the U(3) symmetry of this Hamiltonian

45For those taking Integrable Systems: classically these are symmetries of phase space that do not come from
symmetries of space itself, and reflect the fact that the harmonic oscillator is (super-)integrable.
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is much bigger than the SO(3) rotational invariance of a generic central potential. The fact that the
Hamiltonian is invariant under the U(3) transformations (6.64) implies that there should be a total
of nine conserved quantities corresponding to the nine generators of this symmetry. It’s easy to check
that these generators form the tensor operator T with components T;; = AIAj. We have [H,T| =0
and hence each component T;; is conserved. To understand these operators, we decompose T into its
irreducible parts, obtaining

5;  AlA;—ATA; TATA; + ATA;

S
T;; = At A _ At A%
I 3 " 2 + 2 3

(6.66)

The trace AT+ A is (up to a constant) just the Hamiltonian itself, which is certainly conserved.
Recalling the definition of the raising and lowering operators, the anti-symmetric part can be combined
into a vector with components

1 . .
Z qjkA;(»Ak = m Z Gijk(MWXj - IPj)(MUJXk + lPk)
J.k 7.k
i i
=5 > €ije(X; Py — PXy) = +Li, (6.67)
3.k
where in the last equality we used the fact e;;5(X; Py — PjX;) = 2€;;5 X3Py, with the e symbol
ensuring that the components of X and P commute. Thus

L=—in(AT x A), (6.68)

so that the vector part of T is nothing but the usual orbital angular momentum operator for the 3d
oscillator. It is no surprise that this is conserved.

The remaining five conserved quantities — the symmetric, traceless part (Tj; +Tj;)/2 — >, Tii/3
of T — generate transformations that mix X and P, appropriately rescaled. They’re less familiar,
as they’re special to the simple harmonic oscillator. The five components of this traceless symmetric
part correspond to the spin-2 part of the operator T. We can see this degeneracy by examining
the excited states of the oscillator. Just as in 1d, these may be obtained by acting on |0) with any
component of the raising operators A'. Since the ground state has energy 3hw /2 and each application
of a raising operator increases the energy by one unit, each of the states

T gt
Al L. AT Al o) (6.69)

has the same energy (N + 3/2)hw, where we can choose any {i1,42,...,in} € {1,2,3}. We often call
(correctly normalised) such state |ng,n,,n.), where n, is the total number of times we’ve applied
the xz-component of AT, and similarly for n, and n.. Of course, N = ng, +ny + n..

Since the components of the raising operators all commute with one another, we can consider
the indices iy,...,iy in (6.69) to be symmetrized. Consequently, the degeneracy of the N'! energy
level is the same as the number of independent components of a rank N tensor in 3 dimensions,
which is (N + 1)(N + 2)/2 (Think “stars & bars”, or the number of ways to partition N into three
non-negative integers (ng, ny,n.).) This is the larger degeneracy that we promised. It’s easy to derive
this degeneracy in number of ways; our derivation here makes clear that the degenerate energy states
transform in representations of the larger su(3) algebra.

6.3 The Radial Hamiltonian for the Coulomb Potential

For some purposes, it’s useful to study hydrogen from a point of view that emphasises the fact that
the potential is central, so energy eigenstates may also be chosen to have definite angular momentum.
In the first problem set you showed that the kinetic part of the Hamiltonian could be written as

1 L2
T = oM (Pf + R2) , (6.70)
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where R? = X-X and P, = %(X-P—FP-X) is the radial momentum. Thus, when acting on an orbital
angular momentum eigenstate |¢, m), the Hamiltonian of a hydrogenic atom with atomic number Z
reduces to

P2 U0+ 1)R? Ze?
2 211 R2 dmegR
As in TA Dynamics and Relativity, this is just what we’d find for a particle moving in one dimension
under the influence of the effective potential

H,

(6.71)

e+ 1)K Ze?

Verr(1) = 2uR?  4dmegR’

(6.72)

H; governs the oscillation of the particle around the minima of this potential. Note that since Hy
depends only on the radius R and radial momentum P,., in position space its eigenstates will determine
the radial dependence Rg(r) = (r|E(¢)) of the full wavefunction. A basis of eigenstates |E, £, m) of
the full Hamiltonian can be chosen to be (tensor) products of the eigenstates |E(¢)) of Hy and the
eigenstates |¢,m) of L? and L., whose position space wavefunction Y;" (0, ¢) = (£|¢, m) is a spherical
harmonic.

All three terms in H, must have the same dimensions, and in particular the ratio of the two terms
in Vg must be dimensionless. Thus

K2 dreo R dmegh? 1

= — 6.73
wR? X T e “R (6.73)
is dimensionless. It follows that the Bohr radius
4megh?
ag = e (6.74)
is a characteristic length scale of the hydrogen atom. We have
R? (P2 U(l+1) 2Z
H = — (= B —— 6.75
£ o <h2 R? a0R> (6.75)
in terms of ag.
Let’s define a new operator Ay by
ao i l +1 Z )
Ag=—4 | =P — + 6.76
TR (h R (t+1)ao (6.76)
Then one finds
2 (+1 Z i l+1 Z
Ala,=%(_1p _ Ip -
=57y R 0+ Daw) \& R U+ D
2 2 2
ag | P Z l+1 A+1 1
=—| = — — | P= ] - 6.77
2 <h2+<(€+1)a0 ) T a I (6.77)
By the commutator identity [A, B~1] = —B71[A, B|B~! and [P,, R] = —ih, this gives
2 /P2 zZ? (e+1)2 2Z il+1 1
AjA, =2 - == - [P, R+
AE \m T ure T R awR h R P Bl
7(17(2) iﬁ+ Z? +€(€+1)7£
2 \ R (0+1)2a3 R? aoR
2 2
ag i Z
=—H+ ——. 6.78
ERERTEE (6.78)
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Had we instead evaluated AgAz the only difference would have been the sign in front of the
commutator, so we would instead find

a2 Z?
ApAl = D Hep +

5 STT? (6.79)

which now involves the Hamiltonian appropriate for states whose orbital angular momentum is given
by £+ 1. Rearranging (6.78) allows us to write the radial Hamiltonian as

H_ﬁ ATA_Zi2 (6.80)
CT a2 \ U T 201 1)2 '

while taking the difference of (6.78) and (6.79) gives the commutation relations

2
Q,
[Ae, AH = h%“(HeH — Hy). (6.81)

The final result we need is the commutation relation
K2 + K2 n
(A, HY = [AZ,AKAZ} = [AbAg} Ap = (Hyor — Ho) Ay (6.82)
Hag Hag

Cancelling the Hy Ay term on both sides, this simplifies to
AeHy = Hp1Ae, (6.83)
and we also have A;[H 1 =H zAZ by taking the Hermitian conjugate.

Now let’s understand these operators. Let |E,¢) be an eigenstate of H, and L? with Hy |E, () =
E|E, ) and L? |E, ¢) = £(¢ +1)i?|E, {). Then

Hes1(Ar B, 0)) = AgH, B, () = E(Aq |E, ) (6.84)

so that Ay |E,£) is an eigenstate of Hyyq with the same energy E. Thus acting on |E,£), Ay creates
a new state with the same energy, but where the effective potential corresponds to the angular
momentum quantum number ¢+ 1. Acting on the new state Ay |E, ¢) with A,y again creates a new
state with the same energy, but even more orbital angular momentum labelled by ¢ + 2, and so on.
We already know that our energy levels are not infinitely degenerate, so this process must eventually
terminate. That is, just as in the harmonic oscillator, there must be a maximum value £y, such that

AZmax |E7€max> =0 (685)

and again, by analogy with the classical case where a circular orbit has the highest possible angular
momentum for fixed energy, we can view this state as the quantum analogue of a circular orbit.
Taking the norm and using equation (6.78) we have

i agp z’
0= Aty |, b} = (AL At ) B binax = B4 50— (686)
or equivalently
Z?h* 1
2pag n

where n = £,,x+1 labels the energy level. This agrees with the spectrum of the Hamiltonian computed
earlier using the Runge-Lenz vector, or in IB QM. The virtue of the Runge-Lenz derivation is that
it makes transparent the role if the additional, dynamical symmetry of hydrogen, explaining why the
energy levels fall into multiplets of s0(3) X s0(3). The virtue of the present derivation is that it makes
transparent how the degeneracy arises because, aside from simply rotating our system, we can trade
radial kinetic energy and Coulomb potential for different orbital kinetic energy whilst keeping the
total energy constant.
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6.4 Angular Momentum of the Isotropic Oscillator

Same as for the hydrogen atom, we can write the Hamiltonian of the 3d isotropic harmonic oscillator
acting on an angular momentum eigenstate |¢,m) as
P2+ 1R 1

+ —pw’R?. (6.88)

Hy—-r 4T 7"
£ 21R2 2

We can find the spectrum of H, using raising and lowering operators in a similar fashion to our
treatment of the full H. We introduce

1 . £+ 1)k
Ap= — |iP — —— R 6.89
‘= Ve (1 R ) (6.89)
and a short computation using [R, P,] shows that
n 3
Hy = hw AZAg + [+ By . (690)

We have the commutation relations

(g—f— l)h . Hyyy — Hy

=1 = 1 91
[Afa Al] + ,LLWRZ fiow + (6 9 )
and
[Ag, Hy] = hwl[Ay, AL Ag) = hw[Ay, AJAg = (Hpyy — Hy + hw) Ay, (6.92)
or equivalently
Hyi1 Ay — AgHy = —hwA, . (6.93)

This is very close to showing that A, is a lowering operator, but the presence of Hy41 means that
the algebra does not close unless we consider all values of £. To understand the implications of this,
let |E(¢)) be an eigenstate of Hy, with H,;|E(¢)) = E|E({)) where we emphasise that the energies
depend on the total orbital angular momentum quantum number ¢. Then

Heg1 (A |E(0)) = (B — hw) A |E(0) (6.94)

which implies that Ay |E(¢)) is an eigenstates of Hy11 with eigenvalue E — hw. The Hamiltonian Hyyq
is the one appropriate for the radial part of wavefunctions with total angular momentum labelled by
£+ 1, so applying Ay to |E(£)) has created a state with lower energy, but with a radial wavefunction
corresponding to a state of greater orbital angular momentum.

By a now familiar argument, in any H, eigenstate we have

Z 3= <E<z> oy §]E<f>> = (BO]AlA|E©) = |4 BO)E 0. (695)

Thus, for a given energy F the maximum angular momentum a state can have is

E 3
lpax = — — = . 6.96
= 3 (6.96)
As lax 18 & non-negative integer (since it is a possible value for £ at given E) we see that, the ground
state energy is 3hw/2, which occurs when £, = 0, meaning that this ground state is necessarily
spherically symmetric.

For any given energy, the state |E({max)) which saturates the bound (6.95) obeys Ay, |E(lmax)) =
0 and has the maximum possible total angular momentum out of all the states with this energy. It
is thus the quantum equivalent of a circular orbit. In the position representation we have

1 0 1 lhpax+1  mwr
0= (rf A, |E(fm)) = ( bt 1

Ne 7 ) (1| E (fmax)) (6.97)

or r r
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where we use |r) to denote a state that is definitely located at radius r. This equation is solved by
(1| E(Cmax)) = Crfmese ™" /475 (6.98)

where 19 = \/h/2uw and C is a constant. Note that the exponential here is just the product of
the exponentials we’d expect for Cartesian oscillators. This wavefunction varies with r, so quantum
mechanically even a ‘circular’ orbit has some radial kinetic energy. In the limit of large £, in which
classical mechanics applies, the radial kinetic energy is negligible compared to the tangential kinetic
energy. The full wavefunction is (r| (|E(fmax)) ® [€max, m)) and so involves the spherical harmonics
Y™ (0,¢). Bearing in mind that d®x = r*sin @ d¢ df dr, the radial probability P(r) for this state is
P(r) ~ p2lmax+20=7°/278  For 7/70 < V2lmax + 2 this rises as r2max+2 and it falls as the Gaussian
takes over when r/rg > /20.x + 2. The root-mean-square deviation in the radial location is ~ 7,
which is a small fraction of the expected radial location (R) when ¢y, is large, as expected classically.

We can obtain the radial wavefunctions of more eccentric orbits using Az. Taking the adjoint of
(6.93) we obtain
Ho Al — ATHy ) = hwAj . (6.99)

Acting this on |E(£+ 1)) gets
Hy(AY|E(041))) = (E + hw)(A} |E( + 1)) (6.100)

so that AZ |[E(¢+1)) is a state of increased energy, whose radial wavefunction is appropriate

for angular momentum ¢. Thus AZ |[E({+1)) = c|E(¢) 4+ hw) for some constant c¢. The radial
wavefunctions of the eccentric orbits follow by writing this equation in the position representation.*6

461f we introduce a radial quantum number n, and label our state by |n,, £, m) = |n,,£) ® [¢,m), then the effect of
Az is to shift from |n,,£+ 1) to |n, 4+ 1,£). The energy of the oscillator is EE = hw(N + %), where the total quantum
number N = 2n, + ¢. Therefore by acting AT, we increase the energy by hw as stated above.

In fact, knowing this allows us to determine the degeneracy of the 3d isotropic oscillator in a different way. For the
Nth excited state, the allowed ¢ values are £ = N — 2n, = 0,2,..., N if N is even and 1,3,..., N if N is odd. Each ¢
value is 2¢ 4+ 1 degenerate. Hence the total degeneracy is

N
N+ 1)(N+2
gN = Z (20+1) = M , (6.101)
£=0 2
(=N (mod 2)

which matches with the degeneracy we calculated previously.
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7 Identical Particles

One of the most striking facts that helps us understand the Universe is that, apart from details
of their motion, all electrons are identical. This fact, though convenient, has no explanation within
Quantum Mechanics. In Quantum Field Theory, one learns that particles are simply quantised modes
of excitation of a field. We thus replace the vast number of electrons our Universe contains with a
single quantum field that has hugely many excitations. From this perspective, the fact that all
elementary particles of the same species are identical is more or less a tautology, no more surprising
than the fact that one factor of x in the monomial x™ is just the same as another.

7.1 Bosons and Fermions

Consider a system consisting of N particles, individually described by some state in a Hilbert space
Ho where a = 1,..., N, and suppose |a,) € H, gives a complete specification of the state of the a'h
particle, so «, collectively labels all the quantum numbers describing the particle’s energy, orbital
angular momentum, spin etc. In the case that the particles are distinguishable — meaning they are
each from different species, such as an electron, a proton or a neutron — a complete set of states of
the full system is then labelled by linear combinations of states

N
\oq;ozg;...;ozN>:|o¢1>\a2>...\a1\/>6®7—[a. (7.1)
a=1

However, suppose particles 1 and 2 are indistinguishable; for example, they might both be electrons.
The state (7.1) thus describes a situation where there is one electron with quantum numbers given
by a7 and another whose same properties are labelled by «s. Since both electrons are identical, it
can make no difference which is which. Consequently, there can be no physical difference between
this state and the state in which these two particles are exchanged. This does not imply that the two
states are identical, but does imply that they can only differ by a phase:

lags a;...) = € |ag; o) | (7.2)

where ¢ is independent?” of the particular values of the labels a,, but may depend on the species of
particle we exchange.

If we exchange the pair of particles once again we find
lag;ag;...) = e lag;aq;.. ) = e*?|ag; ag;. . ) (7.3)

using the fact that the phase is independent of the particular values of the quantum numbers a,.
Thus e?® =1, so .
el? = +1. (7.4)

The choice of sign depends only on the species of the particle. Identical particles which are symmetric
under exchange are called bosons, while those that are antisymmetric are said to be fermions.

If all N of the particles in our system are identical, then the argument immediately extends to
say that the state must be either completely symmetric or completely antisymmetric under exchange
of any pair, which case being determined by whether the particles are bosons or fermions. That is,
for bosons the state of the system is actually described by a vector

N
|a1;a2;...;aN>€SymNHC®’H, (7.5)

47There’s a (non-examinable) exception to this in the case of two spatial dimensions, where the phase may depend on
the homotopy class of the path the particles take whilst they are being exchanged. In 2+ 1 dimensions, these paths can
become braided (tangled) and the multi-particle state transforms in a representation of the braid group, first studied in
the maths literature by Emil Artin. This leads to the possibility of anyonic statistics, which play an important role in
some condensed matter systems. Fortunately, we’re interested in quantum mechanics on R3 and in higher dimensions
it turns out the paths can always be disentangled, so anyons do not arise.
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whereas for fermions the state lies in the antisymmetric part

N N
\al;ag;...;aN>E/\’HC®H. (7.6)

As a simple example, a pair of identical fermions with quantum numbers «; and as live in the
antisymmetric state

I —— % (la) |as) — las) |aa)) , (7.7)

whereas the system would have to be described by the symmetric combination

e = % (I} Jaz) + laez) ) - (7.8)

A further fact that also comes from quantum field theory is that particles with integer spin
are always bosons, whilst particles with (odd) half integer spin are always fermions. Among the
elementary particles, examples of bosons thus include the W and Z bosons and the photon, while
examples of fermions include electrons, neutrinos and quarks. You’ll learn about how this connection
between spin and statistics arises if you take the Part III QFT course.

The above considerations apply to composite particles as well as to elementary ones. When we
exchange a pair of identical composite particles, we exchange all of their constituents. Thus, if the
composites are made up from an odd number of fermions and any number of bosons, upon exchange
we’ll acquire an odd number of minus signs, so the whole state must be antisymmetric. For example,
a proton consists of three (valence) quarks and many gluons, so is a fermion. So too is a neutron.
On the other hand, composites consisting of an even number of fermions and any number of bosons
must be symmetric under exchange with identical composite. For example, a hydrogen atom consists
of a proton and an electron, each of which are fermions, so the composite hydrogen atom is itself a
boson.

The behaviour is consistent with addition of angular momentum. When we add the angular
momenta of an odd number of particles each with odd half-integer spin, the total angular momentum
is also an odd half-integer, whereas when we combine the angular momenta of an even number of
particles each with odd half-integer spin, the total angular momentum is an integer. Even without
quantum field theory, it would be impossible for all integer spin particles to be fermions, because a
composite consisting of an even number of such integer spin particles would also have integer spin,
but would be a boson.

7.1.1 Pauli’s Exclusion Principle

The fact that the state of identical fermions must be totally antisymmetric has an immediate, striking
consequence: no two fermions can be put in exactly the same state simultaneously. This fact is known
as Pauli’s exclusion principle. As an example, since we must always have ¥, o (X, X') = =0, o (x/, %),
if both fermions happen to have the same S, eigenvalue, we find 9, »(x,x’) = =1, »(x/,x). Hence
the spatial wavefunction of the system necessarily vanishes at x = x’, so there is zero probability that
the two particles are located at the same place.

More generally, the state |¥) of N identical fermions is represented in terms of the determinant

Yi(ar)  Yi(az) o Yi(an)
1 |Y2(a1)  a(a2) - Ya(an)

(a1,09,...,an|¥) = —

V/N! : : - :
Yn(ar) Yn(az) -+ Pn(an)

that in this context are known as the Slater determinants. Again, |aq, aa, ..., an) represents a state
in which some fermion has quantum number «;, another has as and so on, where the labels «; denote

(7.9)
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a complete set of quantum numbers for single particle states, including, say, their momentum, spin-z
value etc., while 91 (a1) = {aq]1)1) is the amplitude for the “first” fermion to have quantum numbers
oay. If a; = a; for any ¢ # j, then the two columns of this determinant coincide. The amplitude
(..., ...,q;,...|¥) thus vanishes identically, so there is zero probability for any two fermions being
found in an identical state.

It’s worth stressing that we’ve learned only that the state of a pair of identical fermions must be
antisymmetric under exchange of every one of their quantum numbers. The Hilbert space of a single
such spin-s fermion is itself a tensor product Hfermion = Hspat ®C2+1 | including a factor that describes
the fermion’s spatial wavefunction (encoding details of its likely positions, orbital angular momentum
etc.) and a separate factor Hpin = C**T! spanned by the possible spin states {|s),|s —1),...,|—s)}
of this spin-s particle. We must exchange both the spin and spatial parts of the state in order to find
a physically equivalent state.

In the example of our electron pair, ¥, . (x,x’) is certainly equivalent to ¢, ,(x’,x), since
both corresponds to the electron at x having spin ¢ while the electron found at x’ having spin
o’. However, antisymmetry of the total state does not imply any relation between states ¥, o (x,X’)
and ¥, »(x,x’): these are distinct physical possibilities because the electron at x has different spins
in the two cases. We saw that the spin wavefunctions of the two electrons could be combined into a
triplet of spin-1 states

1
V2

which are symmetric, and a single antisymmetric state

LD =M, L0)=—7DH+LIN), L-1)=LH (7.10)

L
V2

of spin-0. Because the overall state of the electron pair must be antisymmetric, the spatial
wavefunction must be antisymmetric if the electron pair is in any of the spin-1 states, while the
spatial wavefunction must be symmetric if the electron pair is in the spin-0 state. Thus, for a given
spatial wavefunction 1 (x,x’) the pair has four possible states

10,0) = —= (I 1) = 1) 1) (7.11)

11,1)
1 , , 1 / /
E(QZJ(X,X) 71[1(X,X))® :170_>1> and E(Q/}(X,X)+1[}(X,X))®|O,O> ) (712)

which span a basis of the two-electron Hilbert space.

In general, as always, an electron pair can be in a superposition of the four states in (7.12), with
different spatial wavefunctions in each term of the superposition. Similarly, an N-fermion system may
be in state |¥) that is a superposition of different states |1, ag,. .., an), with different distinct values
of the a;’s, where each of the amplitudes (a1, as, ..., a,|¥) are given in terms of the single-particle
states by Slater determinants.

7.2 The Periodic Table

One of the outstanding successes of the early years of quantum mechanics was an understanding of
the structure of the Periodic Table of the Elements. The exact dynamics of a heavy atom, with large
atomic number Z, is very complicated because each electron not only feels an attractive Coulomb
potential —Ze? /r from the Z protons in the nucleus, but also a repulsive electromagnetic interaction
from all the other electrons. However, it turns out that a reasonable approximation known as the
Hartree approzimation is to imagine that each electron moves in a (roughly) central potential V'(r)
created by the net effect of the protons and the other electrons, while neglecting the fact that the
response of any given electron to this potential will itself modify the potential. Near the nucleus,
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V(r) ~ —Ze?/r as the electron feels the full strength of the attraction of the protons, while at large
distances V/(r) &~ —e?/r since the protons’ charge is shielded by the (Z — 1) other electrons.

As for any central potential, [L?, H] = 0 and [L, H] = 0 so we can label the single-clectron states
by their values of ¢ and m, together with another integer n labelling the energy levels. However,
because V(r) is not precisely 1/r, unlike the pure Coulomb potential, states with different ¢ do not
have identical energy. Because V(1) ~ 1/r near the nucleus, the single electron wavefunctions behave
as r¢ for small r, just as in hydrogen. This means that states with high values of £ are less likely to
be found at small r where the potential is deepest, and so typically have slightly larger energy than
those of lower ¢, compared to the pure Coulomb case. Numerical calculations show that the states of
roughly equal energy are

1s,

2s, 2p,

3s, 3p,

4s, 3d, d4p,

bs, 4d, bp,

6s, 4f, 5d, Op,
7s, 5f, Tp,

with energy increasing as one proceeds down the list. Here, the number corresponds to the label n,
while s, p,d,f, ... stand for sharp, principal, diffuse, faint and simply corresponds to £ =0,1,2,3,....
This historic notation is standard in atomic spectroscopy, which is still of great importance in the
pharmaceutical industry.

Since electrons have spin—% they are fermions. Pauli’s exclusion principle prevents the electrons
in a heavy atom from all burying down into the lowest energy 1s state, and forces them to gradually
fill up the higher energy levels. There are 2(2¢ + 1) distinct states with orbital angular momentum
¢, with the extra factor of 2 coming from the two possible spin states of the electron. Thus, the
number of possible states in each line of the above table is 2, 24+6=8,2+6 =28, 24 10+ 6 = 18,
24+10+6 =18 and 2+ 14 + 10 + 6 = 32, etc.

The first two elements, hydrogen and helium, have electrons just in the ground state 1s. The
8 elements from lithium to neon have electrons in the n = 1 and n = 2 states, while the next 8
elements from sodium to argon have electrons in states with n = 1,2,3. The first excited states of
hydrogen and helium are obtained by promoting (one of) their 1s electrons up to the 2s state, and lie
10.2 eV and 19.8 eV above the corresponding ground states. These energy differences correspond to
the frequency of UV radiation, so this transition cannot be stimulated by optical frequency radiation.
By contrast, the first excited state of lithium is obtained by promoting a 2s electron to a 2p state,
and lies a mere 1.85 eV above its ground state. This corresponds to the frequency of rather deep red.
Elements that lie beyond helium play an important role in astronomical measurements, even though
they are present only in trace amounts compared to hydrogen and helium, because their absorption
spectra contain lines at easily observed optical frequencies.

The chemical properties of an element are largely determined by the number of electrons in its
highest energy level, since these are least tightly bound. Atoms with no electrons outside filled energy
levels are particularly stable chemically. These elements are called noble gases and include helium
(Z = 2), neon (Z =2+ 8 = 10), argon (Z =2+ 8 + 8 = 18), krypton (Z =2+ 8 + 8 + 18 = 36),
xenon (Z =248+ 8+ 18+ 18 = 54) and radon (Z =2+ 8+ 8 + 18 + 18 + 32 = 86).

Elements with either a few more or few less electrons than required to fill a shell have their chemical
properties determined by this number, known as the valence and counted positive for extra electrons
and negative for fewer. If there is just one electron in the highest energy level, then this electron is
easily stripped away, so the element is chemically reactive. These are the alkali metals and include
lithium (Z =2+ 1= 3), sodium (Z =2+ 841 =11), potassium (Z =2+8+8+1=19) etc. If a
large number of such atoms combine to form a solid crystal, then it is energetically favourable for the
valence electrons to be shared throughout the solid rather than clinging to their original atom. These
electrons thus form a sort of fluid that is free to flow within the crystal when stimulated by a small
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Group > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period v Noble
gases
Some elements near —
1 1 the dashed staircase are 2
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4 19 20 21 22 23 24 25 26 27 28 29 30 31 32 I 33 34 35 36
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Figure 10: The Periodic Table of the Elements. For formatting reasons, the lanthanides and actinides
are traditionally shown below the rest of the table. Figure adapted from Wikipedia.

external force. This gives the crystal high electrical and high thermal conductivity, making it a metal.
(You’ll study this in much more detail if you take the Applications of Quantum Mechanics course
next term.) Atoms with two electrons more than the noble gases are also chemically reactive, though
not as reactive as the alkalis. They are known as the alkaline earth metals and include beryllium
(Z =242 =14), magnesium (Z =2+ 8+ 2 = 12), calcium (Z =2+ 8+ 8+ 2 = 20) etc.

On the other hand, atoms with one electron missing from their highest energy level tend to
strongly attract other electrons and so are chemically reactive nonmetals, often reacting violently
when brought into contact with metals. These elements are called halogens and include fluorine
(Z=2+8—-1=09), chlorine (Z =2+4+8+8—1=17), bromine (Z =2+8+8+ 18 — 1 = 35), iodine
(Z=248+8+18+4+18—1 = 53) etc. Elements with two electrons missing from their highest energy
level include oxygen (Z =248 — 2 = 8), sulfur (Z =2+ 8+ 6 = 16), etc. These elements are again
chemically reactive, though less so than the halogens.

The inclusion of the 4f and 5f states in the sixth and seventh energy levels, respectively, are
responsible for the long sequence of rare earths in the middle of the periodic table. Numerical
calculations show that wavefunctions of the 2(2x3+1) = 14 different 4f states have small probability to
lie outside the wavefunctions of the two 6s states, despite having slightly higher energy. Consequently,
these elements are all rather similar chemically. The same is true of the 14 different 5f states compared
to the wavefunctions of the two 7s states. The 14 elements in which the 4f states are being filled
run from lanthanum (Z =2+ 8+ 8+ 18 + 18 + 2 + 1 = 57) to ytterbium (Z = 70) and are known
as lanthanides (or more officially, the stupid name lanthanoids), while the next chemically similar
sequence are the actinides (or actinoids), running from actinium (Z = 2+8+8+18+18+32+42+1 = 89)
to nobelium (Z = 102). Beyond this point the nuclei themselves become so unstable that the element
tends to undergo radioactive decay before it has a chance to participate in any chemical reaction.

7.3 Exchange and Parity in the Centre of Momentum Frame

Let’s now consider the effects of exchanging two identical particles on their spatial wavefunction.
Letting X1, P and X, Py denote position and momentum operators of the two particles, exchanging

79



7 Identical Particles II Principles of Quantum Mechanics

1 <+ 2 implies that
Xi 4+ Xs Xa + X

Xcom = 5 — 5 = Xecom (7.13)

Peom = P1 + Py — Py +Pi=Peom, (7.14)
whilst

Xyl = X1 — Xo — Xy — X1 = —Xyel (7.15)

P = 12 — e T (7.16)

Thus, exchange acts trivially on the centre-of-momentum coordinates, but acts on the relative
coordinates just like a parity transformation. Since Y;"(—x) = (—1)*Y;"(x) under parity, we see
that if two identical particles have relative orbital angular momentum ¢, the spatial part of the
wavefunction will be either symmetric or antisymmetric under exchange according to whether ¢ is
odd or even.

The behaviour of the entire state under exchange is determined by whether the particles in question
are bosons or fermions. In the case of identical bosons, the spins must be combined to form a
symmetric overall spin state when £ is even, or an antisymmetric overall spin state when ¢ is odd so
as to ensure the overall state is always symmetric under exchange. For fermions, the opposite holds
so as to ensure overall antisymmetry.

If the neutrons are produced in a state where their relative orbital angular momentum is ¢ in the
centre of momentum frame, their spatial wavefunction acquires a factor of (—1)¢ under exchange of
the two neutrons.

7.3.1 Identical Particles and Inelastic Collisions

The requirement that the state describing N identical bosons/fermions needs to be totally symmet-
ric/antisymmetric under exchange of any pair of identical particles has important consequences in
collision processes where such particles are created or destroyed.

For example, consider an exotic type of ‘atom’ consisting of a spin-0 pion (denoted by 7~) bound
electromagnetically to a deuterium nucleus (denoted by Dt — itself consisting of a proton and a
neutron, bound together by the strong nuclear force). The bound state energy levels of this atom
due to the electromagnetic Coulomb attraction between the 7~ and D* have the same form as in
Hydrogen and, in particular, the ground state is |1,0,0), an s-wave having £ = 0. Because the pion
is much heavier than the electron, the Bohr radius of the Dt7~ ‘atom’ is much smaller than that of
Hydrogen and the 7~ wavefunction closely hugs the DT nucleus. The DV is known to have spin-1
whilst the 7~ is spin zero, so the 1s ground state of the DT7~ ‘atom’ has total angular momentum
j=1.

Now, as well as their electromagnetic interactions, the 7~ and D™ also interact via the short-range
strong nuclear force. This causes the ‘atom’ to be unstable, with the 7~ rapidly being absorbed by
the D, causing the system to disintegrate into a pair of neutrons (each denoted N):

7 +DT — N+N. (7.17)

(In particle physics terminology, processes such as this, where different types of particles appear in
the initial and final states, are known as inelastic. An elastic process is one in which the initial and
final states contain the same particles.)

Neutrons are fermions with spin—%, so the final state must be antisymmetric under their exchange.
One possibility is for their spins to combine into one of the triplets

1
T ﬁ(lﬂ D+ 1) (7.18)
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of symmetric spin-1 states, combined with a spatial wavefunction that is antisymmetric under
exchange. From above, this will be the case if the relative orbital angular momentum of the two
neutrons is odd. The other possibility is for the spins to form the antisymmetric spin-0 state

1
V2

combined with a relative spatial wavefunction of even /.

(M) =19 11) (7.19)

Total angular momentum is conserved, so the spin and orbital angular momentum of the final
state must combine to give j = 1 as for the initial ground state of the 7~ D¥. A combined system with
angular momenta ¢ and s have total angular momentum j € {{ +s,£+s—1,..., | — s|} depending
on the relative alignment of the two subsystems. Thus, in the case that the neutrons spins combine
to the antisymmetric spin-0 state, j = ¢ = 1. However, since this case requires ¢ even for fermionic
statistics, we see it is ruled out. The remaining case is that the neutrons combine to give the net
spin-1, so that

j=le{l+1,6,0—1}. (7.20)

Since fermionic statistics here require that ¢ is odd, the only possibility to get j = 1 is if £ = 1 and
the spin and orbital angular momenta of the neutron pair are neither perfectly aligned nor perfectly
anti-aligned. Thus the final state has j = ¢ =s= 1.

These considerations also help us to determine the intrinsic parity of the pion. Recall that the
parity operator II acts on a state |x) as

x) = 7x) | (7.21)

where the value of n € {+1, —1} is known as the intrinsic parity that, like spin, depends on the type
of particle that the state |x) represents. More generally, if |x1, k1; X2, ko;...;XN, k) describe an
N-particle state in which a particle of type k, is definitely located at x,, then the parity operator
acts as

IT X1, K13 X2, K25 - - XN, KN) = M2 -« - N X1, K13 X2, K2}« ;XN KN (7.22)

where 1, = %1 is the intrinsic parity of the k" particle that only depends on . This holds whether
or not the particles are distinguishable.

Like the spin of fundamental particles, these intrinsic parities are independent of any details of
the spatial wavefunction. Intrinsic parities thus have no effect in elastic processes, where the same
particles are present in both the initial and final states. The intrinsic parity of a particle can often
be determined by examining inelastic processes in which the particle participates.

In the example 7~ DT — NN above, equating the parities gives

nenp = (—1)'n% = -1 (7.23)

since the initial atomic state |1,0,0) has £ = 0 and hence no parity other than the intrinsic parities.
Provided parity is conserved by the strong nuclear interactions causing this decay, we conclude that
the 7= and DT must have opposite intrinsic parity. Now, the D% is predominantly an s-wave
bound state of a proton and neutron, so np = (—1)[7713771\; = npnn, and furthermore the proton and
neutron can always be chosen to have the same intrinsic parity since they are related by an ‘isospin’
symmetry*®. Thus np = +1 and hence the pion must have intrinsic parity 7, = —1.

As we mentioned in section 4.6, one of the great surprises of particle physics came in the 1950’s.
Cosmic rays were found to contain various types of particles, including two of similar mass called the
77 and the 0. Both particles decay quickly, the predominant channels being

0" — 7t 470 and Tt —attat . (7.24)

48The standard model has an (approximate) ‘internal’ SU(2) symmetry known as sospin that rotates protons into
neutrons; they are different states of the same nucleon, somewhat like the two different spin states |1),|]) of the same
electron
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The angular distribution of the pions in the final states could be observed in a cloud chamber or
bubble chamber, and studying these patterns showed that the pions were produced in an ¢ = 0
state in both cases. Since 1, = —1 (irrespective of the electric charge of the pion, for the same
isospin reason as above), the % should have intrinsic parity 79 = n2 = +1, while the 7+ should
have n, = —1. However, as measurements improved the masses and lifetimes of the two particles
became indistinguishable. The puzzle was resolved in 1956 when Lee and Yang proposed that the
two particles were in fact one and the same, but that parity was not conserved in their decay process.
Their proposal was largely ignored until Lee persuaded his colleague, Madame Chien-Shiung Wu,
to test it using the decay of a certain isotope of cobalt. Wu’s experiments showed that parity is
indeed violated in the weak interactions. The fact that x — —x is not a symmetry of Nature can be

accommodated in QFT, though the deep reason for it remains mysterious*®.

49There are various natural ways for parity violation to originate in string theory, but needless to say none of them
have been verified experimentally.
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8 Perturbation Theory I: Time Independent Case

We've now come about as far as we can (in this course) relying purely on symmetry principles.
The dynamics of systems of genuine physical interest is rarely simple enough to hope that we can
solve it exactly, just using the general constraints of symmetry. In these circumstances we need to
make some sort of approximation, treating our system as being ‘close to’ some other system whose
dynamics is sufficiently simple to be controllable. That is, we treat the difference between our actual
system, whose experimental properties we care about, and our model system, whose description is
simple enough that we can handle it, as a perturbation. The whole art of a theoretical physicist lies
in striking this balance; if one’s model system is too simplistic, it might not provide a reasonable
guide to the behaviour of the real case®®, while if the model is overly complicated it may itself prove
impossible to understand.

There’s nothing inherently quantum mechanical about the need to approximate a complicated
system by a simpler one, but, fortunately, perturbation theory in quantum mechanics often turns
out to be considerably easier than in classical dynamics, largely because of the vector space nature
of H. In this chapter and the next, we’ll study various techniques to handle quantum mechanical
perturbation theory, beginning with the simplest cases.

8.1 An Analytic Expansion

Let H be the Hamiltonian of the experimental system we wish to understand, and Hy be the
Hamiltonian of our model system whose eigenstates and eigenvalues we already know. We hope
that AH = H — Hy is in some sense ‘small’; so it may be treated as a perturbation. More specifically,
we look for a parameter — let’s call it A — that our true Hamiltonian depends on such that at A = 0,
H = Hy. For A € [0,1], define

We can think of H) as the Hamiltonian of an apparatus that is equipped with a dial that allows us
to vary A. At A = 0 the system is our model case, and at A = 1 it’s the case of genuine interest.

We now seek the eigenstates |E)) of Hy. This may look as though we’ve made the problem
even harder — we now need to find the eigenstates not just of our model and experimental systems,
but of a 1-parameter family of interpolating systems. Our key assumption is that since H) depends
analytically on A, so too do its eigenstates. In essence, this amounts to the assumption that small
changes in the system will lead to only small changes in the outcome. Every mountain climber knows
that this assumption can be dreadfully false and we’ll see that it can easily fail in QM too, but for
now let’s see where it takes us.

If indeed |E\) depends analytically in A, then we can expand it as
[Ex) = o)+ A18) + A2[) + ... (8.2)
and similarly expand the eigenvalues
E\) =E© £ \EW £ X2E® 4 (8.3)
Plugging these expansions into the defining equation Hy |E)) = E()) |E\) we obtain
(Ho + AAH)(Ja) + A [B) + A2 [y) +...)

- (E<°) +AEW 1 2E®) ) (Joy + X IB) + A2 ) +...). ®4)

50 A classic joke. Milk production at a dairy farm was low, so the farmer wrote to the local university, asking for
help from academia. A multidisciplinary team of professors was assembled, headed by a theoretical physicist, and two
weeks of intensive on-site investigation took place. The scholars then returned to the university, notebooks crammed
with data, where the task of writing the report was left to the team leader. Shortly thereafter the physicist returned
to the farm, saying to the farmer, “I have the solution, but it works only in the case of spherical cows in a vacuum.”
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Since we require this to hold as A varies, it must hold for each power of A separately. Thus we find
an infinite system of equations

Hola) = E© ),
Ho |B) + AH |a) = E® |8) + EW |y | (8.6)
Holy) + AH|B) = EQ |y) + EW|8) + E® |a) ,

The first of these equations simply states that |«) is an eigenstate of the model Hamiltonian H
with eigenvalue E®). This is not surprising; under our analytic assumptions the terms of O(\°) are
all that would survive when the dial is set to A = 0, which is indeed the model system. Henceforth,
we relabel |a) — |n) and E(®) — E,, to reflect this understanding. (The notation n is intended to
imply the n'? energy eigenstate of the model Hamiltonian Hy, with eigenvalue E,,; we will distinguish
the higher-order corrections to these states with superscripts.)

To determine the first-order correction E,(Ll) to the n'™ energy level of the unperturbed
Hamiltonian, we contract the second equation (8.6) with |a) = |n) to find

(n|Ho|B) + (n|AH[n) = E, (n|B) + E. (8.8)
Since the model Hamiltonian is Hermitian,
(n|Ho|B) = (B|Ho|n)" = Ey (n|f) , (8.9)
so in the case that the unperturbed state is |n), the equation becomes
EWL = (n|AH|n) . (8.10)

In other words, to first order in A, the change in the energy of our system as we move away from the
model system is given by the expectation value (AH), of the change in the Hamiltonian when the
system is in its original state |n).

To find the perturbed state to first order in A, we must understand |3). We can expand |5) in the
complete set |n) of eigenstates of the original system as

1B) =) bnln) . (8.11)

Using this expression in the second of equations (8.6) and contracting with (m/|, where (m| # (n|, the
initial state we’re perturbing, gives

(Epn — Ep)by = (m|AH|n) (8.12)
and so, provided FE,, # E,,
_ (m|AH]|n)
by = E, L. (8.13)

This will hold provided the energy levels of our model system are non-degenerate; we’ll examine how
to handle the more general case including degeneracy in section 8.2. In the non-degenerate case,
equation (8.13) determines all the expansion coefficients b, in |3) except b,. Fortunately, one can
argue that b, = 0 from the requirement that |E)) remains correctly normalised. This is left as an
exercise, but the essential idea is that if we move a point on a unit sphere, then to first order r-dr = 0
so that the variation is only nonzero in directions orthogonal to the original vector. With b, = 0 we

have
5= Y SHSE (5.4

m#n
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as the first-order perturbation of the state when the unperturbed state is |n).

We can also examine the second-order perturbation, E , of the n'® energy level. To do so,
contract the third of equations (8.7) with (n|. Using the facts that (n|Hy|vy) = E,, (n|y) and (n|8) =0
we have

B = (n|AH|B) =

n|AH|m) (m|AH|n
Z<| [m) (m|AH|n)

En - Em
m;én

_ Z |(n|AH|m)| n|AH|m (8.15)
m#n

using our expression for |3). We could go on to higher order in A, next finding |y) in terms of
the original states {|n)} and then finding the third-order energy shift ES) etc., but in practice the
summations become increasingly messy and we hope that the first few terms already provide a good
guide to the behaviour of the system near A = 1. (In high-energy quantum field theory, modern
experiments typically cost many millions of dollars so it’s especially important to have extremely
accurate theoretical predictions to compare to. Consequently, there’s a whole industry of people
whose life’s work is to compute higher and higher order terms in perturbation series such as these.)
Fortunately, in the Tripos you’ll never be asked to do anything beyond 2"¢ order.

Combining our results shows that, to second order in A, the energy levels of the perturbed system
are given by

2
E,(0) = By + A (nfAH) + 32 Y (ST

m#n
where F,, are the energies of our model system. Recall that this expression — much beloved of Tripos
examiners — is derived under the assumptions (i) that the new energies E(\) and new states |E\)
are analytic at A = 0 and (ii) that the model system is non-degenerate so E,, = E, iff |m) = |n).

+0(\®), (8.16)

Let’s now take a look at the use of this formula in a number of examples.

8.1.1 Fine Structure of Hydrogen

Our treatment of the hydrogen atom in the last chapter assumed the electron was moving non
relativistically in the Coulomb field of the proton. Since ’E / u02’ = o?/2n? < 1, non-relativistic
quantum mechanics should indeed be a good approximation. Nonetheless, better agreement with
experiment is obtained by describing the electron using the relativistic Dirac equation®'. The energy
levels obtained by assuming non-relativistic motion in a pure Coulomb potential are often called the
gross structure of the hydrogen atom, whilst the small relativistic corrections to these energies implied
by the Dirac equation are known as fine structure. We understood that gross structure energies are
independent of ¢ because of an enhanced symmetry of the pure Coulomb potential, generated by the
Runge-Lenz operator. We thus expect that relativistic corrections will lift the degeneracy among
states of different ¢.

The Dirac equation itself is beyond the scope of this course, but some of its consequences are easy
to understand in perturbation theory. Firstly, expanding the relativistic dispersion relation around
the non-relativistic limit gives

2 p’ p*
E= 2¢2 2t et + — — —— + ... 8.17
VP2t +p Het S T eaE T (8.17)
This shows that the relativistic correction to the kinetic energy is
4
P
AH=——— 8.18
8,08 (8.18)

51 A better approximation still — in precise agreement with the most accurate measurement ever performed in any
branch of science — comes from quantum field theory.
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at first order. From (8.10), the first-order shift in the energy of state |n, £, m) of hydrogen due to this
modified kinetic term is thus
E() = (n,6,m|AH|n,¢,m) . (8.19)

(In making this claim, we should note that our perturbation (8.18) is rotationally invariant, so in
particular [L.,AH] = 0 and [L*, AH] = 0. Therefore (n,¢,m'|AH|n,f,m) = 0 unless ¢/ = ¢
and m’ = m. Thus our perturbation does not mix degenerate states of the gross structure, so
non-degenerate perturbation theory is sufficient.)

To compute the first order energy correction, first we note that

(Ho —V(r))®

AH = —
2pc?

(8.20)

where Hy is the gross structure Hamiltonian and V' (r) is the usual Coulombic potential. Then

o [(Bn)? = 2B, (V(r)) +(V(r)*)], (8.:21)
where E,, = —2pc?a?/n? is the energy of the unperturbed state and (V (r)) = (n, £, m|V (r)|n, £, m).
The virial theorem for the 1/r potential tells us that 2 (T) = — (V), so (V) = 2E,,. Next, to compute
<V2>, observe that this 1/r? term just modifies the effective potential due to the electron’s orbital
angular momentum. Consider the Hamiltonian for the radial part of the Hydrogen atom, but now
with an effective potential

RPUl+1) | a e R+ e?

- 2

Vest (1) = (8.22)

2u 1?2 r dmer 2u T Adweor

Here we’ve introduced ¢’ to absorb the extra a/r? term into the angular momentum contribution. Of
course £ does not correspond to any actual angular momentum. It’s just a trick to help us compute
<V2>. With this effective potential, repeating the calculations of section 6.3 would lead to just the
same energy levels as before, but now in terms of (non-integer) ¢’ instead of ¢:
1 1
E(l)=—-pcta? ——s . 8.23

(1) = e’ G (5.23)
This is the exact result for a hydrogen atom with an additional 1/r2 term in its potential. However,
in our perturbative context, it’s only appropriate to keep the answer accurate to first order — there
may be other effects we haven’t yet accounted for (such as expanding (8.17) further) that contribute
at higher order. Expanding ¢ around ¢ we find

1 4
E(l)Y=E,+ zpc*——F +... 8.24
(€)= But g s (324
where n = ¢ 4+ 1. Combining this with the other terms gives
1 n 3\ ot
Y _ 22 2y 2
e T TRRO\y T 1) 529

as the first-order change in the energy of state |n, ¢, m) due to the relativistic correction to kinetic
energy. Notice that this effect is suppressed by an additional power of a? ~ v2/c? compared to the
gross structure, and that the degeneracy among states of different ¢ is lifted, as we expected.

There’s a second consequence of the Dirac’s equation which comes in at the same order as the
above kinetic terms. Due to its spin, the electron has a magnetic dipole moment
e

m=—_—
21

(8.26)

When placed in a magnetic field, the dipole has energy U = —m - B. Relativistically, the electron
in a Hydrogen atom does experience a magnetic field because it moves through the electric field
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E produced by the proton. If the electron has velocity v .= p/u~y, then classically the Lorentz
transformation of E produces a magnetic field

v 1 er e 1
B= - vxE=—pxX =- —L. 8.27
2 uch (47reor2> 4drequc? r3 (8.27)

Consequently, in QM the Hamiltonian of hydrogen receives a further fine-structure correction

ah?® 1
Hen — —m-B = __S. 8.28
S50 2ucrs ( )
known as the spin-orbit coupling. Since the coefficient of the operator S« L is positive, spin-orbit
coupling lowers the total energy when the spin and orbital angular momentum are antiparallel. In
particular, S - L vanishes in any state of hydrogen in which ¢ = 0, since then all components of L act
trivially. As an important special case, spin-orbit coupling does not affect the ground state. However,

excited states with ¢ # 0 do generically feel the effects of spin-orbit coupling.

We first compute the effect of acting on our electron states with L-S. To do this, clearly we must
include a specification of the electron’s spin. This could be done using the basis

{ln, 6m) @ 1), In, 6, m) @ 1)}, (8.29)

but it turns out to be more convenient to instead combine the electron’s orbital and spin angular
momenta to J = L + S and label states by®? |n, j,m;; £) where j = £ + % orj=4/{— % are the two
possible values for the combined angular momentum, and |m;| < j. To make use of this, we write

S-L:%(JQ—LZ—SQ). (8.30)
Thus
- Lingomi 6= 5 (7G40~ 60+ 1) =3 gm0 (831
_h2{€|n,j,mj;€> when j = ¢+ 3 (8.32)
2 | =(t+1)|n,j,mj;0) whenj=0—1.

Consequently, the first order change in the energy of the |n, j, m;; £) state of hydrogen due to spin-orbit

coupling is -
(1) 1 e‘h Y4 1
P = — ]
magit 4p?c? 4meq {—(5 + 1)} <T3 il (8.33)

where the factor of ¢ or —(¢ 4 1) chosen depending on whether j = ¢ &+ %

To compute the expectation value (1/73) we could just perform the integral

n,j;l
3 2 1
/R3 d°X |V 1,m (X)) 5 (8.34)

However, there is a trick that allows us to short-circuit the evaluation of this integral. Recall that for
states of definite ¢, the Hamiltonian for the unperturbed atom can be written

CPEORM(+1) €

H=--—" - 8.35
¢ 20 + 2ur? dmegr’ (8.35)
where P, = (X P + P - X)/2 is the radial momentum given by
0 1
P.=—-iA|—+- 8.36
' <8r + r) (8:36)

52Since [J, L2] = 0, it’s possible to find a basis of simultaneous eigenstates of J2, J. and L2. In this basis, we do not
necessarily know the z-components of the electron’s orbital and spin angular momenta separately.
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in the position representation. Now, the expectation value ([P, Hy]) = 0 when evaluated in any
normalisable eigenstate of Hy. In our case, the commutator evaluates to

Ry )

urs3 dmegr?

[P, Hy| = —ih ( (8.37)

and therefore, provided ¢ # 0,
1 1 1 1 1 1 1
= =—— (= = 5— 8.38
<7“3 >n,j;€ ag (€ +1) <7“2 >n,j;€ ag L0+ 3)(C+1) n? (839

where ap = h/auc is the Bohr radius and the second equality follows from our previous result for

(1/r%).
Putting all these together, the first-order energy shifts due to spin-orbit coupling are
1

1) L 4 2
E S, =4 8.39
mat = T M s (et 1) (8.39)
when j = ¢+ %, whereas when j = ¢ — % we have
W __lae 1 8.40
nie = ~gotne S (8.40)
(Also recall that ES; ,=01if £=0.) As anticipated, states whose spin and orbital angular momenta

are anti-aligned (j = ¢ — %) have lower energy and so are more tightly bound than the pure Coulomb
interaction, whereas if the spin and orbital angular momentum are aligned with each other (j = ¢+ %)
the state is less tightly bound. Notice also that the deviation from a pure Coulombic interaction
partially lifts the degeneracy between states of different ¢.

We can also see that the spin-orbit contribution to the energy is suppressed by a factor of o?
compared to the gross structure energy —% ua®c? /n?. This is the same suppression as we found for
the P* correction to the kinetic term, so it does not really make sense to consider these two effects
on the energy separately. Combining (8.25) with (8.39) and (8.40), we find the net energy levels

1 1 a2/3 1
Epiv=—p??|—= - —|— - — 8.41
semmpee s () s

incorporating fine structure correct to order a*. This formula holds regardless of whether j = ¢ + %
orj=4{— % Even better, although the spin-orbit term contributes only when ¢ # 0, it turns out that
there is another term®® that contributes only when ¢ does equal zero! Even better, this remaining
term has the effect that (8.41) is the correct fine structure energy levels even for states with £ = 0
where j = % just from the spin.

Proceeding down the periodic table, if we attach a single electron to an atomic nucleus containing
Z protons, the bare Coulomb interaction increases by a factor of Z. The formula (8.41) remains valid
provided we replace o ~ e? by Za. Hydrogen has Z = 1, so in the n = 1 ground state the fine
structure contribution is suppressed by a factor of a? ~ 1/(137)? compared to the gross structure,
justifying our treatment of the fine structure as a small perturbation. However, for heavier elements
with higher Z, the suppression is only by (Za)? and the small value of o can be negated by a
sufficiently large Z. In particular, from (8.41) we see that the energy difference between the states
with principal quantum number n but j = ¢+ % is

1 ,1 Z%4

En,[—‘—%;[ — En,[—%;@ = 5#0 Em . (842)

3

53This remaining relativistic effect is known as the Darwin term and gives a contribution ‘;:—QLCE(X). The origin of
this term is rather subtle, and properly lies within QFT rather than QM. Because of the d-function, it only affects
states which have non-zero probability to be found at » = 0. The only such states are those with ¢ = 0, since all others
are prevented from reaching the origin by the effective potential £(£ 4 1)/2mr2.
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This gives the splitting between the two 2p states of Hydrogen to be 4.53 x 107° eV, in excellent
agreement with the measured value of 4.54 x 1075 eV. These splittings reach around 10% of the gross
energy as one reaches the middle of the periodic table, making perturbative treatments less reliable.

8.1.2 Hyperfine Structure of Hydrogen

A proton is a spin—% particle, so like the electron it has a magnetic dipole moment m,, proportional

to its spin. A magnetic dipole m,, placed at the origin generates its own magnetic field

2u0 1o A
B= ?mpé(x) + o (3(my - £)F —m,), (8.43)
which is roughly the field you saw traced out by iron lings when first playing with magnets. The
dipole moment m, of the electron sits inside this field, leading to a new contribution

ths = —Ig - B (844)

depending on both dipoles. We’'ll just investigate the effect of this perturbation on the ¢ = 0 state

of hydrogen, where it turns out that only the first term ~ d(x) in B has non-vanishing contribution.
For these ¢ = 0 states, one finds

4m 1

Hpgs = = —a’tuc?

b= 3 iR

where I is the spin operator for the proton, labelled using a different letter to avoid confusion with

the electron spin operator S.

S-1, (8.45)

The splittings in energy levels caused by this perturbation are suppressed not just by a factor of
o, but by an additional factor of the electron-to-proton mass ratio m/M =~ 1/1836. The splittings
caused by accounting for nuclear spin are thus much smaller than those of the fine structure considered
above, and the perturbation (8.45) is known as the hyperfine contribution to the energy levels. We
can compute the eigenvalues in much the same way as for the spin-orbit contribution to fine structure.
Let F =1+ S denote the total spin of the proton and electron. Then
2 12 2 h? 3
(S-I)=—-(F° -1 S)Q(f(f+1)2>. (8.46)
This is —3h2/4 when the proton and electron spins are antiparallel so f = 0, and +h%/4 when f = 1.
Plugging these into (8.45) shows that the difference between the energies for the n = 1 ground state
of hydrogen is

dm 4o o -6
Epet,f=41 — En=1,f=0 = 3L e 5.88 x 107° eV, (8.47)
corresponding to a frequency of 1.4 GHz and a wavelength of 21 cm. Thus transitions between the
energy levels split by the hyperfine structure causes the hydrogen atom to have a microwave emission
line.

The 21 cm line provides the most powerful way of tracing diffuse gas in interstellar and intergalactic
space. This wavelength is much longer than the size of typical specks of dust, so 21 c¢m radiation
can propagate with little absorption right through clouds of dust and gas that do absorb visible
light. It was radiation at 1.4 GHz that first revealed the large scale structure of our galaxy. The
line is intrinsically very narrow, so the temperature and radial (with the Earth as origin) velocity
of the hydrogen that emitted the radiation can be accurately measured from the Doppler shift and
broadening of the observed spectral line.

The hyperfine structure of hydrogen leading to this 21 cm emission line was first predicted
theoretically in 1944 by the Dutch physicist H.C. van de Hulst as part of his doctoral thesis, carried
out in Utrecht which was then under Nazi occupation. 21 cm radiation from our galaxy was first
detected experimentally in 1951 by three groups working independently in the USA, Australia and
the Netherlands. The Dutch group used a German radio antenna left over from the war.
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8.1.3 The Ground State of Helium

After hydrogen, helium is the next most abundant element, making up about a quarter of the ordinary
matter in the Universe. Much of this helium was created during the period of nucleosynthesis, a tiny
fraction of a second after the Big Bang.

Let’s use perturbation theory to find an estimate of the ground state energy of helium. Working
in the centre of mass frame and treating the nucleus as stationary at the origin, the (gross structure)
Hamiltonian is

I P P2 2¢? 2¢? e? 1

~om " om dmeg |Xyq|  4mep | Xa| * dmeg | X1 — Xa| '

where (X1,X5) are the position operators and (P;,Ps) are the momentum operators for the two

electrons. The terms describing the electrons’ kinetic energy and attraction to the nucleus are just

the sum of those for hydrogen, expect with e replaced by 2e? since there are two protons in the

nucleus of helium. We'll take these terms to be the model Hamiltonian Hy, treating the remaining
electron-electron repulsion as a perturbation.

(8.48)

In the unperturbed Hamiltonian, single-electron states are just the usual hydrogenic states |n, £, m)
with energy

1 1
—4 x imv2a2ﬁ , (8.49)

where the factor of 4 arise because each electron’s attraction to the helium nucleus is twice as strong
as it was for hydrogen. Since electrons are fermions, the total state of the neutral helium atom must
be antisymmetric under their exchange. In particular, the ground state is

[Wo) = [1,0,0) ®[1,0,0) @ —=(IT) 1) = 1) [1)) (8.50)

1
V2
where the final factor is the antisymmetric spin state of the two spin—% electrons. (Note that,at the
level of the gross structure of helium, the Hamiltonian is independent of the spins of the two electrons,
so we are free to seek simultaneous energy and spin eigenstates.) This state is an eigenstate of the
model Hamiltonian Hy with energy

40 402
—% - %mc2 = —2a’mc* ~ —108.8 eV, (8.51)

being the sum of the energies of the two electrons individually.

B =

We now take account of the electron-electron repulsion. To use perturbation theory, we set

e2 1 ahe
AH = = . 8.52
47’(60 ‘X17X2| |X17X2| ( )
The first order shift in the ground state energy is
<\I’0|AH|\IJ0> = /d?’X/l d3X/2 d3X1 d3X2 <\I’0|X/1X/2> <X/1X/2|AH(X1, X2)|X1X2> <X1X2|\I/0>
. ahc
= /d3X1 d3X2 \I/Q(Xl7 X2) 7\110(X1,X2)
x1 — X2
ahce
= /d3X1 dxg ———— |th100(x1)|? 100 (x2)|* - (8.53)
Ix1 — X2

Here 100(x) are the single-electron n = 1 wavefunctions

1 /2\?
o0 = <a2> o-lxl/az (8.54)

where the length scale ay = QJ:R - is half the Bohr radius in hydrogen. In going to the last line, we’ve

used the fact that the interaction is independent of spin, and the spin states have unit norm.
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Performing the integral is straightforward but somewhat tedious®. We have

5
(AH)Y T, = Zozzch . (8.58)
As we suspected, this perturbation is also of order a? just like the leading-order term. Hence we get
the ground state energy of Helium corrected to first order as

E:-%&m21—§4 ~ —T74.6 eV. (8.59)
16 /3=

This is in significantly better agreement with the experimental value of ~ —79.0 eV than the zeroth
order estimate. Including the second-order term leads to

) 25
E=—-4a’mc® ([1— A+ ——\° ~—T75¢eV. :
a“me ( 16)\—1- 1024)\ ))\_1 77.5 eV (8.60)

Given the crudity of our expansion this is remarkably close agreement with the experimental value.

In heavy atoms, the ground state energy itself is difficult to measure experimentally since it involves
computing the energy required to strip off all the electrons from the nucleus. Fortunately, for the
same reason it’s also rarely the directly relevant quantity. Instead, chemists and spectroscopists are
usually more interested in the first ionisation energy, defined to be the energy required to liberate a
single electron from the atom. Hydrogen only has one electron, so its first ionization energy is just the
13.6 eV which we must supply to eject this electron from the ground state of the atom. In the case of
helium, once one electron is stripped away the remaining electron sees the full force of the Coulomb
potential from the Z = 2 nucleus, so will have binding energy —54.4 eV. The first ionisation energy
is thus the difference (—54.4 + 79.0) eV = 24.6 eV. This is significantly greater than the ionisation
energy of hydrogen, and in fact helium has the greatest first ionisation energy of any of the elements,
reflecting its status as the first noble gas.

8.1.4 The Quadratic Stark Effect

We’ll now consider a different type of perturbation, caused not by relativistic corrections to the
Hamiltonian of the isolated atom, but by allowing the atom to interact with some external system.

Suppose a hydrogen atom is placed in an external electric field E = —V¢. Most electric fields we
can generate in the laboratory are small compared to the strength of the Coulomb field felt by the

54In case you are curious: Choose the z-axis of x to be aligned with whatever direction ri. Then |x1 — X2| =
\/|rf + r% — 27172 COS 92|, independent of ¢2. So

4ahe r2 sin fye— "2/ 2
(AH) Vo = — /d3X1 100 (x1)[? /dT2 db 22 (8.55)
a3 \/|rf+7“§ 72r1r200592|
The integral in square brackets can be done using
” in 6 1 " d 2 h
/ 40, sin 0 _ / 465 T\/V% 72— 2r1r COSQZ} _ { /r1 when r1 > 1o (8.56)
Jo \/|'rf + 72 — 2ry7g cos 62| rire Jo dfs 2/ro  when r1 < rg.

Thus the radial integral dre must be broken into two regions. Letting p1 = 271 /a2 be a rescaled radial coordinate, we
have

r1 2 o
<AH> Uy = 8ahc /d3x1 |¢v100(x1)|2 |:/ dro 26*27'2/a2 +/ dry r26727'2/u2:|
0 r1 1

a3
4ahe 2—e P12+
= 7/d3)<1 [vh100(x1)? 2o @hen)
az p1
2ahe [° bahic
=22 [T appre @2 - e 2 o) = 2o (8.57)
a2 Jo daz
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Figure 11: First ionisation energies of the ground states of the first few elements. Figure adapted
from Wikipedia.

electron due to the nucleus®®, so perturbation theory should provide a good estimate of the energy
shifts such an external field induces. By definition of the electrostatic potential ¢, the field changes
the energy of the atom by E = e(¢(x,) — ¢(x.)) where x, and x. are the locations of the proton and
electron. We assume the external field varies only slowly over scales of order the Bohr radius, so

0E~ —er-V¢=—er-E, (8.61)

where r = x. — x,. Let’s choose the direction of the electric field to define the z-axis, and set £ = |E|
so as to avoid confusion with the energy. Thus E = £z and the effect of the external electric field is
to add a new term to the Hamiltonian Hy of the unperturbed atom

H=H),—e£X3, (8.62)
where X3 is the position operator for the z-coordinate of the electron relative to the proton.

In this section, we’ll just consider the effect of this electric field on the ground state |n, ¢, m) =
[1,0,0) of the hydrogen atom. This state is non-degenerate for the unperturbed Hamiltonian (and
our perturbation is blind to spin), so again non-degenerate perturbation theory will suffice. From
(8.10), the first order change in the ground state energy is

EW = —e£(1,0,0/X3/1,0,0) . (8.63)
However, applying the parity operator IT and noting that II7' X311 = — X3 we have
(1,0,0]X3/1,0,0) = — (1,0,0[II"" X3II|1,0,0) = — (1,0,0/X3|1,0,0) , (8.64)

where the last equality uses the fact that IT|1,0,0) = |1,0,0) since the ground state wavefunction is
spherically symmetric. Thus (1,0,0/X3|1,0,0) = 0 and parity symmetry ensures that, to first order
in the external electric field, the ground state energy is unaffected.

To see a non-trivial effect, we must go one order further. The second order shift in the ground
state energy is given by (8.15) in general. In our case, the sum is to be taken over all states of
hydrogen except the ground state, so

Y4

BY = 25222 Z (1,0, O|X3|Zj£ m)l . (8.65)

n=24{<nm=—{

55With modern high intensity lasers, electric fields comparable to the nuclear Coulomb potential can be generated.
The behaviour of a hydrogen atom in such a laser must be studied by other methods.
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In the second problem set you proved that
(', 0 ,m/|X|n,l,m) =0 unless |[¢' —¢] =1. (8.66)

Applying this to our case, (1,0,0|X3|n,¢,m) = 0 unless ¢ = 1, which greatly simplifies the sums.
Furthermore, [L,, X3] = 0 so X3|n,0,0) is an eigenstate of L, with eigenvalue zero and hence it is
orthogonal to |n, 1, m) whenever m = 0. In summary, to this order the electric field causes the ground
state |1,0,0) to mix only with states |n,1,0). Thus the only non-vanishing terms are

Z (1,0, 0|X3|n 1,0)?

TL

E® = ¢2g? (8.67)
involving just a single sum. This is the second-order change in the ground state energy due to the
presence of the external electric field.

This change in the ground state energy is known as the quadratic Stark effect, after its discoverer
and since it comes in at order £2. There’s a good physical reason why the change in energy comes
in at this order: the hydrogen atom is electrically neutral and the unperturbed ground state |1,0,0)
is spherically symmetric, so the atom in this state has no electric dipole moment. In response to the
applied electric field, the electronic wavefunction changes by an amount that is proportional to the
coefficients b,,, which are themselves proportional to £. In other words, the applied electric field £
polarizes the atom, generating a dipole moment p o E. The energy of any dipole p in an electric
field is Ugip = —p + E and since the dipole moment itself is ~ &, for the ground state of hydrogen
Ugip ~ E2. Higher energy states |n,l,m) can have a permanent dipole moment due to the electron’s
elliptical orbits, but to study this we need degenerate perturbation theory.

8.2 Degenerate Perturbation Theory

Our derivation of the coefficients

,_ (mlAH]n)
of the first-order shift in the state breaks down if there are states m that have the same energy as
the state n that we’re attempting to perturb. Indeed, naively applying (8.68) in this case appears to

show that the small perturbation can cause an extremely dramatic shift in the state of the system.

(8.68)

There’s nothing particularly surprising about this. Consider a marble lying in the bottom of a
bowl at the minimum of the gravitational potential. If we tilt the bowl slightly, the marble will move
a little, resettling in the bottom of the tilted bowl as it adjusts to the new minimum of the potential.
However, if the marble initially lies at rest on a smooth table, so that it initially has the same energy
no matter where on the table it lies, then tilting the table even very slightly will lead to a large change
in the marbles location.

To handle this degenerate situation, we first observe that the only states that will acquire a
significant amplitude as a result of the perturbation are those that are initially degenerate with the
original state. In other words, to good approximation, the state to which the system changes will
be a linear combination of those having the same zeroth-order energy as our initial state. In many
situations, there are only a finite number of these. We then diagonalise the matrix (r|AH]|s) of the
perturbing Hamiltonian in the subspace spanned by these degenerate states. Since this subspace was
completely degenerate with respect to Hyg, in this subspace the eigenstates of the perturbation AH
are in fact eigenstates of the full Hamiltonian Hy + AH.

Let’s see how this works in more detail. Suppose V' C H is an N-dimensional subspace with

Hy |Y) = Evy |¢) for all |¢) € V. Forr=1,..., N, let {|r)} be an orthonormal basis of V" and define
Py to be the projection operator Py : H — V. We can write this projection operator as

N
Py =>"|r)(r] (8.69)
r=1
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in terms of our orthonormal basis. Similarly, we let P = 1 — P, denote the projection onto V=,
where

VE={l) e M| (W) =0V ) € V}. (8.70)

Note that, as projection operators, P‘Q, = Py and Pj = P, and that Py P, = P, Py = 0. Also, we
have
[Ho,Py] =0 and [Hy, P ]=0 (8.71)

since V' was defined in terms of a degenerate subspace of Hy.

Now let’s consider a perturbed Hamiltonian Hy = Hy + AAH. Any eigenstate [iy) of the full
Hamiltonian obeys

0= (Ho— E(\) + ) AH) [¢hy)
= (Ho — E(\) + NAH)(Py + Py) [{x)
= (Bv — E(A) + AAH) Py [x) + (Ho — E(A) + AAH) Py [1h(N)) . (8.72)

Acting on the left with either Py or P, and using (8.71), we obtain the two equations

(BEy — E(\) + APy AH)Py [1hy) + APy AHP, [1hy) =0 (8.73)
APLAHPy [)\) + (Hy — E(A) + APLAH) P |1h,) =0, (8.74)

in which we have separated out the effects of the perturbation within V' and its complement.

Suppose now that we’re perturbing a state |¢)g) that, in the absence of the perturbation, lies in
V. We write

[¥a) = o) + X [B) + A2 |y) + ... (8.75)
E\) = E@ £ XxEW £ X2E® 4 (8.76)

just as before, noting that P, [¢) is necessarily at least first-order in A. To zeroth order, equation
(8.73) tells us that E(®) = Fy as expected. At first order, this equation becomes

(—ED + PyAH)|a) =0 (8.77)

or equivalently
PyAHPy |a) = EW |a) . (8.78)

This is a remarkable equation! It tells us that, if our assumption that the perturbation causes only
a small change in the energies and states of the system is to hold and if our zeroth-order state |t)
lies in some degenerate subspace, then |i)y) can’t be just any eigenstate of Hy, but must also be
an eigenstate of Py AH Py — the perturbation, restricted to the degenerate subspace V. In other
words, in degenerate systems, states that are stable against small perturbations are those that are
already eigenstates of the perturbation. If we started with some other |[¢)g) € V that was not an
eigenstate of AH, then as soon as the perturbation is turned on, the state would rapidly change into
an eigenstate®®. This large response to a small change in H would invalidate our use of perturbation
theory; it’s the quantum analogue of the fact that the location of a marble on a perfectly at table is
extremely sensitive to any tilt.

Let’s now suppose that we’ve chosen our basis {|r)} of V in such a way that Py AHPy |r) =

g |r), so that |r) is indeed an eigenstate of the perturbation with some eigenvalue we’ll call BM.
Then choosing our initial state |a) to be |r), by (8.78) the first order shift in its energy is

EWY = (r|Py AHPy|r) = (r|AH|r) . (8.79)

However, it is wrong to think that since |r) diagonalises both H and AH confined in V, with
eigenvalues Fy and E,(«l) respectively, we have solved the perturbed Hamiltonian Hy+AAH ™) exactly,

56To justify this, in particular to understand what happens “as a perturbation is turned on”, we’ll need to consider
time-dependent perturbation theory. See section 9.
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with eigenvalue Ey —&—)\E,(«l). This is because |r) only diagonalises AH in the subspace V', not in the full
Hilbert space. If AH results in coupling between states in V' and outside V', then AH |r) # gM |r)
in the full Hilbert space. This makes the second order degenerate perturbation theory a bit tricky
to do because the first order wavefunction will not completely lie within the degenerate subspace V/,
but will also contain components outside V. We shall not discuss it further.

As we've seen, degeneracy in the energy spectrum often arises as a result of some symmetry. If
this symmetry is dynamical, such as the enhanced U(d) symmetry of the d-dimensional harmonic
oscillator, or the SU(2) x SU(2) symmetry the Runge—Lenz vector implies for the gross structure of
hydrogen, it will almost inevitably be broken by a perturbation. Even symmetries such as rotations
that are inherited from transformations of space may be broken in the presence of external fields.
For example, although the ground state of an atom is typically spherically symmetric, the laboratory
in which one conducts an experiment likely won’t be and any small stray electric and magnetic
fields in the laboratory will perturb the atom away from pure spherical symmetry. For this reason,
perturbations typically lift degeneracy. As we’ve seen, even very small perturbations can have a
dramatic effect in immediately singling out a preferred set of states in an otherwise degenerate system:;
we’ll return to this point in section 10.4.2 when trying to understand ‘collapse of the wavefunction’
in quantum mechanics. If you take the Applications of Quantum Mechanics course, you’ll see that
the lifting of degeneracy is also important in giving crystals their electronic properties: when a large
number of identical metal atoms are brought together, ignoring the inter-atomic interactions, all the
valence electrons in the different atoms will be degenerate. The small effect of the potential from
nearby atoms breaks this degeneracy and makes these valence electrons prefer to delocalise throughout
the crystal.

8.2.1 The Linear Stark Effect

As an application of degenerate perturbation theory, let’s again consider the Stark effect but now for
the 2s state of our atom. This state is degenerate with the three®” 2p states, so here our degenerate

subspace
V =span{|2,0,0),2,1,1),(2,1,0),]2,1,—1)}. (8.80)

As before, the electric field induces a perturbation AH = e£X5 and we need to diagonalise this
perturbation within V. Parity implies

(2,0,0[X3]2,0,0) =0 and (2,1,m|X3s[2,1,m’) =0 Vm,m' € {-1,0,1}, (8.81)

while since [L, X3] = 0 we also have (2,0,0|X3|2,1,£1) = 0. Thus the matrix elements of AH in
this basis are

0 0 a O
0 0 0 O
Aly =e€ o 00 ol (8.82)
0 0 0 O
where
a=(2,0,01X3]2,1,0) = —3ay, (8.83)

with ag the Bohr radius. The eigenvalues of A in this subspace are thus {3eag, 0,0, —3e€ag} with
corresponding eigenstates

1 1
E(\2,0,0>—|2,1,0>), 12,1,1) , [2,1,-1) , ﬁ(|2,0,0>+\2,1,0>). (8.84)

In the presence of the electric field, the n = 2 state of lowest energy is (|2,0,0) +(2,1,0))/v/2 and we
conclude that even for a tiny electric field, the n = 2 states will jump to this preferred state.

57Since the applied electric field does not coupled to spin, we ignore the effect of spin in this discussion at this order,
the Stark effect will not lift the degeneracy of the gross structure of hydrogen with respect to the electrons spin.
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From our discussion of the quadratic Stark effect above, we know that a change in energy o &
requires the dipole moment D of an atom to be independent of £. Since this n = 2 state has a
first-order energy shift of 3e€ap, we conclude that the n = 2 states of hydrogen do indeed have a
permanent electric dipole moment of magnitude 3eaq. Classically, for an electron in an elliptical orbit,
this result is expected because the electron would spend more time at the apocentre (the point of its
orbit furthest from the atoms centre of mass) than at the pericentre (the point nearest to the centre
of mass). If electrons orbit was a perfect Keplerian ellipse, the atom would have a permanent electric
dipole moment aligned parallel to the orbit’s major axis. However, any small deviation from the 1/r
potential will cause the major axis of the ellipse to precess, and the time averaged dipole moment
would vanish. For hydrogen, the potential does differ from 1/r, though only very slightly due to the
effects of fine structure. Hence even a weak external field can prevent precession and give rise to a
steady electric dipole.

Quantum mechanically, in the presence of the electric field the lowest energy n = 2 state (|2,0,0)+
|2,1,0))/+/2 is no longer an eigenstate of L2, because the field applies torque to the atom, changing
its total orbital angular momentum. However, this lowest energy state is still an eigenstate of L,
with eigenvalue zero. Recalling that we took the z-direction to be the direction of the applied field,
we see that the angular momentum is perpendicular to E, as expected from the classical picture of an
ellipse with major axis aligned along E. Note also that the electric field does not lift the degeneracy
between the |2,1,1) and |2,1,—1) states. These two states have their orbital angular momentum
maximally aligned or anti-aligned with E; classically, they correspond to orbits confined to a plane
perpendicular to E.

8.3 Does Perturbation Theory Converge?

We began our study of perturbation theory by assuming that the states and energy eigenvalues of the
full Hamiltonian depended analytically on a dimensionless parameter A\ controlling the perturbation.
Even when the individual coefficients of powers of A are finite, this is often not the case because the
infinite perturbative series itself may fail to converge, or may converge only for some range of A. The
issue is that we really have an expansion in

(m|AH]n)
Em - En
where m # n, and the coefficients of A may grow too rapidly. Heuristically, the condition for
convergence is thus that the typical energy splitting (m|AH|n) induced by the perturbation should
be much smaller than the initial energy difference F,, — E,. However, a detailed criterion is often

hard to come by since the higher terms in the perturbation expansion involve complicated sums (or
integrals) over many different intermediate states.

‘/\ (8.85)

To illustrate this in a simple context, let’s consider in turn the following three perturbations of a
1d harmonic oscillator potential

P21 —dmw?zy X
H=—+ —mw?X?+ { +1 ymw? X2 (8.86)
2m 2 2
+heX?,

where zg and € are constants. Of course, the first two can be solved exactly — we’d never really use
perturbation theory to study them.

In the first case, we have

Pz 1 N,

H= o + §mw2(X — Az)? — oy, (8.87)
from which we easily see that the exact energies are
1 Ao,
E,(N)=(n+ 3 hw — o mw Ty (8.88)
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with corresponding position space wavefunction (x|ny) = (x — Axg|n) just a translation of the usual

harmonic oscillator wavefunction (x|n). If we instead tackled this problem using perturbation theory,
we’d find

|(k1X )| 3
E,(\) = B, — dnw?zo (n| X |n) + N2m2wiz? E 1+ 0\
in (n —k)hw

2
= <n + ;) fiw — %mw%g +0(\3). (8.89)

To obtain this result, we note that the first order term vanishes (e.g. by parity), while since X is a
linear combination of creation and annihilation operators AT and A, only the k =n+1landk=n—1
terms can contribute to the sum in the second-order term. Going further, we’d find that there are no
higher corrections in A — the O(\3) terms are in fact zero — though this is not easy to see directly.
Thus, in this case, the perturbative result converges to the exact result, and the radius of convergence
is infinite. This reflects the fact that the perturbation —Amw?z¢X didn’t really change the character
of the original Hamiltonian. No matter how large X is, for large enough x the perturbation remains
negligible.

Turning to the second case, it’s again immediate that the exact energy levels are
1
E,(\) = (n + 2) w(A), (8.90)

where w(A) = wy/1 4+ X is the modified frequency. This has a branch cut starting at A = —1, so the
energy is only analytic in the disc |A| < 1. Again using perturbation theory, we find

2
E,(\) =E, + %mw (n|X?|n) 42 [k X ]m) " k’X +0(\?)

- <n + ;) hw <1 + % — % + O(A?’)) : (8.91)

agreeing to this order with the Taylor expansion of the exact answer. Continuing further, we’d find
that this Taylor series does indeed converge provided |A| < 1, and that it then converges to the exact
answer. The physical reason why the perturbation series diverges when |A| > 1 is simply that if
A = —1, the ‘perturbation’ has completely cancelled the original harmonic oscillator potential, so we
are no longer studying a system that can be treated as a harmonic oscillator in the first instance.
Once A < —1 the harmonic oscillator potential is turned upside down, and we do not expect our
system to possess any stable bound states.

Finally, consider the case
H = Hy + \eX*. (8.92)

I do not know whether this model has been solved exactly, but it can be treated perturbatively. After
a fair amount of non-trivial calculation®® one obtains the series

1 o0
= Jhw+ > () an (8.93)
for the ground state energy including the quartic interaction, where the coefficients behave as
_(=)"Tve )”H\f 1 951

On account of the I'-function, these grow faster than factorially with n, so the series (8.93) has radius
of convergence A = 0! Once again, this is easy to see from the form of the perturbed Hamiltonian:

58You can find the details in Bender, C. and Wu, T.T., Anharmonic Oscillator II: A Study of Perturbation Theory
in Large Order, Phys. Rev. D7, 1620-1636 (1973)
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even though we may only care about A > 0, our assumption that the perturbation expansion is
analytic in A at A = 0 means that, if it converges, it will do so for a disc A € D C C. For any
A € R, the Hamiltonian of the quartic oscillator is unbounded below, so there cannot be any stable
bound states that are analytic in A at A = 0.

Let me comment that even when perturbative series do not converge, they may still provide very
useful information as an asymptotic series. You’ll learn far more about these if you take the Part II
course on Asymptotic Methods, but briefly, we say a series Sy () = Zﬁfzo an, A" is asymptotic to an
exact function S(\) as A — 01 (written Sy (A) ~ S(A) as A — 07) if

1
lim

A O A7N = 0 . (895)

N
S(A) = anA"
n=0

In other words, if we just include a fixed number N of terms in our series, then for small enough A > 0
these first N terms differ from the exact answer by less that eAY for any € > 0 (so the difference is
o(A™)). However, if we instead try to fix A and improve our accuracy by including more and more
terms in the series, then an asymptotic series will eventually diverge. Most of the perturbative series
one meets in the quantum world (including most Feynman diagram expansions of Quantum Field
Theory) are only asymptotic series. Just as in our toy examples above, the radius of convergence of
such series is often associated with interesting physics.
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9 Perturbation Theory II: Time Dependent Case

In this chapter we’ll study perturbation theory in the case that the perturbation varies in time. Unlike
the time independent case, where we mostly wanted to know the bound state energy levels of the
system including the perturbation, in the time dependent case our interest is usually in the rate at
which a quantum system changes its state in response to the presence of the perturbation.

9.1 The Interaction Picture

Consider the Hamiltonian

H(t) = Ho + As(t), (9.1)
where Hj is a time-independent Hamiltonian whose spectrum and eigenstates we understand, and
Ag(t) is a perturbation that we now allow to depend on time. (The footnote on Ag(t) is to remind
us that this operator has genuine, explicit time dependence even in the Schréodinger picture.) The
idea is that Hy models a system in quiescent state, and we want to understand how eigenstates of Hy
respond as they start to notice the perturbation. In the absence of the time-dependent perturbation,
the time evolution operator would be Uy(t) = efot/? as appropriate for the model Hamiltonian Hy.
We define the interaction picture state |¢1(t)) as

[¥1(8)) = Ug (1) [s(#)) (9-2)

where [1g(t)) is the Schrodinger picture state evolving in accordance with the time dependent
Schrodinger equation for the full Hamiltonian (9.1). Thus, in the absence of Ag(t), we’'d simply
have [¢1(t)) = Uy *()Uo(t) [10(0)) = [tho) so the state would in fact be independent of time. The
presence of the perturbation means that our state do not evolve purely according to Uy(t), so |i1(t))
has non-trivial time dependence.

To calculate the evolution of |i1(t)), we differentiate

i o (6)) = ~Hoe /™ s (1)) + o0t i s (1)
= — Hoe o/ 1))+ Iy + A (1) s (1)
= Ug (O8O0 (1) [1a(0) 93

where we have used the full time dependent Schrodinger equation to evaluate O |ig) /0t, and in the
last line we’ve written our state back in terms of the interaction picture. Similarly, the expectation
value of an operator Ag in the Schrodinger picture becomes

(s (8)| As[ebs (1)) = (vu(8)|Ug ™ (£) AsUo(8) 4 (2)) (94)
in terms of the interaction picture states, so we define the interaction picture operator Aj(t) by
Ai(t) = Uy ' (1) AsUo(t) (9.5)

again using just the evolution operators of the unperturbed, rather than full, Hamiltonian.
Infinitesimally, this is

d i Ax(t
Sl =+ 22 bty (96)
where the final term comes from the explicit time dependence present even in the Schrédinger picture
operator. In this sense, the interaction picture is ‘halfway between’ the Schrodinger picture, in which
states evolve and operators are time independent, and the Heisenberg picture, in which states are
always taken at their initial value [¢(0)) , but operators evolve according to the full Hamiltonian. In
the interaction picture, states evolve by just the time-dependent perturbation as

[Ho, Ar(t)] + Uy ' (t)

ih 2 (1)) = A (1) 0.1
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where Ap(t) = Uy ' (t)A(t)Up(t) is the perturbation in the interaction picture, whilst operators also
evolve, but only via the model Hamiltonian.

It will turn our to be useful to introduce an interaction picture time evolution operator Ur(t)
defined so that

|¢1(t)) = Ur(t) [41(0)) (9-8)
for any initial state |11(0)) € H. From (9.3) we find that Ui(¢) satisfies the differential equation
., 0
lhaUI(t) == Al(t)UI(t) . (99)

Note that since the operator Ar(t) itself depends on time, we cannot immediately integrate this to
write Ur(t) in terms of the exponential of Ar(t): in particular it is generally not correct to claim

-t
Ui(t) < exp (_711 / dat’ AI(t’)> (9.10)
0
because since the operator Ay(t) itself now depends on time, in general
[Ar(t), Ar(t)] # 0. (9.11)

Thus, when expanding the exponential as a power series, we’d have to commute the operators at
different times through one another.

So far our considerations have been exact, but to make progress we must now approximate. To
do so, it will be convenient to rewrite (9.9) as an integral equation (keep in mind the initial condition
Ui(0) =1) t
Ui() =1 — %/ dt’ As(#) U () 9.12)

0
in which the operator Ui(t) we wish to understand also appears on the right-hand side, inside the
integral. Now we replace the Up(t') in the integral by its value according to its own equation, obtaining

UI(t)_l;_L/Otdtl Ar(ty) + (;)2/(:(17:1 Ax(th) {/Ot dts Ar(t2)Us(ta)] - (9.13)

The term containing Up(¢) on the right-hand side now has two explicit powers of the perturbation
Ap(t), so may be hoped to be of lower order in our perturbative treatment. Iterating this procedure
gives

Ui(t) = Ti (-%)n/ot dty /Ot dtn Ar(t)AL(t2) . . Ar(ty) (9.14)

in general. Note that the operators A(¢;) at different times do not necessarily commute — they
appear in this expression in a time-ordered sequence, with the integrals taken over the range

0<ty <tp1 < <t <t. (9.15)

Instead of the naive expression (9.10), we often write the series as

0

Ur(t) = Texp (_711 /Oo dt’ AI(t’)> (9.16)

for short, where the time-ordered exponential®® Texp defined by the series (9.13). It’s a good
exercise to check that this time-ordered exponential is equal to the usual exponential in the case
that [A(t1), A(t2)] = 0 for all ¢; and to.

59Time ordered exponentials were introduced by Freeman Dyson and play a prominent role in QFT. They are also
familiar in differential geometry in the context of computing the holonomy of a connection around a closed path. (This
is not a coincidence, but it would take us too far afield to explain here.)
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The interaction picture perturbation is Ar(t) = Uy *(t)As(t)Us(t), so we can also write (9.13) as

Ui(t) = i (;)n/otdtl /Ot dt,,

n=0
Uy (t1)As(t1)Ug(ty — t2)As(ta) ... Ug(tn—1 — tn)As(tn)Uop(tn) (9.17)

using the fact that Ugl(ti)UO(ti,l) = Up(ti—1 — t;). In this form we see that the perturbation
expansion of Up(¢) treats the effect of the perturbation as a sequence of impulses: we evolve according
to Hy for some time t,, > 0 then feel the effect Ag(¢,) of the perturbation just at this time, before
evolving according to Hy for a further time ¢, — ¢,_1 > 0 and feeling the next impulse from the
perturbation, and so on. Finally, we integrate over all the possible intermediate times at which the
effects of the perturbation were felt, and sum over how many times it acted. This method, closely
related to Green’s functions for ODEs and PDEs, is also the basis for Feynman diagrams in QFT,
where Hj is usually taken to be a free Hamiltonian.

Now let’s put these ideas to work. Suppose that at some initial time ¢ty we’re in the state
[¥(to)) = >, an(to) |n), described in terms of some superposition of the basis {|n)} of eigenstates
of the unperturbed Hamiltonian. Then at a later time ¢ the interaction picture state will be
[1(t)) = Ur(t —to) [1(to)) and can again be described by a superposition ) ay(t) |n). Contracting
with a state (k| gives

a(t) = (k|Ur(t — to)|¢r(to)) (9.18)

in the interaction picture. Thus, using (9.13) we have

ap(t) =~ ag(to) — %Zan(to)/ dt’ (k|Ar(t")|n)

= ay(to) — fZan(to)/ At’ e Fx=En)t' /R (1 Ag(¢)|n) (9.19)

to the first non-trivial order in A, where we used the fact that Hy|n) = E,, [n). In particular, if at
t =ty we begin in an eigenstate |m) of Hp, so that

1 ifn=m
an(to) {O otherwise, ( )

then the amplitude for our perturbation caused the system to make a transition into a different Hy
eigenstate |k) # |m) is

.t
an(t) = —%/ at’ B En)t' I (1 Ag (¢')]m) (9.21)
to

to the first order of perturbation. Henceforth, we will drop the subscript on the Schrodinger picture
perturbation — note that this is the form in which the perturbation enters the original Hamiltonian.

To go further, we must specify how the perturbation A(¢) actually depends on time.

9.2 Prodding the Harmonic Oscillator

As a example, let’s consider a d = 1 harm20ni2c oscillator that receives a gentle ‘prod’ described by
the time-dependent force Fpoq(t) = Fpe™* /7" in addition to the force F = —kX from the spring

constant. We can describe the kick using the potential V(X) = —FyXe /7" which we will treat as
a perturbation. Now suppose that, long before the kick, the oscillator was in its ground state |0).
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Then to first order in the perturbation, the amplitude for the oscillator to make a transition into the
kth excited state as t — oo is

lim ax(t) = —%/ dt — Fy (k| X|0) et 7= . (9.22)

t—o0
Recalling that X = /53— (A + AT), we see that ax(t) = 0 for k # 1, while

mh 2.2
: _ w4
A ar () =Fo omw ’

(9.23)

where the Gaussian integral is performed by completing the square in the exponent. Thus the
probability of the kick causing a transition is
7Th ﬁe_szz/Q

Prob(|0) — [1)) = FZ—

9.24
2m w ( )

to first order in perturbation theory. This grows like 72 for small 7, then falls as e~ /2 for 1> w L.
For an oscillator of fixed (classical) frequency w, the maximum probability occurs when 7 ~ w™?!.
Transitions to higher excited states are possible at higher order in perturbation theory, but if we

really kick the oscillator, then perturbation theory will cease to be appropriate.

9.3 A Constant Perturbation Turned On at t =0

As a further example, consider the case that

Alt) =

for ¢
{O ort <0 (9.25)

A fort>0,

where A = A(X, P,...) is a time-independent operator. Let’s start our system so that it’s in the
mth eigenstate |m) of Hy at t = 0. Then from (9.21) with t; = 0 we have
it i t’ Ay i t
t)=—— dt’ (k|A wemt’ — T (] _ lwhm 9.26
ou(t) = =3 [ at (HApm) et = SR (1 ), (9.26)
where Ay, = (k|Alm) and wgy = (B — Ep)/h. Thus the probability that the perturbation causes
the system to be in the k'" state at time ¢ is

2 4|Ak7r |2
lar(t)|]” = h%i;

km

sin? (wpmt/2) . (9.27)

We see that the transition probability depends on the energy difference hwy,, as well as the matrix
element Ayg,,.

Consider the graph of sin?(Qt/2)/Q? as a function of Q for fixed ¢, as shown in figure 12 (Note
that the plot has an extra ¢ in the denominator.). The height of the central peak is ~ t? while its
width is ~ 1/¢, where we recall that ¢ is the time over which the perturbation acted. For large t,
|ak(t)|2 is only appreciable for states k whose energies obey

2r 21h
|wk'm‘ ‘Ek - Em| ’

t (9.28)

In other words, if At is the time for which the perturbation has been switched on and AFE the energy
difference between states which have an appreciable probability of a transition, then we require

AtAE ~ h. (9.29)
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t/4

=27 /t| 27/t

Figure 12: A plot of sin®(Qt/2)/Q%t as a function of Q for fixed ¢. Tt — 76()/2 as t — oco.

For small At, the central peak in figure 12 is broad and we can have appreciable probability of
a transition even between states with large AFE. However, if the constant perturbation has been
switched on for a long time, we will only obtain transitions to states |k) that are (very nearly)
degenerate with the original states |m). In fact, as t — oo, for Q # 0 we have

.2
. sin®(Qt/2) . 1
tliglo 02t - tlggo 02t 0, (9.30)
whilst ) /
sin”(Qt/2) ¢
o 1 (9:31)
which diverges if we then send ¢ — co. Furthermore, the integral of this function is
00 : 2
sin“(Qt/2) «
dQ) ———= = — .32
JIECES 2N (9.32)
independent of . This shows that we can replace
.2
. sin®(Qt/2) o«
i S = 390, (33
so that as t — oo, the transition probability behaves as
2w
jar ()] ~ = | (k[ Am)[* 6 (wpm ) (9.34)
We define the transition rate I'(m — k) by
T(m — k) = li 2| ®)° (9.35)
m = lim = la . .
In the case of a constant perturbation switched on at ¢ = 0, we thus have
2w 2
P(m — k) = = [(k|Alm)]" 6(Ek — ) , (9.36)

where we have written the argument of the §-function in terms of energies, pulling out a factor of A.
As claimed, for this constant perturbation we only have a non-zero transition rate to states which are
degenerate with our initial state.

9.4 Fermi’s Golden Rule

Just a small extension of the above gives us one of the most important cases of time dependent
perturbation theory. Suppose our perturbation takes the form

0 fort <0
At) = ) ) 9.37
®) {Ae_“’t + Afetwt fort >0, (937)
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where again A = A(X, P,...) is some time-independent operator. Thus, as before our Schrédinger
picture perturbation A(¢) is turned on at ¢ = 0, but thereafter it now oscillates with fixed frequency
w. Since A(t) appears as a term in the Hamiltonian, it must be Hermitian, so we’ve included both
an e’ and e term and without loss of generality we may take w > 0. We’ll see below that
these two terms are responsible for different physics. We call such perturbations monochromatic in
anticipation of the case that they describe an applied electromagnetic field, corresponding to light of
frequency w.

We'll again consider the case where our system is initially in the m" eigenstate of the unperturbed
Hy, so that a,(0) = 0,y,. Performing the time integral in (9.21) in this monochromatic case is again
trivial and yields

(k| A]m)

Tm
ak(t) = h(W}cm _w) <k‘A ’ >

(Whm—w)t :|
e 1|+ ———
Mwm + w)

[ei(ka+W>t - 1} . (9.38)

This is very similar to our result (9.26) for the constant perturbation, with the time-dependence of
the perturbation just causing wy,, to be replaced by wy,, +w. Consequently, we will obtain significant
transitions amplitudes only to states |m) for which Fy — E,, = hw, or else for which Ey — E,,, = —hw
to high accuracy. The first situation, where Ey > FE,, =~ hw corresponds to our system absorbing
energy from the perturbation, whilst the second is stimulated emission where the system is prompted
to release energy by the perturbation. In this way, the time dependent monochromatic perturbation
can be regarded as an enormous source and sink of energy that can be exchanged with the system.

In the case of absorption, the first term dominates at late times. Thus the probability that the
perturbation excites the system from |m) — |k) is

2
o AHAE o (o)

|ay(t)] E— 5 (9.39)

with Ey > E,,, correct to order |A|>. Replacing the late-time behaviour of |ay(t)|* by a é-function
as before shows that the transition rate is

lim 2 lar(t)]> = == |(k|Alm) > 6(E) — Ep, — hw) (9.40)

21
F(m%k)ftﬂooat E|
in the case that the system absorbs energy from the perturbation. In the opposite case that the
system loses energy back into the perturbation, we have Fy < E,, and the corresponding transition

rate is 9
T(m — k) = % (| Alk)[% 6(Ey — En, + hw) (9.41)

with an opposite sign in the d-function. These results were first obtained by Dirac. They proved to
be so useful in describing atomic transitions that Fermi dubbed them ‘golden rules’ The name stuck
and now (9.40) and (9.41) are known as Fermi’s golden rule.

On the one hand, we may be interested not in transitions to some specific final state |k), but
to any one of a range of continuum eigenstates of Hy. A typical example here would be transitions
between an initial bound state of an atom to any of the continuum of positive-energy (non-bound)
states. In these circumstances, we let n(FEy)dEy denote the number of states with energy in the
interval (Ey, E +dE)). The function n(Ey) — which needs to be calculated in each case — is known
as the density of states; note that it must have dimensions of 1/(energy) in order for n(E})d Ey to be a
number of states. The total transition probability from |m) is then [dE}j |ay )|* n(Ey), generalizing
the sum >, |ax (t)]* in the discrete case. In particular, in the case of absorption the total transition
rate from our initial eigenstate |m) is given by

/dEk D(m — k)n(Ey) = 2% /dEk (kI A 2 5(Ex — By — heo)n(Ey) (9.42)

2T
- [(EIAm)* n(Ew)| g, — g, 4o (9.43)
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to lowest non-trivial order in perturbation theory. We see that we always make transitions through
an energy of exactly fuw, with the density of states telling us how many states of energy E,, + hw
there actually are.

On the other hand, Fermi’s golden rule is also useful when our perturbation itself contains a
continuum of different frequencies, perhaps thought of as a Laplace or Fourier transform of some a
perturbation with generic time dependence. In this case, transitions between discrete bound states
are generally possible, because there will always be some perturbation at exactly the right frequency
W = Wgm = (Bx — En)/h, even though the right-hand side takes discrete values as k varies over
different bound states as the final state.

Let’s now consider an example of each of these two cases.

9.4.1 The Photoelectric Effect

First, we’ll use Fermi’s golden rule to calculate the rate at which an applied monochromatic
electromagnetic field can ionize an atom, say hydrogen, stripping off the electron from a bound
state into the continuum of ionized states. We’ll assume that the electromagnetic field itself may
be treated classically — this assumption is valid e.g. in a laser, or at the focus of the antenna of a
radio telescope where the field is large. Of course, if we wish perturbation theory to produce reliable
results, we’ll still need this applied electromagnetic field to be small compared to the Coulomb fields
binding the electron(s) to the nucleus of the atom.

In the vacuum, the electromagnetic field is divergence free and is entirely generated by Faraday’s
Law V x E = —9B/dt. The whole electromagnetic field can be described by a vector potential A via

10A

b=V xA d E=————. 9.44
X an Py ( )
In the monochromatic case, Faraday’s equation is solved by

A(x,t) = ecos(k’ - x — wt), (9.45)

where € is a constant vector describing the polarization of the wave and k' is the wavevector. (we
reserve k for later use.) From the vacuum Maxwell equation V - E = 0, we learn that

K -e=0, (9.46)

saying that the wave is transverse. Faraday’s law then reduces to the statement that w = ¢ ’k/‘ SO
that the wave travels at the speed of light.

The coupling of an elementary particle of charge ¢ to such a vector potential is given by the
minimal coupling rule, replacing
P— P —q¢A(X,t) (9.47)

in the Hamiltonian®®, so

q2A2
2u

(P —qA)? q
H=—"" X)=Hy——(P-A—A-P
o + V(X) 0 2u( )+

(9.48)

where Hy contains the original potential term V' (X) as well as the kinetic term. In our case of atomic
transitions, an electron has charge ¢ = e so to first order in e the perturbing Hamiltonian is
e

At) = o (P-ecos(k’ - X —wt) + cos(k’ - X —wt)e- P) . (9.49)

60This is called minimal coupling because more complicated modifications are possible if the charged particle is not
elementary, or in other more complicated circumstances. You’ll learn more about this in the Part II Classical Dynamics
and Applications of Quantum Mechanics.
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The component € - P of the momentum operator in the direction of the polarization of the
electromagnetic wave commutes with cos(k’ - X — wt) by the transversality condition (9.46) (recall
that € itself is a constant vector). Thus

At) = 5 cos(k' - X —wt)e- P

_ i(ei(k/_x_wt) + e—i(k/.x_wt))e .P. (9.50)

Having found the form of our perturbation, we now need calculate its matrix element between
our initial and final states. We’ll consider the case where the hydrogen atom is initially in its ground
state, so that m =|1,0,0) with position space wavefunction

1
Yo(x) = (x|1,0,0) = e/, (9.51)

Qg

where ag is the Bohr radius. For the final state, we are interested in the case where the electron has
been liberated from the proton. If the energy of the ejected electron is sufficiently great, we can ignore
its Coulomb attraction back to the ion and treat the final electron as a free particle of momentum
hk, so we take our final state |k) to be the plane-wave

Yi(x) = (x[k) = meik"‘. (9.52)

This transition requires that the electron absorbs energy from the radiation, so the matrix element
we seek comes from the first term of the perturbation Hamiltonian (9.50). We have

e
(klA1100) = - <k

oKX P’l, 0, 0>

ihe 1 . o
__1ne d3 —ik-x ik'-x _ | —r/ag ) 9.53
S G aT o CE 7 W) (9.53)

Integration by parts and using the fact that the bound state wavefunction decays exponentially as
|x| = oo, this is

eh e-k ;
k|A|1,0,0) = — dix e laxe=r/a0 9.54

WAIL00) = 3 ). 854
where q = k — k’ is the momentum transfer and we recall that the polarisation vector is transverse,
€ -k’ = 0. We're left with just the Fourier transform of the ground state wavefunction. Choosing
the z-axis to lie along the direction of q and working in polar coordinates, this is

. ) 4 0 i 8rald
/d?’xe_w“"e_’/a0 = i/ drre™"/% sin(gr) = #7 (9.55)
q Jo (1+age®)?

where ¢ = |q].

We now wish to use this matrix element in Fermi’s golden rule for the transition rate. Since
there are a range of possible final momenta, we define the differential rate I'| ¢ gy k to be the rate at
which the radiation ionizes an atom so that the momentum of the ejected electron lies in the range

h(k, k + k), so
2
dl)1,0,0)= k) = 5 [(k|A1,0,0) 6(Ey — E1g0 — hw)h*d’k

2rh? | (k| AJ1,0,0)* 6( By — Eio0 — hw) dQk2dk (9.56)

where d2 = sinfdfd¢. To relate this differential rate to our previous expression for the rate of
transition into states of particular energy, recall that we’re treating the final electron as a free particle,
so its energy is Fy = h*k? /2p. Thus we have

B\t
k2dk = k? (t;) dE), = (’;:) dE;,, (9.57)
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so for a free particle, the density of states n(Ey) = uk/h? = pu\/2uEy/h3. Putting all the pieces
together and integrating over the final state energy, the transition rate for electrons to be emitted
into the direction df2 of solid angle is

2

dlj0,0) -k _ 4e?(kag)? ‘e'k
dQ  mph (1+adg®)?’

where hik = /27 E}, is frozen to /27 (hw + F1g0) =~ /2phw.

(9.58)

9.4.2 Absorption and Stimulated Emission

Now let’s consider the case where instead of being illuminated by monochromatic light such as from
a laser, our atom is immersed in a bath of thermal radiation. This radiation bath supplies us with a
continuous range of different frequencies, so transitions between different (discrete) bound states of
the atom are now possible.

The problem simplifies if we assume that the typical electromagnetic wavelength 1/k" in the
thermal bath is much larger than the Bohr radius of the atom. This is a good approximation provided
the atomic transition occurs between states that are separated in energy by much less than auc?, as
will be the case for transitions between highly excited energy levels, perhaps by the valence electrons
in a heavy atom. Such wavelengths correspond to radiation with frequencies that are less than those
of soft X-rays. In this approximation, k' - X < 1 for all locations in the atom or molecule at which
there is significant probability of finding the electron. To lowest order, we can thus approximate the
electric field as being constant over the scale of the atom. The Hamiltonian for the atom is then

H=Hy+eY E(t)-X,, (9.59)

where Hj is the Hamiltonian of the unperturbed atom, E(t) is the fluctuating electric field due to
the radiation and X, is the position operator for the r** electron in the atom. This is known as the
dipole approzimation since the operator e ) X, represents the atom’s dipole moment. We interpret
the transition as occurring due to the interaction between the applied electric field and this dipole.

Whilst roughly constant over the atom, the electric field E(¢) fluctuates rapidly in time as the
atom is jostled by radiation of different frequencies in the thermal bath. In particular, on average
E(t) = 0 since the electric field is equally likely to point in any direction at any given moment. We
take E(t) to be correlated as

B0, () = 01y / duw P(w)e—@(ti—t2) (9.60)
R

The presence of §;; means that the fluctuation in different directions are uncorrelated, whilst
fluctuations that are aligned are correlated equally no matter their direction. This just says that
there is no preferred direction for the electric field and holds e.g. for a thermal bath of radiation.

We can understand the meaning of the function P(w) as follows. First, note that if the electric
fields are real, then we must have

P(—w) =P(w) and Pw)* =Pw) (9.61)

so that P is a real, even function. Recall from IB electromagnetism that the energy density of an
electromagnetic field is

%O(EQ (x,t) + B2(x, 1)) (9.62)

and in purely radiative (source-free) field E? = ¢?B?. In our case, (9.60) shows that the average
energy density we expect to find in the radiation at time ¢ is

€0Ei(t)Ei(t) = 360/

—00

oo

dw P(w) = 6o /0 " dwP(w) (9.63)
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s0 p(w) = 6€9P(w) represents the average energy density in radiation at energy time due to frequencies
in the range (w,w + dw). (If the radiation is truly thermal at temperature T, then p(w) would be
given by the Planck’s blackbody formula

s 1
PW) = 53 ThafheT 1

(9.64)

coming from the Bose—Einstein distribution. You’ll learn about this in the Statistical Physics course.)
Now let’s put these results to work. For a transition |m) — |k), we have

an(t) = —%e /0 At S (R[B() - X, |m) eint’ (9.65)

T

We write the probability that the atom is found in state |k) at time ¢t as a double integral

e2 t t )
lax ()] = ﬁ/o /0 dtydty Y (k[E(tr) - Xov [m) (m|E(tz) - X, |k) e (Br7F2). (9.66)

7.7,,,/

The correlation (9.60) in our thermal bath shows that, on average,

0 OF = 5 [ [t at BB 2] 3 (HICE)lm) (m (X, ) 1) et

r,r’

2 - o
- % > (kX m)| x / dw P(w)/ / dt, dt, el@em—w)(ti—t2)
T — 00 0 0
e ? 00 t _ 2
= ﬁ Z <k|Xr|m> X / dw 'P(w) / dt; el(wkm—w)tl
T — 00 0
2 02 (Wem—w)t
4e? 00 sin” | —F——
=37 Z <k|Xr|m>| X / dw ’P(w)(wg_w)Q) ’ (9.67)

where the mod-square includes the Euclidean inner product of the two (k|X,|m) matrix elements.
This form is again familiar, except that instead of a density of final states, we have P(w), representing
the average density p(w) of the frequency w component of the radiation. Making our familiar
placement, and performing the integral over w using the resulting d-function in the ¢ — oo limit,
we have the transition rate

7T62 2
T (jm) = [k)) = plwim) (9.68)

T 32 Z(klxr|m>

r

in the case that the states |m) and |k) are discrete but we have a continuous range of perturbing
frequencies.

This result is very intuitive: the rate of transition depends on the probability that the dipole
moment transition can link states |m) and |k), together with the energy density in the radiation bath
at the right frequency to match this transition. For hydrogenic states of the atom, we recall that the
matrix element vanishes unless the selection rules

[6—¢]=1 and |m-m/|<1 (9.69)

are obeyed. These selection rules were derived under the assumption that the transition is just due
to the dipole approximation where the perturbation involves matrix elements of the dipole moment
operator eX. The effects of both higher orders in perturbation theory, and inclusion of interactions
beyond those of an electric field with wavelength A >> ay mean that transitions that are ‘forbidden’
according to the above selection rules may in fact occur. They will typically do so, however, at a
much smaller rate.
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Now, whether or not the radiation bath is thermal, the reality conditions (9.61) show that the
rate I'(jm) — |k)) in (9.68) is an even function of wy,,. Consequently, for fixed |Ey, — E,,|, this rate is
the same whether Ey > F,, or Ey < E,,. For Ey, > E,,, the atom absorbs energy from the radiation,
exciting to a higher energy level, whilst if E}, < E,, the atom emits energy back into the radiation as
it decays to a lower energy state. The important result we’ve obtained is that the rate for stimulated
emission is the same as the rate of absorption.

9.4.3 Spontaneous Emission

Our treatment above calculated the rate at which an atom would decay (or excite) due to being
immersed in a bath of radiation. However, we currently cannot understand decays of an isolated
atom: if the atom is prepared in any eigenstate of Hy, quantum mechanics says that in the absence of
a perturbation it will just stay there. Remarkably, Einstein was able to relate the rate of spontaneous
decay of an atom to the rate of stimulated decay that we calculated above.

Suppose our atom is immersed in a bath of radiations where the energy density of photons with
frequency in the range (w + dw) is p(w)dw. Einstein defined A,, x(wmk) as the rate at which an
atom would spontaneously decay from a state of energy F,, to a state of lower energy Ej, where
Wik = (Em — Eg)/h is the frequency of the emitted photon. We let p(wgm)Bk—sm(wkm) denote
the rate at which energy is absorbed from the radiation bath, exciting the atom from |k) to |m).
Similarly, let p(wkm ) Bm—k(wkm) denote the rate of decay of the excited atom due to stimulation by
the presence of the radiation bath. We calculated B,,—,; and By, in the dipole approximation
above, finding they were the same, but let’s pretend that (like Einstein) we don’t know this yet.

In thermodynamic equilibrium these rates must balance, so if there are ny atoms in state |k) and
nm in state |m), we must have

nm(Am%k: (wmk) + p(wkm)Bmﬁk(wkm» = nkp(wkm)Bk—)m (wkm) . (97())

We will borrow two results you will derive in Part II Statistical Physics. First, when a gas of
atoms is in equilibrium at temperature 7', the relative numbers of atoms in states with energies E,,
and FEj is given by the Boltzmann distribution
e_Ek‘/kBT

Nk hwmi /ksT
= = g'“mk/FB 9.71
nm e*Em/k?BT ’ ( )

where kg ~ 1.38x10723 J K1 is the Boltzmann’s constant. Furthermore, if radiation is in equilibrium
at the same temperature then the density of states of photons at frequency w is

hw? 1
PW) = 55 /R 1 (9.72)
which is essentially the Bose—Einstein distribution. Using these in (9.70) gives
mg 1 W/ R
Am%k(w) = 203 ehw/kBT 1 (ef /kBTBk%m(w) - Bm%k(w)) ; (973)

where w = wy,_s;. However, A,,_ . is supposed to be the rate of spontaneous emission of radiation
from the atom, so it cannot depend on any properties of the radiation bath. In particular, it must be
independent of the temperature T. This is possible iff

Bkﬁm@.}) = Bm%k(w) , (974)
so that the rates of stimulated emission and absorption agree. In this case, we have

th
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so that knowing the rate By, |w) at which a classical electromagnetic wave of frequency w =
(E,, — Ey)/h is absorbed by an atom, we can also calculate the rate A, ;(w) at which the atom
spontaneously decays, even in the absence of radiation.

Now we have found from first-principle calculations that

2

D) = 1K) = 52 | D (KXo lm)

T

p(Wrm) (9.76)

in the dipole approximation, to first-order in perturbation theory. Consequently, for our atom
Einstein’s B coefficient is

2

2
e
Brsm(@em) = B (@im) = 3= Z (| Xr ) (9-77)
for stimulated emission or absorption. From Einstein’s statistical argument we thus learn that
e?w’ ’
Am = — k| X, 9.78
Sh(W) = 5 §Tj< X lm) (9.78)

is the rate at which an excited atom must spontaneously decay, even in the absence of any applied
radiation.

Ingenious though it is, there’s something puzzling about this calculation of the rate of spontaneous
decay. Where does our quantum mechanical calculation stating that isolated excited atoms do not
decay go wrong? The answer is that while we treated the energy levels of the atom fully quantum
mechanically, the electromagnetic field itself was treated classically. Spontaneous emission is only
possible once one also quantizes the electromagnetic field, since it is fluctuations in the zero-point
value of this field that allow the atom to emit a photon and decay; heuristically, the fluctuating value
of the quantum electromagnetic field — even in the vacuum — ‘tickles’ the excited atom prompting
the decay. Treating the EM field classically is appropriate if the radiation comes from a high intensity
laser, where the energy density of the field is so high that the terms B(w)p(w) dominate in (9.70). By
contrast, emission of light from the atoms in a humble candle is an inherently quantum phenomenon,
occurring purely by spontaneous emission once the flame is lit — candlelight shines even in ambient
darkness.

Einstein gave his statistical argument in 1916, when Bohr’s model of the atom (the first thing
you met in IB QM) was still the deepest understanding physicists had of quantum theory. This
was at the same time as he was revolutionising our understanding of gravity, space and time, which
obviously wasn’t enough to keep him fully occupied. The quantum treatment of stimulated emission
given in the previous section is due to Dirac in 1926, the same year as Schrédinger first published his
famous equation. A first principles calculation of the spontaneous emission rate A,,_x, requiring the
quantization of the electromagnetic field, was also given by Dirac just one year later. Things move
fast. Dirac’s 1927 results agreed with those we’ve found via Einsteins argument. The necessity also
to quantize the electromagnetic field heralded the arrival of Quantum Field Theory.

Let’s use these results to calculate the typical lifetime of an excited state of an isolated atom.
When the radiation density p(w) is very small, the number of atoms n,, in the excited state obeys

Ongy,

4((% = _Am—>knm (979)

so the atom decays exponentially with a characteristic timescale ~ A;ll_) - For hydrogen or an alkali

atom, typically the outermost electron changes its energy level in the transition, so we can drop the

sum in (9.78) to find
e2w3
Am—>k(w) =

= W |<k\X|m>|2 (9.80)
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where X is the position of the outermost electron. Unless (k|X|m) vanishes due to some selection

rule, we’d expect this matrix element to be of the typical size ag = 4megh?/pe? characteristic of the

atom, so |(k|X|m)|> ~ a2. Hence the characteristic lifetime of the excited atomic state is roughly
3meohc® 3ucd

=A' . ~ — = 9.81
g mok T e203a2 dhwdag (9.81)

where £ is the mass of the electron. Optical light has a frequency of order w ~ 10'® Hz so the
timescale 7 is around 107 times longer than the timescale Fsgo associated with the energy Fagp of
the first excited state of hydrogen. Thus around 107 oscillations of the hydrogen atom occur before
it radiates a photon, decaying down into the ground state.
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10 Interpreting Quantum Mechanics

In this final chapter, we will explore the process of measurement in quantum mechanics. According
to the Copenhagen interpretation, when we perform a measurement the state of the particle collapses
onto an eigenstate of the corresponding operator, with the probability of different results being
given by the Born rule (2.74). This entails a departure from the unitary (and hence deterministic)
time evolution of our system as described by Schrodinger’s equation. However, the Copenhagen
interpretation does not tell us exactly what physical process should count as a ‘measurement’: does
the observer need to be alive? to be human? to have taken PQM? Without such a prescription, how
can we know when it is appropriate to evolve our state as |1(t)) = U(t) |#(0)) and when instead it
should collapse?

A further problem with measurement is that the states we measure usually correspond to what
we consider to be ‘classically sensible’ quantities. This seems to imply that measurements involve a
preferred choice of basis for the system’s Hilbert space. To give a famous example, we are all familiar
with living cats and dead cats, but no-one has ever seen a cat that is simultaneously alive 4+ dead.
But why should quantum mechanics distinguish the basis

(10.1)

{Jalive)  [dead)} over { lalive) 4 |dead) |alive) — |dead) } ?

V2 ’ V2

In this chapter, we’ll examine these issues from the perspective of decoherence. The formalism
presented here is completely standard, and indeed decoherence is an important, well-established
property of any quantum system. However, the jury is still out on whether this finally resolves the
infamous problems with measurement in quantum mechanics.

10.1 The Density Operator

To get started, we must first realise that during a measurement, we cannot treat our quantum system
as being isolated. Any form of measurement requires that we bring the system under study into
contact with some form of measuring apparatus. Up to this point, we’ve assumed that we know the
precise quantum state our system is in. While this may be possible for a small, isolated quantum
system, we cannot possibly hope to know the exact quantum state of a macroscopic measuring device,
which may easily contain ~ 1023 atoms. Thus, to talk about measurements, we first need a way to
describe systems even when we’re not sure which state they’re in. In fact, even in purely classical
systems, there’s always some uncertainty in our knowledge of the system: we never actually know
the momentum of a single particle with infinite precision even in classical mechanics, because all our
measurements are subject to some experimental error.

Let’s now see how to incorporate such imprecision in our knowledge into quantum mechanics.
Suppose we know only that our system is in one of the states {|¢,)}, and that the probability it is
in state |ts) iS po. It’s important to be clear that we’re not saying

U) = V/pa [tha) (10.2)

because |¥) itself is a well-defined quantum state. Rather, we’re admitting that we don’t know the
true state of the system, which could be any of the states {|1))}. Indeed, these states do not need
to form a complete set, and do not even need to be orthogonal, although we will take them each to
be correctly normalized (1, |1),) = 1 for each a.

In this case, the average result we obtain when measuring the value of some observable @ is

@ = Zpoz <wa‘Q|wa> : (103)
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This expression combines the quantum expectation value of @ in the state |1,) (which may not be
an eigenstate of Q)), together with our lack of knowledge of the system’s state, represented by the
Pa’s. For future use, it’ll be convenient to describe this using a density operator p : H — H, defined
by

P = Zpa |¢a> <wa| ) (104)

where the p, are the probabilities introduced above. Then we can write the average (10.3) as

Q= tru(pQ). (10.5)

To see this, suppose {|¢n)} is a complete set of eigenstates of @, with eigenvalues {¢,}. Using {|g,)}
as a basis for # we have

n

= Patn [{@nla)* = Y pa (al Q) - (10.6)
The density operator has the following three properties: First, it is a Hermitian operator
ph=p, (10.7)
reflecting the fact that the probabilities p, must be real. Second,
try(p) =1 (10.8)
since the probabilities sum to one, and third,
(Wlply) =0 (10.9)

for all |¢)) € H since probabilities are non-negative. We often write this property as p > 0 for short.
In fact, these three properties can be taken to be the defining properties of a density operator, in
the sense that any operator obeying these three properties is the density operator for some system.
To see this, suppose the eigenvectors of p are |¢,.), with p|¢,.) = p, |¢,). Then since p = p! we have
pr € R. The remaining two properties tell us that ) p, = 1 and p, > 0. Any set of real numbers
pr obeying these conditions can be taken to be a probability distribution for some system. Note that
since the |¢,.) are eigenvectors of the Hermitian operator p, they’re necessarily orthogonal, in contrast
to the arbitrary set of states we used in (10.3).

If we have perfect knowledge of our system, meaning p = |¢) (¢| so that with probability 1 the
system is in state [¢), then we refer to it as pure. Correspondingly, if our knowledge of the state
is incomplete, so that p = > pa [¢a) (¥a| with more than one p, > 0, we say that the system
is in an impure or mized state. This terminology is somewhat misleading, because it is really just
our knowledge that is incomplete — the system itself is presumably in some perfectly well-defined
quantum state, it’s just that we don’t know which one.

The density operator and the operators for the Hamiltonian and other observables encapsulate
a complete, self-contained theory of quantum dynamics. If we have incomplete knowledge of the
system’s quantum state, then use of this formalism is mandatory. If we do happen to know that
our system is initially in the precise quantum state |¢), we can still use this apparatus by setting
p = |¥) (], rather than using time dependent Schrodinger’s equation, though in this case use of the
density operator is optional.

10.1.1 The Bloch Sphere

As a simple example, consider a single spin-3 particle with {[1),[|)} forming a basis of # = C%. If
we know for sure that the system is in the state [1), then

p= 1M . (10.10)
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However, if we think there’s only a % chance that the system is actually in state |1), with a % chance
it might actually be in the state [}, then

1 1 1
p=5 N+ 510 = 51n. (10.11)
In this case, the average value of the spin along an axis is try(pS) = 0 and we’ll see later that
having p proportional to the identity matrix means we’re maximally ignorant about the state of our
system. As a further example, let |1,) denote the eigenstate S, |T.) = % [12) of spin-up along the
z-axis. Then if we think there’s probability % our system is in state |1) and probability % it is in the
(non-orthogonal) state |1,), then

S
I

[0 1+ 5 1) {1l
10 €1+ 310 ) ()

e+ 5 10 {4+ 3 10+ 3 1 0 (10.12)

A= NN =

where we’ve used the result [1,) = %(\T) + [4)) (can be verified by acting S, = (S4+ + S-)/2). With
this density matrix, we find

reflecting the fact that we’re more likely to have spin up than down along both the x and z-axes, but
know nothing about the spin along the y-axis.

More generally, since any 2 X 2 Hermitian matrix can be written as a linear combination of the
identity matrix and the Pauli sigma matrices, we can write

b= %(1H+b-a) (10.14)

for some vector b, where we’ve used the fact that try (o) = 0 and the condition try p = 1 to fix the
overall factor. Since 1 = try p is the sum of its eigenvalues, at least one must be positive. The other
will also be non-negative as required for their interpretation as probabilities. This is true if

1
detp:Z(lfb-b)zo. (10.15)
Hence (10.14) is a well-defined density operator for our two-state system provided

b| <1. (10.16)

This condition is known as the Bloch Ball. Density matrices with [b| = 1 on the Bloch Sphere
correspond to pure states, where the system definitely has spin +7//2 along the b-axis. On the other
hand, states with |b| < 1 must have both eigenvalues strictly positive, so there is no way to write
such a density matrix as |Ty) [Tn) for any direction n. For both mixed and pure states, the direction
of b is said to define the polarization of the state: for any b # 0, measurements of the spin will be
preferentially aligned along b.

10.2 Entropy

For pure states, where p = |¢) (¢| for some [}, it is easy to see that
pt=p (10.17)

provided |¢) is normalised. If an impure density operator has p, = 0.99999999 for some particular
[ta), with the remaining probability spread in some way among other states, then although our
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knowledge of the system’s state is imperfect, the effects of the impurity are likely to be negligible.
On the other hand, if the density operator has p, < 10720 for every « so that a tremendous number

of states are equally probable, then our knowledge of the true quantum state of a system is very poor
indeed.

We'd like to have a way to quantify how much knowledge, or information, about a state we have
once the probability distribution {p;} has been specified. To achieve this, define the von Neumann
entropy S(p) associated to a density operator by

S(p) = —try(plnp). (10.18)
If {|¢.)} are the orthonormal eigenvectors of p with eigenvalues {p,} then we can write
Inp= Zln(pr) ‘¢r> <¢T| : (10'19)

Choosing any basis {|n)} for H, we thus have

—tru(plnp) = — Z <7’L (Z pr|dr) <¢r|> (Z In(py) |pr) <¢T’|> n>
== o) [(rm)[* == prInlp,) (10.20)

in terms of the eigenvalues of the density operator.

Since 0 < p, < 1, it’s easy to see from the form (10.20) that S(p) > 0 with S(p) = 0 if and only
if p describes a pure state, where only one of the p,’s is non-zero (and hence equal to 1) as we have
complete certainty about which state our system is in. We also claim that the maximum value of

S(p) is attained iff
1

= mx:.il
P = Pma dim(H) H

for a finite dimensional Hilbert space. When p = pp.x all states are equally likely — meaning we have
no idea about which state our system is actually in. To see that this indeed maximises the entropy,
use the method of Lagrange multipliers to impose the constraint try (p) = 1 and vary

S(p) = Atra(p) = 1) (10.22)

with respect to the probabilities and Lagrange multiplier A\. At an extremum,

(10.21)

0= 0(\)(tralp) = 1). (10.23)

In the first line, we’ve used the fact that tr(pp~16p) = tr(pdpp~!) inside the trace, so that the order
of the variation in the logarithm doesn’t matter. These equations must hold for arbitrary variations
dp and A, so the first tells us that

{ 0= —try[dplnp+ pp~6p + \op)

p=ce "1y (10.24)

for some constant e"*~!. Taking the trace, the second equation fixes the constant of proportionality
so that

1
= Pmax = 7. 1 10.25
p=0p Tm(70) (10.25)
as claimed. The corresponding maximum entropy is
S(pmax) = - tr’H (pmax In pmax)
tryg (1
- —M In(dim(#)~?) = Indim(H) . (10.26)

Because it was defined as a trace, S(p) doesn’t depend on which basis we use to describe our Hilbert
space.
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10.2.1 The Gibbs Distribution

One of the main uses of the density operator and von Neumann entropy is in Quantum Statistical
Mechanics. As an example, suppose we wish to extremise the entropy subject to both try(p) = 1
and try(pH) = U, saying that we know our system has a fixed average energy U. Then using two
Lagrange multipliers A and /3, at an extremum we have

0= 3[S(p) = Altx(p) — 1) — Bltx(pH) — U)], (10.27)
which gives three conditions

0= —try[dp(lnp+ 1+ SH + N)]
0=0dA(try(p) — 1) (10.28)
0 = 68(trw (pH) — U).

Since these must hold for arbitrary variations, the first equation gives
p=e P21 (10.29)

at a maximum of S(p) with fixed energy. The other two conditions just enforce our constraints: to
ensure try (p) = 1 we must set e*T! = Z(3) where the constant

Z(B) = tra(e ") (10.30)

is known as the partition function of our system. Thus, in a state of maximum entropy for fixed
average energy, the density operator takes the form

1

LTS N o 78

where in the final expression we have inserted a complete set of H eigenstates. This form of density
operator is known as the Gibbs distribution. It plays a fundamental role in quantum statistical
mechanics. [ is usually denoted 1/kgT where T is called the temperature and kp the Boltzmann
constant. For fixed average energy U of the system, the temperature is determined by the constraint
try(pH) = U. In other words, the temperature T is determined by the average energy of the system.
You’ll work much more with the density operator and entropy in Part II Statistical Physics.

10.3 Reduced Density Operators

If our system comprises two (or more) identifiable subsystems A and B, then H = H 4 ® Hp so the
full Hilbert space is the tensor product of the Hilbert spaces of the subsystems. Recall that a state
|U) € Ha ® Hp is called entangled if it cannot be written as a single product |¢) & |¢) of states
|¢) € Ha and |¢) € Hp.

We'll suppose A describes the system we’re really interested in, whilst B is the ‘environment’.
That is, B describes the quantum state of everything in the Universe except our immediate object of
study A. Of course, we can’t hope to know the precise quantum state of B.

We're going to be interested in the average value we obtain for measurements of a quantity @
that is an observable purely of A, represented on the full Hilbert space by @) ® 15, when the whole
Universe is described by a density operator pap. We have

Q =try,0mns(Q®1p)pan) = tru, (Qp,) (10.32)

where we’ve used the fact that the traces can be performed independently. The second equality
introduces the reduced density operator pa of subsystem A, defined by

pa = tru,(pas), (10.33)
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taking the traces only over subsystem B.

The reduced density operator enables us to obtain expectation values of subsystem A’s observables
without bothering about the states of B. For example, suppose an atom is situated in a low-intensity
radiation field. Every so often, a photon comes along. This photon may scatter off the atom, or be
absorbed by the atom into an excited state which subsequently decays re-emitting the photon, or may
even cause the atom to be temporarily ionized. If we wish to keep track of the whole system, then
as more and more photons interact with the atom, we’d need to use a larger and larger Hilbert space
encompassing further and further tensor products of the Hilbert spaces of individual photons. This
is inconvenient, to say the least. However, if we're only really interested in the state of the atom, it’s
enough to keep track of the atoms reduced density operator, which refers solely to the Hilbert space
of the atom.

10.4 Decoherence

We now show a very important result. Suppose the Universe itself is in a pure quantum state, so
that pap = |¥) (¥| for some state |¥) written as

W) = capla)|B) (10.34)
o,

in terms of the orthonormal bases {|a)} for A and {|3)} for B. Then the reduced density matrix p
is

pa =11, (pan) =ty | D Capch g la)|8) (| (B
a,a’ 8,6

= Cola)(d'] (10.35)

where now

Ca,a’ = Z Ca,BcZ’”@ . (1036)
B

If the original state |¥) was simple, so that the ¢, g are non-zero only for a single value of 3, for
which ¢, 8 = ¢q, then Cy o = cqcl, with no sum. Then (10.35) is a pure density operator for the state
|¢) = >, Cala). However, if |¥) is a more general, entangled state then the sum in (10.36) means
that p4 is the density operator for a mixed state.

For example, suppose our Universe consists of just two spin—% particles, prepared in the pure but
entangled state

1
) = NG () = 1) (10.37)
where [1]) = 1) |}) ete. The associated density operator is
pap = [¢) (Y]
= % (I4) L ) QAT = 110 (U] = 1) (D) - (10.38)

Tracing over the second spin gives the reduced density operator

1 1
pa = trag(pan) = 5 () (11 +14) () = 5190, (10.39)
which is mixed, and the state of maximum entropy.

Although we won’t prove here, the von Neumann entropy obeys

S(pag) < S(pa) +S(pB) . (10.40)
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where p4 and pp are the reduced density matrices for the two subsystems. The equality is saturated if
and only if the two subsystems are uncorrelated (unentangled) so that pap = pa ® pp. This property
is known as subadditivity and it tells us that the entropy of a whole is no greater than the sum of
entropies of its parts. It follows from subadditivity that if H = Ha ® Hp ® Hc then

S(pasc) < S(pa) +S(psc) < S(pa) + S(ps) + S(pc) - (10.41)
In fact, something stronger is true: we have
S(pasc) + S(pp) < S(pas) + S(psc), (10.42)

which is known as strong subadditivity and was proved in 1973 by Elliott Lieb and Mary Beth Ruskai.
To interpret it, we consider AB and BC' are each subsystems of ABC, with ABN BC = B. Strong
subadditivity states that the entropy of the whole is no greater than the entropies of the overlapping
subsystems AB and BC, even when the entropy of the overlap B is removed.

10.4.1 Time Evolution of Density Operators and Reduced Density Operators

In the Schrodinger’s picture, states evolve in time according to

[9(8) = U(#)[%o) , (10.43)

where U(t) = e #t/" in the case that the Hamiltonian itself is time-independent. This implies that
the density operator evolves, like any other operator, as

plt) = UDpO)U(8), (10.44)

or
0P = U(0)(Hp(0) — p(0)H)U (1) = [H, p(1) (10.45)
infinitesimally. This is the quantum analogue of Liouville’s equation % = {H,p} in Classical

Dynamics, which governs the time evolution of a probability density on phase space. In particular, if
the density operator can be written purely in terms of the Hamiltonian then it is time independent.
The Gibbs ensemble we obtained above is a good example.

To obtain the time evolution of an arbitrary expectation value (of a quantity that has no explicit
time dependence in the Schrédinger picture) we use (10.45) to find

ih% try (pQ) = try([H, pQ) = try(pQ, H]) , (10.46)

where the last equality uses the cyclicity of the trace. We know from before that the rate of change of
the expectation value of @) in any pure quantum state is given by the expectation value of [Q, H]/ih.
Equation (10.46) states that — even when our knowledge of the quantum state is imprecise — the
expected rate of change of @ is the appropriately weighted average of the rates of change of @ for
each of the possible states of the system.

Let’s now consider how the reduced density operator evolves. Suppose that at ¢ = 0 both A and
B are in pure quantum states |¢) and |x), respectively. Initially then,

paB(0) = [Wo) (Yo (10.47)

where
[Wo) = [8) [x) (10.48)

so that the two systems are unentangled. The whole system will evolve unitarily in time via the
operator Uap(t) built from the Hamiltonian of the full system. This means that the reduced density
operator for system A evolves as

pa(t) = tra, (Uan () [Wo) (Vo Uzh (1) = 3 (BIUAR (1) Wo) (Wo|Uzh(1)]6) . (10.49)
B
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where we’re using the orthonormal basis {|3)} of Hp to perform the trace.
We are motivated to define operators Mg(t) : Ha — Ha by

Mpg(t) = (BlUap(t)|x) = tra; (Uas(t) [x) (B]) - (10.50)

This is indeed a operator H 4 — H 4 since we've used the time-evolution operator Uag () for H4aQ@Hp
and contracted only the Hp. Since Uap(t) is unitary, the Mg(t)’s obey a completeness relation

Do Mi6Ms(t) =Y ([T 0]8) (BIUABD)X) = L, (10.51)
8 8

provided that |x) was properly normalised. Putting all these together,

pa(t) = Mg(t)pa(0)M](t) (10.52)
7

is the evolution of the reduced density matrix.

In the exceptional case that the full Hamiltonian does not couple A and B, so that H = Ha ®
1y + 19y, ® Hp and UAB(t) = UA(t) ® UB(t), we have

Mpg(t) = (BIUs(t)|x) Ua(t). (10.53)
The completeness relation then shows that
pa = Ua(t)pa(OU5(¢). (10.54)

Thus, if A starts in a pure state and it does not interact with the environment then it will remain in
a pure state. However, in every realistic case, subsystems are coupled to each other, however weak
— there is some term Hsp in the Hamiltonian that is not diagonal with respect to the splitting
H, ® Hg. In the presence of an interaction term H 4 g, the time evolution operator is not generically
a product of the time evolution operators of the two subsystems, and states of A and B will typically
become entangled, leading to p(t) describing a mixed state at some later time ¢.

In general, interactions between an experimental system and the wider environment mean that
the state of the whole Universe rapidly becomes entangled. Since we don’t keep track of all the details
of the environment, sooner or later we’re obliged to describe our experimental system by its reduced
density operator, which will be impure. The tendency for subsystems to evolve from pure quantum
states to impure states through interactions with the environment is known as quantum decoherence.
Trying to isolate a system from the environment so as to prevent it from becoming impure is one of
the main challenges to be overcome in building a practical quantum computer.

10.4.2 Decoherence and Measurement

We're at last ready to explore what all this has to do with measurements in quantum mechanics.

Let’s suppose our system A consists of a single qubit, either [1) or ||). To keep things simple,
we’ll imagine the environment (or measuring apparatus) has only three possible states, |0) , |1) and
|2). An ideal measurement will change the state of the measuring apparatus without affecting the
system A under study. Let’s suppose the measurement process is described via evolution by a unitary
operator U, representing the usual evolution of the system and apparatus by a coupled Hamiltonian.
We suppose our apparatus is designed in such a way that U is defined by®!

Ulin @10) =1 (V1 -pl0) + vp[1))
U @10) = 1) (V1 =p[0) +vp[2)

61By assigning appropriate values to U acting on |1) and |2), this U can indeed be completed to a unitary operator.
This is left as an exercise.

(10.55)
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In other words, the apparatus starts in the ‘quiescent’ state |0). When we bring it into contact with
our system A, the apparatus changes its state with probability p, becoming |1) if A is in [1), or |2) if
Ais in |}). The apparatus is not perfectly efficient, so stays in the quiescent state with probability
1 — p. Now let’s suppose the system A is initially described by some density matrix

_ (Pt pP1L
pa = . 10.56
(PH pu) ( )

For this evolution, we have

My = (0[U]0) = /T~ pla,
M, = (1U0) = VB 1) (1] (10.57)
My = 2U10) = B 14} (U]

and these indeed obey > 3 M gMg = 14 ,. Contact with our measuring apparatus thus causes pa to

evolve as
s = (PM PN) R ( Pt (1 —p)PN> , (10.58)
pit PLL (1—=p)py+ PLL

suppressing the off-diagonal components. These off-diagonal components encode possible superposi-
tions between |1) and ||}, so as our system becomes entangled with the measuring apparatus, we'’re
less likely to find it in such a superposition.

Let’s go further and look at successive evolution. The probability the apparatus changed away
from the quiescent state during one measurement period was p, so if we suppose this measurement
took a short time 0t, then we can define a rate I' = p/dt. After a total time ¢t = N§t, the off diagonal
terms will thus be suppressed by

1-p)N = (1 - r]ltv)N ~e ! (10.59)

for large N. In particular, if we prepare A to be in the superposition

) =alt) +bll) . (10.60)

where |a|® 4 [b]> = 1, then eventually, the density matrix will become

2 * —I't 2
lim pa(t) = lim < |“|7Ft abre > = (C" 0 > . (10.61)

t—00 t—oo \ a*be |b‘2 0 |b|2
This is sometimes called phase damping, because the late time density matrix only has real entries.

Now we come to the punchline. What exactly was it that made our measurement cause A to evolve
into either |1) or |}), but not a superposition? Clearly, this must have had something to do with our
choice of U in (10.55). To get an idea, let’s imagine the two state system A actually corresponds to a
dust particle which can sit either at xg or x1. The measuring apparatus may be a photon which, with
probability p, can scatter into a different direction, depending on where the dust is located. The fact
that U is defined with respect to the preferred basis [1) = |zo) and [|) = |z1) then corresponds to the
fact that the interactions are local: The interactions we can describe between the dust and photons
will be built out of operators such as Xgyust, 80 decoherence will take place in the basis {|xo) , |z1)}
where the dust particle has a definite location, rather than the (|zo) & |z1))/v/2 basis.

Locality of interactions is one of the key features of all physical laws, and has deep rooted origins
in quantum field theory. Combined with decoherence, many physicists believe®? that this explains
why we see cats either in the state alive or the state dead, but never (|alive) + |dead))/v/2.

62The matter is still not fully resolved. The leading proponents of the ‘measurement=decoherence’ paradigm are
H.D. Zeh and W.Zurek, see for example Zurek, W., Quantum Darwinism, Nature Physics 5(3), 181 (2009) for a review.
Prominent opponents include R. Kastner, see e.g. Kastner, R., Stud. Hist. Phil. Science B48 56 (2014).
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10.5 Quantum Mechanics or Hidden Variables

Einstein was never happy with the probabilistic nature of quantum mechanics. He, Podolsky and
Rosen devised a thought experiment that they hoped would show quantum mechanics was incomplete
as a theory of Nature.

In the EPR thought experiment, an electron and a positron® are produced in a state with net
spin 0, perhaps by the decay of some nucleus from a spin-0 excited state to a lower spin-0 state. The
electron and positron travel in opposite directions, each carrying the same amount of momentum. At
some distance from the decaying nucleus Alice detects the electron and measures the component of its
spin in a direction a of her choice. Since electrons have spin—%, Alice inevitably discovers either +7/2
or —hi/2. Meanwhile Bob, who is sitting at a similar distance on the opposite side of the nucleus,
detects the positron and measures its spin in some direction b of his choice.

We're free to choose the z-axis to be aligned with Alice’s direction a. Since the electron positron
system has combined spin zero, it must be in the state

1
V2

that entangles the separate spins of the electron and positron. We’ll call this the EPR state. According
to the Copenhagen interpretation, when Alice measures +h/2 for the electron spin, the system
collapses into the state

[EPR) = —=(I1) 1) — 1) 1) (10.62)

W) =11 - (10.63)

Thus, whilst before Alice’s measurement the amplitude for the positron to have spin +7%/2 along a
was 1/2; after she has measured the electron spin, there is no chance that the positron also has spin
up along the same axis.

The state of the positron corresponding to definitely having spin +%/2 along the b-axis is

v =eos (5 ) /2 1) sin (5 ) /21 (10.64)

as we found in the second example sheet, where § = cos~!(a-b) and ¢ is the azimuthal angle around
z = a. Given that after Alice’s measurement the positron is certainly in state ||), it follows that the
probability Bob measures spin up along b is

(el =sin® (3) (10,65

In particular, there is only a small probability he will find spin-up along a direction closely aligned
with Alice’s choice a.

We'’ve supposed that Alice measures first, but if the electron and positron are far apart when the
measurements are made, a light signal sent to Bob by Alice when she makes her measurement would
not have arrived at Bob by the time he makes his measurement, and vice versa. In these circumstances,
relativity tells us that the order in which the measurements appear to be made depend on the velocity
of the observer who is judging the matter. Consequently, for consistency the predictions of quantum
mechanics must be independent of who is supposed to make the first measurement and thus collapse
the state. This condition is satisfied by the above discussion, since the final probability depends only
on a - b and is thus symmetric between Alice and Bob.

What bothered EPR is that after Alice’s measurement there is a direction a along which Bob can
never find +7%/2 for the positron’s spin, and this direction depends on what exactly Alice chooses to

63Here we’ll describe a slightly sharper version of EPR’s original thought experiment, due to Bohm. The positron is
the antiparticle of the electron, predicted in the relativistic theory by Dirac’s equation. It has the same mass and spin
as an electron, but opposite sign electric charge.
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measure. This fact seems to imply that the positron somehow ‘knows’ what Alice measured for the
electron, and the collapse of the entangled wavefunction

€
V2

apparently confirms this suspicion. Since relativity forbids news of Alice’s work on the electron from
influencing the positron at the time of Bob’s measurement, EPR argued that the required information
must have travelled out in the form of a hidden variable which was correlated at the time of the nuclear
decay with a matching hidden variable in the electron. These hidden variables would then explain
the probabilistic nature of quantum mechanics — QM would contain no uncertainties once replaced
by a ‘better’ theory taking into account these hidden variables.

M=) — M (10.66)

10.5.1 Bell’s Inequality

Remarkably, Bell was able to show that the predictions of any theory of hidden variables are in
conflict with the predictions of quantum mechanics.

Suppose we assume that the result of measuring the electrons spin in the a-direction is completely
determined by the values taken by hidden variables in addition to a. We suppose there are n such
hidden variables, so that the result of measuring the electrons spin is a function

Se 1 R? x R" — {—Z+Z} (10.67)

that returns either +A/2 or —h/2, depending only on the direction a € R? along which we measure
the spin and the values v € R™ of the hidden variables carried by the electron. In other words, if Alice
knew the value of the hidden variable v € R™, we could predict with certainty the result of measuring
the component of the electrons spin along any direction a. Alice is only uncertain of the outcome
because she does not know the values of the hidden variables. Similarly, the result of measuring the
positron’s spin along b is some function s, (b, v). We have

se(a,v) + sp(a,v) =0 (10.68)
by the conservation of momentum.
Let’s suppose that v has a probability distribution p(v), such that the probability d P that v lies

in the infinitesimal volume d™v is

dP = p(v)d*v. (10.69)

We are interested in the expectation value
(5., )sy(b.v)) = [ 4"V p()se (@ v)sy(b,v)
= —/d"vp(v)se(a7 v)se(b,v). (10.70)

Now suppose Bob sometimes measures the spin of the positron parallel to b’ rather than b. The fact
2
that s,(b,v)? = L allows us to write

(se(a,v)sp(b,v)) — (se(a, v)sp(b',v)) = —/d"VP(V)Se(& V) [sp(b,v) = sp(b’,v)]

_ —/d”vp(v)se(a, V)so(b,v) [1— ;se(b,v)se(b',v)]
(10.71)
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The expression [1—4s. (b, v)s.(b’, v)/h?] is non-negative, while the product s.(a, v)s.(b, v) fluctuates
between 442 /4. Hence we obtain the bound

|<se(a, v)sp(b,v)) — <Se(a, v)sp(b’7 v)>‘

IN

h? n 4 p
Z/d vp(v)|1l-— ﬁse(b,v)se(b ,V)
h2

=7 (se(b,v)s,(b',v)) . (10.72)

This is Bell’s inequality. It must hold for any three unit vectors a, b and b’ if the probabilistic nature
of QM really comes from some underlying hidden variables.

We now show that quantum mechanics itself violates Bell’s inequality. To do this, we must treat
the spins as operators and compute their expectation values in some state, and we’ll choose the EPR
state (10.62). Because |[EPR) has total spin zero, it obeys

(Se®1,+1,®8,)|EPR) =0 (10.73)

so that we always find the spin of the electron and positron to be anti-aligned whenever we measure
them along any one given axis, no matter in which direction this is. In particular, this allows us to
write

(a-Sc®@1p)(le®@b-Sp) =—(a-Sc@1p)(b-Sc @ 1p)
=—(a*S;b-S.)®1, (10.74)

when acting on |EPR). For any single spin—% particle, the spin operator obeys

K2 ih
a-Seb-Se:Za-b—l—g(axb)-S. (10.75)
Therefore
K2 ih
(a+Scb+Sy)ppr = —Za b — 5(&1 X b) - (Se)ppr - (10.76)

Finally, we note that the expectation value of the electrons spin
(Se®1,)EPR =0 (10.77)

along any axis. This is clear for the z-axis, but since [EPR) has no preferred direction it must be true
of the other directions also. Thus we find that the EPR state obeys

2
(a-S.®b-Sy)ppp = —%a ‘b (10.78)

for any two directions a and b. Using this correlation in either side of Bell’s inequality we find

2 2
LHS = % la-(b—b")| whereas RHS = %(1 ~b-b). (10.79)

In particular, suppose a and b are unit vectors, with a+-b = 0 and b’ = bcosa + asina. Then we

find
2

K2 h
LHS = vy |[sina] whereas RHS = Z(l —cosa), (10.80)

and it is easy to see that Bell’s inequality is violated for 0 < a < 7/2. The predictions of quantum
mechanics are thus inconsistent with the existence of hidden variables.

10.5.2 The CHSH Inequality

There’s a slightly simpler context in which we can see the essentials of the conflict between quantum
probability and hidden variables theories, discovered by Clauser, Horne, Shimony and Holt.
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Suppose Alice and Bob are each sent a two-state system as in the EPR experiment. Alice chooses
to measure one of two possible observables, either A; or A,. Similarly, Bob can choose to measure
either By or By. To keep things simple, let’s assume that there are only two possible outcomes, +1
and —1, for the result when measuring any of the four quantities A; or B;. We’'ll require that

[Ai, Bj] =0 (10.81)

for ©+ = 1,2 so that the measurement Alice makes does not interfere with the one made by Bob.
However, we do not require that either [41, A3] =0 or [By, Bz] = 0.

Now consider the observable
C= (A1 +A2)B; + (A1 — A3)Bs. (10.82)

In a hidden variable theory, the outcomes of measuring the A; or B; would be entirely determined
by the value v of some hidden variables carried by the state, so we’d have functions

ai,b; : R" — {+1, —1}. (1083)

The average value of C' in a hidden variable theory is
(C) = / d"vp(v) ([a1(v) + a2(v)]b1 (v) + [a1(v) — az(v)]ba(v)) | (10.84)

where again p(v) is the probability density for the hidden variables. Since each a;(v) can take only
the values +1, either v is such that the outcomes of A; and As are different, in which case

a1(v) +az(v) =0 while ai(v) —as(v) =42, (10.85)
or else the value of v ensures that the outcomes of A; and A, are the same, so that
a1(v) +az(v) ==£2 while a3(v) —az(v)=0. (10.86)

Thus, whatever the value of v, only one of the two terms in the integral (10.84) can be non-zero.
Multiplying the non-zero term by b;(v) at most changes its sign, so we always have

[a1 (V) 4+ az(v)]b1(V) + [a1(V) — az(V)]ba(v) = £2 (10.87)
fluctuating as v moves around. Consequently, we can bound the average by

-2</(C) <2. (10.88)

This is known as the CHSH inequality and it’s obeyed in any hidden variables theory.

Now let’s look at the same observable in quantum theory. Since the eigenvalues of A; and B; are
just £1, we have A7 =1 and B? = 1. Consequently one finds
C? = (A1 + B1)?B} + (A1 — A2)?B3 + (A1 + A2)(A1 — A2)B1Ba + (A1 — A2)(Aq + A2)BaBy
=4 — A1A2B1B2 + AQAlBlBQ — AlAQBQBl + AQAlBQBl
=4 — [A1, A5][By, Ba], (10.89)

where the first equality uses our assumption [A4;, B;] = 0. We have that
(A1, As])] < (A1 Ao)] + {4z, Ar)| <2, (10.90)

with the final bound again coming since the eigenvalues of A; are just £1. Thus we have <C’2> <8

in quantum theory. Finally, since <C>2 < <C’2> for any Hermitian operator, we obtain the Cirel’son
bound

—2V2 < (0) < 2V/2 (10.91)
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in quantum theory. This shows that quantum theory permits a wider range of values for C' than
allowed by the CHSH bound (10.88) for hidden variable theories.

Again, it’s straightforward to show that the EPR state saturate the Cirel’son inequality. Recall
from that
<d-ae®f3-crp> ——a-b=—cosf (10.92)
EPR
for any two unit vectors. (We're using the Pauli matrices rather than spins S = ho /2 to ensure the
eigenvalues are 1 as in the CHSH and Cirel’son bounds.) To apply this to the Cirel’son case, let A;
be the Pauli matrices for the electron and B; those for the positron and choose Az, By, A1, B to all
lie in (say) the xz-plane at angles 0, w/4, /2 and 37/4 to the z-axis, respectively. Then

1

A1B1) = (A1Bs) = (AsB1) = —— 10.93
(A1B1) = (A1B2) = (A2 By) 7 ( )

for the EPR state, while

1
AsBg) = +—. 10.94
(A2Bs) 7 (10.94)
Consequently, we have

(C)ppr = —2V2, (10.95)

saturating the Cirel’son bound.

Impressively, this inequality has actually been tested experimentally by Aspect et al., following
the suggestion of Clauser et al.5 In the experiment, two photons are emitted from successive decays
of excited states of calcium. The first comes from the decay of a parity-even state with j = 0 to
a short-lived parity-odd state with j = 1, while the second photon comes from the decay of this
short-lived state to a further parity-even state of j = 0 (of lower energy than the initial state).
The photons are directed into a combination of polarizers and photomultipliers which read out +1
according to whether the photons are found to be linearly polarized along some directions a and b.
The experiment found

‘(C>expt = 2.697 £ 0.0515. (10.96)
This is slightly less than the idealised result (C)ppr = 2v/2 &~ 2.828, with most of the disagreement
coming because the polarizers used in the experiment were not perfectly efficient. When the efficiency
of the polarizers is taken into account, Aspect’s result is in good agreement with what was predicted
by quantum mechanics, and in clear violation of the CHSH bound for hidden variable theories.

In the final problem set, you’ll explore an even more striking conflict between the predictions of
Quantum Mechanics and classical hidden variables by considering entanglement between three qubits
rather than two.

64See Freedman, S. & Clauser, J., Experimental Test of Local Hidden Variable Theories, Phys. Rev. Lett.
28, 938 (1972) and Aspect, A. & Roger, G. Ezperimental Realization of the FEinstein—Podolsky—Rosen—Bohm
Gedankenexperiment: A New Violation of Bells Inequalities, Phys. Rev. Lett. 49, 91 (1982). An earlier version
of the experiment was performed by Kocher, C. and Commins, E. Phys. Rev. Lett. 18, 575 (1979).
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