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1 Partition Function RPMD and Matsubara Dynamics

1 Partition Function

For a quantum system of Hamiltonian

Ĥ = T̂ + V̂ =
p̂2

2m
+ V (q) , (1.1)

we are often interested in the partition function

Z =
∑
|k⟩

e−βEk

=
∑
|k⟩

e−β〈k|Ĥ|k〉 , (1.2)

where {|k〉} are the energy eigenstates. Defining the exponential of an operator via power series, one
can write

Z =
∑
|k⟩

〈
k
∣∣∣e−βĤ

∣∣∣k〉 = tr e−βĤ , (1.3)

assuming convergence.

Since the Hamiltonian commutes with itself, one can show, by Taylor expansion, that

e−βĤ =
[
e−

β
N Ĥ
]N

(1.4)

We will take the N → ∞ limit of the above decomposition, which is known as the Trotter splitting,
to write

Z = tr

[
lim

N→∞

(
e−

β
N Ĥ
)N]

. (1.5)

The trace has the nice property that it is independent of the basis that we evaluate it in. We now
expand the trace in the position basis {|q1〉}, giving

Z = lim
N→∞

ˆ
dq1

〈
q1

∣∣∣∣[e− β
N Ĥ
]N ∣∣∣∣q1〉 . (1.6)

We have the freedom to insert identity operators

1 =

ˆ
dqi |qi〉 〈qi| (1.7)

anywhere we want. We can insert N − 1 of them, each sandwiched between two of the N exponential
operators, giving

Z = lim
N→∞

ˆ
dq1 . . . dqN

〈
q1

∣∣∣e− β
N Ĥ
∣∣∣q2〉〈q2∣∣∣e− β

N Ĥ
∣∣∣q3〉 . . .〈qN ∣∣∣e− β

N Ĥ
∣∣∣q1〉 . (1.8)

Now we have N identical-looking matrix elements in the integrand, each looks like

Mi =
〈
qi

∣∣∣e−βN Ĥ
∣∣∣qi+1

〉
, (1.9)

where we have identified q1 ≡ qN+1 and denoted βN := β/N . We would like to evaluate this matrix
element, but the Hamiltonian in the exponent will cause us some trouble, since it is made of two
operators, Ĥ = T̂ + V̂ , which does not commute. To proceed, we need the following result from Lie
algebra.
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1 Partition Function RPMD and Matsubara Dynamics

Lemma 1.1 (Baker–Campbell–Hausdorff formula). For possibly non-commutative X and Y
in the Lie algebra of a Lie group,

eXeY = eZ , (1.10)

where Z is given by

Z = X + Y +
1

2
[X,Y ] +

1

12
([X, [X,Y ]] + [Y, [Y,X]]) + . . . , (1.11)

in which [−,−] is the commutator.

This simply states that once X and Y are non-commuting, we no longer have eXeY = eX+Y —
otherwise this would be the same as eY eX and the non-commutativity will be broken. Instead, we
will have some terms related to the commutators of X and Y introduced into the exponent.

This means that if we break βN Ĥ = βN T̂ + βN V̂ , this will lead to an error term 1
2 [βN T̂ , βN V̂ ] +

· · · = O(N−2). We have N such terms, so the global error is O(N−1), which vanishes in the N →∞
limit.

However, we can do better than that. We can symmetrically break the Hamiltonian to

Mi '
〈
qi

∣∣∣e−βN V̂ /2e−βN T̂ e−βN V̂ /2
∣∣∣qi+1

〉
. (1.12)

By Baker–Campbell–Hausdorff formula, this symmetric decomposition will only introduce a O(N−3)
error in each term due to cancellation of O(N−2) terms, leading to a O(N−2) error globally in Z.
There are no difference in the above two splitting schemes as N → ∞ as both errors converges to
zero, but the error in symmetric splitting is smaller when N is finite.

Since {|qi〉} is an eigenbasis of V̂

Mi '
〈
qi

∣∣∣e−βN V̂ /2e−βN T̂ e−βN V̂ /2
∣∣∣qi+1

〉
= e−βNV (qi)/2

〈
qi

∣∣∣e−βN T̂
∣∣∣qi+1

〉
e−βNV (qi+1)/2 . (1.13)

To evaluate the matrix element in the middle, we again use the trick of inserting an identity operator
between the exponentials, but this time is the momentum basis, giving

Mi ' e−βNV (qi)/2e−βNV (qi+1)/2

ˆ
dp
〈
qi

∣∣∣e−βN T̂
∣∣∣p〉 〈p|qi+1〉

= e−βNV (qi)/2e−βNV (qi+1)/2

ˆ
dp e−

βNp2

2m 〈qi|p〉 〈p|qi+1〉 . (1.14)

The bra-kets are just the position representation of momentum eigenstates

〈qi|p〉 =
1√
2πℏ

eipqi/ℏ . (1.15)

Therefore,
Mi '

1

2πℏ
e−βNV (qi)/2e−βNV (qi+1)/2

ˆ
dp eip(qi−qi+1)/ℏe−

βNp2

2m . (1.16)

We are only left with a simple Gaussian integral (after completing the square), which evaluates to
ˆ

dp eip(qi−qi+1)/ℏe−
βNp2

2m =

√
2πm

βN
exp

(
− m

2βNℏ2
(qi − qi+1)

2

)
, (1.17)

and so the matrix elements are

Mi '
√

m

2πβNℏ2
exp

[
− m

2βNℏ2
(qi − qi+1)

2 − βN [V (qi) + V (qi+1)]

2

]
. (1.18)
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1 Partition Function RPMD and Matsubara Dynamics

The partition function of interest is therefore

Z = lim
N→∞

(
m

2πβNℏ2

)N/2 ˆ
dq1 . . . dqN exp

[
−

N∑
i=1

(
m

2βNℏ2
(qi − qi+1)

2 + βNV (qi)

)]
. (1.19)

This form of the partition function starts to reveal its name ‘ring polymer’. We just need a few extra
steps to get there. In particular, notice the prefactor — it is exactly what is known as the thermal
wavelength, which can be obtained by integrating the momentum degrees of freedom when evaluating
the classical partition function. It is just instead of β, we have βN ≡ β/N here. This is the effective
(inverse) temperature of our ring polymer. Observe that(

m

2πβNℏ2

)1/2

=
1

2πℏ

ˆ
dpi exp

(
−βNp

2
i

2m

)
. (1.20)

This allows us to finally write

Z = lim
N→∞

1

(2πℏ)N

ˆ
dp1 dq1 . . . dpN dqN exp

[
−βN

N∑
i=1

(
p2i
2m

+
m

2β2
Nℏ2

(qi − qi+1)
2 + V (qi)

)]

= lim
N→∞

1

(2πℏ)N

ˆ
dNp dNq exp (−βNHN )

=: lim
N→∞

ZN , (1.21)

where

HN =

N∑
i=1

[
p2i
2m

+
m

2β2
Nℏ2

(qi − qi+1)
2 + V (qi)

]
. (1.22)

We see something magical here. This is exactly the classical partition function of a N -particle polymer
ring system connected by springs of angular frequency ωN = 1

βNℏ , placed on a potential V at inverse
temperature βN . If we take the N → ∞ limit, the partition function this polymer ring with N
particles becomes that of a single quantum particle!
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2 Thermal Average of an Operator

Suppose now we are interested in the thermal average of an operator Â,

〈A〉 = 1

Z

∑
|k⟩

e−βEk

〈
k
∣∣∣Â∣∣∣k〉 . (2.1)

If we pick {|k〉} to be the eigenstate of the Hamiltonian, then

e−βĤ |k〉 = e−βEk |k〉 , (2.2)

so

〈A〉 = 1

Z

∑
|k⟩

〈
k
∣∣∣e−βĤÂ

∣∣∣k〉
=

1

Z
tr[e−βĤÂ] . (2.3)

We use the same trick to split the e−βĤ into N → ∞ parts, and equate Z with the ring polymer
partition function

〈A〉 = lim
N→∞

1

ZN
tr

[(
e−βN Ĥ

)N
Â

]
. (2.4)

A nice property of the trace is that it is cyclic invariant, meaning that we can move any number of
slices of e−βN Ĥ after Â

〈A〉 = lim
N→∞

1

ZN
tr

[(
e−βN Ĥ

)j
Â
(
e−βN Ĥ

)N−j
]
, (2.5)

where 0 ≤ j ≤ N . We take one step further and write 〈A〉 as the average of the right hand sides with
1 ≤ j ≤ N :

〈A〉 = lim
N→∞

1

NZN

N∑
j=1

tr

[(
e−βN Ĥ

)j
Â
(
e−βN Ĥ

)N−j
]
. (2.6)

For each j, we can use our good old trick of inserting identity operators between each pair of slices,
giving

〈A〉 = lim
N→∞

1

NZN

N∑
j=1

ˆ
dNq

〈
q1

∣∣∣e−βN Ĥ
∣∣∣q2〉 . . .〈qj∣∣∣e−βN ĤÂ

∣∣∣qj+1

〉
. . .
〈
qN

∣∣∣e−βN Ĥ
∣∣∣q1〉 . (2.7)

Notice the extra Â in the jth matrix element.

2.1 Coordinate-Dependent Quantities

To proceed, we assume that the operator of interest Â = A(q̂) is a function of coordinate only, and
so Â |qi〉 = A(qi) |qi〉. An example is the potential energy V̂ = V (q̂). Then since Â |q〉 = A(q) |q〉,

〈A〉 = lim
N→∞

1

NZN

N∑
j=1

ˆ
dNqA(qj+1)

〈
q1

∣∣∣e−βN Ĥ
∣∣∣q2〉 . . .〈qN ∣∣∣e−βN Ĥ

∣∣∣q1〉 . (2.8)

This now reduces to what we have seen before, just with an extra scalar function in the integral. We
can write it as

〈A〉 = lim
N→∞

1

(2πℏ)NZN

ˆ
dNp dNq

 1

N

N∑
j=1

A(qj)

 e−βNHN

= lim
N→∞

1

(2πℏ)NZN

ˆ
dNp dNqANe−βNHN (2.9)
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which is the classical thermal average of AN for the polymer ring, where

AN (q) =
1

N

N∑
i=1

A(qi) (2.10)

is the average value of A for the N particles on the polymer ring. We reduced the quantum thermal
average into the classical thermal average in a polymer ring,

〈A〉 = lim
N→∞

〈AN 〉 . (2.11)

Therefore, if we are interested in the thermal average of some coordinate-dependent quantity of
a quantum particle, we can replace it with a ring polymer of large N , propagate the ring polymer
classically and sample 〈AN 〉. This will give us 〈A〉 exactly in the N →∞ limit.

2.2 Kinetic Energy

We can also evaluate the thermal average of some other quantities, despite involving a bit more effort.
We will take the kinetic energy operator T̂ = p̂2

2m as an example.

For symmetry, we move a half extra slice of e−βN Ĥ after T̂ and get

〈T 〉 = lim
N→∞

N∑
j=1

ˆ
dNq

〈
q1

∣∣∣e−βN Ĥ
∣∣∣q2〉 . . .〈qj∣∣∣e−βN Ĥ/2T̂ e−βN Ĥ/2

∣∣∣qj+1

〉
. . .
〈
qN

∣∣∣e−βN Ĥ
∣∣∣q1〉 . (2.12)

Splitting Ĥ = T̂ + V̂ again gives〈
qj

∣∣∣e−βN Ĥ/2T̂ e−βN Ĥ/2
∣∣∣qj+1

〉
= exp

[
−βN

V (qj) + V (qj+1)

2

]〈
qj

∣∣∣e−βN T̂ /2T̂ e−βN T̂ /2
∣∣∣qj+1

〉
= exp

[
−βN

V (qj) + V (qj+1)

2

]〈
qj

∣∣∣T̂ e−βN T̂
∣∣∣qj+1

〉
= − exp

[
−βN

V (qj) + V (qj+1)

2

]
∂

∂βN

〈
qj

∣∣∣e−βN T̂
∣∣∣qj+1

〉
= − exp

[
−βN

V (qj) + V (qj+1)

2

]
∂

∂βN

[(
m

2πℏ2βN

) 1
2

exp

(
−m(qj − qj+1)

2

2ℏ2βN

)]

= exp

[
−βN

V (qj) + V (qj+1)

2

] [
1

2βN
− m(qj − qj+1)

2

2ℏ2β2

]〈
qj

∣∣∣e−βN T̂
∣∣∣qj+1

〉
=

[
1

2βN
− 1

2
mω2

N (qj − qj+1)
2

]〈
qj

∣∣∣e−βN Ĥ
∣∣∣qj+1

〉
. (2.13)

Therefore, the quantum thermal average of kinetic energy is identical to N → ∞ limit of classical
thermal average of the kinetic energy estimator TN

〈T 〉 = lim
N→∞

1

(2πℏ)NZN

ˆ
dNq dNp TNe−βNHN = lim

N→∞
〈TN 〉 , (2.14)

where

TN =
1

2βN
− 1

2N

N∑
j=1

mω2
N (qj − qj+1)

2 . (2.15)
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2.3 Total Energy

We can trivially work out the total energy estimator by summing up the kinetic and potential energy
estimators:

EN,TD = TN + Vn =
1

2βN
− 1

2N

N∑
j=1

mω2
N (qj − qj+1)

2 +
1

N

N∑
j=1

V (qj) , (2.16)

where the extra subscript TD stands for ’thermodynamic’ as this estimator is known as the
thermodynamic energy estimator. This is to distinguish with another total energy estimator that
will be introduced later. We than have

〈E〉 = lim
N→∞

1

(2πℏ)NZN

ˆ
dNp dq EN,TDe

−βNHN = 〈EN,TD〉 . (2.17)

An alternative approach is to use the thermodynamic relation

〈E〉 = −
(
∂ lnZ

∂β

)
V

, (2.18)

where we already have the ring polymer expression of partition function ZN . This gives the same
thermodynamic energy estimator EN,TD.

EN,TD is not the only estimator that gives the total energy. The centroid virial energy estimator

EN,CV =
1

2β
+

1

2N

N∑
j=1

(qj − q)
dV (qj)

dqj
+

1

N

N∑
j=1

V (qj) , (2.19)

where q = 1
N

∑N
k=1 qk is the centroid coordinate of the polymer beads, can be shown to have the

same average 〈EN,CV〉 = 〈EN,TD〉 as the thermodynamics energy estimator, but with a way smaller
variance. In the example above, both thermodynamic energy estimator and centroid virial estimator

0 10 20 30 40 50 60

0.2

0.4

0.6

0.8

N

E

Exact
Thermodynamic
Centroid Virial

Figure 1: Average energies of a harmonic oscillator with βℏω = 10, sampled with 20000 runs using
the two estimators. The error bars are the standard deviation of the energies.

converges to the exact 〈E〉 as N → ∞. However, the standard deviation of the thermodynamic
estimator grows asymptotically as

√
N , so the required number of sample would increase linearly

with N to keep the standard error in the mean constant. By contrast, the standard deviation of the
centroid virial estimator is asymptotically constant of N .
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3 Propagating the Ring Polymer Dynamics

3.1 Integrating the Equations of Motion

In the previous section, we have established that to sample the equilibrium thermal average of some
quantum system, we can instead propagate the dynamics of a classical ring polymer system and
sample the thermal average of the corresponding classical estimator. This is known as the path
integral molecular dynamics (PIMD).

Given a classical Hamiltonian H(p,q) with initial conditions p(0) = p0, q(0) = q0, the evolution
of the system is governed deterministically by the Hamilton’s equation

ṗ = −∂H
∂q

(3.1)

q̇ = +
∂H

∂p
. (3.2)

For our Hamiltonian H = p2

2m + V (q), this is

ṗ = −∂V
∂q

(3.3)

q̇ = +
p

m
(3.4)

as one would expect from Newton’s second law.

These are a set of differential equations, and to work out the trajectory, we need to integrate these
equations of motion. The most common way to do this is to use the velocity Verlet algorithm (see my
notes on NST Part II C8: Computer Simulation Methods), in which the following steps are carried
out iteratively to propagate the dynamics (the subscript denotes the time step):

pn+ 1
2
= pn −

δt

2

∂V

∂q
(qn) (3.5)

qn+1 = q+ δt
pn+ 1

2

m
(3.6)

pn+1 = pn+ 1
2
− δt

2

∂V

∂q
(qn+1) . (3.7)

This propagates the momenta under V by half a time step, propagates the coordinates by a full
time step, and then propagate the momenta by another time step, corresponding to symmetrically
splitting the time evolution operator by

eLδt ' eLV δt/2eLT δteLV δt/2 . (3.8)

This is accurate to O(δt3) for each time step (O(δt2) globally), and is better than propagating the
coordinates and momenta by a full time step simultaneously, which is known as the Euler’s algorithm
and is accurate to O(δt2) each step and O(δt) globally.

For path integral molecular dynamics, we can of course directly use the standard velocity Verlet
algorithm with Hamiltonian

HN (p,q) =
p2

2m
+ V (q) , (3.9)

where

V (q) =

N∑
j=1

[
1

2
mω2

N (qj − qj+1)
2 + V (qj)

]
, (3.10)

to propagate the dynamics. However, the harmonic springs between the beads are stiff, especially with
large N (ωN = N/βℏ). This requires a very small time step for us to propagate the internal vibrations

7
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of the ring polymer beads accurately. (Usually a time step of 1/20 of the shortest characteristic
vibrational time scale of the system is safe.)

Luckily, we know how to solve the vibrational motions of systems connected by harmonic springs
exactly! We can break them down to normal modes and propagate these internal normal modes
exactly. (See NST Part II C8: Further Quantum Mechanics or NST Part IB Mathematical Methods.)
We break down the Hamiltonian as

HN (p,q) = HN,0(p,q) + VN (q) , (3.11)

where

HN,0 =

N∑
j=1

[
p2j
2m

+
1

2
mω2

N (qj − qj+1)
2

]
(3.12)

is the free ring polymer Hamiltonian without the external potential and

VN (q) =

N∑
j=1

V (qj) (3.13)

is the external potential. Since the potential of the free ring polymer Hamiltonian HN,0(p,q) is
harmonic, it can be diagonalised with a normal mode transformation{

Pn =
∑N

j=1 Tjnpj

Qn =
∑N

j=1 Tjnqj ,
(3.14)

where

Tjn =


√
1/N n = 0√
2/N sin(2πjn/N) 1 ≤ n ≤ N/2− 1√
1/2(−1)j n = N/2 (if N is even)√
2/N cos(2πjn/N) N/2 + 1 ≤ n ≤ N − 1 ,

(3.15)

giving

HN,0(P,Q) =

N−1∑
k=0

[
P 2
k

2m
+

1

2
mω2

kQ
2
k

]
(3.16)

with
ωk = 2ωN sin

(
kπ

N

)
. (3.17)

Notice that we have shifted the range of indices from 1 ≤ j ≤ N to 0 ≤ k ≤ N − 1. You should be
familiar with this because Tjk and ω2

k are actually exactly the Hückel molecular orbital coefficients
and the orbital energies of a cyclic polyene. This is because the Hückel matrix of a cyclic polyene
and the potential energy matrix of a ring polymer are exactly the same:

Hpolyene =


α β 0 · · · β
β α β · · · 0
0 β α · · · 0
...

...
... . . . ...

β 0 0 · · · α


α=2,β=−1←→ V =


2 −1 0 · · · −1
−1 2 −1 · · · 0
0 −1 2 · · · 0
...

...
... . . . ...

−1 0 0 · · · 2

 (3.18)

such that
∑N

j=1(qj − qj+1)
2 = qTVq. Moreover, the normal mode transformation (3.14) is exactly

the discrete Fourier transform, which can be efficiently carried out using the Fast Fourier Transform
(FFT) algorithm with a scaling no larger than O(N logN).

In the normal mode coordinates, the Hamiltonian H0,N is broken down into N independent
harmonic oscillators, each evolving sinusoidally{

Qk = Ak sin(ωkt) +Bk cos(ωkt)

Pk = mAkωk cos(ωkt)−mBkωk sin(ωkt) .
(3.19)

8
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To overall idea is therefore breaking down the ring polymer evolution by

eLδt = eLV δt/2eL0δteLV δt/2 , (3.20)

i.e. evolve the momenta by the external potential for half a time step, transform into the normal mode
coordinates, evolve the coordinates and momenta by the internal ring normal modes for a full time
step, revert back to the real coordinates, and finally evolve the momenta by the external potential
for half a time step. The detailed algorithm is

p′ = pn −
δt

2

dV

dq
(qn) (3.21)

P′ = TTp′ (3.22)
Q′ = TTqn (3.23)(

P ′′
k

Q′′
k

)
=

(
cosωkδt −mωk sinωkδt
1

mωk
sinωkδt cosωkδt

)(
P ′
k

Q′
k

)
(3.24)

p′′ = TP′′ (3.25)
qn+1 = TQ′′ (3.26)

pn+1 = p′′ − δt

2

dV

dq
(qn+1) (3.27)

3.2 Sampling in Canonical Ensemble

The above algorithm well propagates the dynamics of the ring polymer in a microcanonical ensemble,
but we can’t use them to calculate canonical thermal averages because

• The above algorithm rigorously conserves the energy HN . Instead in a canonical ensemble with
constant energy, the phase space should be sampled with all possible HN weighted by their
Boltzmann factors.

• It is far from ergodic. If the external potential is harmonic, then the whole HN is diagonal in
the normal mode representation and hence there is no energy flow between the normal modes. If
the external potential is instead mildly anharmonic, then the energy exchanges between modes
very slowly. It is therefore not even possible to fully sample the microcanonical constant energy
hypersurface in the phase space ergodically within the typical timescale of a simulation.

Therefore to meaningfully work out a thermal average, we need to attach a thermostat to our
ring polymer system. Here we will briefly introduce the path integral Langevin equation (PILE)
thermostat.

3.2.1 The Path Integral Langevin Equation Thermostat

The PILE thermostat attaches a separate Langevin thermostat to each internal mode of the free ring
polymer, so that the free polymer would evolve by

d

dt
q̃k =

p̃k
m

(3.28)

d

dt
p̃k = −mω2

k q̃k − γkp̃k +

√
2mγk
βN

ξk(t) , (3.29)

where γk(t) represents an uncorrelated, Gaussian-distributed random form with unit variance and
zero mean:

〈ξk(t)〉 = 0 〈ξk(0)ξk(t)〉 = δ(t) , (3.30)

9



3 Propagating the Ring Polymer Dynamics RPMD and Matsubara Dynamics

and the friction coefficients γk governs the rate at which the velocities are thermalised. The first term
in (3.29) is the free evolution of a microcanonical harmonic oscillator, and the two extra terms are
from the Langevin thermostat. Their origins are explained in NST Part II B7: Statistical Mechanics.

The PILE thermostat uses the propagator

eLγδt/2eLV δt/2eL0δteLV δt/2eLγδt/2 , (3.31)

where the extra thermostatting steps (eLγδt/2) implements the last two extra terms in (3.29). They
are implemented by

p̃k =

N∑
j=1

pjTjk (3.32)

p̃k = e−γkδt/2p̃k +

√
m(1− e−γkδt)

βN
ξk (3.33)

pj =

N∑
k=1

Tjkp̃k , (3.34)

where ξk is an independent Gaussian number randomly drawn from a Gaussian distribution with zero
mean and unit variance each time.

The friction coefficients γk govern the rate at which the momenta in each mode are thermalised
(randomised). The autocorrelation time

τV =
1

〈V 2〉 − 〈V 〉2
ˆ ∞

0

dt 〈(V (0)− 〈V 〉)(V (t)− 〈V 〉)〉 (3.35)

of the free ring polymer mode potential V = 1
2mω

2
k q̃

2
k can be worked out analytically to be

τV =
1

2γk
+

γk
2ω2

k

(3.36)

for ωk > 0. The optimum friction coefficient is the one that minimises τV (and hence samples the
most efficiently), which is γk = ωk. This leaves only a single physical parameter τ0 to be specified for
thermostatting the centroid mode k = 0.

γk =

{
1/τ0 k = 0

ωk k 6= 0 .
(3.37)
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4 Generalisation for Multiparticle System

The above equations are derived for the one-particle one-dimensional quantum mechanical problem
with Hamiltonian

Ĥ =
p̂2

2m
+ V (q̂) . (4.1)

The generalisation to higher dimensions is trivial, and in the absence of quantum mechanical exchange
effects for identical particles (fermionic and bosonic), it is also straightforward to generalise to
multiparticle systems. For example, the M -particle Hamiltonian

Ĥ =

M∑
i=1

p̂2
i

2mi
+ V (r̂1, r̂2, . . . , r̂M ) (4.2)

have the ring polymer Hamiltonian

HN ({pi}, {ri}) =
M∑
i=1

N∑
j=1

[
p2
i,j

2mi
+

1

2
miω

2
N ‖ri,j − ri,j+1‖2

]
+

N∑
j=1

V (r1,j , . . . , rM,j) . (4.3)

Figure 2: Two interacting ring polymers with N = 5.

Identical particle exchange effects become important when the de Broglie thermal wavelengths
Λi(T ) = h/

√
2πmikBT exceed the hard sphere diameters of the atoms. These effects can in principle

be included by considering dimerisation, trimerisation, etc. of ring polymers (see Chandler and
Wolynes). However, it is hardly ever necessary for those of us who work in chemistry departments
to have to worry about them, because these effects are almost always negligible, e.g. in liquid
para-hydrogen even at its melting temperature (13.8 K).
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5 Ring Polymer Molecular Dynamics

Usually we are not just interested in the static thermal average 〈A〉 of a quantum system. Instead
we are interested in time correlation functions.

Definition 5.1. The correlation function of two observables A and B is

CAB(t) :=
1

Z
tr[e−βĤÂeiĤt/ℏB̂e−iĤt/ℏ] . (5.1)

The rationalisation of this is that in the Heisenberg picture, the operator B̂ evolves as

B̂(t) = eiĤt/ℏB̂(0)e−iĤt/ℏ , (5.2)

while the energy eigenstates are not changing, so

CAB(t) =
1

Z
tr[e−βĤÂ(0)B̂(t)]

=
1

Z

∑
|n⟩

〈
n
∣∣∣e−βĤÂ(0)B̂(t)

∣∣∣n〉
=

1

Z

∑
|n⟩

e−βEn

〈
n
∣∣∣Â(0)B̂(t)

∣∣∣n〉
= 〈A(0)B(t)〉 . (5.3)

These correlation functions are useful because a lot of dynamical properties, like the diffusion
coefficient, reaction rate constants and dipole absorption spectra can be related to those correlation
functions by Green–Kubo relations. We need to figure out a way to calculate these correlation
functions using ring polymers.

Suppose now we have two coordinate-dependent operators Â and B̂ of interest, with classical
ring-polymer counterparts AN and BN defined analogous to (2.10). What does the N →∞ limit of

〈ANBN 〉 =
1

ZN

ˆ
dNp dNqANBNe−βNHN (5.4)

corresponds to? A naive guess would be

〈AB〉 ?
= lim

N→∞
〈ANBN 〉 , (5.5)

but this is actually wrong. To see this, we expand

〈ANBN 〉 =
1

N2

N∑
i,j=1

〈A(qi)B(qj)〉 , (5.6)

but to get 〈AB〉 in the N →∞ limit, we would need

〈AB〉 = lim
N→∞

1

N

N∑
i=1

〈A(qi)B(qi)〉 . (5.7)

These two are obviously unequal in general. Instead, rather surprisingly, the N →∞ limit of 〈ANBN 〉
actually corresponds to something closely related to the correlation function.

Definition 5.2. The Kubo-transformed correlation function of two observables A and B is

KAB(t) :=
1

βZ

ˆ β

0

dλ tr[e−(β−λ)ĤÂe−λĤeiĤt/ℏB̂e−iĤt/ℏ] . (5.8)
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Let’s have a closer look at what this means. In addition to the Boltzmann factor e−λĤ and evolved
B̂ operator B̂(t) = eiĤt/ℏB̂e−iĤt/ℏ in the trace, we also have changed our Â operator by

eλĤÂe−λĤ (5.9)

with an averaging over λ from 0 to β by the integral 1
β

´ β
0

. Notice that this is similar to the time
evolution we’ve done on B̂, but this time there is no factor of i in the exponent. We can interpret
this as imaginary-time evolution,

Â(−iℏλ) = eλĤÂe−λĤ . (5.10)
Hence in the Kubo-transformed correlation function, we are also averaging over the imaginary time
of Â from t = 0 to t = −iℏβ. This allows us to compactly denote the Kubo-transformed correlation
function as

KAB(t) =
1

β

ˆ β

0

dλ
〈
Â(−iℏλ)B̂(t)

〉
. (5.11)

The ordinary correlation function and the Kubo-transformed one are more closely related in the
Fourier domain. This is easily seen if we work in the basis of energy eigenstates. Inserting the
resolution of identity operators in the energy basis,

CAB(t) =
1

Z

∑
|k⟩

∑
|ℓ⟩

∑
|m⟩

〈
k
∣∣∣e−βĤÂ

∣∣∣ℓ〉〈ℓ∣∣∣eiĤt/ℏ
∣∣∣m〉〈m∣∣∣B̂e−iĤt/ℏ

∣∣∣k〉
=

1

Z

∑
|k⟩

∑
|ℓ⟩

∑
|m⟩

e−βEke−iEkt/ℏeiEℓt/ℏδmℓAkmBℓk

=
1

Z

∑
|k⟩

∑
|m⟩

e−βEke−i(Ek−Em)t/ℏAkmBmk . (5.12)

Doing the same for the Kubo-transformed correlation function, we get

KAB(t) =
1

βZ

ˆ β

0

dλ
∑
|k⟩

∑
|ℓ⟩

∑
|m⟩

〈
k
∣∣∣e−βĤeλĤ

Â
∣∣∣ℓ〉〈ℓ∣∣∣e−λĤeiĤt/ℏ

∣∣∣m〉〈m∣∣∣B̂e−iĤt/ℏ
∣∣∣k〉

=
1

Z

∑
|k⟩

∑
|m⟩

e−βEke−i(Ek−Em)t/ℏAkmBmk
1

β

ˆ β

0

dλ eλ(Ek−Em)

=
1

Z

∑
|k⟩

∑
|m⟩

e−βEke−i(Ek−Em)t/ℏAkmBmk
eβ(Ek−Em) − 1

β(Ek − Em)
. (5.13)

It has got some extra bit comparing with the normal correlation function — but it is dependent on
Ek − Em, so we can’t easily pull it out from the sum. Nice things happen if we move to the Fourier
domain. We get

K̃AB(ω) =

ˆ ∞

−∞
dt e−iωtKAB(t)

=
1

Z

∑
|k⟩

∑
|m⟩

e−βEkAkmBmk
eβ(Ek−Em) − 1

β(Ek − Em)

ˆ ∞

−∞
dt e−iωte−i(Ek−Em)t/ℏ . (5.14)

If you’re familiar with Fourier transform, you should identify that this is exactly the delta function,
ˆ ∞

−∞
dt e−iωte−i(Ek−Em)t/ℏ = 2πδ

(
Em − Ek

ℏ
− ω

)
, (5.15)

and so
K̃AB(ω) =

1

Z

∑
|k⟩

∑
|m⟩

e−βEkAkmBmk
eβ(Ek−Em) − 1

β(Ek − Em)
2πδ

(
Em − Ek

ℏ
− ω

)
. (5.16)
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The delta function naturally imposes the condition Em = Ek + ℏω, so it reduces the double sum to
a single sum,

K̃AB(ω) =
1

Z

∑
|k⟩

e−βEkAkmBmk
1− e−βℏω

βℏω
2πδ(0) . (5.17)

Now the extra factor from the integral over λ is independent of |k〉, so we can pull it out from the
sum

K̃AB(ω) =
1− e−βℏω

βℏω
2π

Z

∑
|k⟩

e−βEkAkmBmkδ(0) . (5.18)

The Fourier transform of the normal correlation function is exactly the same except without this
extra factor

C̃AB(ω) =
2π

Z

∑
|n⟩

e−βEkAkmBmkδ(0) , (5.19)

and so
K̃AB(ω) =

1− e−βℏω

βℏω
C̃AB(ω) . (5.20)

Notice also that in the classical limit, the energy spectrum becomes a continuum with βℏω → 0, and
so

K̃AB(ω)→ C̃AB(ω) . (5.21)

5.1 Relation to Ring Polymer Average

Having established what the Kubo-transformed correlation function is, let’s see how it is related to
the ring-polymer average of two observables.

Claim 5.3. The N → ∞ limit of 〈ANBN 〉 for the classical ring polymer is the t → 0 limit of the
Kubo-transformed correlation function

lim
N→∞

〈ANBN 〉 = KAB(0) . (5.22)

Proof. At t = 0,

KAB(0) =
1

βZ

ˆ β

0

dλ tr[e−(β−λ)ĤÂe−λĤB̂] . (5.23)

Consider again Trotter-splitting the exponential of the Hamiltonians, but this time

e−(β−λ)Ĥ =
(
e−βĤ

) β−λ
β

= lim
N→∞

(
e−βN Ĥ

)N(1−λ
β )

, (5.24)

and similarly

e−λĤ = lim
N→∞

(
e−βN Ĥ

)N λ
β

. (5.25)

Therefore,

KAB(0) = lim
N→∞

1

βZN

ˆ β

0

dλ tr

[(
e−βN Ĥ

)N(1−λ
β )

Â
(
e−βN Ĥ

)N λ
β

B̂

]
. (5.26)

Let’s consider the effect of the integral averaging over λ: 1
β

´ β
0

. There are N(1− λ
β ) pieces of e−βN Ĥ

in front of Â and N λ
β between Â and B̂. What the integral does is averaging over the number of

e−βN Ĥ pieces distributed between these two places, while making sure that there are N of them in
total. When N is large, this can be replaced by the sum

1

β

ˆ β

0

dλ f(λ) 7−→ lim
N→∞

1

N

N∑
λ=1

f (λβN ) . (5.27)
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Therefore we can write

KAB(0) = lim
N→∞

1

NZN

N∑
k=1

tr

[(
e−βN Ĥ

)k
Â
(
e−βN Ĥ

)N−k

B̂

]
. (5.28)

Now there are N + 2 operators in the trace. We again use the trick of inserting identity operators
between them, while associating Â and B̂ to the e−βN Ĥ in front of them, giving

lim
N→∞

1

ZN

1

N

N∑
k=1

ˆ
dNq . . .

〈
qk

∣∣∣e−βN ĤÂ
∣∣∣qk+1

〉
. . .
〈
qN

∣∣∣e−βN ĤB̂
∣∣∣q1〉 . (5.29)

Another property of the trace we can exploit is its cyclic invariance. This means that we can move
any slice of bra-kets at front to the end, and vice versa. This means that

KAB(0) =

ˆ
dNq . . .

〈
qk

∣∣∣e−βN ĤÂ
∣∣∣qk+1

〉
. . .
〈
qN

∣∣∣e−βN ĤB̂
∣∣∣q1〉

=

ˆ
dNq . . .

〈
qi

∣∣∣e−βN ĤÂ
∣∣∣qi+1

〉
. . .
〈
qj

∣∣∣e−βN ĤB̂
∣∣∣qj+1

〉
. . . , (5.30)

as long as |j − i| = k. We average over all possible cyclic permutations of the trace — there are N
of them for each interval k. This is effectively putting Â and B̂ into all possible slices of bra-kets.
Therefore we can write

KAB(0) = lim
N→∞

1

ZN

1

N2

N∑
i,j=1

ˆ
dNq . . .

〈
qi

∣∣∣e−βN ĤÂ
∣∣∣qi+1

〉
. . .
〈
qj

∣∣∣e−βN ĤB̂
∣∣∣qj+1

〉
. . .

= lim
N→∞

1

ZN

ˆ
dNp dNqANBNe−βNHN

= lim
N→∞

〈ANBN 〉 , (5.31)

which is exactly what we claimed. □

The idea of ring polymer molecular dynamics (RPMD) is to claim that the relationship

KAB(t) = lim
N→∞

〈AN (q(0))BN (q(t))〉 (5.32)

not only holds for t = 0, as we proved above, but also hold approximately for non-zero t, so that
we can propagate the dynamics of a classical ring polymer at βN and use 〈AN (q(0))BN (q(t))〉 to
approximate KAB(t) at β. This is to say that, we are taking the dynamics of the ring polymer
literally as the dynamics of a quantum particle, not just as a tool to sample thermal averages.

Initially when this was proposed, there was no rigorous justification why this would necessarily
hold true at t > 0, but a few rationalisations for doing so include:

1. As we showed above, the relationship (5.31) is exact in the t → 0 limit, and in fact, one can
show that the error of RPMD is O(t8) about t = 0 for coordinate dependent operators.

2. This is exact at high temperature classical limit.

3. It is exact if the external potential is harmonic, and at least one of the operators are linear
functions of x.

4. Both KAB(t) and 〈AN (0)BN (t)〉 obey a few important symmetries:

• Detailed balance:
KAB(t) = KBA(−t) . (5.33)
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• Reality
KAB(t) = K∗

AB(t) . (5.34)

• Evenness
KAB(t) = KAB(−t) . (5.35)

It was therefore quite surprising at that time that the RPMD worked surprisingly well in many cases,
especially when applied to rate theories.

It is now understood that RPMD can be considered as an approximation of a rigorous first-
principle quantum dynamical method called Matsubara dynamics, which we will introduce later. But
first, we need some preliminaries.
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6 Wigner Transform

The idea of Wigner transform is to make quantum dynamics somewhat similar to classical dynamics.
Quantum mechanics and classical mechanics two different worlds. Quantum mechanics happens in
the Hilbert space, H. A quantum state is a vector in the Hilbert space, |ψ〉 ∈ H, and a physical
observable corresponds to an operator Â : H → H. The classical dynamics, however, happens in
the 6-dimensional phase space Γ ∼= R6 (for one particle in 3D). The state of the system is a point
(p,q) ∈ Γ, and each physical observable corresponds to a phase space function A(p,q) : Γ→ R.

What Wigner transform does is to make the quantum mechanical operator Â into a phase space
function A(p,q).1 We will illustrate the idea for one-dimensional systems, while the idea easily
generalises to higher-dimensional systems.
Definition 6.1. For an operator Â, its Wigner transform is defined as

AW (p, q) ≡ W
[
Â
]
(p, q) :=

ˆ ∞

−∞
d∆

〈
q − ∆

2

∣∣∣∣Â∣∣∣∣q + ∆

2

〉
ei∆p/ℏ (6.1)

By a change of variable ∆→ −∆, one can also write this as

AW (p, q) ≡ W
[
Â
]
(p, q) :=

ˆ ∞

−∞
d∆

〈
q +

∆

2

∣∣∣∣Â∣∣∣∣q − ∆

2

〉
e−i∆p/ℏ . (6.2)

By the above two expressions, one can show that the Wigner transform of a Hermitian operator is
real.

6.1 Wigner Transform of Position and Momentum

To see why the Wigner transform defined above is a good idea, we first calculate the Wigner transform
of q̂ and p̂.

First the position operator q̂.

qW (p, q) =

ˆ ∞

−∞
d∆

〈
q − ∆

2

∣∣∣∣q̂∣∣∣∣q + ∆

2

〉
ei∆p/ℏ

=

ˆ ∞

−∞
d∆

〈
q − ∆

2

∣∣∣∣q + ∆

2

〉(
q +

∆

2

)
ei∆p/ℏ

=

ˆ ∞

−∞
d∆ δ∆

(
q +

∆

2

)
ei∆p/ℏ

= q . (6.3)

The Wigner transform of q̂ is just q itself! Similarly, one can show that

W [q̂n] = qn , (6.4)

and hence for any operator that is an analytic function of q̂,

W [f(q̂)] = f(q) . (6.5)

Before moving on for p̂, we are introducing a notation that looks weird but is pretty handy and
appears everywhere in literatures. Consider the matrix element of a differential operator in the
position basis 〈

q1

∣∣∣∣ ∂∂q
∣∣∣∣q2〉 =

ˆ
dq δ(q − q1)

∂

∂q
δ(q − q2) (6.6)

1There is actually a pair of transformations, known as the Wigner–Weyl transform. The Wigner transform, as we
introduced, transforms an operator into a phase-space function, while the Weyl transform does the opposite thing: it
transform a phase-space function into an operator in Hilbert space.
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which would occur, for example, in the matrix element of momentum operator. By chain rule, we
have

∂

∂q
δ(q − q2) = δ′(q − q2) = −

∂

∂q2
δ(q − q2) , (6.7)

so 〈
q1

∣∣∣∣ ∂∂q
∣∣∣∣q2〉 = −

ˆ
dq δ(q − q1)

∂

∂q2
δ(q − q2)

= − ∂

∂q2

ˆ
dq δ(q − q1)δ(q − q2)

= − ∂

∂q2
δ(q1 − q2)

= − ∂

∂q2
〈q1|q2〉 . (6.8)

We will denote the differential with respect to the whole content in the ket as a prime over the ket,

d

dq2
〈q1|q2〉 = 〈q1|q2〉′ , (6.9)

so perhaps rather counterintuitively 〈
q1

∣∣∣∣ ∂∂q
∣∣∣∣q2〉 = −〈q1|q2〉′ . (6.10)

We can also denote a differentiation over the whole content in the bra as a reversed prime in from of
the bra,

d

dq1
〈q1|q2〉 = ‵〈q1|q2〉 , (6.11)

and by the antihermiticity of the differential operator, one can show that〈
q1

∣∣∣∣ ∂∂q
∣∣∣∣q2〉 =

‵〈q1|q2〉 . (6.12)

Next let’s evaluate the Wigner transform of the momentum operator p̂.

pW (p, q) =

ˆ
d∆

〈
q − ∆

2

∣∣∣∣p̂∣∣∣∣q + ∆

2

〉
ei∆p/ℏ .

Note that p̂ = iℏ d
dq — but this notation is misleading. We are not differentiating against the symbol

q’s in the ket and the bra. The q ±∆/2 there is more like the q1 and q2 in our example above, and
we should better denote them as q′ to avoid confusion.

pW (p, q′) = −iℏ
ˆ

d∆

〈
q′ − ∆

2

∣∣∣∣ ddq
∣∣∣∣q′ + ∆

2

〉
ei∆p/ℏ .

However, this is unnecessary once you are used to this notation, just like q̂
∣∣q + ∆

2

〉
=
(
q + ∆

2

) ∣∣q + ∆
2

〉
wouldn’t cause you any confusion (hopefully). The q here are just formal, but for this time only, we
will distinguish the formal q by q′. Using our notation above, we can write this equally as

pW (p, q′) = −iℏ
ˆ

d∆
‵〈
q′ − ∆

2

∣∣∣∣q′ + ∆

2

〉
ei∆p/ℏ

= +iℏ
ˆ

d∆

〈
q′ − ∆

2

∣∣∣∣q′ + ∆

2

〉′

ei∆p/ℏ

(6.13)

18



6 Wigner Transform RPMD and Matsubara Dynamics

Alternatively, we can write pW as the average of the above two expressions.

pW (p, q′) =
iℏ
2

ˆ
d∆

[
−

‵〈
q′ − ∆

2

∣∣∣∣q′ + ∆

2

〉
+

〈
q′ − ∆

2

∣∣∣∣q′ + ∆

2

〉′
]
ei∆p/ℏ . (6.14)

By chain rule, this is

pW (p, q′) = iℏ
ˆ

d∆
d

d∆

[〈
q − ∆

2

∣∣∣∣q + ∆

2

〉]
ei∆p/ℏ . (6.15)

We integrate by parts to get

pW (p, q′) = −iℏ
ˆ

d∆

[〈
q − ∆

2

∣∣∣∣q + ∆

2

〉]
d

d∆
ei∆p/ℏ

= p

ˆ
d∆

〈
q − ∆

2

∣∣∣∣q + ∆

2

〉
ei∆p/ℏ

= p , (6.16)

so the Wigner transform of p̂ is also p itself.2 Similarly, one can show that

W [p̂n] = pn (6.20)

and
W [f(p̂)] = f(p) (6.21)

for analytic function f .

The above two results shows that the Wigner transform of a Hamiltonian

Ĥ =
p̂2

2m
+ V (q̂) (6.22)

is just the classical Hamiltonian

HW = H =
p2

2m
+ V (q) (6.23)

provided that the potential function is analytic.

However, when p̂ and q̂ are in product, the Wigner transform of p̂q̂ wouldn’t be exactly pq —
otherwise p̂ and q̂ will be commutative and we will lose all the interesting behaviours of quantum
mechanics. To calculate the Wigner transform of p̂q̂, we break it into

p̂q̂ =
1

2
[p̂, q̂] +

1

2
{p̂, q̂} , (6.24)

2If you are not comfortable with the notation defined above, here is an alternative way to evaluate the Wigner
transform of p̂.

pW (p, q) =

ˆ
d∆

〈
q −

∆

2

∣∣∣∣p̂∣∣∣∣q + ∆

2

〉
ei∆p/ℏ

=

ˆ
d∆

ˆ
dp′

〈
q −

∆

2

∣∣∣∣p′〉〈
p′
∣∣∣∣p̂∣∣∣∣q + ∆

2

〉
ei∆p/ℏ

=

ˆ
d∆

ˆ
dp′ p′

〈
q −

∆

2

∣∣∣∣p′〉〈
p′
∣∣∣∣q + ∆

2

〉
ei∆p/ℏ , (6.17)

where we have inserted an identity operator in the momentum basis. Using the plane-wave form ⟨q|p⟩ =

exp(iqp/ℏ)/
√
2πℏ, we get〈

q −
∆

2

∣∣∣∣p′〉〈
p′
∣∣∣∣q + ∆

2

〉
=

1

2πℏ
exp

[
ip′

ℏ

(
q −

∆

2
− q −

∆

2

)]
=

1

2πℏ
e−ip′∆/ℏ , (6.18)

so

pW (p, q) =
1

2πℏ

ˆ
d∆

ˆ
dp′ p′ei∆(p−p′)/ℏ

=

ˆ
dp′ p′δ(p− p′) = p . (6.19)
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where {−,−} is the anticommutator. We know that [p̂, q̂] = −iℏ, so its Wigner transform is also
trivially −iℏ. The Wigner transform of the anticommutator is not trivial. The matrix element inside
the integral is〈
q − ∆

2

∣∣∣∣p̂q̂ + q̂p̂

∣∣∣∣q + ∆

2

〉
= −iℏ

[〈
q − ∆

2

∣∣∣∣ ∂∂q q̂
∣∣∣∣q + ∆

2

〉
+

〈
q − ∆

2

∣∣∣∣q̂ ∂∂q
∣∣∣∣q + ∆

2

〉]
= −iℏ

[(
q − ∆

2

)〈
q − ∆

2

∣∣∣∣ ∂∂q
∣∣∣∣q + ∆

2

〉
−
(
q − ∆

2

)〈
q − ∆

2

∣∣∣∣ ∂∂q
∣∣∣∣q + ∆

2

〉]
= −iℏ

[(
q +

∆

2

) ‵〈
q − ∆

2

∣∣∣∣q + ∆

2

〉
−
(
q − ∆

2

)〈
q − ∆

2

∣∣∣∣q + ∆

2

〉′
]

= iℏq

[
−

‵〈
q − ∆

2

∣∣∣∣q + ∆

2

〉
+

〈
q − ∆

2

∣∣∣∣q + ∆

2

〉′
]

− iℏ
2

[‵〈
q − ∆

2

∣∣∣∣q + ∆

2

〉
+

〈
q − ∆

2

∣∣∣∣q + ∆

2

〉′
]

= 2iℏq
d

d∆

〈
q − ∆

2

∣∣∣∣q + ∆

2

〉
− iℏ∆

2

d

dq

〈
q − ∆

2

∣∣∣∣q + ∆

2

〉
. (6.25)

Note the d
dq in the last term is really the derivative over the formal variable q.

Therefore the Wigner transform of the anticommutator is

W [{p̂, q̂}] = 2iℏq
ˆ

d∆
d

d∆

〈
q − ∆

2

∣∣∣∣q + ∆

2

〉
ei∆p/ℏ− iℏ

2

d

dq

ˆ
d∆∆

〈
q − ∆

2

∣∣∣∣q + ∆

2

〉
ei∆p/ℏ . (6.26)

The first term is exactly what we seen in the Wigner transform of p̂, multiplied by a factor of 2q,
so it is 2pq. The second term evaluates to zero because the braket is effectively a delta function.
Therefore,

W [{p̂, q̂}] = 2pq , (6.27)
and hence

W [p̂q̂] = pq − iℏ
2
. (6.28)

In fact, there is a general formula for the Wigner transform of a product of two operators. This is
not particularly relevant to us. We will state it here without proof. The Wigner transform of ÂB̂ is

W
[
ÂB̂
]
= AW ∗BW , (6.29)

where the ∗ is the star product defined by

(A ∗B)(p, q) = A(p, q) exp

[
iℏ
2
Λ

]
B(p, q) , (6.30)

where

Λ :=

←−
∂

∂q

−→
∂

∂p
−
←−
∂

∂p

−→
∂

∂q
. (6.31)

The left and right arrows mean the differentials are only acting on the left and right parts of it. You
may find this somehow related to the Poisson brackets in Hamiltonian mechanics. We will discuss
more on it later when we talk about dynamics.

6.2 Traces and Thermal Average

Let’s consider the expression
1

2πℏ

ˆ
dp dq AW (p, q)BW (p, q) , (6.32)

20



6 Wigner Transform RPMD and Matsubara Dynamics

where AW and BW are the Wigner transforms of some operators Â and B̂. We can expand this out
as

1

2πℏ

ˆ
dp dq

ˆ
d∆

〈
q − ∆

2

∣∣∣∣Â∣∣∣∣q + ∆

2

〉
ei∆p/ℏ

ˆ
d∆′

〈
q +

∆′

2

∣∣∣∣B̂∣∣∣∣q − ∆′

2

〉
e−i∆′p/ℏ . (6.33)

We can identify the integral over p as
1

2πℏ

ˆ
dp ei(∆−∆′)p/ℏ = δ(∆−∆′) , (6.34)

so
1

2πℏ

ˆ
dp dq AW (p, q)BW (p, q) =

ˆ
dq d∆

〈
q − ∆

2

∣∣∣∣Â∣∣∣∣q + ∆

2

〉〈
q +

∆′

2

∣∣∣∣B̂∣∣∣∣q − ∆′

2

〉
= tr[ÂB̂] . (6.35)

This property is especially useful because we can make Â the density matrix operator

tr[ρ̂B̂] =
1

2πℏ

ˆ
dp dq ρW (p, q)BW (p, q) . (6.36)

In this way, we related the quantum average 〈B〉 = tr[ρ̂B̂] with the classical phase space average,
provided that we use the phase space density ρW given by the Wigner transform of the density matrix,
and the operator BW given by the Wigner transform of B̂.

6.3 Dynamics

6.3.1 Heisenberg and Hamilton Equations of Motion

Now let’s consider how an observable evolve over time. In Heisenberg’s picture, the operators evolve
via the Heisenberg equation of motion

˙̂
A =

i

ℏ
[Ĥ, Â] . (6.37)

Let’s consider the Wigner transform of this time derivative

W
[
˙̂
A
]
=

i

ℏ

ˆ
d∆

〈
q − ∆

2

∣∣∣∣[Ĥ, Â]∣∣∣∣q + ∆

2

〉
ei∆p/ℏ . (6.38)

We split [Ĥ, Â] into [T̂ , Â] + [V̂ , Â] and evaluate them separately.

First for the T -commutator, the Wigner transform is

W
[
i

ℏ
[T̂ , Â]

]
= − iℏ

2m

ˆ
d∆

[〈
q − ∆

2

∣∣∣∣ d2dq2
Â

∣∣∣∣q + ∆

2

〉
−
〈
q − ∆

2

∣∣∣∣Â d2

dq2

∣∣∣∣q + ∆

2

〉]
ei∆p/ℏ

= − iℏ
2m

ˆ
d∆

[‵‵〈
q − ∆

2

∣∣∣∣Â∣∣∣∣q + ∆

2

〉
−
〈
q − ∆

2

∣∣∣∣Â∣∣∣∣q + ∆

2

〉′′
]
ei∆p/ℏ (6.39)

Notice that
∂2

∂q∂∆

〈
q − ∆

2

∣∣∣∣Â∣∣∣∣q + ∆

2

〉
=

1

2

∂

∂q

[
−

‵〈
q − ∆

2

∣∣∣∣Â∣∣∣∣q + ∆

2

〉
+

〈
q − ∆

2

∣∣∣∣Â∣∣∣∣q + ∆

2

〉′
]

=
1

2

[
−

‵‵〈
q − ∆

2

∣∣∣∣Â∣∣∣∣q + ∆

2

〉
−

‵〈
q − ∆

2

∣∣∣∣Â∣∣∣∣q + ∆

2

〉′

+

‵〈
q − ∆

2

∣∣∣∣Â∣∣∣∣q + ∆

2

〉′

+

〈
q − ∆

2

∣∣∣∣Â∣∣∣∣q + ∆

2

〉′′ ]
= −1

2

[‵‵〈
q − ∆

2

∣∣∣∣Â∣∣∣∣q + ∆

2

〉
−
〈
q − ∆

2

∣∣∣∣Â∣∣∣∣q + ∆

2

〉′′
]
, (6.40)
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which is what we had in the bracket in the integrand, so

W
[
i

ℏ
[T̂ , Â]

]
=

iℏ
m

ˆ
d∆

∂2

∂q∂∆

[〈
q − ∆

2

∣∣∣∣Â∣∣∣∣q + ∆

2

〉]
ei∆p/ℏ

=
p

m

∂

∂q

ˆ
d∆

〈
q − ∆

2

∣∣∣∣Â∣∣∣∣q + ∆

2

〉
ei∆p/ℏ

=
p

m

∂AW

∂q
. (6.41)

Now let’s move on to the commutator with V̂ . The Wigner transform is

W
[
i

ℏ
[V̂ , Â]

]
=

i

ℏ

ˆ
d∆

[〈
q − ∆

2

∣∣∣∣V (q̂)Â

∣∣∣∣q + ∆

2

〉
−
〈
q − ∆

2

∣∣∣∣ÂV (q̂)

∣∣∣∣q + ∆

2

〉]
ei∆p/ℏ

=
i

ℏ

ˆ
d∆

[
V

(
q − ∆

2

)
− V

(
q +

∆

2

)]〈
q − ∆

2

∣∣∣∣Â∣∣∣∣q + ∆

2

〉
ei∆p/ℏ (6.42)

We expand V (q − ∆
2 )− V (q + ∆

2 ) as a Taylor series

V

(
q − ∆

2

)
− V

(
q +

∆

2

)
=

∞∑
λ=0

1

λ!

∂λV

∂qλ

[
(−∆)λ −∆λ

2λ

]
= −

∑
λ=1,odd

1

λ!
V (λ)(q)

∆λ

2λ−1
. (6.43)

Therefore Wigner transform becomes

W
[
i

ℏ
[V̂ , Â]

]
= − i

ℏ
∑

λ=1,odd

1

λ!

1

2λ−1
V (λ)(q)

ˆ
d∆

〈
q − Λ

2

∣∣∣∣Â∣∣∣∣q + Λ

2

〉
∆λei∆p/ℏ . (6.44)

Notice that

∆λei∆p/ℏ =

(
−iℏ ∂

∂p

)λ

ei∆p/ℏ , (6.45)

so

W
[
i

ℏ
[V̂ , Â]

]
= − i

ℏ
∑

λ=1,odd

1

λ!

1

2λ−1
V (λ)(q)

ˆ
d∆

〈
q − Λ

2

∣∣∣∣Â∣∣∣∣q + Λ

2

〉(
−iℏ ∂

∂p

)λ

ei∆p/ℏ

= − i

ℏ
∑

λ=1,odd

1

λ!

1

2λ−1
V (λ)(q)

(
−iℏ ∂

∂p

)λ ˆ
d∆

〈
q − Λ

2

∣∣∣∣Â∣∣∣∣q + Λ

2

〉
ei∆p/ℏ

= −∂V
∂q

∂AW

∂p
−

∑
λ=3,odd

1

λ!

(
iℏ
2

)λ−1

V (λ)(q)
∂λAW

∂pλ
, (6.46)

where we have isolated out the first term.

Combining what we had above, the Wigner transform of a Heisenberg derivative is

(
˙̂
A)W =W

[
i

ℏ
[Ĥ, Â]

]
=

p

m

∂AW

∂q
− ∂V

∂q

∂AW

∂p
−

∑
λ=3,odd

1

λ!

(
iℏ
2

)λ−1

V (λ)(q)
∂λAW

∂pλ
. (6.47)

You may find this expression quite familiar. In classical mechanics, the Hamilton’s equations of
motion states that a phase space function A(p, q) evolves over time via the Hamilton’s equation of
motion

Ȧ(p, q) = {A,H} = ∂A

∂q

∂H

∂p
− ∂A

∂p

∂H

∂q
, (6.48)
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where
{X,Y } := ∂X

∂q

∂Y

∂p
− ∂X

∂p

∂Y

∂q
(6.49)

is the Poisson bracket. For the classical Hamiltonian H = p2/2m+ V (q), this is

Ȧ(p, q) =
p

m

∂A

∂q
− ∂V

∂q

∂A

∂p
. (6.50)

This is the previous two terms in the Wigner transform of Heisenberg derivative (6.47). In quantum
mechanics, we have a series of correction terms in the order of O(ℏ2).

Notice the parallelism between classical and quantum mechanics, specifically between Heisenberg
and Hamilton equations of motion

classical: Ȧ = {A,H} (6.51)

quantum: ˙̂
A = − i

ℏ
[Â, Ĥ] . (6.52)

To promote a classical mechanical system to a quantum mechanical one, one replaces the generalised
coordinate q and conjugate momentum p by their corresponding operators p̂ and q̂, and replace the
Poisson brackets {−,−} by the commutator − i

ℏ [−,−]. This is known as canonical quantization. In
the classical limit of ℏ→ 0, one may identify

[X̂, Ŷ ]↔ iℏ{X,Y } . (6.53)

6.3.2 von Neumann and Liouville Equations

Alternatively, we can adopt Schrödinger’s picture in quantum mechanics, in which the operators
are not changing, but the quantum states, or equivalently the density matrix ρ̂, are changing. The
evolution of density matrix is given by the von Neumann equation

iℏ
dρ̂

dt
= [Ĥ, ρ̂] . (6.54)

Using the same step as above, we get

( ˙̂ρ)W =W
[
− i

ℏ
[Ĥ, ρ̂]

]
= − p

m

∂ρW
∂q

+
∂V

∂q

∂ρW
∂p

+

∞∑
λ=3,odd

1

λ!

(
iℏ
2

)λ−1

V (λ)(q)
∂λρW

∂pλ
. (6.55)

On the other hand, in classical mechanics, we have the Liouville equation, which states that the
density in phase space ρ evolves as

dρ

dt
= {H, ρ} = − p

m

∂ρW
∂q

+
∂V

∂q

∂ρW
∂p

. (6.56)

Quantum mechanics again put extra quantum corrections of the order O(ℏ2). One often denote the
Poisson bracket with the Hamiltonian as the Liouvillian L,3

L(∗) = −{H, ∗} = {∗,H} , (6.57)

or
L =

p

m

∂

∂q
− ∂V

∂q

∂

∂p
, (6.58)

3Some people define the Liouvillian (and also the quantum Liouvillian later) as the negative of what we defined
here, L(∗) = +{H, ∗}. We make our sign choice here to match the definition of Tim Hele’s paper in 2015 which first
proposed Matsubara dynamics.
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so the Liouville equation reads
dρ

dt
= −Lρ . (6.59)

Similarly one may denote the quantum Liouvillian

L̂(∗) = i

ℏ
[Ĥ, ∗] , (6.60)

so the von Neumann equation reads
dρ̂

dt
= −L̂ρ̂ . (6.61)

The quantum Liouvillian is therefore

L̂ =
p

m

∂

∂q
−

∞∑
λ=1,odd

1

λ!

(
iℏ
2

)λ−1
∂λV

∂qλ
∂λ

∂pλ

=
p

m

∂

∂q
− V (q)

2

ℏ
sin

(←−
∂

∂q

ℏ
2

−→
∂

∂p

)
(6.62)

using the series expansion of sin.

6.4 Deformation Quantisation

What we discussed above is yet another formulation of quantum mechanics, known as deformation
quantisation.

One may define the Moyal bracket from the star product defined above as

{A,B}M = − i

ℏ
(A ∗B −B ∗A) . (6.63)

Then we can write the Wigner transform of a commutator as

W
[
− i

ℏ
[Â, B̂]

]
= − i

ℏ
[AW ∗BW −BW ∗AW ] = {AW , BW }M . (6.64)

The Moyal bracket is related to Poisson bracket via the Moral expansion

{A,B}M = {A,B}+
∞∑

λ=3,odd

1

λ!

(
iℏ
2

)λ−1

Λλ(A,B) , (6.65)

where

Λ(A,B) = AΛB = A

(←−
∂

∂q

−→
∂

∂p
−
←−
∂

∂p

−→
∂

∂q

)
B . (6.66)

The leading term is the classical Poisson bracket, and the higher order terms are all purely quantum
corrections in even powers of ℏ.

In the ordinary classical dynamics on a phase space (p, q), you have three ingredients

1. Observables: they are analytic functions A(p, q).

2. Product: they are just the normal products A ·B

3. Bracket: the Poisson bracket {A,B}.

The idea of deformation quantisation is that you keep the same space of observables, as well as
functions on phase space, but deform the product and bracket in a parameter ℏ so that you get
quantum mechanics. So now you have
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1. Observables: still the analytic functions A(p, q).

2. Product: they modified to the star product A ∗B

3. Bracket: now modified to the Moyal bracket {A,B}M .

6.5 LSC-IVR

Consider the Kubo-transformed correlation function

KAB =
1

β

ˆ β

0

dλ tr[e−(β−λ)ĤÂe−λĤeiĤt/ℏB̂e−iĤt/ℏ] = tr[K̂AB̂t] , (6.67)

where we have neglected the normalising partition function factor and denoted

K̂A =
1

β

ˆ β

0

dλ e−(β−λ)ĤÂe−λĤ . (6.68)

By (6.35), this trace over two operators can be written as

KAB =
1

2πℏ

ˆ
dp dqW

[
K̂A

]
W
[
B̂(t)

]
, (6.69)

and its time derivative is
dKAB

dt
= tr[K̂A

˙̂
B(t)] =

1

2πℏ

ˆ
dp dqW

[
K̂A

]
L̂W

[
B̂t

]
, (6.70)

where the quantum Liouvillian is

L̂ =
p

m

∂

∂q
− ∂V

∂q

∂

∂p
−

∞∑
λ=3,odd

1

λ!

(
iℏ
2

)λ−1
∂λV

∂qλ
∂λ

∂pλ
. (6.71)

Integrating the equation of motion, we may write the solution formally as

KAB(t) =
1

2πℏ

ˆ
dp dqW

[
K̂A

]
(p, q)eL̂tW

[
B̂(0)

]
(p, q) . (6.72)

The quantum Liouvillian and the classical Liouvillian are related by

L̂ = Lcl +O(ℏ2) . (6.73)

This is the classical Liouvillian plus a O(ℏ2) quantum correction, so an obvious approximation to do
is to discard the quantum correction, and use the classical Liouvillian. This is known as the linearized
semiclassical-initial value representation (LSC-IVR), or sometimes classical Wigner approximation.
Therefore the correlation function is approximated by

KAB(t) ≈ KWig
AB (t) =

1

2πℏ

ˆ
dp dqW

[
K̂A

]
(p, q)eLcltW

[
B̂(0)

]
(p, q) (6.74)

=
1

2πℏ

ˆ
dp dqW

[
K̂A

]
(p, q)W

[
B̂(0)

]
(pt, qt) , (6.75)

where pt, qt are the classical position and momentum at time t of a trajectory initiated at (p, q) at
t = 0.

This scheme is simple, but it causes a lot of problems. An important one is that the Boltzmann
distribution is not conserved under classical Liouvillian

LclW
[
e−βĤ

]
6= 0 . (6.76)

Also since the dynamics are classical, it cannot describe things like zero point energy or tunneling.
In simulations, this will often quickly release the zero point energy stored by the system to thermal
kinetic energy. For example, an ice simulated at 150 K will melt in less than a picosecond.
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7 Matsubara Dynamics

7.1 Correlation Functions with Ring Polymers

Now let’s see how the Wigner transform can be applied to correlation functions.

Let’s first have a look at the (non-Kubo-transformed) ordinary correlation function

CAB(t) = tr[e−βĤÂeiĤt/ℏB̂e−iĤt/ℏ] . (7.1)

We may recast this into an integral

CAB(t) =

ˆ
dq d∆

〈
q − ∆

2

∣∣∣∣e−βĤÂ

∣∣∣∣q + ∆

2

〉〈
q +

∆

2

∣∣∣∣eiĤt/ℏB̂e−iĤt/ℏ
∣∣∣∣q − ∆

2

〉
(7.2)

=

ˆ
dq d∆dz A

(
q +

∆

2

)
B(z)

〈
q − ∆

2

∣∣∣∣e−βĤ

∣∣∣∣q + ∆

2

〉〈
q +

∆

2

∣∣∣∣eiĤt/ℏ
∣∣∣∣z〉〈z∣∣∣∣e−iĤt/ℏ

∣∣∣∣q − ∆

2

〉
.

(7.3)

We can convert this into a more explicit path integral by Trotterizing the imaginary-time evolution
e−βĤ and real-time evolution e±iĤt/ℏ (although it is unnecessary)

CAB(t) = lim
N→∞

ˆ
dq d∆dx dy dz

A

(
q +

∆

2

)〈
q − ∆

2

∣∣∣∣e−βN Ĥ

∣∣∣∣x1〉N−1∏
j=1

〈
xj

∣∣∣e−βN Ĥ
∣∣∣xj+1

〉〈
xN

∣∣∣∣e−βN Ĥ

∣∣∣∣q + ∆

2

〉

B(zN )

〈
q +

∆

2

∣∣∣∣eiĤt/Nℏ
∣∣∣∣y1〉N−1∏

k=1

〈
yk

∣∣∣eiĤt/Nℏ
∣∣∣yk+1

〉
〈yN |zN 〉

N−1∏
k=1

〈
zk+1

∣∣∣e−iĤt/Nℏ
∣∣∣zk〉〈zk∣∣∣∣e−iĤt/Nℏ

∣∣∣∣q − ∆

2

〉
. (7.4)

This means that we start from a point q − ∆
2 , evolve over real time t to zN ≡ z, evaluate B here,

then evolve over real time −t back to t = 0 to some point q + ∆
2 , evaluate A there, and evolve over

imaginary time βℏ to q− ∆
2 to close the loop. This is averaged over all possible paths and possible end

points. The real time propagation is weighted by the path integral propagator U(tk+1, zk+1; tk, zk) =〈
zk+1

∣∣∣eiĤt/Nℏ
∣∣∣zk〉 (and similarly for yk), and the blue imaginary-time evolution at t = 0 ensures that

we are sampling the initial state at the correct Boltzmann distribution.

Now consider the Kubo-transformed correlation function

KAB(t) =
1

β

ˆ β

0

dλ tr[e−(β−λ)ĤÂe−λĤeiĤt/ℏB̂e−iĤt/ℏ] . (7.5)

We know what the integral over λ does (after Trotterisation) is to put symmetry on the imaginary
time evolution: we are evaluating the average of A over all the beads during the imaginary-time
evolution.

KAB(t) = lim
N→∞

K
[N ]
AB(t) := lim

N→∞

ˆ
dq dz

(
1

N

N∑
k=1

A(qk)

)
N−1∏
j=1

〈
qj

∣∣∣e−βN Ĥ
∣∣∣qj+1

〉
B(z)

〈
qN

∣∣∣eiĤt/ℏ
∣∣∣z〉〈z∣∣∣e−iĤt/ℏ

∣∣∣q1〉 , (7.6)

where we denoted the N -bead approximation to KAB as K [N ]
AB . We are not breaking the real time

evolution explicitly, but do keep in mind that the particle tries all the possible real time evolution
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path with weights given by the path integral propagator. This means that we are now starting from
bead q1, evolve over real time t to z, evaluate B there, evolve back to t = 0 to qN , then evolve over
imaginary time βℏ and averaging A over all the beads along the way.

However, due to the cyclic symmetry, the ring polymer beads are not aware which label we gave
them. The process we described above is equivalent to starting from an arbitrary bead, say q101,
evolve over imaginary time to q1, evolve over real time forward and backwards, then complete the
imaginary time loop to the starting point q101. It completes the same loop. We can see this by shifting
the labels of the beads by 100. Therefore, we can evolve over real time in between any two beads in
the imaginary-time polymer (open) ring from q1 to qN . We take one step further and write the Kubo
transformed correlation function to be the average of all possible places the real time evolution can
happen,

K
[N ]
AB(t) =

1

N

N∑
ℓ=1

ˆ
dq dz

(
1

N

N∑
k=1

A(qk)

)
N−1∏
j=1

〈
qj

∣∣∣e−βN Ĥ
∣∣∣qj+1

〉
B(z)

〈
qℓ

∣∣∣eiĤt/ℏ
∣∣∣z〉〈z∣∣∣e−iĤt/ℏ

∣∣∣qℓ+1

〉
. (7.7)

One might notice that this is in fact equivalent to

K
[N ]
AB(t) =

1

N

N∑
ℓ=1

ˆ
dq dy dz

(
1

N

N∑
k=1

A(qk)

)(
1

N

N∑
ℓ=1

B(zℓ)

)
N∏
j=1

〈
qj

∣∣∣e−βN Ĥ
∣∣∣yj〉〈yj∣∣∣eiĤt/ℏ

∣∣∣zj〉〈zj∣∣∣e−iĤt/ℏ
∣∣∣qj+1

〉
(7.8)

if we pull the red 1
N

∑
ℓ outside and notice that all other

´
dyj |yj〉 〈yj | and

´
dzj |zj〉 〈zj | with j 6= ℓ

collapse to the identity operator. By a change of variable, we can rewrite this as

K
[N ]
AB(t) =

ˆ
dq d∆ dzAN (q)BN (z)

N∏
j=1

〈
qj−1 −

∆j−1

2

∣∣∣∣e−βN Ĥ

∣∣∣∣qj + ∆j

2

〉〈
qj +

∆j

2

∣∣∣∣e+iĤt/ℏ
∣∣∣∣zj〉〈zj∣∣∣∣e−iĤt/ℏ

∣∣∣∣qj − ∆j

2

〉
(7.9)

We have moved the evaluation of A at the ends of polymer beads qi + ∆i

2 to the centers qi, assuming
continuity of A(q). This symmetrisation of z is clearly redundant compared with (7.7), but it better
respects the symmetry of the ring polymer.

At t = 0, the red part becomes∏
j

〈
q +

∆j

2

∣∣∣∣zj〉〈zj∣∣∣∣qj − ∆j

2

〉
=
∏
j

δ(∆j)δ(zj − qj) . (7.10)

We can imagine this as the blue segments closing up to form a closed polymer, and we are just
multiplying AN with BN for that closed ring polymer.

Next, we insert N identity operators to get

K
[N ]
AB(t) =

ˆ
dq d∆ dz d∆′AN (q)BN (z)

N∏
j=1

δ(∆′
j −∆j)〈

qj−1 −
∆j−1

2

∣∣∣∣e−βN Ĥ

∣∣∣∣qj + ∆j

2

〉〈
qj +

∆′
j

2

∣∣∣∣e+iĤt/ℏ
∣∣∣∣zj〉〈zj∣∣∣∣e−iĤt/ℏ

∣∣∣∣qj − ∆′
j

2

〉
(7.11)
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Figure 4: Normal correlation function (left) and Kubo-transformed correlation function (right). We
did not Trotterize the real time evolution for the Kubo graph (although we can).
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Figure 5: The ring polymer closes up at t = 0.
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We then further do Fourier expansions of the delta functions to get

K
[N ]
AB(t) =

1

(2πℏ)N

ˆ
dq d∆ dz d∆′ dpAN (q)BN (z)

N∏
j=1

eipj(∆
′
j−∆j)/ℏ

〈
qj−1 −

∆j−1

2

∣∣∣∣e−βN Ĥ

∣∣∣∣qj + ∆j

2

〉〈
qj +

∆′
j

2

∣∣∣∣e+iĤt/ℏ
∣∣∣∣zj〉〈zj∣∣∣∣e−iĤt/ℏ

∣∣∣∣qj − ∆′
j

2

〉
(7.12)

That looks a bit complicated, but it nicely factors out, and we can see that this is actually a classical
phase space average

K
[N ]
AB(t) =

1

(2πℏ)N

ˆ
dq dp

AN (q)

ˆ
d∆

N∏
j=1

e−i∆jpj/ℏ
〈
qj−1 −

∆j−1

2

∣∣∣∣e−βN Ĥ

∣∣∣∣qj + ∆j

2

〉
ˆ

dz d∆′ BN (z)

N∏
k=1

ei∆
′
kpk/ℏ

〈
qk +

∆′
k

2

∣∣∣∣e+iĤt/ℏ
∣∣∣∣zk〉〈zk∣∣∣∣e−iĤt/ℏ

∣∣∣∣qk − ∆′
k

2

〉
(7.13)

The red part is nice. It is the average of Wigner transforms of B̂(t) over all beads. To see this, we
expand BN to get

ˆ
dz d∆′ BN (z)

N∏
k=1

ei∆
′
kpk/ℏ

〈
qk +

∆′
k

2

∣∣∣∣e+iĤt/ℏ
∣∣∣∣zk〉〈zk∣∣∣∣e−iĤt/ℏ

∣∣∣∣qk − ∆′
k

2

〉

=
1

N

N∑
ℓ=1

ˆ
dzℓ d∆

′
ℓB(zℓ)e

i∆′
ℓpℓ/ℏ

〈
qℓ +

∆′
k

2

∣∣∣∣e+iĤt/ℏ
∣∣∣∣zℓ〉〈zℓ∣∣∣∣e−iĤt/ℏ

∣∣∣∣qℓ − ∆′
ℓ

2

〉
N∏

k=1,k ̸=ℓ

ˆ
dzk d∆

′
k e

i∆′
kpk/ℏ

〈
qk +

∆′
k

2

∣∣∣∣e+iĤt/ℏ
∣∣∣∣zk〉〈zk∣∣∣∣e−iĤt/ℏ

∣∣∣∣qk − ∆′
k

2

〉

=
1

N

N∑
ℓ=1

W
[
B̂(t)

]
(pℓ, qℓ) =:W

[
B̂(t)

]
N
(p,q) , (7.14)

where in the second line, notice that k = ℓ part is just the Wigner transform of B at time t, while
the k 6= ℓ parts all reduces to the identity. We see this as the Wigner transform generalised for ring
polymer, which we denoted as W [−]N (p,q). The blue part is, however, not the average of Wigner
transforms aver all beads. We will denote it as W̃ [−]N (p,q) for simplicity, but do keep in mind that
this is not really average of Wigner transforms. Therefore, we have written K

[N ]
AB(t) as

K
[N ]
AB(t) =

1

(2πℏ)N

ˆ
dp dq W̃

[
Â
]
N
(p,q) W

[
B̂(t)

]
N
(p,q) . (7.15)

7.2 Time Evolution and LSC-IVR for Ring Polymer

Luckily, all the time dependence in the correlation function (7.15) is on W
[
B̂(t)

]
N
(p,q), which is

the true (averaged) Wigner transform, and we already know its time evolution from the last chapter.
We have

dK
[N ]
AB(t)

dt
=

1

(2πℏ)N

ˆ
dp dq W̃

[
Â
]
N
(p,q) LNW

[
B̂(t)

]
N
(p,q) , (7.16)
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where

LN =

N∑
ℓ=1

pℓ
m

∂

∂qℓ
−

∞∑
λ=1,odd

1

λ!

(
iℏ
2

)λ−1
∂λV

∂qℓ
λ

∂λ

∂pℓ
λ

=
1

m
p · ∇q − VN (q)

2

ℏ
sin

(
ℏ
2

←−
∇q ·

−→
∇p

)
. (7.17)

Recall that VN (q) =
∑

i V (qi).

The LSC-IVR approximation for the ring polymer follows by truncating the Liouvillian to O(ℏ0)
so

Lcl,N =

N∑
ℓ=1

pℓ
m

∂

∂qℓ
− ∂V

∂qℓ

∂

∂pℓ
. (7.18)

The correlation function is then approximated by propagating p and q classically so

KAB(t) ≈ KWig,[N ]
AB =

1

(2πℏ)N

ˆ
dp dq W̃

[
Â
]
N
(p,q) eLcl,N tW

[
B̂(0)

]
N
(p,q)

=
1

(2πℏ)N

ˆ
dp dq W̃

[
Â
]
N
(p,q) W

[
B̂(0)

]
N
(pt,qt) .

One can show that this agrees with the standard LSC-IVR approximation in the N → ∞ limit by,
for example, pulling out the sum and integrating out the irrelevant (N − 1) p’s:

KAB(t) ≈ KWig
AB (t) = lim

N→∞
K

Wig,[N ]
AB (t) . (7.19)

7.3 Normal Modes

Recall that we introduced normal mode transformation in section 3.1 as a tool to propagate the
dynamics of a ring polymer (classically). It turns out that this will be a particularly useful tool for
quantum dynamics, which will eventually lead to the Matsubara dynamics.

To simplify the algebra, suppose we have an odd number of polymer beads N . Now the normal
mode coordinates are

Qn =

N∑
ℓ=1

Tℓnqℓ (7.20)

where we take −Ñ ≤ n ≤ Ñ with Ñ = (N − 1)/2, so

Tℓn =


√
1/N n = 0√
2/N sin(2πℓn/N) 1 ≤ n ≤ Ñ√
2/N cos(2πℓn/N) −1 ≥ n ≥ −Ñ .

(7.21)

Pn, Dn etc. are the corresponding transformations of p, ∆ etc., respectively. Note that compared
to what we defined in section 3.1, the n = N/2 mode disappeared because we take N to be odd, and
we shifted the label of the cos modes to negative. The benefit for doing that is our normal mode
frequency

ωn =
2

βNℏ
sin
(nπ
N

)
(7.22)

naturally becomes negative for cos modes (with the same magnitude), which will make our later
expressions somewhat neater. The Hamiltonian written in terms of the normal mode coordinates is

HN (P,Q) =

 Ñ∑
n=−Ñ

P 2
n

2m
+

1

2
mω2

nQ
2
n

+ VN (Q) , (7.23)
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where VN (Q) =
∑N

i V (qi). We have invoked several abuses of notations by calling the same quantity
in different coordinates (which are mathematically different functions) the same name.

The correlation function can be transformed in the normal mode basis as well:

K
[N ]
AB(t) =

1

(2πℏ)N

ˆ
dQ dP

AN (Q)

ˆ
dD

Ñ∏
j=−Ñ

e−iDjPj/ℏ
〈
Qj−1 −

Dj−1

2

∣∣∣∣e−βN Ĥ

∣∣∣∣Qj +
Dj

2

〉
ˆ

dZ dD′ BN (Z)

Ñ∏
k=−Ñ

eiD
′
kPk/ℏ

〈
Qk +

D′
k

2

∣∣∣∣e+iĤt/ℏ
∣∣∣∣Zk

〉〈
Zk

∣∣∣∣e−iĤt/ℏ
∣∣∣∣Qk −

D′
k

2

〉
(7.24)

=:
1

(2πℏ)N

ˆ
dQ dP W̃

[
Â
]
N
(P,Q) W

[
B̂(t)

]
N
(P,Q) , (7.25)

where, again, we have abused notations to write AN (Q) = AN (q), evaluated by transforming Q to
q and similarly for BN . The exact quantum dynamics is described by

dK
[N ]
AB(t)

dt
=

1

(2πℏ)N

ˆ
dQ dP W̃

[
Â
]
N
(P,Q) LNW

[
B̂(t)

]
N
(P,Q) , (7.26)

where
LN =

1

m
P · ∇Q − VN (Q)

2

ℏ
sin

(
ℏ
2

←−
∇Q ·

−→
∇P

)
. (7.27)

You may have noticed that all of the formulae above are formally the same as in the physical
coordinates (p,q) since the normal mode transformation is orthogonal.

7.4 Matsubara Modes

If we perform the normal mode transformation of N beads, we would get N normal modes. What
we can do, however, is to take some very large N , then truncate the normal modes to include the M
lowest modes only for some M � N . In the N →∞ limit, the frequencies ωn tends to the values

ω̃n = lim
N→∞

ωn =
2nπ

βℏ
(7.28)

for −M̃ ≤ n ≤ M̃ , M̃ = (M − 1)/2. These are known as the Matsubara frequencies, which were
originally proposed in quantum field theory to Fourier expand finite-temperature quantum fields in
Euclidean time. The lowest modes M modes we include are the Matsubara modes,

Q̃n = lim
N→∞

Qn√
N

(7.29)

for −M̃ ≤ n ≤ M̃ (and similarly for P̃n and D̃n etc.). Note a few things:

• We have an extra factor of N−1/2. This ensures that Q̃n scales as N0, so it is bounded in the
limit of N →∞.

• The transformation from q to Q is no longer orthogonal. We need to be careful of factors of N
in future expressions.

• P̃n is no longer the conjugate momentum of Q̃n. In classical mechanics, the conjugate
momentum of generalised coordinate qi is pi = ∂L/∂q̇i. If we scale qi by N−1/2, then pi

should scale by N+1/2. However in our definition, both Qn and Pn (and other coordinates) are
scaled by N−1/2, so the conjugated momentum of Q̃n should really be NP̃n. However, this will
blow up in the limit of N →∞, so we instead choose to scale everything by N−1/2 uniformly.
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Figure 6: Jagged polymer and smooth polymer including only the lowest M Matsubara modes.

What is good now is that since N → ∞ and we only have a few low frequency modes, the bead
coordinates can now be seen as a smooth function of imaginary time q(τ) such that

qℓ = q(τ) (7.30)

for τ = βNℏℓ, 1 ≤ ℓ ≤ N .

The remaining N −M modes are the “non-Matsubara” modes that gives rises to the jaggedness
of the ring polymer.

7.5 Matsubara Dynamics
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