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1 Molecular Dynamics

1.1 Integrating the Equations of Motion

A famous conclusion in classical mechanics is that the motion of three bodies under gravitational
interaction has no general analytic solution in closed form. The problem will only get worse if we
introduce more bodies into the system or consider more complex forms of interaction. It is not
uncommon for a system in physics and chemistry to have more than billions of interacting particles,
so we usually have no choice but to treat their interactions numerically on a computer. The aim of
Molecular Dynamics (MD) is to study a system by recreating it on the computer as close to nature
as possible.

1.1.1 Newton’s Equations of Motion

We start from the most fundamental law in classical mechanics — Newton’s equation. If we have a
system of N particles, and their positions are given by {ri}Ni=1 which we collectively denote as rN ,
then the interactions between the particles will be completely determined by the positions of the
particles, specified by the potential

V = V (r1, . . . , rN ) ≡ V (rN ) . (1.1)

The force f i acting on particle i is the negative gradient of V , which is again a function of the
configuration rN :

f i(r
N ) = −∇iV (rN ) = −∂V (rN )

∂ri
. (1.2)

Then the future evolution of the system is given by the Newton’s second law

mir̈i = f i(r
N ) , (1.3)

where mi is the mass of particle i. This is a system of N coupled second-order differential equations.
Additionally, it is often useful to introduce the momentum of a particle. In Cartesian coordinates,
the momentum of a particle is given by

pi = miṙi . (1.4)

When modelling a system composed of atoms and molecules, interatomic interactions, as opposed
to the forces related to chemical bonds keeping molecules together, are relatively weak. A good and
extremely common approximation for intermolecular interactions is that they are pairwise additive.
Moreover, for atoms, these pair potentials can be assumed to be central so that they depend only on
the interatomic distances. Then the total potential V can be resolved into a sum of pair potentials
vij between all pairs of atoms i and j, where vij is only a function of the interatomic distance
rij ≡ ∥rij∥ := ∥ri − rj∥

V (rN ) =

N∑
i=1

N∑
j>i

vij(rij) . (1.5)

The sum is taken over j > i so that each pair of atoms i and j is summed exactly once. This
restriction can be lifted by noting vij and vji both describes the potential between particle i and j
so they should be the same, and rij = rji, so

V (rN ) =
1

2

N∑
i=1

N∑
j ̸=i

vij(rij) . (1.6)

The factor of a half cancels with the problem of double counting, and self interactions with i = j are
excluded.
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If we identify the force acting on particle i by particle j is

f ij := −∂vij
∂ri

, (1.7)

then it is easy to show that the total force acting on particle i is the sum of the forces acted by all
other particles using the form of potential given by (1.6)

f i = −∂V

∂ri

= −1

2

N∑
j ̸=i

(
∂vij(rij)

∂ri
+

∂vji(rji)

∂ri

)

= −
N∑
j ̸=i

∂vij(rij)

∂ri
=

N∑
j ̸=i

f ij . (1.8)

It is also not difficult to show that the pair forces satisfy the Newton’s third law

f ij = −f ji . (1.9)

1.1.2 Properties of Classical Dynamics

Energy Conservation

A fundamental property of mechanical systems, for pair or many-body interactions, provided that
they can be derived from a potential invariant in time, is that the total energy is conserved during
the motion. The total energy is the sum of the potential energy V and the kinetic energy K defined
by

K =

N∑
i=1

1

2
miṙ

2
i . (1.10)

We define the Hamiltonian of a system to be

H(rN , ṙN , t) := K + V =
N∑
i=1

1

2
miṙ

2
i + V (rN , t) , (1.11)

For our purposes, it is just another way of saying the total energy of the system.1 In our cases, the
potential V and hence the whole Hamiltonian has no explicit time dependence, meaning t does not
appear explicitly in the expression of both K and V , although both r and ṙ evolve in time. If this is
the case, then the Hamiltonian (total energy) remains constant over time. This is the conservation
of energy.

Theorem 1.1 (Energy Conservation). If H(ri, ṙi, t) has no explicit time dependence,

∂H

∂t
= 0 , (1.13)

then H is a constant of motion,
dH

dt
= 0 . (1.14)

1Formally in classical mechanics, the Hamiltonian is defined as the Legendre transform of the Lagrangian, by

H =

n∑
i=1

piq̇i − L(qi, q̇i, t) . (1.12)

pi is the conjugated momentum of the generalised coordinate qi. Since the generalised coordinate is not necessarily the
Cartesian coordinates (e.g. spherical, or even non-orthogonal), H may not be the energy.
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Proof. By chain rule,

dH

dt
=

∂H

∂t
+

N∑
i=1

∂H

∂ri

∂ri
∂t

+

N∑
i=1

∂H

∂ṙi

∂ ṙi
∂t

= 0 +

N∑
i=1

∂V

∂ri
· ṙi +

N∑
i=1

miṙi · r̈i

=

N∑
i=1

ṙi · (mir̈i − f i) = 0 (1.15)

from Newton’s second law. □

Since the Hamiltonian is not explicitly dependent on time, the system has time-translational
symmetry, meaning that we start the system at time t and at time t+δt, the system will evolve in the
same way. This result of a continuous symmetry of the system leading to a conserved quantity is an
example of Noether’s theorem, which is arguably the most beautiful and profound result in physics.
We will briefly introduce this result in section A.

The conservation of energy is fundamental in the derivation of the equilibrium ensembles in
statistical mechanics. It can also be applied as a very powerful test of the stability of a numerical
scheme for the integration of the equations of motion. We will repeatedly return to this point.

Time Reversal Symmetry

Another feature of Newtonian dynamics that plays a role both in the theory of statistical mechanics
and in the practice of the development of molecular dynamics algorithms is time reversal symmetry.
This states that if we reverse all velocities at time t while keeping the positions the same, then the
system will retrace its trajectory back into the past. We introduce the notation

rN (t | rN0 ,pN
0 ) (1.16)

to be rN under the initial condition rN (0) = rN0 and pN (0) = pN
0 . Then time reversal symmetry

implies the relations

rN (t | rN (0),−pN (0)) = rN (−t | rN (0),pN (0)) , (1.17)
pN (t | rN (0),−pN (0)) = −pN (−t | rN (0),pN (0)) . (1.18)

1.1.3 Euler’s Algorithm

Molecular dynamics methods are iterative numerical schemes for solving the equations of motion of
the system. The first step is to discretise the time into small intervals, and we assume each interval
has equal length δt. Then the evolution of the system is then described by the series of coordinates
and velocities

rN (t0) ≡ rN (0), . . . , rN (tm−1) ≡ rN (tm − δt), rN (tm), rN (tm+1) ≡ rN (tm + δt), . . . (1.19)
ṙN (t0) ≡ ṙN (0), . . . , ṙN (tm−1) ≡ ṙN (tm − δt), ṙN (tm), ṙN (tm+1) ≡ ṙN (tm + δt), . . . (1.20)

The schemes we will discuss all use the Cartesian coordinates.

The most fundamental integrator in molecular dynamics is Euler’s algorithm. It approximates
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the position of the molecule at time t+ δt by a Taylor series about t truncated at O(δt2)

ri(t+ δt) = ri(t) + ṙ(t)δt+
1

2
r̈(t)δt2 +O(δt3)

= ri(t) + δtvi(t) +
δt2

2mi
f i(t) +O(δt3) . (1.21)

Similarly one can obtain an expansion for vi(t+ δt)

vi(t+ δt) = vi(t) +
δt

mi
f i(t) +O(δt2) . (1.22)

Having an expression for f i, which can be derived from the potential V , we can perform this process
iteratively.

Algorithm 1.2 (Euler’s Algorithm).

ri(t+ δt) = ri(t) + δtvi(t) +
δt2

2mi
f i(t) (1.23)

vi(t+ δt) = vi(t) +
δt

mi
f i(t) . (1.24)

The error of displacement is O(δt3) and that of velocity is O(δt2).

Euler’s algorithm is simple, but it has a huge drawback — it is simply not accurate enough.

To illustrate this, we calculated the equation of motion of a standard Harmonic oscillator, with
Hamiltonian

H =
1

2
v2 +

1

2
x2 (1.25)

and initial conditions x0 = 0 and v0 = 1. The results are plotted in figure 1. The exact solution is a
sine wave

x(t) = sin t . (1.26)

We can see that Euler’s solution quickly diverges from the exact solution as amplitude of oscillation
quickly grows larger and larger. Euler’s algorithm has several problems, making it very limited in
current practical use:

• The solution is not time-reversible.

• Liouville’s theorem states that the volume of a set in the phase space is conserved as it evolves
in time. In Euler’s algorithm, the volume in the phase space is not conserved.

• The system is susceptible to energy drift. As we can see in the plot, the energy drifts
exponentially fast.

This suggests that we need a more accurate algorithm.

1.1.4 Verlet Algorithm

An obvious thing to do to improve Euler’s algorithm is to include more terms in the Taylor expansions.
If we truncate the expansion of x(t+ δt) at O(δt3), we get

ri(t+ δt) = ri(t) + δtvi(t) +
δt2

2mi
f i(t) +

δt3

6
bi(t) +O(δt4) , (1.27)
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Figure 1: The motion of a harmonic oscillator solved by Euler’s method (blue) and the exact solution
(orange). The step length in Euler’s method is set to δt = 0.05 s.

where bi :=
...
r i is the third derivative of position. But this leads to a problem — it is not easy to

evaluate this third derivative. But the trick is we don’t have to evaluate it. If we expand the position
backward in time, we get

ri(t− δt) = ri(t)− δtvi(t) +
δt2

2mi
f i(t)−

δt3

6
bi(t) +O(δt4) . (1.28)

Now if we add these two expressions together, the third derivatives nicely cancel out and we are left
with

ri(t+ δt) = 2ri(t)− ri(t− δt) +
δt2

mi
f i(t) +O(δt4) . (1.29)

Now this expression has error O(δt4), and we don’t even need to evaluate the velocities v(t) if we are
only interested in the particles’ coordinates.

However, in most cases, the velocities still tell us valuable information. To calculate it, we can
subtract the two expansions forward and backward in time and get

vi(t) =
1

2δt
[ri(t+ δt)− ri(t− δt)] +O(δt3) . (1.30)
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Algorithm 1.3 (Verlet Algorithm).

ri(t+ δt) = 2ri(t)− ri(t− δt) +
δt2

mi
f i(t) (1.31)

vi(t) =
1

2δt
[ri(t+ δt)− ri(t− δt)] . (1.32)

The error of displacement is O(δt4) and that of velocity is O(δt3).

However, to calculate v(t), you need the knowledge of position at t+δt, i.e. the velocity update in
Verlet algorithm is one step behind the position update. This is not a problem for propagating position
because, assuming that the forces are not dependent on velocity, information on vi(t) is not needed
in (equation (1.31)). Still, this may be inconvenient for the determination of velocity-dependent
quantities or for the algorithms which manipulate the velocity during dynamics. The position and
velocity update can be brought in the same step by a reformulation of the Verlet scheme, called
velocity Verlet. The prediction for position is now simply obtained from the Taylor expansion, again
keeping to the second order

ri(t+ δt) = ri(t) + δtvi(t) +
δt2

2mi
f i(t) +O(δt3) . (1.33)

For the advanced position obtained this way, we compute the force at time t+ δt

f i(t+ δt) = f i({rj(t+ δt)}) = f i

({
ri(t) + δtvi(t) +

δt2

2mi
f i(t)

})
, (1.34)

in which all particles have proceeded to their positions at t+ δt. Substituting this expression into the
Taylor expansion of ri(t) about t+ δt backward in time, we obtain

ri(t) = ri(t+ δt)− δtvi(t+ δt) +
δt2

2mi
f i(t+ δt) +O(δt3) . (1.35)

Adding this to the forward expansion (1.33) gives the prediction of velocity

vi(t+ δt) = vi(t) +
δt

2mi
[f i(t) + f i(t+ δt)] +O(δt3) . (1.36)

Algorithm 1.4 (Velocity Verlet Algorithm).

ri(t+ δt) = ri(t) + δtvi(t) +
δt2

2mi
f i(t) (1.37)

vi(t+ δt) = vi(t) +
δt

2mi
[f i(t) + f i(t+ δt)] . (1.38)

The velocity Verlet looks rather different than the Verlet algorithm, especially the O(δt3) error
terms when we derive it look concerning. However, we can show that these two algorithms are
equivalent. We can show this by rewriting the velocity Verlet prediction of the position.

Proposition 1.5. The velocity Verlet algorithm is equivalent to the Verlet algorithm.

Proof. If we subtract the t− δt → t prediction for the position from the t → t+ δt prediction in the
velocity Verlet algorithm, we find

ri(t+ δt)− ri(t) = ri(t)− ri(t− δt) + δt[vi(t)− vi(t− δt)] +
δt2

2mi
[f i(t)− f i(t− δt)] . (1.39)

The t− δt → t update for the velocity is

vi(t) = vi(t− δt) +
δt

2mi
[f i(t− δt) + f i(t)] . (1.40)
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Verlet algorithm
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velocity Verlet algorithm

Figure 2: Schemes of Verlet and velocity Verlet algorithms.

If we substitute this into (1.39), we get

ri(t+ δt) = 2ri(t)− ri(t− δt) +
δt2

mi
f i(t) . (1.41)

The velocity Verlet algorithm gives the same prediction as the Verlet algorithm. □

Now let’s examine the accuracy of Verlet’s algorithm using harmonic oscillator.
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Figure 3: The motion of a harmonic oscillator solved by Verlet algorithm (blue) and the exact solution
(orange). The step length in Verlet’s method is also δt = 0.05 s.
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We can see that the Verlet algorithm is very accurate. Although the displacements deviate from
the exact displacement over time, the phase-space volume is conserved exactly and the total energy
remains nearly constant (with only small bounded oscillations) over very long times.

1.1.5 Why use the Verlet Algorithm? (Non-examinable)

While there are algorithms with better short time accuracy than the Verlet algorithm, the
overwhelming majority of condensed matter molecular dynamics simulations is based on just the
Verlet algorithm. There are a number of reasons for its popularity.

(i) The Verlet algorithm is simple and only depends on forces. No higher derivatives of the energy
are needed. This is important because the force evaluation is the most CPU time consuming
in MD simulations of interacting many-particle systems. Computation of higher derivatives
of energy will increase computational costs substantially. Although the algorithms using force
derivatives are more accurate, this gain is actually relatively minor. Because of the chaotic
nature of the motion in many-particle systems, the particles rapidly deviate from the “true”
trajectories. This is known as Lyapunov instability: trajectories that differ slightly in initial
conditions will diverge exponentially in time. If we denote r(t) = r(t | r0,p0) and r′(t) = r(t |
r0,p0 + ϵ), then

|r(t)− r′(t)| ∼ ϵ exp(λt) , (1.42)

where λ is the Lyapunov exponent. This can be seen if we plot the logarithmic error of
displacement against time, where the upper bound of the plot is a straight line with gradient λ.
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Figure 4: Logarithmic error of displacement of a harmonic oscillator using Verlet algorithm.

Having an exponentially growing error may seems horrible, but it is actually not as big a problem
as it seems!

Theorem 1.6 (Shadowing theorem). Every numerical trajectory will be uniformly close to
some true trajectory with slightly altered initial position. In other words, a numerical trajectory
is “shadowed” by a true one.

This strong molecular chaos is ultimately the justification of methods of statistical mechanics.

(ii) Even though it only uses forces, the Verlet algorithm is correct up to and including O(δt3).

(iii) The Verlet algorithm is explicitly time reversible and, even though the trajectory relatively
quickly diverges substantially from the true trajectory, the energy is conserved over an extremely

8
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true path

shadowing path
numerical path

long period of time. Moreover, the Verlet algorithm rigorously conserves the normalisation of
an ensemble probability distribution of points in phase space. In more advanced language, the
Verlet integrator is said to be symplectic. These formal properties contribute to the superior
long time stability of the Verlet algorithm.
For example, as we will discuss later, energy is the defining quantity for the microcanonical
ensemble, since, for chaotic systems, there are no constraints on the regions trajectories can
reach in phase space other than that they are confined to the hypersurface of constant energy.
Energy conservation, together with norm conservation are therefore necessary conditions for
thermodynamic stability, and ultimately for a proper definition of temperature. Long time
stability is particularly important for the simulation of liquids which are stabilised by finite
temperature dynamical fluctuations.

1.2 Connection to Equilibrium Statistical Mechanics

1.2.1 The Microcanonical Ensemble

So far, we have studied systems using Newtonian dynamics, in which the energy is naturally conserved
if the system is closed. This corresponds to a microcanonical ensemble. For each observable A of
the system, there is a corresponding phase function A(rN ,pN ) telling us the value of A given a state
(rN ,pN ) of the system. Then the ensemble average of the system is given by

⟨A⟩NV E =

ˆ
d3NrN d3NpN ρNV E(r

N ,pN )A(rN ,pN ) , (1.43)

where ρNV E(r
N ,pN ) is the microcanonical phase-space distribution function restricting the manifold

of accessible phase points (rN ,pN ) to a hypersurface of constant energy E only, given by

ρNV E(r
N ,pN ) =

f(N)

ΩN
δ(H(rN ,pN )− E) . (1.44)

The phase function H(rN ,pN ) is the Hamiltonian, f(N) is some function of the number of particles
accounting for their indistinguishability, and ΩN is the microcanonical partition function given by

ΩN = f(N)

ˆ
d3NrN d3NpN δ(H(rN ,pN )− E) . (1.45)

The factors f(N) in the above expression can be omitted if we are only interested in mechanical
observable averages over the ensemble distributions using ρNV E , but it becomes crucial if we want
to give the normalisation factor ΩN a thermodynamical interpretation when calculating entropy, free
energy etc.

1.2.2 The Ergodic Principle and Time Averages

The above thermodynamic average of a quantity require us to evaluate it over the whole hypersurface
of constant energy H(rN ,pN ) in the phase space — it is difficult to do this in a computer simulation.

9
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However, we know that the state of a deterministic NV E system also evolves on this hypersurface
of constant energy with time, with trajectory (rN (t),pN (t)). This allows us to determine how the
physical observable A evolve along a certain trajectory as a function of time

A(t) ≡ A(rN (t),pN (t)) . (1.46)

Now we are going to invoke some hypothesis.

Hypothesis 1.7 (Ergodic Hypothesis). Over a long enough period of time, the time spent by a
system in some region of the phase space of microstates with the same energy is proportional to the
volume of this region, i.e., that all accessible microstates are equiprobable over a long period of time.

This means that if we let our system evolves for a long period of time, then it will go over the whole
subset of the phase space that it is allowed to go to — it is not saying that it will travel to every
single point in the hypersurface of constant energy, which is impossible for a finite amount of time.
What we are saying is that the system is sampling through a large enough portion of the phase space,
so that the time average of the quantity A(t) is essentially the ensemble average ⟨A⟩NV E . We are
replacing the ensemble average with a time average from a very long trajectory.

⟨A⟩NV E = lim
τ→∞

Aτ = lim
τ→∞

1

τ

ˆ τ

0

dtA(rN (t),pN (t)) . (1.47)

In molecular dynamics computer simulation, we can only approximate a discrete path of time interval
δt over a finite amount of time τ = Mδt. We then need to replace the above integral by a sum.

⟨A⟩τ ≈ 1

M

M∑
m=1

A(rN (tm),pN (tm)) . (1.48)

Figure 5: By the ergodic hypothesis, a trajectory will sample enough points on the whole hypersurface
of constant energy such that the time average is a very good approximation to the ensemble average.

1.2.3 The Canonical Ensemble

Real world systems are hardly ever isolated. The least they do is to exchange energy with the
environment. The states of such a system in equilibrium with a thermal reservoir of temperature T
are distributed according to the canonical ensemble

ρNV T (r
N ,pN ) =

f(N)

QN
exp

(
−H(rN ,pN )

kBT

)
, (1.49)

10
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where Q is the canonical partition function

QN = f(N)

ˆ
d3NrN d3N pN exp

(
−H(rN ,pN )

kBT

)
. (1.50)

Canonical expectation values of observables are exponentially weighted averages over all points in
phase space

⟨A⟩NV T =

ˆ
d3NrN d3NpN ρNV T (r

N ,pN )A(rN ,pN )

=
f(N)

QN

ˆ
d3NrN d3NpN A(rN ,pN ) exp(−βH(rN ,pN )) . (1.51)

By taking the classical limit of the quantum canonical ensemble, the expression for the factor f(N)
can evaluated. If all N particles are identical, then it is

f(N) =
1

h3NN !
. (1.52)

The canonical partition function QN and microcanonical partition function ΩN have all taken this
into account. Their interpretation is suggested by considering the dimension of h, which is equal to
that of position times momentum. f(N) is therefore a very small reciprocal space volume which makes
the canonical/microcanonical partition function dimensionless. Planck’s constant therefore acts as a
measure of the phase space metric and QN is interpreted as the effective number of accessible states
at temperature T . The N ! factor takes account of the indistinguishability of the particles. It can
be viewed as correcting for over-counting in the classical ensemble where permuting the position and
momentum of a pair of particles would lead to a different but equivalent state (point) (rN ,pN ) in
the phase space. Similarly ΩN is also the number of accessible states, except that in microcanonical
ensemble it is restricted to the hypersurface of constant energy in the phase space (a manifold of
dimension 6N − 1). A mathematically more correct way of thinking the microcanonical partition
function is that for a given infinitesimal change in energy dE, the quantity ΩNdE gives the effective
number of states contained in the volume between hypersurfaces with energy E and E + dE.

ΩN and QN are related to two very important thermodynamic quantities, namely the Boltzmann
entropy

S = kB lnΩN (1.53)
and the Helmholtz free energy

A = −kBT lnQN . (1.54)
They are the central relations linking statistical mechanics to thermodynamics. The factor f(N)
plays a crucial role in this identification. The founding fathers of statistical mechanics arrived at
these results without the help of quantum mechanics — arguments concerning the additivity of
entropy of mixing and similar considerations led them to postulate the form of the N dependence.

1.2.4 The Configuration Integral

It turns out that the kinetic energy is a rather trivial quantity in classical statistical thermodynamics.
Theorem 1.8 (Equipartition theorem). The average kinetic energy per particle is

⟨K⟩ /N =
d

2
kBT , (1.55)

where d is the dimension of the system.

This result is independent of the interaction potential or the mass. The origin of this is because the
kinetic energy always takes the same form

K(pN ) =

N∑
i=1

p2
i

2m
. (1.56)
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When we evaluate the partition function, we can separate the Hamiltonian into a kinetic and a
potential part, and the integral over the kinetic part will always be the same.

QN = f(N)

ˆ
d3NpN d3NrN exp(−βH(rN ,pN ))

= f(N)

ˆ
d3NpN exp(−βK(pN ))

ˆ
d3NrN exp(−βV(rN ))

= f(N)

ˆ N∏
i=1

d3pi exp

(
−βp2

i

2m

)ˆ
d3NrN exp(−βV(rN ))

=:
1

N !Λ3N
ZN , (1.57)

where Λ = h/
√
2πmkBT is the thermal wavelength and we have defined the configuration integral to

be
ZN =

ˆ
d3NrN exp(−βV(rN )) . (1.58)

This is the more interesting quantity. For example, if we want to know the probability distribution
PN (rN ) for the configuration of the system, then we need to evaluate

PN (rN ) =
exp(−βV(rN ))

ZN
. (1.59)

The factor Λ3N in the partition function, absorbing the h3N , can be seen as a temperature
dependent version of the volume element in the configuration space. The deeper significance of Λ is
that it provides a criterion for the approach from the quantum to the classical limit. Quantum effects
can be ignored in equilibrium statistics if Λ is smaller than any characteristic length in the system.

1.3 Temperature in Molecular Dynamics

Temperature was introduced in (1.49) as a parameter in the canonical ensemble, and via the
fundamental equation (1.54), this statistical mechanical temperature is identified with the empirical
temperature in classical thermodynamics. It is not immediately obvious, however, how to define and
measure temperature in an MD simulation. To do this, we have to return to the microcanonical
ensemble and find an observable (and correspondingly a phase function) whose microcanonical
expectation value is a simple function of temperature, preferably linear. This would then allow
us to measure the temperature of the ensemble by tracking the time average of the phase function
over a sufficiently long period by the ergodic hypothesis. Such phase function is the kinetic energy,
whose canonical average is

K =

〈
N∑
i=1

p2
i

2mi

〉
NV T

=
3

2
NkBT (1.60)

in three dimensional system, as given by the equipartition theorem. The microcanonical average
⟨−⟩NV E (1.43) and the canonical average ⟨−⟩NV T (1.51) are not identical in general. But in Part
II Statistical Mechanics we have shown that such fractional difference is vanishing as N → ∞ —
all ensembles are equivalent in the thermodynamic limit. Therefore the microcanonical average of
the kinetic energy of a many particle system will also approach 3

2NkBT . Hence we can define an
instantaneous or kinetic temperature function T in terms of the instantaneous kinetic energy K via2

T =
1

3kBN

N∑
i=1

miv
2
i =

2

3kBN
K , (1.61)

2Technically, we have T = 2K/kBNdof, where Ndof = 3N−3 is the degree of freedom if the centre of mass momentum
of the system is removed.
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which, averaged over an MD run over a long time will give us the temperature of a system

T =
1

M

M∑
m=1

T (tm) . (1.62)

1.3.1 Velocity Rescaling

Having found a method of measuring temperature in an MD run, the next problem is how to impose
a specified temperature on the system and control it during a simulation. Several approaches has
been developed, and the most simple one of them is just to scale all particle velocities by a factor
determined from the current instantaneous temperature and desired temperature. Suppose the
current instantaneous temperature T (t) is considerably different from our desired target temperature,
and we want to adjust it to T0. Then we only need to rescale all current velocities vi to

v′
i =

√
T0

T
vi =

√
K0

K(xN (t),pN (t))
vi . (1.63)

In the canonical ensemble, velocities are distributed according to a Gaussian, leading to the
famous Maxwell–Boltzmann distributions. The probability functions for each of the three Cartesian
components of velocity of every particle i is strictly a Gaussian

P (vx,i) =

√
mi

2πkBT
exp

(
−
miv

2
x,i

2kBT

)
, (1.64)

and the same for vy,i and vz,i. Temperature rescaling only alters the width of the velocity distribution
— it will not change a non-equilibrium distribution (non-Gaussian) into a Gaussian. Due to the
chaotic motion of particles, the velocity distribution should eventually converge to a Gaussian,
although it may take a while for this to establish.

We can accelerate this equilibration process by interfering with the dynamics more strongly and
randomise the velocities by a sampling from a Gaussian distribution — the thermostats described in
the next section are one approach to do this.

1.3.2 Thermostats

The simple velocity scaling has an apparent advantage of interfering the dynamics minimally by only
scaling the velocities and not changing anything else. However, in principle this action is not what a
canonical ensemble (or any standard ensemble) does to keep the temperature of a system constant.
In addition, this algorithm can produce artifacts when frequently applied because energy will be
transferred from other modes to the translational and rotational degrees of freedom — the system
acquires high linear momentum and experiences extremely damped internal motions, being frozen
into a single conformation, reminiscent of an ice cube flying through space, leading to a so called
flying ice cube effect. This is wholly unphysical, since it violates the principle of equipartition of
energy, which states that the energy should be equally partitioned into every degree of freedom of
the molecule.

This problem is solved by using a thermostat, which simulates the effect of placing our small
simulation system in contact with an infinite heat bath. From the statistical mechanical point of
view, this exactly produces a canonical ensemble. There are multiple ways of achieving this, and the
approaches can be broadly classified as being stochastic or deterministic. We will focus on stochastic
thermostats.

Stochastic thermostats act by adding random noise to the system, which mimic the effect coupling
with the heat bath. This will ensure that all accessible constant-energy surfaces are each visited
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according to their Boltzmann weight. Although this produces an exact canonical distribution, it
comes at the expense of interfering with the dynamics, and so transport properties like diffusion will
be affected. If those are of interest then the deterministic thermostat will be better.

Andersen Thermostat

The Andersen method mimics the effect of a heat bath by selecting a certain fraction of the
particles/atoms at a regular interval to undergo “collisions” with a heat bath. These collisions are
characterised by a collision frequency ν. For discrete time steps of length δt, the probability of a
particle undergoing a collision is therefore νδt.

To implement this, we just need to randomly select particles for collision with probability νδt
at each time step, and reassign the velocity of the selected particles from a Maxwell–Boltzmann
distribution with desired temperature. By doing so, the velocities after collisions are clearly
completely uncorrelated with those before, so this procedure will strongly affect the dynamics if
the collision frequency is high.

The Andersen thermostat is useful for sampling conformational space, but not so much for the
computation of time-dependent properties.
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Figure 6: Displacements and velocities of a harmonic oscillator with Andersen thermostats of ν =
0.0005, 0.005, 0.05 and 0.5 respectively.

Canonical Velocity Rescaling (Non-examinable)

Is it possible to somehow combine the advantages of the fairly continuous trajectory afforded by
the velocity rescaling with the canonical sampling we desire in Andersen thermostat? The problem
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Figure 7: Distributions of displacements and velocities of a harmonic oscillator with Andersen
thermostats of different ν.
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Figure 8: Phase diagram of a harmonic oscillator with Andersen thermostat of ν = 0.05. At this
thermalisation frequency, the dynamical nature of the harmonic oscillator is not lost while maintaining
an efficient thermalisation such that a large area of phase space is explored according to their
Boltzmann weight.

with velocity rescaling is that it will give the correct average kinetic energy by construction, but
not necessarily the canonical distribution of kinetic energies. A simple way to fix this is to rescale
to match not the average kinetic energy, but a kinetic energy chosen at random from the canonical
distribution, given by

p(K)dK = AK3N/2−1 exp(−βK)dK , (1.65)
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where the factor K3N/2−1 comes from the volume element in the velocity hyperspace corresponding
to the kinetic energy K, and A is a normalisation constant given in this case by

A =
β3N/2

Γ( 3N2 )
. (1.66)

In one dimension, this is more or less the same as the Andersen thermostat. However, in higher
dimensions, the width of the kinetic energy distribution is relatively narrow, so the rescaling will
generally be close to unity.

Berendsen Thermostat (Non-examinable)

Instead of abruptly rescaling the temperature at a single time step, Berendsen thermostat rescales
the temperature by an exponential relaxation

dT (t)

dt
=

T0 − T (t)

τ
, (1.67)

where T0 is the desired temperature and τ is the characteristic time scale of relaxation. This leads
to a temperature change of

δT

T0
=

[
1− T (t)

T0

]
δt

τ
(1.68)

per step. This, however, still does not generate the correct kinetic energy distribution, and can lead
to serious artifacts. The stochastic terms introduced by Bussi et al. fix this problem. It submits the
target temperature to a stochastic differential equation

δT

T0
=

[
1− T (t)

T0

]
δt

τ
− 2

√
T (t)

3T0Nτ
ξ(t) , (1.69)

where an extra stochastic term is added.

Nosé–Hoover Thermostat (Non-examinable)

Finally, let’s briefly introduce a deterministic thermostat. It couples the system to a heat-bath
“particle” with mass Q, generalised coordinate s and conjugate momentum ps, giving what is known
as the Nosé Hamiltonian

HN =

N∑
i=1

p2
i

2mis2
+ U(rN ) +

p2s
2Q

+ gkBTf(s) , (1.70)

where g and f(s) are chosen such that the NV E distribution function for the super-system (including
the heat bath) corresponds to a canonical distribution function for the physical subsystem. To do
this, we start by calculating the phase-space volume for a given total energy E:

Ω ∝
ˆ

d3NrN d3NpN ds dps δ

(
N∑
i=1

p2
i

2mis2
+ U(rN ) +

p2s
2Q

+ gkBTf(s)− E

)
. (1.71)

We can recover the physical Hamiltonian

H(rN ,pN ) =

N∑
i=1

pi

2mi
+ U(rN ) (1.72)

by scaling the momentum by pi → pi/s, giving

Ω ∝
ˆ

d3NrN d3NpN ds dps s
dNδ

(
H(rN ,pN ) +

p2s
2Q

+ gkBTf(s)− E

)
, (1.73)
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where d is the dimension of the system. We need to find a way to integrate over the heat-bath
coordinates s and ps. Assuming that the argument of the delta function has a single root at s = s0,
then we can rewrite

δ(h(s)) =
δ(s− s0)

|h′(s0)|
, (1.74)

and so
Ω ∝

ˆ
d3NrN d3NpN dps

sdN0
|h′(s0)|

. (1.75)

We would like to choose f(s) and g such that

sdN0
|h′(s0)|

∼ exp

(
−H(rN ,pN )

kBT

)
. (1.76)

It turns out that this can be achieved via f(s) = ln(s) and g = dN + 1, giving

s0 = exp

E −H(rN ,pN )− p2
s

2Q

gkBT

 (1.77)

1

|h′(s0)|
=

1

gkBT
exp

E −H(rN ,pN )− p2
s

2Q

gkBT

 . (1.78)

By doing so, an integration over ps finally leads to

Ω ∝
exp

(
E

kBT

)√
2πQkBT

(dN + 1)kBT

ˆ
d3NpN d3NrN exp

(
−H(rN ,pN )

kBT

)
, (1.79)

proportional to the canonical distribution. A molecular dynamics NV E simulation with the
Hamiltonian HN should therefore produce a canonical distribution of (rN ,pN ) with Hamiltonian
H! The equations of motion can be obtained using Hamilton’s equation from classical mechanics.

ṗi = −∂HN

∂ri
= f i ṙi =

∂HN

∂pi

=
pi

mis2
(1.80)

ṗs = −∂HN

∂s
=

1

s

[
N∑
i=1

p2
i

mis2
− gkBT

]
ṡ =

∂HN

∂ps
=

ps
Q

. (1.81)

The equations are, however, not straightforward to implement numerically. Hoover applied a non-
canonical transformation to recast these equations into a more amenable form, known as the Nosé–
Hoover equations.

Algorithm 1.9 (Nosé–Hoover equations).

ṗi = f i −
pη
Q

pi ṙi =
pi

mi
(1.82)

ṗη =

N∑
i=1

p2
i

mi
− dNkBT η̇ =

pη
Q

. (1.83)

1.4 Pressure in Molecular Dynamics

Experiments are most often performed at constant pressure, rendering the NPT (isothermal-isobaric)
ensemble the most realistic choice. Especially during the initial equilibration, pressure coupling is
essential in order to let the volume of the simulation cell adjust.
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Figure 9: Phase diagram of a harmonic oscillator with Nosé–Hoover thermostat.

We first need an expression for the pressure. The macroscopic pressure can be derived from the
free energy, and hence from the bridge relation (1.54), we get

P = −
(
∂A

∂V

)
N,T

= kBT

(
∂ lnQ

∂V

)
N,T

=
kBT

Z

(
∂Z

∂V

)
N,T

, (1.84)

where
Z(N,V, T ) =

ˆ
d3NrN exp(−βU(rN )) (1.85)

is the configuration integral. To differentiate with respect to V , we switch to the scaled coordinate
defined as

sN =
1

L
rN = V −1/3rN , (1.86)

and so
Z(N,V, T ) = V N

ˆ
d3NsN exp

[
−βU(V 1/3s1, . . . , V

1/3sN )
]
. (1.87)

Differentiate with respect to V gives

∂Z

∂V
=

N

V
Z(N,V, T )− β

ˆ
d3NsN

[
1

3V

N∑
i=1

ri ·
∂U
∂ri

+
∂U
∂V

]
exp(−βU(rN )) (1.88)

and so

P =
kBTN

V
+

1

3V

〈
N∑
i=1

ri · f i

〉
−
〈
∂U
∂V

〉

=
1

3V

〈
N∑
i=1

[
p2
i

mi
+ ri · f i

]〉
−
〈
∂U
∂V

〉
. (1.89)

The last term vanishes if U has no explicit dependence on the volume V . From this expression of the
ensemble average of pressure, we get an expression of the isotropic instantaneous pressure

P =
1

3V

N∑
i=1

[
p2
i

mi
+ ri · f i

]
(1.90)
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The quantity

W :=

N∑
i=1

ri · f i (1.91)

is also known as the virial of the system, and hence the pressure can also be compactly denoted as

P =
1

3V
(2K +W) . (1.92)

1.4.1 Barostats

As for simulating a canonical ensemble using thermostats, we can simulate an isothermal-isobaric
ensemble using a barostat. If the pressure coupling is only important during the initial equilibrium
phase, it can be acceptable to use the simple Berendsen barostat, which imposes the correct external
pressure P0, but violates the thermodynamic ensemble as it has no correct fluctuations. Similar to
Berendsen thermostat, it is also an exponential relation

dP (t)

dt
=

P0 − P (t)

τ
. (1.93)

This is achieved via an isotropic scaling factor µ applied to all particle coordinates as well as
simulation-cell dimensions

µ = 1− κT δt

3τ
(P0 − P ) , (1.94)

where the κT here is the isothermal compressibility.

There are also Nosé–Hoover type barostat, in which coordinates, momenta and volume are coupled
to a barostat coordinate ϵ via

ṙi =
pi

mi
+

pϵ
W

ri︸ ︷︷ ︸
barostat

ṗi = f i −
(
1 +

d

N

)
pϵ
W

pi︸ ︷︷ ︸
barostat

−pη,1
Q1

pi︸ ︷︷ ︸
thermostat

chain

. (1.95)

In addition, grand canonical ensemble can also be realised using an extended Lagrangian formalism

LµV T =

N∑
i=1

∑
α

1

2
ms2ẋ2

i,α −
∑
i

∑
j ̸=i,j ̸=f

Uij

+(ν −N)

1
2
ms2

∑
α

ẋ2
f,α −

∑
i ̸=f

Uif

+
1

2
Wν̇2 + Uν︸ ︷︷ ︸

particle bath

+
1

2
Qṡ2 − Us︸ ︷︷ ︸

heat bath

, (1.96)

in which

Us = gkBT ln(s) (1.97)
Uν = νµ = ν(µid + µex) . (1.98)

However, this scheme is rarely used in practice due to its complexity. Monte Carlo (see later) is much
more convenient for this purpose.
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1.5 Condensed Phase Simulations in Practice

In this section, we will discuss some practical aspects of molecular dynamics simulations using
condensed phase fluid (e.g. liquid argon) as an example. What is so special about liquids? Unlike
solids the atoms in liquid have no fixed equilibrium position, so there is no long-range order in the
form of a lattice. This is true for gases as well, but unlike gases, the particle density in liquid is
high, often comparable with the corresponding solid. The atoms in liquids are strongly interacting,
establishing a local environment very similar to solids. Liquids exhibit solid-like short-range order.

Under Born–Oppenheimer approximation, we can write the potential energy as a function of the
nuclear positions only

U = U(r1, . . . , rN ) = U(rN ) , (1.99)

and then the force acting on particle i given a nuclear configuration rN is

f i(r
N ) = −∂U(rN )

∂ri
= mir̈i . (1.100)

We can then try to partition the Born–Oppenheimer potential energy surface onto many-body terms

U(rN ) =
∑
i

U1(ri) +
∑
i,j>i

U2(ri, rj) +
∑

i,j>i,k>j

U3(ri, rj , rk) + . . . (1.101)

We can ignore the one-body term because it will be constant if the space is homogeneous, as this
term will be a constant. Three-body interactions and above are usually due to polarisations, and
accounts for ∼ 10% to the total interactions in liquid argons. This percentage may be higher for more
polarisable systems. If we are assuming interactions are pairwise additive, then we are also ignoring
three-body interactions and higher, so we are only left with two-body (pairwise) interactions.

1.5.1 Lennard-Jones Potential

A first step is to choose what model of interaction do we use. A simple example is the Lennard-Jones
potential

V (r) = 4ϵ

[(σ
r

)12
−
(σ
r

)6]
. (1.102)

It has a long-range r−6 attractive force to account for the van der Waals dispersion, and a short-range
r−12 repulsive force due to electron density overlap. For argon, σ ≈ 3.4Å and ϵ ≈ 1.65 × 10−21 J.
This also allows us to express everything in reduced units, in which energies, lengths and masses are
scaled by E∗ = E/ϵ, r∗ = r/σ and m∗ = m/m0, where m0 is the mass of the particle. Under these
definitions, all Lennard-Jones potentials are the same in reduced units

V ∗(r) = 4

[(
1

r∗

)12

−
(

1

r∗

)6
]
. (1.103)

This also allows us to define other scaled quantities, like scales density ρ∗ = ρσ3, scales temperature
T ∗ = kBT/ϵ, scaled pressure P ∗ = Pσ3/ϵ and scaled time t∗ =

√
ϵ/mσ2t.

1.5.2 System Size and Periodic Boundary Conditions

Having chosen the force field, we can set up our simulation cells. The thermodynamic state of a
liquid is specified by only two parameters, the temperature T and the pressure P , or alternatively the
temperature T and the particle number density ρ = N/V . This means that if you want to simulate
a specific state of the liquid, choosing the system size is equivalent to choosing how many particles
you want to put into the cell. Due to the limited computational power, we cannot make the cell as
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large as we want. In the early days of molecular dynamics, the number of atoms was typically on
the order of 100. Due to the rapid progress in the performance of computer hardware, this number
is continuously increasing. A simulation of systems consisting of 105 atoms are common nowadays.

System size in MD is in practice a compromise between the length scale of the problem of interest
and the minimum duration of a run required for proper statistical sampling. If we are interested in,
for example, the onset of freezing of the system, then the size of the system must be much larger than
if we want to study the distribution of atoms in a stable liquid. Similarly, computations of transport
properties, such as diffusion coefficients, will require much longer runs than the estimation of internal
energy.

However, a real world system rarely consists of ∼ 105 atoms. There will be significant
surface/boundary and some finite size effect if we directly use a small system for simulation. We
want the system to mimic a bulk, homogeneous liquid or solid. To do this, we can either take a very
big cluster and hope that in the interior of the cluster the surface effect can be neglected, or more
cleverly, we can use the periodic boundary conditions. To do this, we make our simulation cell into
a parallelepiped (e.g. simply a cube), and repeat its contents over the whole space, mimicking the
homogeneous state of a liquid or solid. If the MD box is spanned by three vectors a,b, c and the
cells are displaced by ℓa+mb+ nc, where ℓ,m, n ∈ Z. This means that if we have a particle in ri in
the central cell, then there will also be particles at ri + ℓa+mb+ nc for all ℓ,m, n ∈ Z. This means
that we can simulate an infinite system with infinite particles by only calculating the motion of N
particles in the central cell.

Still, due to the periodic nature, applying periodic boundary conditions to a small cell will still
introduce certain errors, called finite size effect. This can be small or rather serious depending on the
nature of the system. Moreover, note that the linear momentum is still a constant of motion in such
a set of infinitely replicated systems. The conservation of angular momentum, however, is lost as a
result of the reduction of rotational symmetry from spherical to cubic.

1.5.3 The Minimum Image Convention and Truncation of Interaction

Periodic boundary conditions create some other difficulties. Since the size of the simulation cell is
now effectively infinite, a particle will now interact with an infinite number of particles, making the
force evaluation difficult. The potential energy of the particles in the central cell, corresponding to
(ℓ,m, n) = (0, 0, 0), is a sum of the interactions over all cells:

V(rN ) =
1

2

N∑
i

Vi(r
N ) (1.104)

Vi(r
N ) =

∞∑
ℓ,m,n=−∞

N∑
j

′

V (∥rj + ℓa+mb+ nc− ri∥) , (1.105)

where the ′ indicates that we are excluding j = i for ℓ,m, n = 0 (self interaction in the central cell).

For short-range interactions like the van der Waals interaction, it is possible to make the
simplification that if the system is sufficiently large, then the contributions of interactions with
all images of the same atom, except the nearest, can be disregarded because they are too far away.
Notice that the nearest image can be in the same (i.e. central) cell, but it can also be in one of the
neighbouring cells if the two particles are more than half a box away in one direction in the central
cell. This approximation is known as the minimum image approximation. The distance of particle
i to the nearest image of particle j can be easily calculated from their positions in the central cell,
using

rMIC
ij = rj − ri − L round

(
rj − ri

L

)
. (1.106)
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rc

Figure 10: A simulation cell with cyclic boundary condition and cutoff radius r = rc.

One further thing we can do is to truncate the Lennard-Jones potential at some cutoff radius. This
is because such an interaction decays sufficiently quickly: if r = 3σ, then V (r) = −0.005ϵ. Therefore,
we can choose to neglect the contribution to energy and forces beyond this distances. This is done
by letting Vc(r) = 0 for r > rc, where rc is the cutoff radius. However, we need to maintain the
continuity of the potential, so we need to shift up the potential for r ≤ rc by |V (rc)|. The truncated
potential therefore looks like

Vc(r) =

{
V (r)− V (rc) r ≤ rc

0 r > rc
. (1.107)

We would often set the cutoff radius rc <
L
2 to avoid self-interaction artefact.

1.5.4 Pair Lists

When the cutoff radius rc is much smaller than the cell dimensions, a lot of time will be spent checking
whether a given pair of atoms is within the cutoff, when in fact most lie outside of it. In this case
a useful time-saving measure is to use a “pair list” of atoms which are within rc + δr of each other.
Provided that this list is updated sufficiently often that no atom will have moved more than the buffer
radius δr between updates, only this list of atom pairs needs to be checked at each time step, rather
than all possible pairs.

1.5.5 Initialising Positions and Momenta

For most purposes, we want our simulation to get to equilibrium as fast as possible. You can either
pre-arrange the particles on a regular lattice, or place them randomly within the simulation cell.
However, putting particles randomly can sometimes lead to extreme coordinates (e.g. two molecules
are too close to each other / overlapping), and so sometimes a short steepest-descent is required to
remove those situations before the simulation has started.

To set up the initial momenta, we can sample randomly from a Gaussian distribution

P (v) ∝ exp

(
− mv2

2kBT

)
(1.108)

for each component of a particle’s velocity. However, these randomly generated velocities sometimes
give a non-zero total momentum of the system, so we want to correct non-zero velocities of the centre
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Figure 11: Displacement and energy of a harmonic oscillator using Verlet algorithm with time steps
δt = τ/20 (orange), τ/10 (green) and τ/5 (red) with exact results (blue).

of mass:

vCoM =
1

M

∑
i

mivi (1.109)

v′
i = vi − vCoM . (1.110)

Moreover, the randomly generated velocity may deviate from our desired temperature (recall the
equipartition theorem), so we need to rescale the velocity by a factor of

√
Ttarget/Tsample to reach the

desired temperature.

1.5.6 Time Steps

A good choice of time step is a balance between accuracy and computational cost. Too large a time
step will lead to large errors in numerical integration. The time step should be significantly smaller
than the time scale τ associated with the fastest-frequency oscillation in the system: a step of size
τ/20 is usually safe for Verlet-based schemes. The best indication for the breakdown of accuracy in
the Verlet scheme due to too large time steps is the drift of total energy, which should be rigorously
conserved according to Newton’s equation of motion.

1.6 Radial Distribution Function

As we commented above, due to the high number density of atoms and strong interactions, liquid
often exhibits short-range order. This can be captured by the spatial autocorrelation function

g(r1, r2) :=
1

n2
0

⟨n(r1)n(r2)⟩ (1.111)

where n0 = N/V is the average particle density, just like the velocity autocorrelation function you met
in Part II Statistical Mechanics. In an isotropic, homogeneous medium, the autocorrelation function
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Figure 12: Phase diagram of a harmonic oscillator using Verlet algorithm with time steps δt = τ/20
(orange), τ/10 (green) and τ/5 (red) with exact results (blue).
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Figure 13: A plot of the computed kinetic energy (blue), potential energy (orange) and total energy
(green) of a Lennard-Jones fluid with 100 particles using times steps 0.001, 0.05 and 0.19 in reduced
time units. 5000 steps are used for each run. A significant energy drift occurred for δt∗ = 0.19,
suggesting that this time step is too large.
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should be only dependent on the particle distance r = ∥r1 − r2∥, and so it allows us to define the
radial distribution function

g(r) =
⟨n(r)⟩
n0

. (1.112)

This can be understood as a histogram of two-particle distances, which can be constructed by going
through the following steps:

1. Pick a reference particle i at position ri.

2. Draw a spherical shell of radius r and thickness ∆r centred at ri. Determine the number of
particles in the shell, which we denote as ni(r,∆r). A particle j in this shell would satisfy

r ≤ ∥ri − rj∥ < r +∆r . (1.113)

A small ∆r will give us a high resolution, but it will introduce noise. A large r will smooth the
distribution function, but we may lose some of the structural details.

3. Divide ni(r,∆r) by the volume of the shell to convert it into a number density, and average
over reference particles.

ρ̄(r,∆r) =
1

N

N∑
i=1

ni(r,∆r)

4πr2∆r
, (1.114)

where we assumed ∆r ≪ r.

4. Normalise this quantity by the particle number density of ρ = (N − 1)/V

g(r) =
ρ̄(r,∆r)

ρ
=

V

4πr2∆rN(N − 1)

N∑
i

ni(r,∆r) . (1.115)

The resulting g(r) is a dimensionless quantity. Note that we use N − 1 because we do not
consider a particle correlating with itself, although for large N , we can replace N − 1 by N .

A g(r) > 1 at some r would mean that we have an enhanced probability of meeting another
particle at distance r away from one particle, and g(r) < 1 means that there is a depletion region.

A schematic construction of the radial distribution function for a 2D Lennard-Jones fluid is shown
in figure 14. For distances r ≪ σ, where σ is the repulsive core diameter, the radial distribution → 0
because particles are excluded from this region. The maximum at a distance little over σ reflects the
well defined coordination shell of nearest neighbours around a particle in a liquid. This peak in g(r)
is characteristic for the high density prevalent in liquids and is absent in the vapour phase. In most
liquids there is also a broader second nearest neighbour peak. As a result of the disorder in liquids,
this structure is considerably less pronounced compared to solids. For distances larger than second
neighbours, fluctuations gradually takes over and the distribution of atoms becomes homogeneous,
with g(r) → 1.

As for a comparison, a crystalline solid has long-range order extending to infinity, so the radial
distribution function should have well defined peaks extending to infinity (ideally) except being
broadened by thermal vibrations at non-zero temperatures.

1.6.1 Coordination Numbers

As suggested by figure 14 the integral of the first peak of RDF is related to the average number of
particles nc in the first coordination shell, which is also known as the coordination number. In order
to measure nc we must specify how close an atom must approach the central particle in order to
be counted as a first neighbour. The position rmin of the minimum between the first and second
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Figure 14: A typical radial distribution function of liquid. g(r) = 0 for small r due to hard-core
repulsion. There are several peaks with g(r) > 1 at intermediate range, corresponding to the first,
second and higher coordination shells. At large r, g(r) → 1 as the distribution of particles become
decorrelated.
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Figure 15: Radial distribution function in a solid fcc crystal.

26



1 Molecular Dynamics C8 Computer Simulation Methods

maximum is used as a common (but not unique) criterion to define the first coordination shell. nc is
then found from the integral (for three dimensional cases)

nc = 4πρ

ˆ rc

0

dr r2g(r) , (1.116)

with rc = rmin in our cases.

1.6.2 Radial Distribution Function in Statistical Mechanics

The way we introduced the radial distribution function was operational in the sense that it is based
on how this quantity is determined in a simulation. We will now give a proper statistical mechanical
definition of the radial distribution function making use of the Dirac delta function. We first consider
a more general pair correlation function which not only probes the distance r between particles but
also the orientation of the displacement vector r.

γ(r) =
V

N(N − 1)

〈
N∑

i,j ̸=i

δ(rij − r)

〉
, (1.117)

where the angular bracket denote an integral over the configurational probability distribution function
(1.58). In a more explicit form,

γ(r) =
V

N(N − 1)

N∑
i,j ̸=i

ˆ
d3NrN PN (rN )δ(rij − r) . (1.118)

It is proportional to the probability of observing two particles separated by a vector r. This correlation
function with the information on the orientation of r included is suitable for crystalline solids, in which
the lattice defines special directions in space. Liquids are isotropic systems with no preference for a
direction, so we expect the function γ(r) to depend only on the length r = ∥r∥. Using this property,
we integrate over a spherical shell V (r,∆r) with radius between r and r+∆r, and assuming that the
shell is sufficiently thin, we then writeˆ

V (r,∆r)

d3r γ(r) ≈ 4πr2∆rg(r) . (1.119)

Here the g(r) is the radial distribution function. Substituting the expression of γ(r), we get

g(r) ≈ V

4πr2∆rN(N − 1)

ˆ
V (r,∆r)

d3r
∑
i,j ̸=i

ˆ
d3NrN PN (rN )δ(rij − r)

=
V

4πr2∆rN(N − 1)

ˆ
d3NrN PN (rN )

∑
i,j ̸=i

ˆ
V (r,∆r)

d3r δ(rij − r) , (1.120)

where we have changed the order of integration. The inner integral gives unity when the vector
rij = ri − rj lies within volume V (r,∆r) and zero otherwise. The delta function therefore counts
the number of particle pairs with distances between r and r +∆r. Taking particle i as reference we
recover the quantity ni(r,∆r) introduced before

ni(r,∆r) =
∑
j ̸=i

ˆ
V (r,∆r)

d3r δ(rij − r) . (1.121)

Therefore,

g(r) ≈ V

4πr2∆rN(N − 1)

ˆ
d3NrN PN (rN )

∑
i

ni(r,∆r)

=
V

4πr2∆rN(N − 1)

〈∑
i

ni(r,∆r)

〉
. (1.122)
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This becomes an equality in the limit of an infinitely thin shell,

g(r) = lim
∆r→0

V

4πr2∆rN(N − 1)

〈∑
i

ni(r,∆r)

〉
. (1.123)

Since all particles are equivalent, we must have

g(r) =
V

N − 1
lim

∆r→0

1

4πr2∆r
⟨n(r,∆r)⟩ , (1.124)

where we removed the subscript i to indicate a generic particle. We identify this linked to our
instantaneous, histogramic radial distribution function (1.115) via

gstat(r) =
N − 1

N
ghist(r) , (1.125)

where (N − 1)/N is a good approximation to 1 except at very low density. We could have avoided
this complexity if we used N2 as the normalisation factor in the definition of pair correlation function
(1.117), but it turns out that N(N − 1) is the correct normalisation factor for a good treatment at
very low density, i.e. in a gas phase limit. Consider a system with only two particles (N = 2) in a
finite volume V ,

γ(r) =
V

N(N − 1)

〈∑
i,j ̸=i

δ(rij − r)

〉
= V ⟨δ(rij − r)⟩

= V

ˆ
d3r1 d

3r2 P2(r1, r2)δ(r12 − r) . (1.126)

P2 is just the Boltzmann exponent of the pair potential, and so

γ(r) = V

´
d3r1 d

3r2 exp[−V (r12)/kBT ]δ(r12 − r)´
d3r1 d3r2 exp[−V (r12)/kBT ]

. (1.127)

Transforming to the CoM coordinate r and relative coordinate r′ = r12 gives

γ(r) = V

´
d3R d3r′ exp[−V (r′12)/kBT ]δ(r

′ − r)´
d3R d3r′ exp[−V (r′12)/kBT ]

. (1.128)

Since the potential is independent of R, the integral over R gives a factor V ,

γ(r) = V

´
d3r′ exp[−V (r′)/kBT ]δ(r

′ − r)´
d3r exp[−V (r′)/kBT ]

= V
exp[−V (r′)/kBT ]´

d3r′ exp[−V (r′)/kBT ]
. (1.129)

For V 1/3 ≫ σ, we can identify ˆ
d3r′ exp[−V (r′)/kBT ] ≈ V , (1.130)

and so
γ(r) = e−V (r)/kBT . (1.131)

As expected, γ(r) is isotropic and we can directly write

g(r) = e−V (r)/kBT , (1.132)

or taking the logarithms,
−kBT ln g(r) = V (r) . (1.133)

In the low density limit of a many-particle gas, (1.132) is still the leading term in an expansion
in terms of powers of density, and so it remains approximately valid. This suggests that there is
a close relation between the radial distribution function and pair potential. The equation (1.133)
can be generalised to the condensed phase, with the logarithm of g(r) identified as an effective pair
potential. This effective pair potential, which is really a free energy, is called the potential of mean
force and plays a crucial role in the statistical mechanics of liquids and solutions.
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1.6.3 Relation of Other Properties to the Radial Distribution Function

For simple single-component atomic liquids, with a radial potential V (r), it turns out that many
properties can be simply computed from the g(r), which contains all the information necessary about
the statistics of pair distances. For example, one can show

U

N
= 2πρ

ˆ ∞

0

dr V (r)g(r)r2 (1.134)

P = ρkBT − 2

3
πρ2
ˆ ∞

0

dr
dV (r)

dr
g(r)r3 . (1.135)

1.6.4 Experimental Determination of Radial Distribution Function

Radial distribution functions can be observed in experiment from the diffraction patterns of radiation
with a wavelength comparable to the interatomic distances. This means that for normal liquids with
interatomic distances in the order of angstroms, we can use neutrons or X-rays.3 The quantity that is
actually directly measured from a diffraction experiment is the intensity I(θ) scattered in a direction
at angle θ to the incoming beam. If kin and kout are the wavevectors of the incoming and outgoing
beam, then the momentum transferred is

k = kin − kout . (1.136)

In elastic scatterings, ∥kin∥ = ∥kout∥, and therefore

k = ∥k∥ =
4π

λ
sin

(
θ

2

)
. (1.137)

To a very good approximation, the observed scattered intensity can be separated into an atomic form
factor f(k) and a structure factor S(k)

I(θ) = |f(k)|2 S(k) . (1.138)

The form factor is specific to the atomic species and also depends on instrumental corrections. The
structure factor is given by

S(k) =
1

N

〈∑
ℓ,m

exp[ik · (rℓ − rm)]

〉
(1.139)

and contains all the information on the position of the particles. Similar to the RDF we have used a
more general formulation allowing for possible dependence on the direction of the momentum transfer
as is the case for example for Bragg scattering of crystals. For liquids, however, the structure factor is
isotropic and only depends on the magnitude k = ∥k∥ of the scattering vector. To relate the structure
factor to the radial distribution we use the formal definition of the RDF in terms of the delta function
(1.117) and the identity

δ(x) =
1

2π

ˆ ∞

−∞
dk eikx . (1.140)

To proceed, we first separate the sum (1.139) in ℓ = m and ℓ ̸= m term

S(k) =
1

N

〈
N∑
ℓ

exp[ik · 0]
〉

+
1

N

〈 ∑
ℓ,m ̸=ℓ

exp[ik · (rℓ − rm)]

〉

= 1 +
1

N

〈 ∑
ℓ,m ̸=ℓ

exp[ik · rℓm]

〉
. (1.141)

3For more on scattering, see my notes on Part II C6: Diffraction Methods in Chemistry.
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Its inverse Fourier transform is then given by

1

(2π)3

ˆ
d3k eik·rS(k) = δ(r) +

1

N

〈 ∑
ℓ,m ̸=ℓ

δ(rℓm − r)

〉
, (1.142)

and now by (1.117) and setting N − 1 ≈ N , we get

1

(2π)3

ˆ
d3k eik·rS(k) = δ(r) +

N

V
γ(r) . (1.143)

Alternatively,
1

(2π)2

ˆ
d3k eik·r[S(k)− 1] =

N

V
γ(r) . (1.144)

The g(r) can therefore be obtained from experiment by the inverse Fourier transform of the measured
structure factor after subtracting the “self-correlation”.

1.7 Static Versus Dynamical Averages

Under the ergodic hypothesis, we can use molecular dynamics to sample from microcanonical
ensemble, and by weak-coupling approaches, some other standard statistical mechanical ensembles
can be generated as well. All the quantities we introduced above do not incorporate explicit knowledge
of the time evolution of the system. They are just static equilibrium averages that can equally well
be obtained via the Monte-Carlo route. If we are only interested in these static properties, we don’t
need to track how the system evolves in time. We just need a good equilibrium sampling.

However, some quantities are not like that. They are directly dependent on how the system evolves
in time, and so we have to use time-dependent simulations instead of Monte-Carlo. They are called
dynamical properties. Some examples include transport or diffusive properties (e.g. heat conductivity
and diffusion coefficient), rheological properties (e.g. shear modulus) and spectroscopic properties.

However, Green–Kubo relations allow us to directly link those macroscopic transport coefficients
to the microscopic fluctuations at equilibrium by relating the transport coefficients to the integral of
the autocorrelation functions of certain quantities. For example, the diffusion coefficient is linked to
the integral of the velocity autocorrelation function, and the viscosity is linked to the stress tensor.
Taking advantage of these, we can extract transport coefficients directly from a equilibrium molecular
dynamics simulation instead of observing how a system evolves to equilibrium.

The time autocorrelation functions capture the rate at which a system decorrelates from an initial
state. Consider a signal (e.g. a phase function) A(t) with domain t ∈ [0,∆t]. Without loss of
generality, we can let ⟨A⟩ = 0. The autocorrelation function of A is then defined as

CAA(τ) :=
1

∆t− τ

ˆ ∆t−τ

0

dtA(t+ τ)A(t) . (1.145)

We have

CAA(τ → 0) =
〈
A2
〉

(1.146)
CAA(τ → ∆t) = ⟨A⟩2 . (1.147)

Hence, one can extract the transport coefficients from an MD simulation at equilibrium using
Green–Kubo relations from the following scheme:

1. Run a simulation at equilibrium.

2. Compute relevant microscopic quantity. For example, if we are interested in the diffusion
coefficient, then we can calculate the particle’s velocity.
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Figure 16: Constructing the autocorrelation function of a quantity.

3. Calculate the autocorrelation function.

4. Integrate to get the transport coefficient.

One can generalise the autocorrelation function to define the cross-correlation function4

CAB(τ) :=
⟨A(t)B(t+ τ)⟩

⟨A⟩ ⟨B⟩
. (1.149)

Where the normalisation factor may be there or not. This will be useful when studying coupled
processes, like energy transfer or reaction rates. The loss of correlation with time is usually an
exponential decay, and the decorrelation time can be estimated from a time integral over the
correlation function

τAB =
1

CAB(0)

ˆ ∞

0

dτ CAB(τ) . (1.150)

One may check that the correlation function has the time translation invariance and time inversion
symmetry

⟨A(t+ τ)B(t)⟩ = ⟨A(t′ + τ)B(t′)⟩ (1.151)
⟨A(τ)A(0)⟩ = ⟨A(0)A(−τ)⟩ . (1.152)

1.7.1 Fluctuation-Dissipation Theorem

In fact, the use of time correlation function at equilibrium in obtaining off-equilibrium properties like
transport coefficient is a very deep and profound result related to the fluctuation-dissipation theorem.

An informal statement of this theorem is Onsager’s regression hypothesis: the relaxation of a
system after some macroscopic perturbation is governed by the same laws as the regressions of
spontaneous microscopic fluctuations in an equilibrium system. A system’s fluctuation at equilibrium
is indistinguishable from its approach from off-equilibrium to equilibrium, provided that it is not too
far away from equilibrium. The fluctuation-dissipation theorem formalises this hypothesis.

Theorem 1.10 (Fluctuation-dissipation theorem). Consider a system that has been prepared
in a state sampled from some non-equilibrium distribution F (rN ,pN ) by the means of a small
perturbation ∆H. Write the average of the observable A in the perturbed state as

A(t) =

ˆ
d3NrN d3NpN A(t | rN ,pN )F (rN ,pN ) . (1.153)

4More formally, it can also be defined using a phase-space average as an ergodic integral

CAB(τ) :=

ˆ
d3NrN d3NpN A(rN ,pN )B(τ | rN ,pN )ρ(rN ,pN ) . (1.148)
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If the initial state is not too far from equilibrium, the time evolution follows

A(t)

A(0)
=

CAA(t)

CAA(0)
. (1.154)

Hence, instead of measuring how a system responds to an external force, we can directly measure
how it fluctuates at equilibrium.

1.8 Force Fields

A force field is the classical parameterisation of the adiabatic potential energy surface V (rN ). It
can be separated into bonded and non-bonded potentials to include both bonded and non-bonded
interactions.

Bonded potentials capture covalent, intramolecular interactions. They are usually partitioned
onto n-body terms up to n = 4.

i

j

k

l

Bonds

rij = ∥ri − rj∥

rij

Angles

cos θijk =
rij · rjk

∥rij∥ ∥rjk∥

θijk

Dihedrals
ϕijkl =

nijk · njkl

∥nijk∥ ∥njkl∥

ϕijkl

Some commonly used bonded potentials are

• Harmonic bond.
u(rij) =

1

2
kr(rij − r0)

2 . (1.155)

• Harmonic angle.
u(θijk) =

1

2
kθ(θijk − θ0)

2 . (1.156)

• Proper dihedral. It simulates the conditions where several dihedral angles are likely, and it has
many probable forms. The Ryckaert–Bellemans form is

urb(ϕijkl) =

5∑
n=0

cn cos
n(ϕijkl) . (1.157)

It is a 2π-periodic function with several minima and maxima.

• Improper dihedral. It is used to capture the rigidity of certain systems like planar BF3, where
only one specific dihedral angle is probable.

uid(ϕijkl) =
1

2
kϕ(ϕijkl − ϕ0)

2 . (1.158)

Non-bonded potentials capture van der Waals, electrostatic and polarisation interactions at both
intermolecular and intramolecular levels. These interactions are often approximated using only
pairwise terms.

Common non-bonded potentials include:

32



1 Molecular Dynamics C8 Computer Simulation Methods

cut-off
sphere

Figure 17: Both intermolecular and intramolecular non-bonded forces should be considered. However,
1-2 and 1-3 interactions are often excluded.

• Lennard-Jones potential

uLJ(rij) = 4ϵijfLJ(rij)

(
Aij

r12ij
− Bij

r6ij

)
, (1.159)

where fij(rij) is a cut-off function such that fLJ(rij) = 0 for rij above the cut-off radius and one
otherwise. The most common way obtaining these coefficients is the Lorentz–Berthelot rules

ϵij =
√
ϵiϵj σij =

σi + σj

2
(1.160)

Aij = 4ϵijσ
12
ij Bij = 4ϵijσ

6
ij . (1.161)

• Coulomb potential
uij = fc(rij)

1

4πϵ0

qiqj
rij

. (1.162)

1.9 Errors in Simulations

Broadly speaking, the errors in an MD simulation can be classified into two categories. First, there
are systematic errors that are inherent to the system. It is related to the model and method one
uses to describe a given system (e.g. force field, quantum mechanical effect), and it is harder to
gain control over. There are also statistical errors that can arise in either time domain due to finite
sampling, or in spatial domain due to finite size effects. We will focus on statistical errors.

1.9.1 Block Average Method

If we have a trajectory of length τ , the average of a dynamical observable A over this trajectory can
be calculated as

Aτ =
1

τ

ˆ τ

0

dtA(t) . (1.163)

In the limit of infinite simulation time, the estimated average should converge to the true ensemble
average

lim
τ→∞

⟨Aτ ⟩ = ⟨A⟩ . (1.164)

But we can only simulate the system for a finite amount of time. Then how do we calculate the error
of our estimate Aτ?

To estimate the error, we can consider finite blocks that partition the trajectory onto smaller
chunks, and then evaluate the average of A over each block. For a given choice of τ , the variance of
Aτ is given by

σ2(Aτ ) =

nb∑
b=1

(Aτ,b −A∆t)
2

nb
. (1.165)
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Figure 18: Estimating the statistical error using the block average method.
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Figure 19: Using different block sizes to estimate the error. The first case clearly underestimates the
error, and the second case overestimates it.

Clearly, the estimated variance will be strongly dependent on the choice of τ . If we use τ = ∆t, then
we get σ2(Aτ ) = 0 and this clearly underestimates the error. If we choose too small a τ , then we
would overestimate the error. How do we choose the appropriate block size?

Recall that limτ→∞ ⟨Aτ ⟩ = ⟨A⟩. We can determine an appropriate block size by relating the
variance of our time average to a time autocorrelation function

σ2(Aτ ) =
〈
A2

τ

〉
− ⟨Aτ ⟩2 =

1

τ2

ˆ τ

0

dt

ˆ τ

0

dt′ ⟨[A(t)− ⟨A⟩][A(t′)− ⟨A⟩]⟩︸ ︷︷ ︸
=CAA(t−t′)

. (1.166)

The important time scale for this autocorrelation function is the characteristic decay of CAA

τA =
1

2

ˆ ∞

−∞
dt

CAA(t)

CAA(0)
. (1.167)

Therefore, if the block sampling time τ is much greater than the characteristic decay time τA, then
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τ

s

τ∗

Figure 20: When τ is small s increases with τ , indicating that the block size is too small and contain
correlated data. When τ−s curve has levelled off, the block size is long enough to ensure independent
block average.

we can estimate the variance using

σ2(Aτ ) ≃
1

τ

ˆ ∞

−∞
dt CAA(t)

≃ 2τA
τ

CAA(0) . (1.168)

The relative variance in Aτ is therefore

σ2(τA)

⟨A⟩2
=

2τA
τ

〈
A2
〉
− ⟨A⟩2

⟨A⟩2
. (1.169)

This indicates that the variance in a measured quantity is inversely proportional to the number of
uncorrelated measurements M ∼ τ/τA. From this, we can derive a recipe for choosing an appropriate
block length τ . We choose it such that the statistical inefficiency

s =
τσ2(Aτ )

⟨A⟩2
, (1.170)

which measures how much the variance of our time-averaged observable is “inflated” due to time
correlation, becomes independent of τ .

1.9.2 System Size Dependence

Let us assume that an observable can be decomposed onto uncorrelated single-particle contributions:

⟨A⟩ =
N∑
i=1

⟨ai⟩ = N ⟨a⟩ , (1.171)

then 〈
A2
〉
− ⟨A⟩2 =

N∑
i=1

N∑
j=1

⟨[ai − ⟨a⟩][aj − ⟨a⟩]⟩ . (1.172)

As the fluctuations in ai and aj are uncorrelated for i ̸= j, we find that〈
A2
〉
− ⟨A⟩2

⟨A⟩2
=

1

N

〈
a2
〉
− ⟨a⟩2

⟨a⟩2
. (1.173)

The statistical error in such an additive property decreases as we increase the system size. However,
no such scaling can be expected when computing truly collective (not decomposable into uncorrelated
single-particle contributions) properties.
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(a) Molecular dynamics (b) Monte Carlo

Figure 21: The difference between molecular dynamics and Monte Carlo.

2 Monte Carlo

2.1 Monte Carlo and Inferential Statistics

Monte Carlo (MC) is a method of estimating the value of a quantity using the principles of inferential
statistics. In contrast to molecular dynamics, which is a deterministic method that aims to follow
the actual time evolution of a system as close as possible to evaluate some quantities, Monte Carlo is
stochastic. It explores the states of the system by doing random sampling, and evaluates the desired
quantity from the samples. In an MD simulation, the evolution of the system from one time step to
the next has a solid physical meaning, but this does not have to be the case for an MC simulation.

2.1.1 Inferential Statistics

A simple example. If you toss a coin 100 times and they all land heads. What do you think you
will get if you flip it next time? We have done a fairly large number of experiments, so based on our
sample, we would suspect that this coin is unfair, and we would still get a head next time. Now if
you toss another coin for another 100 times, and you get 52 heads and 48 tails. The best estimate of
the probability of getting a head for our next toss would be 52% based on our samples.

Law 2.1 (Strong law of large numbers (Kolmogorov’s law)). Given a collection of indepen-
dent and identically distributed (iid) samples from a random variable with finite mean, the sample
average converges almost surely to the expected value.

Prob
(
lim

n→∞
Xn = µ

)
= 1 . (2.1)

What this means is that, as the number of trials n goes to infinity, the probability that the average
of the observations converges to the expected value, is equal to one.5

You might be worrying about some extreme events, like you are tossing a fair coin, but you get all
heads for the first 100 tosses. But as you do more tosses, say 10,000 more tosses, you are likely to get
around 5,000 heads with 5,000 tosses, and the extreme result of the first 100 tosses will be washed

5There is also a weak law of large numbers.

Law 2.2 (Weak law of large numbers (Khinchin’s law)). The sample mean converges in probability to the
expected value. That is, for any ϵ > 0,

lim
n→∞

Prob(
∣∣Xn − µ

∣∣ < ϵ) = 1 . (2.2)

This is not a maths course so we don’t care about the difference here.
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Figure 22: Randomly generating N = 100 points in a square.

away. This is the regression to the mean. Following an extreme event, the next random event will
likely be less extreme.

2.1.2 Monte Carlo

Let’s see an example of Monte Carlo in its simplest form. Consider a square of side length 2, and
its inscribed circle. The area of the square is 4 and the area of the circle is π. This means that if I
randomly choose a point in the square, it has a chance

p =
Acircle
Asquare

=
π

4
(2.3)

to fall inside the circle. Now if I am asking my computer to generate a random set of N points for
some large enough N , then the fraction of points that will fall inside the circle will be

lim
N→∞

Nin
N

= p =
π

4
. (2.4)

This means that by counting how many points are inside a circle, we can estimate the value of π by6

π ≃ 4p =
4Nin
N

. (2.5)

We are essentially evaluating a 2D integral by the stochastic method.

2.2 Importance Sampling

As you can see in the above example, randomly sampling points from a uniform distribution may not
be the most efficient way to perform an MC calculation.

Suppose we are evaluating some integral
ˆ b

a

dx f(x) . (2.6)

If we want to do this using standard Monte Carlo, then we would sample points from a to b uniformly.
However, if we are doing something like

ˆ 5

−5

dx e−x2

, (2.7)

which we know that most of the weight of the integral actually comes from a small range of x where
f(x) is large. Sampling more often in that region should greatly increase the accuracy of the MC
integration. However, this implies that we know something about f(x) already.
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(a) Sampling with uniform distribution.
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(b) Sampling with biased distribution

Figure 23: Monte Carlo method to evaluate the integral
´ 5
−5

dx e−x2 using uniform and biased
sampling.
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Figure 24: The histogram of 50 attempts to evaluate the integral
´ 5
−5

dx e−x2

=
√
π erf(5) ≈ 1.77245

using uniform (blue), biased (green) and an even more biased (red) sampling. The uniform sampling
gives 1.73±0.64, the biased sampling gives 1.75±0.39 and the more biased sampling gives 1.78±0.19.
All three sampling methods give correct results on average due to a fairly large number of attempts
(law of large numbers), but a more biased sampling gives a more consistent result.

To do this, we sample from a biased probability distribution w(x), which is derived from the best
guess of what the function f(x) will look like. An estimate of the integral can then be written as

I =
1

N

N∑
i=1

f(xi|w)

w(xi|w)
, (2.8)

where xi|w means that xi is drawn from the probability distribution w(x), xi ∼ w(x). Here the division
by w(xi|w) is to compensate for biasing the distribution. When w(xi|w) is a uniform distribution, we
recover the uniform sampling.

6I tried for N = 1, 000, 000, 000 and it gives me an estimate of π ≈ 3.141633 in 7 minutes. Apparently this is not
the most efficient way of calculating π
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The variance of our integral estimation is

σ2
I|w =

1

N

〈
1

N

N∑
i=1

(
f(xi|w)

w(xi|w)
−
〈
f(xi|w)

w(xi|w)

〉)2
〉

=
1

N

〈
σ2
f |w

〉
. (2.9)

The error still scales as N−1/2 but the prefactor is different for different sampling. The best prefactor
would result from using

w(x) =
1

I
f(x) , (2.10)

where I =
´ b
a
dx f(x) is for normalisation, for which σf |w = 0. In this case our estimation would

always be exact, but this requires us to know the integral a priori. Hence, in practice, we can only
have a good estimate of what a suitable w(x) might be. Choosing a distribution that gives a good
estimate for w(x) is known as importance sampling. This is a crucial step in MC calculation. When
sampling highly non-uniform functions, brute force MC with uniform sampling can result in a very
large pre-factor for σI|w.

2.2.1 Importance Sampling in Statistical Mechanics

Importance sampling is extremely crucial in statistical mechanical systems since it involves high
dimensional integrals with significant contributions from only a very small fraction of the total possible
sampling spaces.

For example, suppose we want to evaluate the ensemble average of a physical quantity A

⟨A⟩ =
∑
|n⟩

Anpn =
1

Q

∑
|n⟩

Ane
−βEn , (2.11)

where An is the value of the quantity A for the microstate |n⟩, and the sum is taken over all possible
microstates. To evaluate this using Monte Carlo, the simplest way is to choose M states completely
randomly and take the average with the Boltzmann factor

AM =

∑M
|n⟩ Ane

−βEn∑M
|n⟩ e

−βEn

, (2.12)

which is analogous to the random uniform sampling we discussed in the context of integrals. In
theory, as M → ∞ (or to the number of all possible microstates if this is finite), then AM → ⟨A⟩.
But in practice there are two major problems.

1. The number of states in a statistical mechanical system usually grows exponentially with system
size.
For example, consider an N ×N 2D Ising lattice, where each lattice point can sit in Si = ±1.
The total number of states is 2N

2 . Even a 5 × 5 lattice will have 225 = 33, 554, 432 distinct
states. Doubling each side to a 10× 10 lattice, this number will grow to 1030. The number will
soon get astronomically large, and it will get extremely difficult to sample a proper fraction of
it.

2. Averages are typically dominated by a very small fraction of the states, which random uniform
sampling is very unlikely to find.
Consider a hard-sphere liquid. If you locate the particles randomly, then you will easily get
particles overlapping with each other, even at moderate particle density. Such situation gives
infinite energy and so contribute nothing to the average ⟨A⟩. For example, if we simulate 100
hard-spheres near the freezing transition, then only one in about 10260 random configurations
would count towards the average.
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Figure 25: Randomly generating particles in a cell. Even at moderate density, there is an extremely
high chance of resulting in some overlap.

Overcoming these challenges clearly would involve some form of importance sampling. Since
Boltzmann distribution determines the weight of each state in the ensemble average, it is a natural
choice of function from which we sample our points. Applying the Boltzmann weighting function, we
get

Am =

∑M
|n⟩ An|pe

−βEn( 1
e−βEn

)∑M
|n⟩ e

−βEn( 1
e−βEn

)
=

∑M
|n⟩ An|p

M
, (2.13)

where the subscript n | p means that we are sampling microstates |n⟩ with probability given by the
Boltzmann distribution pn = e−βEn/Q.

However, this method also has two clear difficulties.

1. Computing the partition function is almost always impossible.

2. It is hard to know how to find the most probable states.

The Metropolis algorithm provides a clever way around these problems.

2.3 Metropolis Sampling and Detailed Balance

The Metropolis algorithm performs a biased random walk through the configuration space as follows

1. Start with a given configuration Si.

2. In the next step, the system will have a probability Wij = W (Si → Sj) to transfer into a new
configuration Sj . The transition probability will be derived later.

3. Repeat to create a trajectory through the phase space.

4. Evaluate the physical quantity of interest via

Am =

∑M
i Ai|p

M
. (2.14)

2.3.1 Markov Chain

Mathematically, the above random walk process is described by a Markov process.

Definition 2.3. A Markov process is a stochastic process that satisfies the Markov property: the
future of the system is independent of the past, and is only dependent on the current state of the
system.
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Figure 26: An example of a Markov chain. At each time step, the system moves from one state to
another with the given transition probability.

A Markov chain is a type of Markov process that has discrete time.

Suppose we have a stochastic process with a set of possible states S1, S2, S3, . . . (finite, countably
infinite or continuum) and discrete time t1, t2, . . .. We denote the state of the system at time tn as
Xtn . Then for the process to be Markov, the conditional probability that the system will be in state
Xtn+1

= Sj is only dependent on the current state of the system Xtn = Si. It is independent of
Xtn−1 , Xtn−2 , . . . or the value of n. Hence, we can write the transition probability from state Si to Sj

Wij = W (Si → Sj) = Prob(Xtn+1
= Sj | Xtn = Si) . (2.15)

As with usual probabilities, we require Wij ≥ 0 and
∑

j Wij = 1. Since W can be considered as a
matrix, it is also known as the transition matrix.

The total probability that at time tn the system is in state Sj is

Prob(Xtn = Sj) =
∑
i

Wij Prob(Xtn−1
= Si) . (2.16)

If we treat time as continuous, Prob(Xt = Sj) = P (Sj , t) and consider that the probability is
conserved at all times:

∑
j P (Sj , t) = 1, then we get

dP (Sj , t)

dt
=
∑
i

[WijP (Si, t)−WjiP (Sj , t)] . (2.17)

The change in the probability of the system being in state Sj is the probability of moving into state
Sj minus the probability of moving away from state j.

2.3.2 Equilibrium and Detailed Balance

We say a system is in equilibrium if the average macroscopic properties of the system have stopped
changing, except for small fluctuations away from equilibrium that soon dissipate back towards
equilibrium. The properties of a equilibrium system are independent of its history. Thus we can ignore
how a system has reached equilibrium and focus on the distribution of microstates at equilibrium.

Suppose the system is at equilibrium such that

dP (Sj , t)

dt
= 0 , (2.18)

this means that ∑
i

[WijP
eq
i −WjiP

eq
j ] = 0 . (2.19)

The probability of moving out from Sj is equal to the probability of moving into Sj . A sufficient but
not necessary condition for this to happen is

WijP
eq
i = WjiP

eq
j (2.20)
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for all i, j. This is known as the detailed balance. In such case, the average number of moves from
any state i to state j is equal to the number of moves from j to i.

In Metropolis Monte Carlo, we want the probability that the system sits in the microstate Sj is
equal to its Boltzmann factor: Pj ∝ e−βEj . Then once the equilibrium has established, an ensemble
of random walkers will populate the states Sj with the Boltzmann distribution that we desired. To
achieve this, all we need to do is to choose the correct transition probabilities such that

Wij

Wji
=

P eq
j

P eq
i

= e−β(Ej−Ei) . (2.21)

The trick to determine the transition probability Wij is to split it into two steps.

1. Choose a new configuration Sj with a selection probability αij .

2. Accept or reject this new configuration with an acceptance probability Pacc,ij . If accepted, move
to Sj , and if not, stay in Si.

Then the transition probability can be written as

Wij = αijPacc,ij . (2.22)

If we take α to be symmetric, αij = αji, then the condition of detailed balance becomes

Pacc,ij
Pacc,ji

= e−β∆E , (2.23)

where ∆E = Ej − Ei. There are many choices of Pacc,ij that satisfies this condition. The most
popular choice is the algorithm of Metropolis

Pacc,ij =

{
e−β∆E if ∆E > 0

1 otherwise
. (2.24)

This means that if the energy decreases, you always accept the trial move, whereas if the energy
increases, you accept it with a probability proportional to the Boltzmann factor of the energy
difference. The clear advantage is now you don’t need to evaluate the partition function.

Note that for a Monte Carlo simulation to sample points in configurational space according to
the correct Boltzmann weight, the detailed balance condition is sufficient but not necessary. There
might exist correct sampling schemes that violate the detailed balance. However, unless we can prove
that a non-detailed-balanced scheme yields the correct distribution, there is no point of doing so in
practice.

Example. Metropolis Monte Carlo for Interacting Fluid.

Consider an interacting fluid of N particles with positions rN = (r1, r2, . . . , rN ) and momenta
pN = (p1,p2, . . . ,pN ) interacting through the potential V (rN ). When considering the energy Ei of
a state i, it includes both the kinetic energy and the potential energy, but as seen before, we can
always integrate over the trivial momenta parts in the partition function to obtain

Q =
1

N !Λ3N
ZN . (2.25)

We can always ignore the momenta and do our MC averages over the states determined by rN alone,
with the probability distribution

P (rN ) =
1

ZN
exp[−βV (rN )] . (2.26)

To move from step k to step k + 1 in the Monte Carlo trajectory:
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1. Select a fluid particle j at random from the configuration of step k:

rNk = (r1, r2, . . . , rj , . . . , rN ) . (2.27)

2. Move it to a new position with a random displacement r′j = rj + ∆, with ∆i ∈ [−δ,+δ] for
some δ.

3. Calculate the potential energy V (rNtrial) for the new state rNtrial = (r1, . . . , r
′
j , . . . , rN ).

4. Accept the move rNk → rNtrial with a probability

Pacc(r
N
k → rNtrial) = min{1, exp[−β(V (rNtrial)− V (rNk ))]} . (2.28)

If the move is accepted, rNk+1 = rNtrial. If not, rNk+1 = rNk .

We need to have a suitable choice of our move step ∆. If it is too large, most trial moves will be
rejected, and if ∆ is too small, you will move very slowly in the phase space, and it will take a large
number of steps to reach equilibrium. For most systems, an average acceptance rate of 20%− 30% is
suitable.

In each MC step, we only attempt to move one particle, and so N separate MC steps are roughly
equal to a single MD step, where all particles are moved together. Why don’t we attempt to move
N particles in a single MC step? There is no significant difference in computational cost between N
single moves and one move of N particles in terms of evaluating V (rNtrial), but the rejection probability
will be larger if we move all particles together. If the average probability of rejection for moving one
atom is prej, then the probability of an accepted move of N particles at once is (1 − prej)

N , which
tends to zero as N increases. To get any acceptance at all in a collective move, we would require really
small values of ∆. Hence, for the same computational cost, single particle moves advance particles
much faster than collective moves.

Example. The Ising model The Ising model has Hamiltonian

H = −J
∑
⟨i,j⟩

SiSj −B
∑
i

Si , (2.29)

where Si = ±1 and ⟨i, j⟩ denotes sum over all neighbouring pairs of particles. As you have investigated
in Part II B7: Statistical Mechanics, there are three competing effects. The neighbouring interactions
want to keep everything aligned, the external field wants to keep everything to a specific direction,
and the entropy wants to screw everything up as there are more disordered microstates than aligned
microstates. At low temperatures, the ground state keeps (almost) all spins aligned with the external
field, since then both the neighbouring alignment and the external field terms in the Hamiltonian will
be simultaneously minimised. Defining the magnetisation

M =
1

N2

∑
i

Si , (2.30)

we can see that at low temperatures, M → 1 for B > 0 and M → −1 for B < 0.

To do this in Monte Carlo, we can use the following scheme:

1. Start From an arbitrary initial configuration of spins.

2. At step k, select a random spin Sj(k) and flip it to −Sj(k).

3. Evaluate the energy change

∆E = 2Sj(k)

J ∑
neighbouring n

Sn(k) +B

 . (2.31)
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Figure 27: Metropolis Monte Carlo of a 30 × 30 2D square lattice Ising Model with J = 1, β = 0.6
and B = 0.4. Five runs are taken from random initial configurations, and five runs are taken from
completely flipped configurations. It takes much longer for a flipped-spin system to get to equilibrium.

4. Accept the move Sj(k) → −Sj(k) with probability

Pacc(Sj(k) → −Sj(k)) = min{1, exp(−β∆E)} . (2.32)

If accepted, Sj(k + 1) = −Sj(k), and if not, Sj(k + 1) = Sj(k).

2.4 Hard-to-Simulate Systems

Our above discussions are based on the assumption that our system is ergodic, so that it can visit
all its states (or sufficiently close to all of its states if it is a continuum) in a finite number of steps.
Due to the finite time scale and length scale nature of simulations, it is usually impossible to fully
sample the available microstates — sometimes not even close to sampling a large proportion of its
microstates. There are quasi-ergodic systems with frustrated or rugged energy landscapes (many
deep minima separated by high energy barriers) such that if you are stuck in one of the minima, it is
impossible to get out and sample other places. Examples of this type of system include

• Systems with strong electrostatic interactions.

• Fluids with strongly orientation-dependent interactions (e.g. dipole, hydrogen bonds).

• Self-organising systems.

• Supercooled liquids.

One apparent solution to this ergodicity problem is to use brute force. If we run a large enough
number of simulations from many different random initial conformations, then we would ultimately
sample all over the phase space. However, we will introduce two other clever solutions that help us
solve the ergodicity problem.

1. Add a biasing potential and sample from a non-Boltzmann distribution so that the unfavorable
states are sampled adequately.
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start

global minimum

Figure 28: The system might appear to equilibrate inside the local well, even though our simulation
is not sampling the phase space correctly. This is the ergodicity problem: we cannot get everywhere
in the phase space within the finite amount of simulation time.

2. Enhance sampling by changing the kinetic energy of particles.

Both methods help us climb over the potential barriers between minima.

2.4.1 Biased Sampling Methods

The standard (unbiased) canonical distribution is

P (i) ∝ exp[−βV (rNi )] . (2.33)

In the biased ensemble, we introduce an additional weighting potential U for the microstates in the
exponential

Pbiased(i) ∝ exp[−β(V (rNi ) + U(rNi ))] . (2.34)
It modifies the canonical distribution so that some configurations can have higher or lower probabilities
of being visited than they would normally do. If we compare the weighted and the unweighted
probabilities, we get

P (i)

Pbiased(i)
= exp[βU(rNi )] . (2.35)

Using the biased property, we can follow our standard procedure in a Metropolis Monte Carlo
simulation. We split the total transition probability into

Wij = αijPacc,ij , (2.36)

and make the selection probability symmetric

αij = αji . (2.37)

Then by the detailed balance, we have

Pacc,ij = min{1, Pbiased(j)/Pbiased(i)} = min{1, exp[−β(∆V +∆U)]} . (2.38)

Then to recover the ensemble average of a physical quantity in the standard canonical ensemble, we
reweight the sampled microstates and get

⟨A⟩ =
∑

i AiP (i)/Pbiased(i)∑
i P (i)/Pbiased(i)

=

∑
i Ai exp[βU(rNi )]∑
i exp[βU(rNi )]

. (2.39)

Since the introduction of biasing is to avoid ergodicity issues, we often choose U(rNi ) such that
the simulation explores a wide range of microstates to accumulate a good statistics. We can think of
them as artificially reshaping the free-energy landscape to improve sampling in specific regions. We
will briefly introduce two common biasing methods: metadynamics and umbrella sampling.
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Figure 29: Energy landscapes of the system against Monte Carlo steps (1,000 steps between
consecutive plots) in a metadynamics simulation.

Metadynamics

Metadynamics tackles difficult-to-simulate systems by applying a history-dependent biasing potential
that discourages the system from revisiting previously explored states.

1. A few low-dimensional reaction coordinates are chosen as collective variables (CVs), ξ to describe
the slow degrees of freedom which we plot our energy landscapes against.

2. During the simulation, a small Gaussian potential is added to the potential energy of the
system at the current position of the system in the CV space. This discourages the system from
returning to the same region, pushing it into new unexplored states.

3. Over time, the biased potential will “fill in” the local minima, flattening the energy landscape.
The system is then driven over the energy barrier and is dropped into another minimum.

4. The accumulated bias potential is related to the negative of the free energy landscape, allowing
one to reconstruct the free-energy profile of the system.

The biased potential at time t is given by

U(ξ, t) =
∑
t′<t

we−
(ξ−ξ(t′))2

2σ2 , (2.40)

where w and σ are the height and width of the Gaussian bias potential added at each time step.

The free energy of a state is related to its probability by

A(ξ) = −kBT lnP (ξ) . (2.41)

In metadynamics,
Abiased(ξ, t) = Aunbiased(ξ) + U(ξ, t) . (2.42)

In the limit of long simulation time, the landscape is completely filled, making all states equiprobable,
and so

lim
t→∞

lnPbiased(ξ, t) = −β
[
Aunbiased(ξ) + lim

t→∞
U(ξ, t)

]
= const. (2.43)

The constant shift in the free energy is unimportant. Therefore we can take

Aunbiased(ξ) = − lim
t→∞

U(ξ, t) . (2.44)
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Figure 30: Umbrella sampling adds a local harmonic biasing potential in each run.

Various other quantities can then be derived, for example

S(ξ) = −∂A(ξ)

∂T
(2.45)

E(ξ) = A(ξ) + TS(ξ) (2.46)

K = exp

(
− ∆A

kBT

)
(2.47)

k = A exp

(
−∆A‡

kBT

)
. (2.48)

Since the unbiased probability distribution is

Punbiased = Pbiased(ξ)e
βU(ξ) , (2.49)

for any physical quantity A, the unbiased ensemble average can be computed as

⟨A⟩ =
∑

i A(ri)e
βU(ξi)∑

i e
βU(ξi)

. (2.50)

Umbrella Sampling

In contrast to metadynamics, in umbrella sampling, we need to know the states A and B we want
to connect, and then we define a reaction coordinate ξ to connect these two states. We proceed as
follows:

1. We perform J simulations of the same system.

2. In each simulation, we restrain the system to sample a small range of the reaction coordinate ξ
centred around ξj . This is done by adding a bias potential Uj(ξ), which can for example be a
harmonic potential Uj(ξ) =

1
2k(ξ − ξj)

2.

3. Use different target value ξj for each simulation such that it spans the entire range of interest.

4. Measure the weighted ensemble distribution Pbiased(ξ) for each simulation. Unweight and stitch
together all Pbiased(ξ) to produce an unweighted underlying free function.

Each simulation is connected to the unweighted distribution by

P (rN ) ∝ Pbiased,j(r
N ) exp[βUj(ξ)] . (2.51)

By integrating all other coordinates except the reaction coordinate of interest, one can write

P (ξ) ∝ Pbiased,j(ξ) exp[βUj(ξ)] . (2.52)

Taking the logarithm gives

A(ξ) = −kBT ln[Pbiased,j(ξ)]− Uj(ξ) + const. (2.53)

We can adjust the constant to glue different segments of A(ξ) together.
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Figure 31: Using umbrella sampling to construct the free energy landscape.
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Figure 32: Temperature replica exchange molecular dynamics.

2.4.2 Temperature Replica Exchange Molecular Dynamics

The next method uses high temperature to avoid being trapped in a local minimum. It is known as
temperature replica exchange molecular dynamics (T-REMD) (or the corresponding Monte Carlo).
Suppose we want to investigate the system at temperature T1.

1. We create J replicas of the same system, and perform them simultaneously at different
temperature Tj with T1 < T2 < · · · < TJ .

2. Each simulation is evolved independently, either through MD or MC.

3. At set intervals, replica swap MC moves are performed between adjacent replicas. In a swap
move, the instantaneous configurations are exchanged between the two temperatures.

The replica exchanging process can also be modelled by a Markov chain in the entire J-system
ensemble. Now a microstate of this ensemble is a list of all positions in all of the replicas

R = (rN1 , rN2 , . . . , rNJ ) . (2.54)

Since the replicas do not interact, we have

P (R) =
∏
j

Pj(r
N
j ) . (2.55)

Using canonical probabilities in each replica,

P (R) =
∏
j

exp[−βjV (rNj )]

Zj
. (2.56)

Consider a swap move between configurations at two adjacent temperatures 1 and 2. This would
exchange the coordinates in replica 1 rN1 with the coordinate of replica 2 rN2 , so that the coordinates
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after exchange are
R′ = (rN2 , rN1 , . . . , rNJ ) . (2.57)

We can again use Metropolis algorithm to decide whether or not to accept this swap, by

Pacc(R → R′) = min{1, P (R′)/P (R)} , (2.58)

where

P (R) =
exp[−β1V (rN1 )]

Z1
× exp[−β2V (rN2 )]

Z2

J∏
j=3

exp[−βjV (rNj )]

Zj
(2.59)

P (R′) =
exp[−β1V (rN2 )]

Z1
× exp[−β2V (rN1 )]

Z2

J∏
j=3

exp[−βjV (rNj )]

Zj
. (2.60)

Writing ∆β = β2 − β1 and ∆V = V (rN2 )− V (rN1 ), we have

Pacc,ij(R → R′) = min{1, exp[∆β∆V ]} . (2.61)

For T2 > T1, we would expect V (rN2 ) > V (rN1 ), so the acceptance probability is usually small.
Hence, we need to set the temperatures of the replica close enough with each other in order to achieve
a good rate of accepted swaps.

2.5 Thermodynamic Integration

Suppose we want to compute the difference in binding free energy between two ligands L1 and L2

with the same protein
∆∆A = ∆A1 −∆A2 . (2.62)

To compute this, we consider an alchemical (unphysical) path that describes the transformation of
ligands L1 into L2, connected through intermediate states. We define this path by introducing a
coupling parameter λ, such that λ = 0 corresponds to ligand L1 (initial state) and λ = 1 corresponds
to ligand L2 (final state). The energy of the system can then be defined as

V (λ, rN ) = (1− λ)V1(r
N ) + λV2(r

N ) . (2.63)

The partition function for an arbitrary λ is given by

Q(N,V, T ;λ) =
1

Λ3NN !

ˆ
d3NrN exp[−βV (λ, rN )] . (2.64)

Taking the derivative of the free energy with respect to λ gives(
∂A

∂λ

)
N,V,T

= −β−1 ∂ lnQ

∂λ

=

´
d3NrN

(
∂V (λ,rN )

∂λ

)
exp[−βV (λ, rN )]´

d3NrN exp[−βV (λ, rN )]

=

〈
∂V (λ, rN )

∂λ

〉
λ

. (2.65)

The average ⟨. . .⟩λ can be viewed as an ensemble average over a system interacting with the potential
V (λ, rN ). The free energy difference of the two states follows from a simple integration

∆A = A(λ = 1)−A(λ = 0) =

ˆ 1

0

dλ

〈
∂A

∂λ

〉
λ

=

ˆ 1

0

dλ

〈
∂V (λ, rN )

∂λ

〉
. (2.66)
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Unbound Bound

∆A1

∆A2

∆A4∆A3

Figure 33: Thermodynamic cycle calculating the relative binding affinities of two ligands with the
same protein substrate.

We can construct a thermodynamics cycle as shown in figure 33. We want to figure out

∆∆A = ∆A1 −∆A2 , (2.67)

but from the above alchemical paths, we can evaluate ∆A3 and ∆A4. It is easy to see that

∆A1 −∆A2 −∆A3 +∆A4 = 0 , (2.68)

and so we can instead calculate
∆∆A = ∆A3 −∆A4 . (2.69)

50



A Noether’s Theorem C8 Computer Simulation Methods

Appendices

A Noether’s Theorem

The simplest way of deriving Noether’s theorem is to use the Lagrangian mechanics, which is another
way of formulating classical mechanics. First let’s be clear of our notations. For a system of N
particles in d dimensions, we will rewrite the coordinates ri as xA, where A = 1, . . . , dN . The
Newton’s equations are

ṗA = − ∂V

∂xA
, (A.1)

where pA = mAẋ
A. To reduce the clutter in notations, when we write xA in the argument of a

function, we mean that it is a function of all xA.

Lagrangian mechanics starts from defining the Lagrangian of a system.

Definition A.1. The Lagrangian for a system is defined by

L(xA, ẋA) = T (ẋA)− V (xA) , (A.2)

where T = 1
2

∑
A mA(ẋ

A)2 is the kinetic energy and V (xA) is the potential energy.

Note the weird minus sign between the kinetic and the potential energy. Despite this strange definition
of the Lagrangian, it works really elegantly.

If we know that at t = t0, the particles are at xA(t0) = xA
0 , and at t = t1, the particles are at

xA(t1) = xA
1 , there are infinite ways the systems can evolve with times between these two end points.

How do we find the true paths xA(t) taken by the particles?

Theorem A.2 (Principle of Least Action). The actual path taken by the system is an extremum
of the action, defined by

S[xA(t)] =

ˆ t1

t0

dt L(xA(t), ẋA(t)) . (A.3)

The S is an example of a functional. It maps functions to a number.

Proof. Consider varying a given path slightly, so

xA(t) −→ xA(t) + δxA(t) , (A.4)

where we fix the end points of the path by demanding δxA(t0) = δxA(t1) = 0. Then this results in a
change in the action

δS = δ

[ˆ t1

t0

dt L

]
=

ˆ t1

t0

dt δL

=

ˆ t1

t0

dt
∑
A

∂L

∂xA
δxA +

∂L

∂ẋA
δẋA . (A.5)

We integrate the second term by parts to get

δS =

ˆ t1

t0

dt
∑
A

[
∂L

∂xA
− d

dt

(
∂L

∂ẋA

)]
δxA +

[
∂L

∂ẋA
δxA

]t1
t0

. (A.6)
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The boundary term vanishes since we required δxA(t0) = δxA(t1) = 0. At an extremum of the action
S, δS = 0 for all changes in the path δxA(t). This holds if and only if

∂L

∂xA
− d

dt

(
∂L

∂ẋA

)
= 0 . (A.7)

for all A. These are known as the Euler–Lagrange equations. To finish the proof, we only need to
show that Euler–Lagrange equations are equivalent to Newton’s equations. From the definition of
the Lagrangian, we have

∂L

∂xA
= − ∂V

∂xA
, (A.8)

while
∂L

∂ẋA
= pA . (A.9)

Then it’s easy to see that Newton’s equations (A.1) are indeed equivalent to Euler–Lagrange equations
(A.7). □

In fact Lagrangian mechanics is much more powerful than that. It turns out we can use any
generalised coordinate we want (e.g. spherical, hyperbolic, or just some arbitrary parameters that
uniquely define the configuration of the system), and we may add constraints to the coordinates,
making it much more powerful than Newton’s formulation of classical mechanics. Unfortunately,
we can’t go into too much detail here. If you are interested, see e.g. Prof. David Tong’s notes on
Classical Dynamics. But the important conclusion is that for any Lagrangian written in generalised
coordinates L(qi, q̇i, t), the Euler–Lagrange equations still hold:

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
= 0 . (A.10)

Definition A.3. Consider a one-parameter transformation of maps

qi(t) −→ Qi(s, t) (A.11)

for s ∈ R such that Qi(0, t) = qi(t). Then this transformation is said to be a continuous symmetry of
the Lagrangian L if

∂

∂s
L(Qi(s, t), Q̇i(s, t), t) = 0 . (A.12)

Theorem A.4 (Noether’s theorem). For each continuous symmetry, there is a conserved quan-
tity.

Proof.
∂L

∂s
=
∑
i

∂L

∂Qi

∂Qi

∂s
+

∂L

∂Q̇i

∂Q̇i

∂s
, (A.13)

so we have

0 =
∂L

∂s

∣∣∣∣
s=0

=
∑
i

∂L

∂qi

∂Qi

∂s

∣∣∣∣
s=0

+
∂L

∂q̇i

∂Q̇i

∂s

∣∣∣∣
s=0

=
∑
i

d

dt

(
∂L

∂q̇i

)
∂Qi

∂s

∣∣∣∣
s=0

+
∂L

∂q̇i

∂Q̇i

∂s

∣∣∣∣
s=0

=
d

dt

(∑
i

∂L

∂q̇i

∂Qi

∂s

∣∣∣∣
s=0

)
. (A.14)

The quantity ∑
i

∂L

∂q̇i

∂Qi

∂s

∣∣∣∣
s=0

(A.15)

is constant for all time. □
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Let’s find some examples.

Example. Homogeneity of space.

Consider a system of N particles with Lagrangian

L =
1

2

∑
i

miṙi
2 − V (rij) , (A.16)

where V (rij) means that the potential is only dependent on the relative distances rij = ∥ri − rj∥
between particles, not on their absolute positions. Then this Lagrangian has symmetry of translation:
ri → ri + sn for any vector n and real number s.

L(ri, ṙi, t) = L(ri + sn, ṙi, t) . (A.17)

Then by Noether’s theorem, the conserved quantity is∑
i

∂L

∂ṙi
· n =

∑
i

pi · n . (A.18)

The component of linear momentum in any direction is conserved, and hence∑
i

pi (A.19)

is also conserved.

Homogeneity in space =⇒ translational invariance of L =⇒ conservation of total linear
momentum.

Example. Isotropy of Space.

The isotropy of space means that a closed system is invariant under rotations around an axis n̂,
so all ri are rotated to r′i by the same amount. To work out the corresponding conserved quantity it
suffices to work with the infinitesimal form of the rotations

ri −→ ri + δri = ri + αn̂× ri , (A.20)

where α is infinitesimal. To see that this is indeed a rotation, you can calculate the length of the
vector and notice it is preserved to linear order in α. Then we have

L(ri, ṙi) = L(ri + αn̂× ri, ṙi + αn̂× ṙi) , (A.21)

giving us the conserved quantity∑
i

∂L

∂ṙi
· (n̂× ri) =

∑
i

n̂ · (ri × pi) = n̂ · L . (A.22)

This is the component of the total angular momentum in the direction n̂. Since n̂ is arbitrary, L is
conserved.

Isotropy of space =⇒ rotational invariance of L =⇒ conservation of total angular momentum.
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