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1 Partition Function Ring Polymer Molecular Dynamics

1 Partition Function

For a quantum system of Hamiltonian

Ĥ = T̂ + V̂ =
p̂2

2m
+ V (q) , (1.1)

we are often interested in the partition function

Z =
∑
|n⟩

e−βEn

=
∑
|n⟩

e−β〈n|Ĥ|n〉 , (1.2)

where {|n〉} are the energy eigenstates. Defining the exponential of an operator via power series, one
can write

Z =
∑
|n⟩

〈
n
∣∣∣e−βĤ

∣∣∣n〉 = tr e−βĤ , (1.3)

assuming convergence.

Next, we want to show the following result:

Claim 1.1 (Trotter split).
e−βĤ = lim

N→∞

[
e−

β
N Ĥ

]N
. (1.4)

This seems trivial, but it actually isn’t. Ĥ = T̂ + V̂ , and in general T̂ and V̂ do not commute with
each other. This will cause a little trouble.

We need the following result from Lie algebra.

Lemma 1.2 (Baker–Campbell–Hausdorff formula). For possibly non-commutative X and Y
in the Lie algebra of a Lie group,

eXeY = eZ , (1.5)
where Z is given by

Z = X + Y +
1

2
[X,Y ] +

1

12
([X, [X,Y ]] + [Y, [Y,X]]) + . . . , (1.6)

in which [−,−] is the commutator.

This simply states that once X and Y are non-commuting, we no longer have eXeY = eX+Y —
otherwise this would be the same as eY eX and the non-commutativity will be broken. Instead, we
will have some terms related to the commutators of X and Y introduced into the exponent.

From this, one can show that[
exp

(
A

N

)
exp

(
B

N

)]N
= exp

(
A+B +

1

2N
[A,B] + . . .

)
. (1.7)

The factor 1
2N in front of the commutator is not straightforward to work out, but one can easily see

that it is O( 1
N ), and hence all the remainders → 0 as N →∞. This gives the Lie product formula

eA+B = lim
N→∞

(
eA/NeB/N

)N

. (1.8)

Applying this to −βĤ = −βT̂ − βV̂ , we get out claimed result.
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1 Partition Function Ring Polymer Molecular Dynamics

This allows us to write
Z = tr

[
lim

N→∞

(
e−

β
N Ĥ

)N
]
. (1.9)

The trace has the nice property that it is independent of the basis that we evaluate it in. We now
expand the trace in the position basis {|q1〉}, giving

Z = lim
N→∞

ˆ
dq1

〈
q1

∣∣∣∣[e− β
N Ĥ

]N ∣∣∣∣q1〉 . (1.10)

We have the freedom to insert identity operators

1 =

ˆ
dqi |qi〉 〈qi| (1.11)

anywhere we want. We can insert N − 1 of them, each sandwiched between two of the N exponential
operators, giving

Z = lim
N→∞

ˆ
dq1 . . . dqN

〈
q1

∣∣∣e− β
N Ĥ

∣∣∣q2〉〈
q2

∣∣∣e− β
N Ĥ

∣∣∣q3〉 . . .
〈
qN

∣∣∣e− β
N Ĥ

∣∣∣q1〉 . (1.12)

Now we have N identical-looking matrix elements in the integrand, each looks like

Mi =
〈
qi

∣∣∣e−βN Ĥ
∣∣∣qi+1

〉
, (1.13)

where we have identified q1 ≡ qN+1 and denoted βN := β/N . We will symmetrically break this to

Mi '
〈
qi

∣∣∣e−βN V̂ /2e−βN T̂ e−βN V̂ /2
∣∣∣qi+1

〉
. (1.14)

This is because breaking Ĥ = T̂ + V̂ asymmetrically will introduce a O( 1
N2 ) error in each term by

Baker–Campbell–Hausdorff formula, while breaking Ĥ asymmetrically in this way will only introduce
a O( 1

N3 ) error in each term due to cancellation of O( 1
N2 ) terms, leading to a O( 1

N2 ) error globally in
Z. There are no difference in the above to splitting schemes as N →∞, but the error in symmetric
splitting is smaller when N is finite.

Since {|qi〉} is an eigenbasis of V̂

Mi '
〈
qi

∣∣∣e−βN V̂ /2e−βN T̂ e−βN V̂ /2
∣∣∣qi+1

〉
= e−βNV (qi)/2

〈
qi

∣∣∣e−βN T̂
∣∣∣qi+1

〉
e−βNV (qi+1)/2 . (1.15)

To evaluate the matrix element in the middle, we again use the trick of inserting an identity operator
between the exponentials, but this time is the momentum basis, giving

Mi ' e−βNV (qi)/2e−βNV (qi+1)/2

ˆ
dp

〈
qi

∣∣∣e−βN T̂
∣∣∣p〉 〈p|qi+1〉

= e−βNV (qi)/2e−βNV (qi+1)/2

ˆ
dp e−

βNp2

2m 〈qi|p〉 〈p|qi+1〉 . (1.16)

The bra-kets are just the position representation of momentum eigenstates

〈qi|p〉 =
1√
2πℏ

eipqi/ℏ . (1.17)

Therefore,
Mi '

1

2πℏ
e−βNV (qi)/2e−βNV (qi+1)/2

ˆ
dp eip(qi−qi+1)/ℏe−

βNp2

2m . (1.18)
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1 Partition Function Ring Polymer Molecular Dynamics

We are only left with a simple Gaussian integral (after completing the square), which evaluates to
ˆ

dp eip(qi−qi+1)/ℏe−
βNp2

2m =

√
2πm

βN
exp

(
− m

2βNℏ2
(qi − qi+1)

2

)
, (1.19)

and so the matrix elements are

Mi '
√

m

2πβNℏ2
exp

[
− m

2βNℏ2
(qi − qi+1)

2 − βN [V (qi) + V (qi+1)]

2

]
. (1.20)

The partition function of interest is therefore

Z = lim
N→∞

(
m

2πβNℏ2

)N/2 ˆ
dq1 . . . dqN exp

[
−

N∑
i=1

(
m

2βNℏ2
(qi − qi+1)

2 + βNV (qi)

)]
. (1.21)

This form of the partition function starts to reveal its name ‘ring polymer’. We just need a few extra
steps to get there. In particular, notice the prefactor — it is exactly what is known as the thermal
wavelength, which can be obtained by integrating the momentum degrees of freedom when evaluating
the classical partition function. It is just instead of β, we have βN ≡ β/N here. This is the effective
(inverse) temperature of our ring polymer. Observe that(

m

2πβNℏ2

)1/2

=
1

2πℏ

ˆ
dpi exp

(
−βNp2i

2m

)
. (1.22)

This allows us to finally write

Z = lim
N→∞

1

(2πℏ)N

ˆ
dp1 dq1 . . . dpN dqN exp

[
−βN

N∑
i=1

(
p2i
2m

+
m

2β2
Nℏ2

(qi − qi+1)
2 + V (qi)

)]

= lim
N→∞

1

(2πℏ)N

ˆ
dNp dNq exp (−βNHN )

=: lim
N→∞

ZN , (1.23)

where

HN =

N∑
i=1

[
p2i
2m

+
m

2β2
Nℏ2

(qi − qi+1)
2 + V (qi)

]
. (1.24)

We see something magical here. This is exactly the classical partition function of a N -particle polymer
ring system connected by springs of angular frequency ωN = 1

βNℏ , placed on a potential V at inverse
temperature βN . If we take the N → ∞ limit, the partition function this polymer ring with N
particles becomes that of a single quantum particle!
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2 Thermal Average of an Operator

Suppose now we are interested in the thermal average of an operator Â,

〈A〉 = 1

Z

∑
|n⟩

e−βEn

〈
n
∣∣∣Â∣∣∣n〉 . (2.1)

If we pick {|n〉} to be the eigenstate of the Hamiltonian, then

e−βĤ |n〉 = e−βEn |n〉 , (2.2)

so

〈A〉 = 1

Z

∑
|n⟩

〈
n
∣∣∣e−βĤÂ

∣∣∣n〉
=

1

Z
tr[e−βĤÂ] . (2.3)

We use the same trick to split the e−βĤ into N → ∞ parts, and equate Z with the ring polymer
partition function

〈A〉 = lim
N→∞

1

ZN
tr

[(
e−βN Ĥ

)N

Â

]
. (2.4)

A nice property of the trace is that it is cyclic invariant, meaning that we can move any number of
slices of e−βN Ĥ after Â

〈A〉 = lim
N→∞

1

ZN
tr

[(
e−βN Ĥ

)j

Â
(
e−βN Ĥ

)N−j
]
, (2.5)

where 0 ≤ j ≤ N . We take one step further and write 〈A〉 as the average of the right hand sides with
1 ≤ j ≤ N :

〈A〉 = lim
N→∞

1

NZN

N∑
j=1

tr

[(
e−βN Ĥ

)j

Â
(
e−βN Ĥ

)N−j
]
. (2.6)

For each j, we can use our good old trick of inserting identity operators between each pair of slices,
giving

〈A〉 = lim
N→∞

1

NZN

N∑
j=1

ˆ
dNq

〈
q1

∣∣∣e−βN Ĥ
∣∣∣q2〉 . . .

〈
qj

∣∣∣e−βN ĤÂ
∣∣∣qj+1

〉
. . .

〈
qN

∣∣∣e−βN Ĥ
∣∣∣q1〉 . (2.7)

Notice the extra Â in the jth matrix element.

2.1 Coordinate-Dependent Quantities

To proceed, we assume that the operator of interest Â = A(q̂) is a function of coordinate only, and
so Â |qi〉 = A(qi) |qi〉. An example is the potential energy V̂ = V (q̂). Then since Â |q〉 = A(q) |q〉,

〈A〉 = lim
N→∞

1

NZN

N∑
j=1

ˆ
dNqA(qj+1)

〈
q1

∣∣∣e−βN Ĥ
∣∣∣q2〉 . . .

〈
qN

∣∣∣e−βN Ĥ
∣∣∣q1〉 . (2.8)

This now reduces to what we have seen before, just with an extra scalar function in the integral. We
can write it as

〈A〉 = lim
N→∞

1

(2πℏ)NZN

ˆ
dNp dNq

 1

N

N∑
j=1

A(qj)

 e−βNHN

= lim
N→∞

1

(2πℏ)NZN

ˆ
dNp dNqANe−βNHN (2.9)
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2 Thermal Average of an Operator Ring Polymer Molecular Dynamics

which is the classical thermal average of AN for the polymer ring, where

AN (q) =
1

N

N∑
i=1

A(qi) (2.10)

is the average value of A for the N particles on the polymer ring. We reduced the quantum thermal
average into the classical thermal average in a polymer ring,

〈A〉 = lim
N→∞

〈AN 〉 . (2.11)

Therefore, if we are interested in the thermal average of some coordinate-dependent quantity of
a quantum particle, we can replace it with a ring polymer of large N , propagate the ring polymer
classically and sample 〈AN 〉. This will give us 〈A〉 exactly in the N →∞ limit.

2.2 Kinetic Energy

We can also evaluate the thermal average of some other quantities, despite involving a bit more effort.
We will take the kinetic energy operator T̂ = p̂2

2m as an example.

For symmetry, we move a half extra slice of e−βN Ĥ after T̂ and get

〈T 〉 = lim
N→∞

N∑
j=1

ˆ
dNq

〈
q1

∣∣∣e−βN Ĥ
∣∣∣q2〉 . . .

〈
qj

∣∣∣e−βN Ĥ/2T̂ e−βN Ĥ/2
∣∣∣qj+1

〉
. . .

〈
qN

∣∣∣e−βN Ĥ
∣∣∣q1〉 . (2.12)

Splitting Ĥ = T̂ + V̂ again gives〈
qj

∣∣∣e−βN Ĥ/2T̂ e−βN Ĥ/2
∣∣∣qj+1

〉
= exp

[
−βN

V (qj) + V (qj+1)

2

]〈
qj

∣∣∣e−βN T̂ /2T̂ e−βN T̂ /2
∣∣∣qj+1

〉
= exp

[
−βN

V (qj) + V (qj+1)

2

]〈
qj

∣∣∣T̂ e−βN T̂
∣∣∣qj+1

〉
= − exp

[
−βN

V (qj) + V (qj+1)

2

]
∂

∂βN

〈
qj

∣∣∣e−βN T̂
∣∣∣qj+1

〉
= − exp

[
−βN

V (qj) + V (qj+1)

2

]
∂

∂βN

[(
m

2πℏ2βN

) 1
2

exp

(
−m(qj − qj+1)

2

2ℏ2βN

)]

= exp

[
−βN

V (qj) + V (qj+1)

2

] [
1

2βN
− m(qj − qj+1)

2

2ℏ2β2

]〈
qj

∣∣∣e−βN T̂
∣∣∣qj+1

〉
=

[
1

2βN
− 1

2
mω2

N (qj − qj+1)
2

]〈
qj

∣∣∣e−βN Ĥ
∣∣∣qj+1

〉
. (2.13)

Therefore, the quantum thermal average of kinetic energy is identical to N → ∞ limit of classical
thermal average of the kinetic energy estimator TN

〈T 〉 = lim
N→∞

1

(2πℏ)NZN

ˆ
dNq dNp TNe−βNHN = lim

N→∞
〈TN 〉 , (2.14)

where

TN =
1

2βN
− 1

2N

N∑
j=1

mω2
N (qj − qj+1)

2 . (2.15)
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2 Thermal Average of an Operator Ring Polymer Molecular Dynamics

2.3 Total Energy

We can trivially work out the total energy estimator by summing up the kinetic and potential energy
estimators:

EN,TD = TN + VN =
1

2βN
− 1

2n

N∑
j=1

mω2
N (qj − qj+1)

2 +
1

N

N∑
j=1

V (qj) , (2.16)

where the extra subscript TD stands for ’thermodynamic’ as this estimator is known as the
thermodynamic energy estimator. This is to distinguish with another total energy estimator that
will be introduced later. We than have

〈E〉 = lim
N→∞

1

(2πℏ)NZN

ˆ
dNp dq EN,TDe

−βNHN = 〈EN,TD〉 . (2.17)

An alternative approach is to use the thermodynamic relation

〈E〉 = −
(
∂ lnZ

∂β

)
V

, (2.18)

where we already have the ring polymer expression of partition function ZN . This gives the same
thermodynamic energy estimator EN,TD.

EN,TD is not the only estimator that gives the total energy. The centroid virial energy estimator

EN,CV =
1

2β
+

1

2n

N∑
j=1

(qj − q)
dV (qj)

dqj
+

1

N

N∑
j=1

V (qj) , (2.19)

where q = 1
n

∑N
k=1 qk is the centroid coordinate of the polymer beads, can be shown to have the

same average 〈EN,CV〉 = 〈EN,TD〉 as the thermodynamics energy estimator, but with a way smaller
variance. In the example above, both thermodynamic energy estimator and centroid virial estimator

0 10 20 30 40 50 60

0.2

0.4

0.6

0.8

N

E

Exact
Thermodynamic
Centroid Virial

Figure 1: Average energies of a harmonic oscillator with βℏω = 10, sampled with 20000 runs using
the two estimators. The error bars are the standard deviation of the energies.

converges to the exact 〈E〉 as N → ∞. However, the standard deviation of the thermodynamic
estimator grows asymptotically as

√
N , so the required number of sample would increase linearly

with N to keep the standard error in the mean constant. By contrast, the standard deviation of the
centroid virial estimator is asymmetrically constant of N .
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3 Propagating the Ring Polymer Dynamics

3.1 Integrating the Equations of Motion

In the previous section, we have established that to sample the equilibrium thermal average of some
quantum system, we can instead propagate the dynamics of a classical ring polymer system and
sample the thermal average of the corresponding classical estimator.

Given a classical Hamiltonian H(p,q) with initial conditions p(0) = p0, q(0) = q0, the evolution
of the system is governed deterministically by the Hamilton’s equation

ṗ = −∂H

∂q
(3.1)

q̇ = +
∂H

∂p
. (3.2)

For our Hamiltonian H = p2

2m + V (q), this is

ṗ = −∂V

∂q
(3.3)

q̇ = +
p

m
(3.4)

as one would expect from Newton’s second law.

These are a set of differential equations, and to work out the trajectory, we need to integrate these
equations of motion. The most common way to do this is to use the velocity Verlet algorithm (see my
notes on NST Part II C8: Computer Simulation Methods), in which the following steps are carried
out iteratively to propagate the dynamics:

pn+ 1
2
= pn −

δt

2

∂V

∂q
(qn) (3.5)

qn+1 = q+ δt
pn+ 1

2

m
(3.6)

pn+1 = pn+ 1
2
− δt

2

∂V

∂q
(qn+1) . (3.7)

This propagates the momenta under V by half a time step, propagates the coordinates by a full
time step, and then propagate the momenta by another time step, corresponding to symmetrically
splitting the time evolution operator by

e−Lδt ' e−LV δt/2e−LT δte−LV /2 . (3.8)

This is accurate to O(δt3) for each time step (O(δt2) globally), and is better than propagating the
coordinates and momenta by a full time step simultaneously, which is known as the Euler’s algorithm
and is accurate to O(δt2) each step and O(δt) globally.

For ring polymer molecular dynamics, we can of course directly use the standard velocity Verlet
algorithm with Hamiltonian

HN (p,q) =
p2

2m
+ V (q) , (3.9)

where

V (q) =

N∑
j=1

[
1

2
mω2

N (qj − qj+1)
2 + V (qj)

]
, (3.10)

to propagate the dynamics. However, the harmonic springs between the beads are stiff, especially with
large N (ωN = N/βℏ). This requires a very small time step for us to propagate the internal vibrations
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of the ring polymer beads accurately. (Usually a time step of 1/20 of the shortest characteristic
vibrational time scale of the system is safe.)

Luckily, we know how to solve the vibrational motions of systems connected by harmonic springs
exactly! We can break them down to normal modes and propagate these internal normal modes
exactly. (See NST Part II C8: Further Quantum Mechanics or NST Part IB Mathematical Methods.)
We break down the Hamiltonian as

HN (p,q) = HN,0(p,q) + VN (q) , (3.11)

where

H0,N =

N∑
j=1

[
p2j
2m

+
1

2
mω2

N (qj − qj+1)
2

]
(3.12)

is the free ring polymer Hamiltonian without the external potential and

VN (q) =

N∑
j=1

V (qj) (3.13)

is the external potential. Since the potential of the free ring polymer Hamiltonian H0(p,q) is
harmonic, it can be diagonalised with a normal mode transformation{

p̃k =
∑n

j=1 pjCjk

q̃k =
∑n

j=1 qjCjk ,
(3.14)

where

Cjk =


√
1/n k = 0√
2/n cos(2πjk/n) 1 ≤ k ≤ n/2− 1√
1/2(−1)j k = n/2√
2/n sin(2πjk/n) n/2 + 1 ≤ k ≤ n ,

(3.15)

giving

H0(p̃, q̃) =

N−1∑
k=0

[
p̃2k
2m

+
1

2
mω2

k q̃
2
k

]
(3.16)

with
ωk = 2ωN sin

(
kπ

n

)
. (3.17)

Notice that we have shifted the range of indices from 1 ≤ j ≤ N to 0 ≤ k ≤ N − 1. You should be
familiar with this because Cjk and ω2

k are actually exactly the Hückel molecular orbital coefficients
and the orbital energies of a cyclic polyene. This is because the Hückel matrix of a cyclic polyene
and the potential energy matrix of a ring polymer are exactly the same:

Hpolyene =


α β 0 · · · β
β α β · · · 0
0 β α · · · 0
...

...
... . . . ...

β 0 0 · · · α


α=2,β=−1←→ V =


2 −1 0 · · · −1
−1 2 −1 · · · 0
0 −1 2 · · · 0
...

...
... . . . ...

−1 0 0 · · · 2

 (3.18)

such that
∑N

j=1(qj − qj+1)
2 = qTVq. Moreover, the normal mode transformation (3.14) is exactly

the discrete Fourier transform, which can be efficiently carried out using the Fast Fourier Transform
(FFT) algorithm with a scaling no larger than O(n log n).

In the normal mode coordinates, the Hamiltonian H0,N is broken down into N independent
harmonic oscillators, each evolving sinusoidally{

q̃k = Ak sin(ωkt) +Bk cos(ωkt)

p̃k = mAkωk cos(ωkt)−mBkωk cos(ωkt) .
(3.19)

8



3 Propagating the Ring Polymer Dynamics Ring Polymer Molecular Dynamics

To overall idea is therefore breaking down the ring polymer evolution by

e−Lδt = e−LV δ/2e−L0δte−LV δt/2 , (3.20)

i.e. evolve the momenta by the external potential for half a time step, transform into the normal mode
coordinates, evolve the coordinates and momenta by the internal ring normal modes for a full time
step, revert back to the real coordinates, and finally evolve the momenta by the external potential
for half a time step. The detailed algorithm is

p′ = pn −
δt

2

dV

dq
(qn) (3.21)

p̃′ = CTp′ (3.22)
q̃′ = CTqn (3.23)(

p̃′′k
q̃′′k

)
=

(
cosωkδt −mωk sinωkδt
1

mωk
sinωkδt cosωkδt

)(
p̃′k
q̃′k

)
(3.24)

p′′ = Cp̃′′ (3.25)
qn+1 = Cq̃′′ (3.26)

pn+1 = p′′ − δt

2

dV

dq
(qn+1) (3.27)

3.2 Sampling in Canonical Ensemble

The above algorithm well propagates the dynamics of the ring polymer in a microcanonical ensemble,
but we can’t use them to calculate canonical thermal averages because

• The above algorithm rigorously conserves the energy HN . Instead in a canonical ensemble with
constant energy, the phase space should be sampled with all possible HN weighted by their
Boltzmann factors.

• It is far from ergodic. If the external potential is harmonic, then the whole HN is diagonal in
the normal mode representation and hence there is no energy flow between the normal modes. If
the external potential is instead mildly anharmonic, then the energy exchanges between modes
very slowly. It is therefore not even possible to fully sample the microcanonical constant energy
hypersurface in the phase space ergodically within the typical timescale of a simulation.

Therefore to meaningfully work out a thermal average, we need to attach a thermostat to our
ring polymer system. Here we will briefly introduce the path integral Langevin equation (PILE)
thermostat.

3.2.1 The Path Integral Langevin Equation Thermostat

The PILE thermostat attaches a separate Langevin thermostat to each internal mode of the free ring
polymer, so that the free polymer would evolve by

d

dt
q̃k =

p̃k
m

(3.28)

d

dt
p̃k = −mω2

k q̃k − γkp̃k +

√
2mγk
βn

ξk(t) , (3.29)

where γk(t) represents an uncorrelated, Gaussian-distributed random form with unit variance and
zero mean:

〈ξk(t)〉 = 0 〈ξk(0)ξk(t)〉 = δ(t) , (3.30)

9



3 Propagating the Ring Polymer Dynamics Ring Polymer Molecular Dynamics

and the friction coefficients γk governs the rate at which the velocities are thermalised. The first term
in (3.29) is the free evolution of a microcanonical harmonic oscillator, and the two extra terms are
from the Langevin thermostat. Their origins are explained in NST Part II B7: Statistical Mechanics.

The PILE thermostat uses the propagator

e−Lγδt/2e−LV δt/2e−L0δte−LV δt/2e−Lγδt/2 , (3.31)

where the extra thermostatting steps (e−Lγδt/2) implements the last two extra terms in (3.29). They
are implemented by

p̃k =

n∑
j=1

pjCjk (3.32)

p̃k = e−γkδt/2p̃k +

√
m(1− e−γkδt)

βN
ξk (3.33)

pj =

N∑
k=1

Cjkp̃k , (3.34)

where ξk is a independent Gaussian number randomly drawn from a Gaussian distribution with zero
mean and unit variance each time.

The friction coefficients γk governs the rate at which the momenta in each mode is thermalised
(randomised). The autocorrelation time

τV =
1

〈V 2〉 − 〈V 〉2
ˆ ∞

0

dt 〈(V (0)− 〈V 〉)(V (t)− 〈V 〉)〉 (3.35)

of the free ring polymer mode potential V = 1
2mω2

k q̃
2
k can be worked out analytically to be

τV =
1

2γk
+

γk
2ω2

k

(3.36)

for ωk > 0. The optimum friction coefficient is the one that minimises τV (and hence samples the
most efficiently), which is γk = ωk. This leaves only a single physical parameter τ0 to be specified for
thermostatting the centroid mode k = 0.

γk =

{
1/τ0 k = 0

ωk k 6= 0 .
(3.37)

10
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4 Generalisation for Multipaticle System

The above equations are derived for the one-particle one-dimensional quantum mechanical problem
with Hamiltonian

Ĥ =
p̂2

2m
+ V (q̂) . (4.1)

The generalisation to higher dimensions is trivial, and in the absence of quantum mechanical exchange
effects for identical particles (fermionic and bosonic), it is also straightforward to generalise to
multiparticle systems. For example, the Hamiltonian

Ĥ =

M∑
i=1

p̂2
i

2mi
+ V (r̂i, r̂2, . . . , q̂M

2) (4.2)

have the ring polymer Hamiltonian

HN ({pi}, {ri}) =
M∑
i=1

N∑
j=1

[
p2
i,j

2mi
+

1

2
miω

2
N ‖ri,j − ri,j+1‖2

]
+

N∑
j=1

V (r1,j , . . . , rM,j) . (4.3)

Figure 2: Two interacting ring polymers with N = 5.

Identical particle exchange effects become important when the de Broglie thermal wavelengths
Λi(T ) = h/

√
2πmikBT exceed the hard sphere diameters of the atoms. These effects can in principle

be included by considering dimerisation, trimerisation, etc. of ring polymers (see Chandler and
Wolynes). However, it is hardly ever necessary for those of us who work in chemistry departments
to have to worry about them, because these effects are almost always negligible, e.g. in liquid
para-hydrogen even at its melting temperature (13.8 K).

11
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5 Kubo-Transformed Correlation Function

Suppose now we have two coordinate-dependent operators A and B of interest, with classical ring-
polymer counterparts AN and BN defined analogous to (2.10). What does the N →∞ limit of

〈ANBN 〉 =
1

ZN

ˆ
dNp dNqANBNe−βNHN (5.1)

corresponds to?

A naive guess would be
〈AB〉 ?

= lim
N→∞

〈ANBN 〉 , (5.2)

but this is actually wrong. To see this, we expand

〈ANBN 〉 =
1

N2

N∑
i,j=1

〈A(qi)B(qj)〉 , (5.3)

but to get 〈AB〉 in the N →∞ limit, we would need

〈AB〉 = lim
N→∞

1

N

N∑
i=1

〈A(qi)B(qi)〉 . (5.4)

These two are obviously unequal in general.

The N →∞ limit of 〈ANBN 〉 actually corresponds to something else.

Definition 5.1. The correlation function of two observables A and B is

CAB(t) :=
1

Z
tr[e−βĤÂeiĤt/ℏB̂e−iĤt/ℏ] . (5.5)

The rationalisation of this is that in the Heisenberg picture, the operator B̂ evolves as

B̂(t) = eiĤt/ℏB̂(0)e−iĤt/ℏ , (5.6)

while the energy eigenstates are not changing, so

CAB(t) =
1

Z
tr[e−βĤÂ(0)B̂(t)]

=
1

Z

∑
|n⟩

〈
n
∣∣∣e−βĤÂ(0)B̂(t)

∣∣∣n〉
=

1

Z

∑
|n⟩

e−βEn

〈
n
∣∣∣Â(0)B̂(t)

∣∣∣n〉
= 〈A(0)B(t)〉 . (5.7)

This is often ill-defined. What arises more frequently in PIMD (and linear response theory) is a
slightly modified version of this:

Definition 5.2. The Kubo-transformed correlation function of two observables A and B is

KAB(t) :=
1

βZ

ˆ β

0

dλ tr[e−(β−λ)ĤÂe−λĤeiĤt/ℏB̂e−iĤt/ℏ] . (5.8)

12
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Let’s have a closer look at what this means. In addition to the Boltzmann factor e−λĤ and evolved
B̂ operator B̂(t) = eiĤt/ℏB̂e−iĤt/ℏ in the trace, we also have changed our Â operator by

eλĤÂe−λĤ (5.9)

with an averaging over λ from 0 to β by the integral 1
β

´ β
0

. Notice that this is similar to the time
evolution we’ve done on B̂, but this time there is no factor of i in the exponent. We can interpret
this as imaginary-time evolution,

Â(−iℏλ) = eλĤÂe−λĤ . (5.10)
Hence in the Kubo-transformed correlation function, we are also averaging over the imaginary time
of Â from t = 0 to t = −iℏβ. This allows us to compactly denote the Kubo-transformed correlation
function as

KAB(t) =
1

β

ˆ β

0

dλ
〈
Â(−iℏλ)B̂(t)

〉
. (5.11)

The ordinary correlation function and the Kubo-transformed one are more closely related in the
Fourier domain. This is easily seen if we work in the basis of energy eigenstates. Inserting the
resolution of identity operators in the energy basis,

CAB(t) =
1

Z

∑
|n⟩

∑
|m⟩

∑
|ℓ⟩

〈
n
∣∣∣e−βĤÂ

∣∣∣m〉〈
m
∣∣∣eiĤt/ℏ

∣∣∣ℓ〉〈
ℓ
∣∣∣B̂e−iĤt/ℏ

∣∣∣n〉
=

1

Z

∑
|n⟩

∑
|m⟩

∑
|ℓ⟩

e−βEne−iEnt/ℏeiEℓt/ℏδmℓAnmBℓn

=
1

Z

∑
|n⟩

∑
|m⟩

e−βEne−i(En−Em)t/ℏAnmBmn . (5.12)

Doing the same for the Kubo-transformed correlation function, we get

KAB(t) =
1

βZ

ˆ β

0

dλ
∑
|n⟩

∑
|m⟩

∑
|ℓ⟩

〈
n
∣∣∣e−βĤeλĤ

Â
∣∣∣m〉〈

m
∣∣∣e−λĤeiĤt/ℏ

∣∣∣ℓ〉〈
ℓ
∣∣∣B̂e−iĤt/ℏ

∣∣∣n〉
=

1

Z

∑
|n⟩

∑
|m⟩

e−βEne−i(En−Em)t/ℏAnmBmn
1

β

ˆ β

0

dλ eλ(En−Em)

=
1

Z

∑
|n⟩

∑
|m⟩

e−βEne−i(En−Em)t/ℏAnmBmn
eβ(En−Em) − 1

β(En − Em)
. (5.13)

It has got some extra bit comparing with the normal correlation function — but it is dependent on
En − Em, so we can’t easily pull it out from the sum. Nice things happen if we move to the Fourier
domain. We get

K̃AB(ω) =

ˆ ∞

−∞
dt e−iωtKAB(t)

=
1

Z

∑
|n⟩

∑
|m⟩

e−βEnAnmBmn
eβ(En−Em) − 1

β(En − Em)

ˆ ∞

−∞
dt e−iωte−i(En−Em)t/ℏ . (5.14)

If you’re familiar with Fourier transform, you should identify that this is exactly the delta function,
ˆ ∞

−∞
dt e−iωte−i(En−Em)t/ℏ = 2πδ

(
Em − En

ℏ
− ω

)
, (5.15)

and so
K̃AB(ω) =

1

Z

∑
|n⟩

∑
|m⟩

e−βEnAnmBmn
eβ(En−Em) − 1

β(En − Em)
2πδ

(
Em − En

ℏ
− ω

)
. (5.16)
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The delta function naturally imposes the condition Em = En + ℏω, so it reduces the double sum to
a single sum,

K̃AB(ω) =
1

Z

∑
|n⟩

e−βEnAnmBmn
1− e−βℏω

βℏω
2πδ(0) . (5.17)

Now the extra factor from the integral over λ is independent of |n〉, so we can pull it out from the
sum

K̃AB(ω) =
1− e−βℏω

βℏω
2π

Z

∑
|n⟩

e−βEnAnmBmnδ(0) . (5.18)

The Fourier transform of the normal correlation function is exactly the same except without this
extra factor

C̃AB(ω) =
2π

Z

∑
|n⟩

e−βEnAnmBmnδ(0) , (5.19)

and so
K̃AB(ω) =

1− e−βℏω

βℏω
C̃AB(ω) . (5.20)

Notice also that in the classical limit, the energy spectrum becomes a continuum with βℏω → 0, and
so

K̃AB(ω)→ C̃AB(ω) . (5.21)

5.1 Relation to Ring Polymer Average

Having established what the Kubo-transformed correlation function is, let’s see how it is related to
the ring-polymer average of two observables.

Claim 5.3. The N → ∞ limit of 〈ANBN 〉 for the classical ring polymer is the t → 0 limit of the
Kubo-transformed correlation function

lim
N→∞

〈ANBN 〉 = KAB(0) . (5.22)

Proof. At t = 0,

KAB(0) =
1

βZ

ˆ β

0

dλ tr[e−(β−λ)ĤÂe−λĤB̂] . (5.23)

Consider again Trotter-splitting the exponential of the Hamiltonians, but this time

e−(β−λ)Ĥ =
(
e−βĤ

) β−λ
β

= lim
N→∞

(
e−βN Ĥ

)N(1−λ
β )

, (5.24)

and similarly

e−λĤ = lim
N→∞

(
e−βN Ĥ

)N λ
β

. (5.25)

Therefore,

KAB(0) = lim
N→∞

1

βZN

ˆ β

0

dλ tr

[(
e−βN Ĥ

)N(1−λ
β )

Â
(
e−βN Ĥ

)N λ
β

B̂

]
. (5.26)

Let’s consider the effect of the integral averaging over λ: 1
β

´ β
0

. There are N(1− λ
β ) pieces of e−βN Ĥ

in front of Â and N λ
β between Â and B̂. What the integral does is averaging over the number of

e−βN Ĥ pieces distributed between these two places, while making sure that there are N of them in
total. When N is large, this can be replaced by the sum

1

β

ˆ β

0

dλ f(λ) 7−→ lim
N→∞

1

N

N∑
λ=1

f (λβN ) . (5.27)
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Therefore we can write

KAB(0) = lim
N→∞

1

NZN

N∑
k=1

tr

[(
e−βN Ĥ

)k

Â
(
e−βN Ĥ

)N−k

B̂

]
. (5.28)

Now there are N + 2 operators in the trace. We again use the trick of inserting identity operators
between them, while associating Â and B̂ to the e−βN Ĥ in front of them, giving

lim
N→∞

1

ZN

1

N

N∑
k=1

ˆ
dNq . . .

〈
qk

∣∣∣e−βN ĤÂ
∣∣∣qk+1

〉
. . .

〈
qN

∣∣∣e−βN ĤB̂
∣∣∣q1〉 . (5.29)

Another property of the trace we can exploit is its cyclic invariance. This means that we can move
any slice of bra-kets at front to the end, and vice versa. This means that

KAB(0) =

ˆ
dNq . . .

〈
qk

∣∣∣e−βN ĤÂ
∣∣∣qk+1

〉
. . .

〈
qN

∣∣∣e−βN ĤB̂
∣∣∣q1〉

=

ˆ
dNq . . .

〈
qi

∣∣∣e−βN ĤÂ
∣∣∣qi+1

〉
. . .

〈
qj

∣∣∣e−βN ĤB̂
∣∣∣qj+1

〉
. . . ,

(5.30)

as long as |j − i| = k. We average over all possible cyclic permutations of the trace — there are N
of them for each interval k. This is effectively putting Â and B̂ into all possible slices of bra-kets.
Therefore we can write

KAB(0) = lim
N→∞

1

ZN

1

N2

N∑
i,j=1

ˆ
dNq . . .

〈
qi

∣∣∣e−βN ĤÂ
∣∣∣qi+1

〉
. . .

〈
qj

∣∣∣e−βN ĤB̂
∣∣∣qj+1

〉
. . .

= lim
N→∞

1

ZN

ˆ
dNp dNqANBNe−βNHN

= lim
N→∞

〈ANBN 〉 , (5.31)

which is exactly what we claimed. □
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