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1 Introduction B7 Statistical Mechanics

1 Introduction

“Anyone who wants to analyze the properties of matter in a real problem might want to
start by writing down the fundamental equations and then try to solve them mathematically.
Although there are people who try to use such an approach, these people are the failures
in this field...”

Richard Feynman

Suppose you know all the fundamental laws of physics, if I give you a box containing 1023 particles
and tell you their mass, their charge, their interactions, and so on, what can you tell me about the
stuff in the box?

There’s one strategy that definitely won’t work: writing down the Schrödinger equation for 1023

particles and solving it. That’s typically not trivial to do for 2 or 3 particles, and generally impossible
for 23 particles, let alone 1023. What’s more, even if you could find the wavefunction of the system,
what would you do with it? The positions of individual particles are of little interest to anyone. We
want answers to much more basic, almost childish, questions about the contents of the box. Is it wet?
Is it hot? What colour is it? Is the box in danger of exploding? What happens if we squeeze it, pull
it, heat it up? How can we begin to answer these kinds of questions starting from the fundamental
laws of physics?

The purpose of this course is to introduce the dictionary that allows you to translate from the
microscopic world where the laws of Nature are written to the everyday macroscopic world that we’re
familiar with.

A large part of this course will be devoted to figuring out the interesting things that happen when
you throw 1023 particles together. One of the recurring themes will be that

1023 ̸= 1 . (1.1)

More is different1: there are key concepts that are not visible in the underlying laws of physics but
emerge only when we consider a large collection of particles. One very simple example is temperature.
This is not a fundamental concept: it doesn’t make sense to talk about the temperature of a single
electron. But it would be impossible to talk about physics of the everyday world around us without
mentioning temperature. This illustrates the fact that the language needed to describe physics on one
scale is very different from that needed on other scales. We’ll see several similar emergent quantities
in this course, including the phenomenon of phase transitions where the smooth continuous laws of
physics conspire to give abrupt, discontinuous changes in the structure of matter.

Statistical mechanics is the art of turning the microscopic laws of physics into a description of
Nature on a macroscopic scale.2

1Anderson, P. W. (1972). More Is Different: Broken symmetry and the nature of the hierarchical structure of science.
Science, 177(4047), 393-396.

2This well-written introduction is from Prof. David Tong.
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2 Fundamentals of Statistical Mechanics

2.1 The Microcanonical Ensemble

We will start by stating the most fundamental assumption in statistical mechanics. It is the idea that
we should take the simplest-minded approach possible and treat all microstates the same — since we
know nothing else about the system, such a democratic approach seems eminently reasonable.

Postulate (Principle of equal a priori probabilities). A system with fixed N , V and E is
equally likely to be found in any of its Ω(E) energy eigenstates3.

Then the probability that the system with fixed energy E is in a given state |n⟩ with energy E is
simply

Prob(|n⟩) = 1

Ω(E)
. (2.1)

The probability that the system is in a state with some different energy E′ ̸= E is zero. This type of
system with a fixed energy is known as a microcanonical ensemble.

2.2 Entropy and the Second Law

Consider a system with total energy E that consists of two weakly interacting subsystems, which
means that they can only exchange energy, as shown in figure 2.1. The energy is distributed over the
two subsystems such that

E1 + E2 = E . (2.2)
For a given E1, the total number of degenerate states of the system is Ω1(E1)× Ω2(E2). We choose
to take the logarithm of the degeneracy so that the value is extensive. This gives

lnΩ(E1, E − E1) = lnΩ1(E1) + lnΩ2(E2) . (2.3)

N1, V1, E1 N2, V2, E2

∆E

Figure 2.1: Two weakly coupled systems that can exchange energy such that the total energy of the
universe is conserved to be E.

By the principle of equal a priori probabilities, the most likely value of E1 is the one that maximises
lnΩ(E1, E − E1), i.e. (

∂ lnΩ(E1, E − E1)

∂E1

)
N1,V1

= 0 . (2.4)

Using the fact that dE1 = −dE2, we obtain the condition(
∂ lnΩ1(E1)

∂E1

)
N1,V1

=

(
∂ lnΩ2(E2)

∂E2

)
N2,V2

. (2.5)

3This is not provable. It is the fundamental assumption that the entire Statistical Mechanics is derived upon. Some
justifications of this assumption include Boltzmann’s H-theorem and Liouville’s theorem.
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We define
β(E, V,N) :=

(
∂ lnΩ(E, V,N)

∂E

)
N,V

, (2.6)

then the equilibrium condition becomes

β(E1, V1, N1) = β(E2, V2, N2) . (2.7)

Let’s examine how this condition is linked to the three laws in thermodynamics.

2.2.1 Boltzmann Entropy and the Second Law

The thermal equilibrium condition of equal β must be equivalent to the condition that the two
subsystems have the same temperature (from classical thermodynamics). Also, just like the
thermodynamic entropy S, lnΩ is a state function of E, V and N . Moreover, when the thermal
equilibrium is reached, lnΩ of the total system is maximised, just like the entropy S should be
maximised at equilibrium by the second law of thermodynamics. This suggests that lnΩ is a
monotonically increasing function of entropy S. Since both S and lnΩ are extensive, S must be
proportional to lnΩ:

S(N,V,E) = kB lnΩ(N,V,E) (2.8)

for some constant kB known as Boltzmann’s constant.

In the statistical picture, the second law of thermodynamics states that, at thermal equilibrium,
the system is most likely to be found in the state that has the largest number of degenerate energy
states.

2.2.2 Temperature and the First Law

The thermodynamic definition of temperature is

1

T
:=

(
∂S

∂E

)
V,N

, (2.9)

which is obtained from the fundamental equation for the internal energy (the first law of
thermodynamics)

dE = TdS − PdV + µdN . (2.10)

Hence β and temperature T is related by

β =
1

kBT
. (2.11)

The condition of equal β in statistical mechanics translates to the condition of equal temperature in
thermodynamics.

2.2.3 The Third Law

The third law of thermodynamics states that at T = 0, the entropy of a pure, perfectly crystalline
substance is zero, or equally the number of accessible states is equal to one (i.e. Ω = 1, so that
S = kB lnΩ = 0). In other words: at absolute zero, the system is in its ground state — and this
ground state is non-degenerate. However, in reality, residual entropy can exist, meaning that as
T → 0, one often observes S approaching a constant.

3
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2.3 The Canonical Ensemble

Now let’s consider a system that is at thermal equilibrium with a large heat bath. The total system
is isolated so that Etot = Ebath +Esys is fixed. The system is weakly coupled to the bath so they can
exchange energy. This configuration is commonly called the canonical ensemble. Suppose the system
is prepared in a specific state |i⟩ with energy Ei, then the bath has an energy Ebath = Etot−Ei with
degeneracy Ωbath(Etot − Ei). The degeneracy of the whole system is Ω = ΩsysΩbath = Ωbath. The
principle of equal a priori probabilities applies only to an isolated system, which is the system plus
the bath (the universe) in our case, so all the states of the universe with total energy Etot are equally
likely to occur. Hence, the probability of finding the system in state |i⟩ is given by

Prob(|i⟩) = Ωbath(Etot − Ei)∑
|j⟩ Ωbath(Etot − Ej)

. (2.12)

Ei
system Etot − Ei

bath

Figure 2.2: The system can exchange energy with the surrounding bath, such that the overall universe
has fixed total energy Etot.

Since the bath is very much larger than the system of interest, most of the energy of the universe
will be in the bath. To compute Ωbath(Etot −Ei), we expand lnΩbath(Etot −Ei) about Ebath = Etot

lnΩbath(Etot − Ei) = lnΩbath(Etot)− Ei

(
∂ lnΩbath(E)

∂E

)
E=Etot

+O
(

1

Ebath

)
, (2.13)

or,
lnΩbath(Etot − Ei) = lnΩbath(Etot)− βEi +O

(
1

Ebath

)
. (2.14)

Hence,
Prob(|i⟩) = exp(−βEi)∑

|j⟩ exp(−βEj)
=

exp(−βEi)

Q
. (2.15)

This is the canonical distribution, or Boltzmann Distribution. It describes the probability of the whole
system being found in a particular microstate. The Boltzmann distribution should not be confused
with the Maxwell–Boltzmann distribution (the distribution of the particle speeds in ideal gases) or
Maxwell–Boltzmann statistics (the distribution of classical particles over energy states in thermal
equilibrium).

In equation (2.13), we have ignored higher order terms in the Taylor expansion and claimed that
it is O(1/Ebath). This is straightforward to prove. The next term in the expansion is

E2
i

2

(
∂2 lnΩbath(E)

∂E2

)
E=Etot

=
E2

i

2

(
∂β

∂E

)
E=Etot

= − E2
i

2kBT 2CV,bath
, (2.16)

where we have used
CV =

(
∂E

∂T

)
N,V

=

(
∂E

∂β

)
N,V

(
∂β

∂T

)
N,V

. (2.17)

Since both heat capacity and total energy are extensive, we can conclude that this term is O(1/Ebath)
as claimed.

4
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2.3.1 Link to Thermodynamics

Knowing the energy distribution (2.15) allows us to compute the average energy of the system at a
given temperature

⟨Esys⟩ =
∑
|i⟩

Prob(|i⟩)Ei =

∑
|i⟩ Ei exp(−βEi)

Q
. (2.18)

Next we note that the numerator looks very similar to the definition of Q. If we differentiate Q with
respect to β, we obtain the negative of the numerator, and so we can write

⟨Esys⟩ = −
1

Q

(
∂Q

∂β

)
N,V

= −
(
∂ lnQ

∂β

)
N,V

. (2.19)

We can change the differential variable to T instead

⟨Esys⟩ = −
(
∂ lnQ

∂T

)
N,V

∂T

∂β
= kBT

2

(
∂ lnQ

∂T

)
N,V

. (2.20)

We can compare this to the thermodynamic relation

E = −T 2

(
∂(A/T )

∂T

)
N,V

, (2.21)

which can be easily derived by differentiating A/T , we can see that the Helmholtz free energy A is
related to the partition function through the bridge relation

A = −kBT lnQ . (2.22)

2.3.2 Fluctuations

Back to our canonical ensemble — a system of N particles with volume V in the large thermal bath.
The probability of finding the system in any one of the Ω(N,V,E) states with energy E is

Prob(E) =
Ω(N,V,E) exp(−βE)∑

|i⟩ exp(−βEi)
. (2.23)

Using the definition of entropy, we may rewrite this as

Prob(E) ∼ exp(−βE) exp

[
S(N,V,E)

kB

]
. (2.24)

The most likely energy of the system, E∗, is the one for which

∂ Prob(E)

∂E

∣∣∣∣
E=E∗

= 0 ⇒
(
∂S

∂E

)
E=E∗

=
1

T
. (2.25)

We can expand S in a Taylor series about E∗ and define ∆E := E − E∗, we obtain

S(N,V,E)

kB
=

S(N,V,E∗)

kB
+

1

kBT
∆E +

1

2kB

(
∂2S

∂E2

)
(∆E)2 +O((∆E)3) . (2.26)

Take the logarithm of expression (2.24) and use the expansion (2.26), we can see that

ln Prob(E∗ +∆E) = c+
1

2kB

(
∂2S

∂E2

)
(∆E)2 +O((∆E)3) , (2.27)

where c is some constant independent of ∆E. The term linear in ∆E vanishes. In the limit of large
N , we can ignore terms of order (∆E)3 or above and find that

Prob(E∗ +∆E) = c′ exp

[
1

2kB

(
∂2S

∂E2

)
(∆E)2

]
, (2.28)

5
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where c′ is another constant. We now recall the standard thermodynamics relation(
∂2S

∂E2

)
=

(
∂(1/T )

∂E

)
V

= − 1

T 2

(
∂T

∂E

)
V

= − 1

T 2

(
∂E

∂T

)−1

V

= − 1

CV T 2
. (2.29)

Finally, we normalise the probability density to obtain

Prob(E∗ +∆E) = (2πkBT
2CV )

−1/2 exp

[
− (∆E)2

2kBT 2CV

]
, (2.30)

or
Prob(E) = (2πkBT

2CV )
−1/2 exp

[
− (E − E∗)2

2kBT 2CV

]
. (2.31)

This is a Gaussian distribution. We find that the mean squared fluctuation in the energy of a system
at constant N , V and T is directly related to the heat capacity CV ,

σ2
E =

〈
(∆E)2

〉
= kBT

2CV . (2.32)

In fact, whilst the result that the probability distribution function is a Gaussian is important, it
is possible to compute the variance of the distribution in a much simpler way if we are only interested
in it. The thermal average of the energy is

⟨E⟩ =
∑

|i⟩ Eie
−βEi

Q
= − 1

Q

∂Q

∂β
, (2.33)

and hence the derivative of ⟨E⟩ with respect to β is

∂ ⟨E⟩
∂β

= −
∑

|i⟩ E
2
i e

−βEi

Q
+

(
1

Q

∂Q

∂β

)2

. (2.34)

This can be simplified to
∂ ⟨E⟩
∂β

= −
〈
E2
〉
+ ⟨E⟩2 ≡ −σ2

E . (2.35)

We can relate this to the heat capacity at constant volume

CV =

(
∂E

∂T

)
N,V

=

(
∂E

∂β

)
N,V

∂β

∂T
= − 1

kBT 2

(
∂E

∂β

)
N,V

. (2.36)

Therefore σ2
E = kBT

2CV as before.

Since both E and CV are extensive, we can write ⟨E⟩ = N ⟨ϵ⟩ and CV = NcV , where ϵ and cV
are the energy and heat capacity per particle. The relative variance in the energy vanishes in the
thermodynamic limit as N →∞, since〈

(∆E)2
〉

⟨E⟩2
= kBT

2 CV

⟨E⟩2
=

kBT
2cV

N ⟨ϵ⟩2
∼ 1

N
. (2.37)

Similar results apply to other quantities of interest. Fluctuations about the average are negligible in
the thermodynamic limit, and the statistical mechanical average of a thermodynamic property will
correspond to its measured value.

2.3.3 Helmholtz Energy and Equilibrium

By the second law of thermodynamics, in an isolated system at equilibrium, the entropy of a system
is maximised. In the canonical ensemble, a system is in contact with a thermal reservoir. Although

6
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heat can be transferred between them, the total energy is conserved. The system plus the thermal
bath is isolated, so we may apply the second law of thermodynamics. The total degeneracy is

Ωtot = Ωsys(Esys)Ωbath(Etot − Esys) . (2.38)

We can Taylor expand lnΩbath(Etot − Esys) up to linear order in Esys and find that

lnΩtot = lnΩsys(Esys) + lnΩbath(Etot)− βEsys . (2.39)

The equilibrium condition is that the derivative of lnΩtot with respect to Esys vanishes. Since
lnΩbath(Etot) is independent of Esys, the equilibrium condition is equivalent to minimising βEsys −
lnΩsys(Esys) = β(Esys − TSsys). The Helmholtz energy A is defined as

A := E − TS . (2.40)

Therefore, at constant temperature and volume, A is at a minimum at equilibrium.

2.4 Pressure

Now consider a system that can exchange volume with a reservoir such that the total volume of the
system plus the bath is fixed. The condition for equilibrium is that the total entropy is maximised,
so we need to determine the maximum of

lnΩ(Vsys, Vtot − Vsys) = lnΩsys(Vsys) + lnΩbath(Vtot − Vsys) (2.41)

with respect to Vsys. Using the definition of entropy,(
∂Ssys
∂Vsys

)
E,N

+

(
∂Sbath
∂Vsys

)
E,N

= 0 . (2.42)

Since dVsys = −dVbath, (
∂Ssys
∂Vsys

)
E,N

=

(
∂Sbath
∂Vbath

)
E,N

. (2.43)

From thermodynamics, we have

dS =
1

T
dE +

P

T
dV − µ

T
dN (2.44)

and hence (∂S/∂V )E,N = P/T . Thus the equilibrium condition becomes

Psys
Tsys

=
Pbath
Tbath

. (2.45)

If the system can exchange both energy and volume with the bath, then the conditions for equilibrium
are Tsys = Tbath and Psys = Pbath.

In practice, it is convenient to use the fundamental relation for the Helmholtz energy, dA =
−SdT − PdV + µdN , and the corresponding expression for the pressure

P = −
(
∂A

∂V

)
T,N

= kBT

(
∂ lnQ

∂V

)
T,N

, (2.46)

where we have used the bridge relation A = −kBT lnQ. Later, we shall use the relation to obtain a
general expression of the pressure in a system of interacting particles. However, we will need to first
derive some further results in classical statistical mechanics.

7
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Vsys Vtot − Vsys

Figure 2.3: A system coupled to the bath such that a piston separating them can change position.
The system and the bath can exchange volume.

2.5 Classical Statistical Mechanics

The thermal average of the expectation value of some observable X is

⟨X⟩ =
∑
|i⟩

Prob(|i⟩) ⟨i|X|i⟩ =
∑

|i⟩ exp(−βEi) ⟨i|X|i⟩∑
|i⟩ exp(−βEi)

. (2.47)

This suggests that in order to compute the thermal average, we first need to solve the Schrödinger
equation of the many-body system of interest to obtain the eigenstates |i⟩, then we need to compute
the expectation value of the operator X for all those quantum states that have non-negligible
statistical weight. This approach is doomed for all but the simplest systems. Fortunately, this
can be simplified to a more workable expression in the classical limit h → 0. For a d-dimensional,
N -particle system, this is given by4

⟨X⟩ =
∫ ∏N

i=1 d
dpi d

dri exp [−βH({pi}, {ri})]X({pi}, {ri})∫ ∏N
i=1 d

dpi d
dri exp [−βH({pi}, {ri})]

, (2.48)

where ri and pi are the coordinate and momentum of the ith particle and

H({pi}, {ri}) =
N∑
i

p2i
2mi

+ U({ri}) (2.49)

is the classical Hamiltonian. The classical partition function is

Q =
1

hdNN !

∫ N∏
i=1

ddpi d
dri exp [−βH({pi}, {ri})] , (2.50)

where the 1/N ! factor is to account for the indistinguishability of the particles5 and 1/hdN is to make
the partition function dimensionless.

2.5.1 Integration over the Momenta

From now on, we assume that the space is three-dimensional and all particles have the same mass m,
although both conditions can be easily generalised. Note that due to the form of the Hamiltonian,
the integration over momenta and spatial coordinates can be separated

Q(N,V, T ) =
1

h3NN !

∫ N∏
i=1

d3pi exp

(
−β

N∑
i=1

p2i
2m

)∫ N∏
i=1

d3ri exp(−βU({ri})) . (2.51)

4The derivation is in the appendix section B
5The situation is actually a bit subtle… See Gibbs’ Paradox.
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Let’s focus on the first integral. We can resolve pi into its Cartesian components p2i = p2ix+p2iy +p2iz,
so it can be further factorised as∫ N∏

i=1

d3pi exp

(
−β

N∑
i=1

p2i
2m

)

=

∫ N∏
i=1

dpix dpiy dpiz exp

(
−βp2ix

2m

)
exp

(
−
βp2iy
2m

)
exp

(
−βp2iz

2m

)
. (2.52)

These are just 3N identical Gaussian integrals, each evaluated as∫ ∞

−∞
dp exp

(
−βp2

2m

)
=

√
2mπ

β
. (2.53)

Hence, the partition function can be written as

Q(N,V, T ) =
1

h3NN !

(
2mπ

β

)3N/2 ∫ N∏
i=1

d3ri exp[−βU({ri})]

=:
1

Λ3NN !

∫ N∏
i=1

d3ri exp[−βU({ri})] , (2.54)

where Λ := h/
√
2πmkBT is the de Broglie wavelength. If the system consists of a mixture of two

components A and B, then the classical partition function becomes

Q(NA, NB , V, T ) =
1

Λ3NA

A Λ3NB

B NA!NB !

∫ NA∏
i=1

NB∏
j=1

d3ri d
3rj exp[−βU({ri}, {rj})] . (2.55)

In molecular systems, a purely classical description is inappropriate. In particular, the internal
energy levels of molecules like electronic energies, vibrations and rotations are not accounted for by
the classical Hamiltonian. Then the classical partition function must have the form

Q(N,V, T ) =
qNintra
Λ3NN !

∫ N∏
i=1

d3ri exp[−βU({ri})] , (2.56)

where qintra is the partition sum over all molecular energy levels

qintra =
∑
i

exp(−βϵi) . (2.57)

It often has the form
qintra = qvibqrotqelec . (2.58)

2.5.2 Classical Ideal Gas

Consider a classical ideal gas, where there is no interaction between particles. The Hamiltonian of
the system is given only by the kinetic energy contribution

Hideal({ri}, {pi}) =
N∑
i=1

p2i
2m

. (2.59)

Since there is no interaction between particles, U = 0, the partition function is given by

Qideal(N,V, T ) =
1

Λ3NN !

∫ N∏
i=1

d3ri =
V N

Λ3NN !
. (2.60)
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Hence,

A = −kBT lnQideal = −kBT ln

(
V N

Λ3NN !

)
, (2.61)

and from the fundamental equation dA = −SdT − PdV + µdN , the expression for the pressure is

Pideal = −
(
∂A

∂V

)
N,T

=
NkBT

V
. (2.62)

This is the well-known ideal gas equation, which can be rewritten in a perhaps more familiar form

PV = nRT . (2.63)

2.6 Other Ensembles

There are five common ensembles that we usually consider

(i) Microcanonical (NV E) ensemble: an isolated system;

(ii) Canonical (NV T ) ensemble: can exchange energy with the bath;

(iii) Isothermal-isobaric (NPT ) ensemble: can exchange both energy and volume with the bath;

(iv) Isoenthalpic-isobaric (NPH) ensemble: can exchange volume with the bath;

(v) Grand canonical (µV T ) ensemble: can exchange particles and energy with the bath.

We have already encountered microcanonical ensemble and canonical ensemble. Now let’s consider
an isothermal-isobaric ensemble: a system with N particles that can exchange energy and volume
with a large reservoir. The probability of finding the system at a given microstate |i⟩ with energy Ei

and volume Vi is determined by Ωbath(Etot−Ei, Vtot−Vi). By Taylor expansion as before, and using(
∂S

∂E

)
N,V

=
1

T
,

(
∂S

∂V

)
E,N

=
P

T
, (2.64)

we get
lnΩbath(Etot − Ei, Vtot − Vi) = lnΩbath(Etot, Vtot)−

Ei + PVi

kBT
, (2.65)

where Ei + PVi =: Hi is the enthalpy. The probability of finding the system with volume Vi is
therefore given by

Prob(Vi) =
Q(N,Vi, T )e

−βPVi

∆
, (2.66)

where ∆ is the isothermal-isobaric partition function quantum mechanically defined as

∆ :=
∑
Vi

Q(N,Vi, T )e
−βPVi . (2.67)

Classically, it is defined as
∆ := βP

∫ ∞

0

dV Q(N,V, T )e−βPV , (2.68)

where βP is to make the quantity dimensionless, and correspondingly the probability density of
finding the system with volume Vi is

p(Vi) =
βPQ(N,Vi, T )e

−βPVi

∆
. (2.69)

As for other ensembles, we have the bridge relationship

G = −kBT ln∆ . (2.70)
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Another ensemble of great importance is the grand canonical ensemble. Consider a system of
volume V that can exchange particles and energy with the reservoir. The probability of finding the
system in a state with Ni particles and energy Ei is determined by Ωbath(Etot−Ei, Ntot−Ni). Using(

∂S

∂N

)
E,V

= − µ

T
, (2.71)

we get
Prob(Ni) =

Q(Ni, V, T ) exp(βµNi)

Ξ
, (2.72)

where
Ξ :=

∞∑
N=0

Q(N,V, T ) exp(βµN) =

∞∑
N=0

Q(N,V, T )zN , (2.73)

is the grand partition function and z := eβµ is the absolute activity (or sometimes loosely called
fugacity). The grand potential (Landau potential), defined as6

Φ = E − TS −Nµ = −PV , (2.74)

is related to the grand partition function by the bridge relation

Φ = −kBT ln Ξ . (2.75)

The average number of particles in the system is

⟨N⟩ =
(
∂ ln Ξ

∂βµ

)
V,T

. (2.76)

microcanonical ensemble
constant N,V,E

S = kB lnΩ(N,V,E)

dE = TdS − PdV + µdN

(1/T ) = (∂S/∂E)N,V

P = T (∂S/∂V )E,N

µ = −T (∂S/∂N)E,V

canonical ensemble
constant N,V, T

A = E − TS = −kBT lnQ(N,V, T )

dA = −SdT − PdV + µdN

E = (∂(βA)/∂β)N,V

P = −(∂A/∂V )N,T

µ = (∂A/∂N)V,T

isothermal-isobaric ensemble
constant N,P, T

G = A+ PV = Nµ = −kBT ln∆(N,P, T )

dG = −SdT + V dP + µdN

H = E + PV = (∂(βG)/∂β)N,P

V = (∂G/∂P )N,T

µ = (∂G/∂N)P,T

grand canonical ensemble
constant µ, V, T

Φ = A−µN = −PV = −kBT ln Ξ(µ, V, T )

dΦ = −SdT − PdV −Ndµ

N = −(∂Φ/∂µ)V,T
P = −(∂Φ/∂V )T,µ

E = Nµ+ (∂(βΦ)/∂β)µ,V

Table 1: Common ensembles and related relations.

It is possible to generate a lot more different ensembles by different combinations of Legendre
transforms; however, the microcanonical, canonical and grand canonical ensembles are the most
important ones (as you can tell from their names).

6The second equality below follows from the fact that Φ is extensive, while among the natural variables T, V,N ,
only V is extensive, so Φ must be proportional to V . If you don’t trust this relation, you can check appendix A for a
formal proof.
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2.6.1 Langmuir Adsorption

Why do we need different ensembles? In fact you will show in one of the exercises that in the
thermodynamic limit, all the ensembles are equivalent. However, some calculations may be more
difficult in one ensemble than another. The choice of ensemble is primarily a matter of convenience.

As an illustration, consider the adsorption of gas molecules on the metal surface. Assume the
metal has M sites, each can accommodate one molecule at most, and if a particle is adsorbed, its
energy is lowered by ϵ. The gas has chemical potential µ.

First, let’s solve this question in the canonical ensemble. If N particles are adsorbed, the energy
of the system is

E(N) = −Nϵ , (2.77)

and the degeneracy of this energy of the system is

Ω(N) =
M !

N !(M −N)!
. (2.78)

The canonical partition function is therefore

Q(N,M, T ) =
M !

N !(M −N)!
exp(βNϵ) . (2.79)

The chemical potential is

µ = −kBT
(
∂ lnQ

∂N

)
V,T

= −ϵ+ kBT (lnN − ln(M −N)) (2.80)

by Stirling’s approximation. Define the density of adsorbed particles as ρ := N/M , then

µ+ ϵ = kBT ln

(
ρ

1− ρ

)
. (2.81)

By rearranging, we get
ρ =

1

1 + exp[−β(µ+ ϵ)]
. (2.82)

Now let’s derive the same result in the grand canonical ensemble.

Ξ =

M∑
N=0

M !

N !(M −N)!
exp[Nβ(µ+ ϵ)]

= (1 + exp[β(µ+ ϵ)])
M (2.83)

by the binomial theorem. The average number of particles is therefore

⟨N⟩ =
(
∂ ln Ξ

∂βµ

)
M,T

=
M exp[β(µ+ ϵ)]

1 + exp[β(µ+ ϵ)]
. (2.84)

It immediately follows that
⟨ρ⟩ = 1

1 + exp[−β(µ+ ϵ)]
(2.85)

as calculated before.
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2.7 Pressure of Interacting Particles

2.7.1 Pressure from the Partition Function

Consider a system of interacting gas particles in a cubic box with edge length L = V 1/3. Define the
scaled coordinate

si =
ri
L

, (2.86)

so that each component of si ranges between zero and unity. We can then write

Q(N,V, T ) =
V N

Λ3NN !

∫ 1

0

· · ·
∫ 1

0

N∏
i=1

d3si exp[−βU({si};L)], (2.87)

where we have included L as the parameter of U to indicate that U depends on the real rather than
the scaled distances between the particles. The pressure is therefore

P = kBT

(
∂ lnV N

∂V

)
T,N

+ kBT

(
∂

∂V
ln

∫ 1

0

· · ·
∫ 1

0

N∏
i=1

d3si exp[−βU({si};L)]

)
T,N

=
NkBT

V
− 1∫ ∏N

i=1 d
3si exp[−βU({si};L)]

∫ N∏
i=1

d3si exp[−βU({si};L)]
∂U({si};L)

∂V

=
NkBT

V︸ ︷︷ ︸
ideal

−
〈
∂U({si};L)

∂V

〉
︸ ︷︷ ︸

non-ideal

. (2.88)

We clearly see an ideal contribution and a non-ideal contribution which arise only if the particles are
interacting (U ̸= 0).

We now use the chain rule

∂U({si};L)
∂V

=

N∑
i=1

3∑
k=1

∂U({si};L)
∂rik

∂rik
∂V

, (2.89)

where k ∈ {1, 2, 3} labelling the component. We have

∂rik
∂V

=
∂Lsik
∂V

= sik
∂V 1/3

∂V
=

sik
3V 2/3

=
rik
3V

. (2.90)

Hence
∂U({si};L)

∂V
=

N∑
i=1

3∑
k=1

∂U({si};L)
∂rik

rik
3V

. (2.91)

For conservative forces, f = −∇U , so

∂U({ri})
∂rik

= −fik . (2.92)

Therefore,

P =
NkBT

V
+

1

3V

〈
N∑
i=1

f i · ri

〉
. (2.93)

2.7.2 Pressure for Pairwise-additive Forces

Consider the special case that the intermolecular forces are pairwise-additive such that

f i =
∑
j ̸=i

f ij , (2.94)
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where f ij is the force on particle i exerted by particle j. Then

P =
NkBT

V
+

〈
N∑
i=1

N∑
j ̸=i

1

3V
ri · f ij

〉
. (2.95)

If we permute the dummy indices i and j, we get

P =
NkBT

V
+

〈
N∑
j=1

N∑
i ̸=j

1

3V
rj · f ji

〉
. (2.96)

By Newton’s third law, we get

P =
NkBT

V
+

1

6V

〈
N∑
i=1

N∑
j ̸=i

rij · f ij

〉
, (2.97)

where rij := ri − rj . This can be rewritten in the dimensionless form as

Z :=
PV

NkBT
= 1 +

1

6kBT

〈∑
j ̸=i

rij · f ij

〉
i

, (2.98)

where Z is the compressibility factor. Note that the 1/N factor and the sum over i combines to yield
the average over i. For an ideal gas, Z = 1.

2.7.3 Law of Corresponding States

If the interactions between the molecules are pairwise-additive, then the potential energy U({ri}) can
be written as a sum of pair potentials

U({ri}) =
1

2

N∑
j=1

∑
i ̸=j

ϕ(rij) . (2.99)

Figure 2.4 shows two simple examples of pair potentials. The hard-sphere potential is usually used
to describe the interactions between uncharged colloids, and the Lennard-Jones potential is often
used to describe the interaction between atoms or simple (nearly spherical) molecules. At distances
less than the effective molecular diameter σ, the intermolecular pair potential is harshly repulsive.
This is a consequence of the Pauli principle. At large distances r ≫ σ, the London dispersion forces
take over, the strength of which decays as 1/r6. The Lennard-Jones potential provides a convenient
interpolation between the short-range repulsion and the long-range attraction. It is of the form

ϕ(r) = 4ϵ

[(σ
r

)12
−
(σ
r

)6]
. (2.100)

The depth of the potential is ϵ, whilst the range of the potential is determined by the effective diameter
σ. Define r∗ := r/σ and ϕ∗ := ϕ/ϵ, then

ϕ∗(r∗) = uLJ(r
∗) := 4

[
r∗−12 − r∗−6

]
. (2.101)

Therefore, if we express all energies in units of ϵ and distances in units of σ, then all Lennard-Jones
potentials are identical.

If in appropriate units, the interactions between any kind of gas molecules are equal, their physics
should also be the same. Using this definition, we can rewrite the compressibility in terms of the
reduced quantities r∗ and f∗

ij := fijσ/ϵ, giving

Z = 1 +
ϵ

6kBT

〈∑
j ̸=i

r∗ij · f
∗
ij

〉
i

. (2.102)
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(a)

r∗

ϕ(r∗)

1

(b)

r∗

ϕ∗(r∗)

1

Figure 2.4: Two common pair potentials: (a) Hard-sphere potential (b) Lennard-Jones potential.

Now define the reduced temperature T ∗ := kBT/ϵ and the reduced density ρ∗ := σ3N/V , then

Z(ρ∗, T ∗) = 1 +
1

6T ∗

〈∑
j ̸=i

r∗ij · f
∗
ij

〉
i

. (2.103)

This equation implies that if we express the temperature in units of ϵ/kB and density in units of σ−3,
then the compressibility factors of all substances that can be described by a pair potential in the same
functional form collapse onto the same set of curves. This is known as the principle of corresponding
states.

However, it should be stressed that not all substances obey the same law of corresponding states.
For instance, the compressibility factor of dipolar molecules would not collapse onto any of the curves
in the figure, because the functional form of the pair potential is too different — you wouldn’t expect
the interactions in polar species to be dominated by dispersion forces, as in non-polar species.
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Figure 2.5: This beautiful figure is adapted from the official course notes by Dr. Aleks Reinhardt.
The compressibilities of a range of gases are plotted in reduced quantities, and they overlap nicely.
This implies that the functional form of their pair potentials must be very similar.
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3 Phase Behaviour

3.1 Equilibrium between Phases

Consider an isolated system of N particles in a volume V with a total energy E. The system consists
of multiple distinct phases between which particles, volume and energy can be exchanged. We ignore
any contributions of the interfaces to the extensive properties, as their contribution scales as N2/3, so
their ratio compared with bulk contributions scales as N−1/3, vanishing in the thermodynamic limit
as N → ∞. Then the equilibrium conditions of coexistence of phases are that the pressures of all
coexisting phases must be equal (P1 = P2 = · · · = P ), as must be the temperatures (T1 = T2 = · · · =
T ) and the chemical potentials of all species (µα

1 = µα
2 = · · · = µα).

3.1.1 Stability

We use the thermodynamic arguments to find conditions for the stability of a single phase. Consider
a homogeneous phase in an isolated system with constant N , V and E that is divided into two equal
halves. At equilibrium, the entropy of the total system is at a maximum. Now consider transferring a
small amount of energy ∆E from one half of the system to the other. At equilibrium, the temperature
in the two halves of the system is the same, and hence to linear order of ∆E, the entropy does not
change. Consider the second order variation,

∆S =
1

2

(
∂(1/T )

∂E
(∆E)2

)
1

+
1

2

(
∂(1/T )

∂E
(∆E)2

)
2

. (3.1)

Since the two halves of the system are identical, these two terms are the same. We can write

∆S =
∂(1/T )

∂E
(∆E)2 . (3.2)

As S is a maximum, ∆S ≤ 0, and hence

∂E

∂(1/T )
≤ 0 , (3.3)

which implies that
−T 2 ∂E

∂T
= −T 2CV ≤ 0 , (3.4)

and hence the heat capacity CV ≥ 0. Thermodynamic stability implies that the heat capacity is
never negative.

A similar argument can be used to show that the compressibility of a system is non-negative.
Consider the condition for equilibrium at constant N , V and T . Under these conditions, the Helmholtz
energy must be a minimum. We divide the system into two equal parts, both containing N/2 particles
in a volume V/2 at constant T . We now vary the volume of one half of the system by an amount
∆V , and the other by −∆V . To second order in ∆V , the total variation of the free energy is

∆A =
∂2A

∂V 2 (∆V )2 . (3.5)

This can be rewritten as
∆A = −∂P

∂V
(∆V )2 =

1

κV
(∆V )2 , (3.6)

where κ is the isothermal compressibility of the system. As A is minimised at equilibrium, this implies
that κ ≥ 0.
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3.1.2 Coexistence

Consider a one-component system that can exist in two phases, with free energies A1(N,V, T ) and
A2(N,V, T ). We would like to determine the condition that the two phases coexist. It turns out
that there is an easy graphical method to do this. For a given temperature, we plot A1(N,V, T ) and
A2(N,V, T ) as a function of V while keeping N and T constant. We now have to check if it is possible
to draw a line that is tangent to both curves. Let’s suppose this common tangent exists and it touches
A1 at volume V1 and it touches A2 at a volume V2. As the curves A1 and A2 have a common tangent,
the derivatives of A1 and A2 at V1 and V2, respectively, are the same. As (∂A/∂V )T = −P , this
implies that the pressure of phase 1 at V1 is the same as that of phase 2 at V2, i.e. P1 = P2. The
tangents also have a common intercept at V = 0. This intercept is

A1 −
∂A1

∂V
V1 = A1 + PV1 = G1 = Nµ1 , (3.7)

and this is equal to
A2 −

∂A2

∂V
V2 = A2 + PV2 = G2 = Nµ2 . (3.8)

Therefore µ1 = µ2 and the volumes V1 and V2 are the volumes of the coexisting phases. A completely
analogous analysis can be performed if we plot A/V against N/V , in which case the slope is related
to the chemical potential and the intercept is related to the pressure.

V

A

phase 1
phase 2

V1 V2

Nµ1 = Nµ2

A1

A2

V ∗

phase 1 phase
separation

phase 2

If the system is at some volume V ∗ with V1 ≤ V ∗ ≤ V2, the system would have lower Helmholtz
energy if it is separated into the two phases than if it exists in either of the single phase. Define
v := V/N , then

Nv∗ = N1v1 + (N −N1)v2 . (3.9)

We can then derive the proportion of particles being in phase 1 at equilibrium

x1 :=
N1

N
=

v∗ − v2
v1 − v2

. (3.10)

Suppose now we have a free energy curve for some phase. We have shown that the free energy
must be a convex function of V because the compressibility κ must be non-negative at equilibrium.
Hence, the non-convex part in curve A versus V does not correspond to an equilibrium situation.
We can still work out the point of coexistence by common tangent construction. But now we have a
region where the phase separation is thermodynamically favourable, but the local second derivative
of A with respect to V is still positive, meaning that any perturbation of such system will increase the
free energy. Such a system is described as metastable as phase separation will involve a free-energy
barrier. Between the inflection points, the free energy curve is non-convex and hence in this range
a homogeneous phase would be absolutely unstable, with a negative compressibility. Such a system
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V

A

V1 V2

N1µ1 = N2µ2
A1

A2

V

A

metastable

unstable

will phase separate spontaneously under any infinitesimal fluctuation. The boundary between the
metastable and unstable regions is called spinodal.

It should be stressed that the spinodal, although a useful qualitative concept, is not well defined.
It appears naturally when we use approximate expressions for the free energy. However, an exact
expression for the equilibrium free energy is necessarily convex and therefore has no spinodal.

3.1.3 Phase Diagrams

A phase diagram can tell us at a glance the conditions under which each phase is thermodynamically
stable. For a one-component system, the thermodynamic variables P , T and V , which are usually
used to describe the thermodynamic state of the matter, are not independent of one another. For
example, if we specify the volume and the temperature of a system, the pressure will be defined as
well through the equation of state. We can therefore think of the phase diagram as a surface in the
PV T space. Such a three-dimensional phase diagram can be projected onto the P −T , V −T , P −V
or T − ρ planes to give the more familiar two-dimensional phase diagrams.

There are many other parameters that we could vary; for example we could change the composition
of a mixture or the strength of an external magnetic field, and so other types of phase diagrams can
be constructed, some of which we shall see in the chapters that follow.

3.1.4 Thermodynamic Integration

The second law of thermodynamics states that for an isolated system with energy E, volume V and
number of particles N , the entropy S is maximised when the system is at equilibrium. From this
formulation of the second law, it is straightforward to derive the corresponding equilibrium conditions
for systems that can exchange heat, particles or volume with a reservoir, as we have already shown.
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In particular, if a system is in contact with a heat bath, such that its temperature T , volume V
and number of particles N are fixed, then the Helmholtz energy A := E − TS is at a minimum in
equilibrium. Analogously, for a system of N particles at constant pressure P and temperature T , the
Gibbs energy G := A+ PV is at a minimum.

If we wish to know which of two phases, denoted 1 and 2, is stable at a given temperature
and density, we simply need to compare the Helmholtz energies A1 and A2. Unfortunately, neither
the free energy nor the entropy can be measured directly. What we can measure are averages of
mechanical quantities, i.e. averages of functions of the coordinates and momenta of the molecules in
the system, such as the pressure or the dielectric constant. If we denote such a mechanical quantity
by X({pi}, {ri}), then the average of X that can be measured in an experiment at constant N , V
and T is

⟨X⟩NV T =

∫ ∏N
i=1 d

3pi d
3ri X({pi}, {ri}) exp[−βH({pi}, {ri})]∫ ∏N

i=1 d
3pi d

3ri exp[−βH({pi}, {ri})]
, (3.11)

where H({pi}, {ri}) is the system’s Hamiltonian.

However, the entropy, the free energy and related quantities are not simply averages of functions
of the phase-space coordinates of the system. Rather, they are directly related to the volume in phase
space that is accessible to a system. For instance, in classical statistical mechanics, the Helmholtz
energy A is directly related to the canonical partition function Q(N,V, T ) through

A = −kBT lnQ(N,V, T )

= −kBT ln

[
1

h3NN !

∫ N∏
i=1

d3p d3r exp[−βH({pi}, {ri})]

]
. (3.12)

Unlike quantities such as the internal energy, the pressure, or the polarisation, Q(N,V, T ) itself
is not a canonical average over the phase space. This is why A and, for that matter, S or G, cannot
be measured directly. We call quantities that depend directly on the available volume in the phase
space thermal quantities. However, derivatives of the free energy with respect to the volume V or the
temperature T are mechanical quantities and can be measured: namely, they are(

∂A

∂V

)
N,T

= −P and
(
∂(A/T )

∂(1/T )

)
N,V

= E . (3.13)

In order to compute the free energy of a system at a given temperature and density, we must find a
reversible path in the volume-temperature plane that links the state under consideration to a state
of known free energy. The change in A along that path can then simply be evaluated by integrating
(3.13). Only a few thermodynamic states exist whose free energy is known exactly: one such state is
the ideal gas; another may be perfectly ordered ground state at T = 0 K.

3.2 Gibbs–Bogoliubov Inequality

The aim of thermodynamic perturbation theory is to arrive at an estimate of the free energy (and
all derived properties) of a many-body system, using as input information about the free energy
and structure of a simpler reference system. We assume that the potential energy function of this
reference system is denoted by U0, while the potential energy function of the system of interest is
denoted by U1. In order to compute the free-energy difference between the known reference system
and the system of interest, we use a linear parameterisation of the potential energy function

U(λ) := λU1 + (1− λ)U0 . (3.14)

The free energy of a system with this generalised potential energy is denoted A(λ) and can be
computed from A(λ) = −kBT lnQ(λ). In particular, we noted when introducing (3.13) that
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derivatives of the free energy are often mechanical observables, and the same applies in this case.
The derivative of A(λ) with respect to λ is

(
∂A

∂λ

)
N,V,T

=

∫ ∏N
i=1 d

3ri

(
∂U({ri};λ)

∂λ

)
exp[−βU({ri};λ)]∫ ∏N

i=1 d
3ri exp[−βU({ri};λ)]

=

〈
∂U(λ)

∂λ

〉
λ

= ⟨U1 − U0⟩λ , (3.15)

and hence we can express the free-energy difference A1 −A0 as

A1 −A0 =

∫ 1

0

dλ ⟨U1 − U0⟩λ , (3.16)

where the subscript λ indicates that we evaluate the thermal average at that value of λ. This
expression, first derived by John Kirkwood in 1935, allows us to compute the free energy of a system
of interest by relating it to a reference system. This approach has been used extensively in computer
simulations since the mid-1980s. It is often referred to as ‘artificial’ or ‘Hamiltonian’ thermodynamic
integration because it entails changing the underlying interactions in the system’s Hamiltonian.

Moreover, it allows us to find bounds on the free energy A1. It is straightforward to show that(
∂2A

∂λ2

)
N,V,T

= −β
(〈

(U1 − U0)
2
〉
λ
− ⟨U1 − U0⟩2λ

)
≤ 0 . (3.17)

Since the right-hand side of the equation is the negative of a variance, we can note that the second
derivative of A with respect to λ is always non-positive. This implies that(

∂A

∂λ

)
λ=0

≥
(
∂A

∂λ

)
λ>0

, (3.18)

and hence
A1 ≤ A0 + ⟨U1 − U0⟩λ=0 . (3.19)

This variational principle for the free energy is known as the Gibbs–Bogoliubov inequality: we compute
an upper bound to the free energy of the system of interest from a knowledge of the average of U1−U0

evaluated for the reference system. The latter is something that can often be computed because the
reference system is by construction a system which we can solve.

λ0 1

A

Usually

λ0 1

A

Sometimes

λ0 1

A

Never

Figure 3.1: The Gibbs–Bogoliubov inequality shows that the first-order perturbation estimation of
the free energy is never lower than the true free energy.

We may let our reference system depend on some parameters and use the variational principle to
get our best estimation of the upper bound of Helmholtz energy.

It may seem at first glance that we are doing something slightly odd here: what does it actually
mean that we compute ⟨U1⟩λ=0 for the reference potential, given that when λ = 0, the system is
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interaction energy = −J

interaction energy = +J

Figure 3.2: A schematic representation of the Ising model in two dimensions.

governed by U0 only? In this case, U1 does not contribute to the Boltzmann factor, but that does
not mean we are not able to compute what it is for a given microstate. This is similar to computing
any other mechanical observable, e.g. the pressure, which also would not appear in the Boltzmann
factor. It is evaluated as

⟨U1 − U0⟩λ=0 =

∫ ∏N
i=1 d

3ri (U1 − U0) exp(−βU0)∫ ∏N
i=1 d

3ri exp(−βU0)
. (3.20)

The usefulness of (3.19) depends crucially on the quality of the choice of reference system. A good
reference system is not necessarily close in free energy to the system of interest, but one for which the
fluctuation in the potential energy difference U1−U0 are small. Thermodynamic perturbation theory
for simple liquids has been very successfully precise because the structure of the reference system
(hard-sphere fluid) and the liquid under consideration (e.g. Lennard-Jones) are very similar. As a
result, ⟨U1 − U0⟩λ hardly depends on λ and so its derivative is small.

3.3 Mean-Field Theory and the Ising Model

The Gibbs–Bogoliubov inequality can be used as a starting point from which we can derive mean-field
theory, which provides a systematic approximation to the free energy of a many-body system. Let’s
start with a seemingly simple yet interesting and arguably the most important model in statistical
mechanics and related fields — the Ising model. The Ising model describes the magnetism of materials
by considering spins on a lattice with Hamiltonian

U1 = −J

2

N∑
i=1

∑
⟨i,j⟩

sisj −B

N∑
i=1

si , (3.21)

where ⟨i, j⟩ indicates that the particle j is one of the nearest neighbours of i and the factor of 1/2
ensures that we do not double count the interactions. B is the external magnetic field, which we will
now set to be zero. The Ising model is not just relevant for magnetic systems; in appendix section D,
we show that a lattice-gas model that can be used to describe the liquid-vapour transition is actually
equivalent to the Ising model.

We wish to approximate this model system using a reference system with a much simpler
Hamiltonian, namely one that consists only of a sum of one-particle contributions. For example,

U0 = −
N∑
i=1

hsi , (3.22)
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where h denotes the effective field that replaces the interaction with the other particles. The molecular
partition function counting all states of a single spin (with energy −hs) in the reference system is

q0 =

∫
ds exp(βhs) (3.23)

and the free energy per spin is

a0(h) = −kBT ln q0 = −kBT ln

∫
ds exp(βhs) . (3.24)

Here, we use the shorthand a for A/N . If the spins are quantised and we only have two spin states
(+1 and −1), the partition function reduces to

q0 = exp(βh) + exp(−βh) = 2 cosh(βh) (3.25)

and the free energy becomes
a0(h) = −kBT ln(2 cosh(βh)) . (3.26)

We can easily compute the average value of s in the reference system,

⟨s⟩0 =

∫
ds s exp(βhs)

q0
=

1

q0

∂

∂βh

∫
ds exp(βhs) = kBT

∂ ln q0
∂h

, (3.27)

or simply
⟨s⟩0 = −∂a0(h)

∂h
. (3.28)

In the case of spins ±1,
⟨s⟩0 = tanh(βh) , (3.29)

which we could have obtained directly from the definition of the mean magnetisation, but the
expression involving the derivative of a0 will come in useful shortly. Now, we consider the Gibbs–
Bogoliubov inequality, where

aMF = a0 +

〈
−J

2

∑
⟨i,j⟩

sisj + hsi

〉
0

= a0 −
J

2
z ⟨s⟩20 + h ⟨s⟩0 . (3.30)

In the last line, we have introduced z, the coordination number of particle i. Moreover, we have used
the fact that, in the reference system, different spins are uncorrelated, ⟨sisj⟩0 = ⟨si⟩0 ⟨sj⟩0. We now
look for the optimum value of h, i.e. the one that minimises our estimate of aMF. Carrying out the
differentiation with respect to h, we find that

0 =
∂

∂h

(
a0 −

J

2
z ⟨s⟩20 + h ⟨s⟩0

)
= −⟨s⟩0 − (Jz ⟨s⟩0 − h)

∂ ⟨s⟩0
∂h

+ ⟨s⟩0

= −(Jz ⟨s⟩0 − h)
∂ ⟨s⟩0
∂h

. (3.31)

Since ∂⟨s⟩0
∂h ̸= 0, we can conclude that

h = Jz ⟨s⟩0 . (3.32)

Finally, we can insert this expression for h into (3.29) to obtain an implicit equation for ⟨s⟩0,

⟨s⟩0 = tanh(βJz ⟨s⟩0) , (3.33)

which can be solved to yield ⟨s⟩0 as a function of T .
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⟨s⟩0

tanh(βJz ⟨s⟩0)

1−1
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−1

βJz = 0.5
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kBT/Jz

⟨s⟩0
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−1

0

1

Curie
point

Figure 3.3: (a) A graphical method for the solution of the mean magnetisation in Ising model. (b)
The phase diagram of an Ising model system.

Above the critical (or Curie) temperature kBT = Jz, there is only one solution ⟨s⟩0 = 0: at
high temperatures, the entropy dominates the free energy and so the spins are randomly distributed.
The significance of the entropy as a driving force is diminished as the temperature is decreased, and
below the Curie temperature, the net alignment of spins, which is energetically favourable, becomes
dominant, and we get two extra solutions with non-zero mean magnetisation. Amongst all the three
solutions, the ⟨s⟩0 = 0 solution is actually a maximum rather than a minimum so we will ignore
it. In the absence of an external magnetic field, the system is equally likely to be magnetised in
the up or the down spin configurations, but the fluctuations causing the transitions between the two
are extremely unlikely. The ergodic hypothesis7 is thus formally violated, and this phenomenon is
sometimes described as spontaneous symmetry breaking.

The free energy estimate that we obtain when inserting (3.32) into (3.30) is

aMF = a0 +
J

2
z ⟨s⟩20 . (3.34)

The subscript ‘MF’ in this expression stands for the mean field approximation. It is very important
to bear in mind that the free energy that results from the mean-field approximation is in general not
simply the free energy of the reference system with the effective field, but has an additional term that
depends on the difference between the two potentials measured for the system with the effective field.

3.3.1 Validity of Mean Field Theory

Having solved the Ising model using mean field theory, a question that arises is: are our results
correct?

There is actually a version of the Ising model for which the mean field theory is exact: it is the
d =∞ dimensional lattice. This is unphysical. Roughly speaking, mean field theory works for large d
because each spin has a large number of neighbours and so indeed sees something close to the average
spin.

But what about dimensions of interest? Mean field theory gets things most dramatically wrong in
d = 1. In that case, no phase transition actually occurs. We will solve the 1D Ising model exactly in
the appendix section F. There is a general lesson here: in low dimensions, both thermal and quantum
fluctuations are more important and invariably stop systems forming ordered phases.

7Being ergodic means that a point (the state of the system in this case) will eventually visit all parts of the space
(the phase space) as it evolves over time, in a uniform and random sense.
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Figure 3.4: Mean magnetisation of the exact (red) and the mean field (blue) 2D square lattice Ising
model.

In higher dimensions, d ≥ 2, the crude features of the phase diagram, including the existence of
a phase transition, given by mean field theory are essentially correct. In fact, the very existence of a
phase transition is already worthy of comment. The defining feature of a phase transition is behaviour
that jumps discontinuously as we vary β. Mathematically, the functions must be non-analytic. Yet
all properties of the theory can be extracted from the partition function Q which is a sum of smooth,
analytic exponential functions

Q =
∑
|i⟩

e−βEi . (3.35)

How can we get a phase transition? The loophole is that Q is only necessarily analytic if the sum
is finite. But there is no such guarantee when the number of lattice sites N → ∞. We reach a
conclusion: phase transitions only strictly happen in the thermodynamic limit. There are no phase
transitions in finite systems.

The 2D Ising model in a square lattice has been solved exactly, first by Onsager — his method
was famously complicated. In appendix section F, we will use a clever trick to obtain the exact result
of critical temperature, which is

kBT =
2J

ln(
√
2 + 1)

≈ 2.269J . (3.36)

This is actually not hugely different from the mean field approximation, which predicts

kBT = Jz = 4J . (3.37)

3.4 Liquid-Gas Phase Transition

Now we will investigate probably the most common phase transition — liquid-gas phase transition.
We will take a hard-sphere gas as a reference system and add a very weak, attractive interaction
−ϵ that extends to a very large distance Rc. This crude model leads to the famous van der Waals
equation of state.
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r

ϕ(r)

excluded core

long-ranged
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Figure 3.5: A typical interatomic potential (shown in blue) can be approximated by a hard-core
repulsion and a very weak attractive interaction −ϵ.

3.4.1 Hard-Sphere Gas

The hard-sphere potential is given by

U0 =
∑
i<j

ϕ(rij) , (3.38)

where

ϕ(rij) =

{
0 if rij > σ

∞ if rij ≤ σ ,
(3.39)

where σ is the diameter of the particle.

Provided the hard-sphere gas is sufficiently dilute, we can estimate that the addition of each
additional hard sphere reduces the volume available to the next one by vex = 4πσ3/3, the volume
excluded by a single hard sphere. In the dilute limit, we estimate that no two excluded volumes will
overlap. An illustration of this set-up is given in the figure below. In this case, we can simply modify
the perfect gas partition function to give

QHS ≈
1

Λ3NN !
V (V − vex)(V − 2vex) . . . (V − (N − 1)vex)

=
V N

Λ3NN !

(
1− vex

V

)(
1− 2

vex
V

)
. . .
(
1− (N − 1)

vex
V

)
. (3.40)

Vacc = V Vacc = V − vex Vacc = V − 2vex Vacc = V − 3vex

Figure 3.6: Ignoring any volume excluded by the walls and any excluded volume overlaps, each
particle inserted into the system excludes a volume vex, reducing the accessible volume.
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In the dilute regime, (N − 1)vex/V ≪ 1, so we can use the power series exp(−x) = 1− x, giving

QHS =
V N

Λ3NN !
exp

(
−vex

V

)
exp

(
−2vex

V

)
. . . exp

(
− (N − 1)vex

V

)
=

V N

Λ3NN !
exp

(
−vex

V

N−1∑
i=1

i

)
. (3.41)

The summation is an arithmetic series that we can evaluate as N(N − 1)/2. Since Nvex/2V ≪ 1 by
construction, we can ignore the term linear in N in the exponent and write

QHS ≈
V N

Λ3NN !
exp

(
−N2vex

2V

)
=

V N

Λ3NN !

[
exp

(
−Nvex

2V

)]N
. (3.42)

If we use the same expansion again and if we note that vex = 8v0, where v0 is the volume of a single
hard sphere particle, we obtain

QHS ≈
(V − 4Nv0)

N

Λ3NN !
. (3.43)

Using A = −kBT lnQ, Stirling’s approximation and P = −( ∂A∂V )N,T , we can write

PHS ≈
NkBT

V − 4Nv0
=

kBT

v0

ϕ

1− 4ϕ
, (3.44)

where in the last step we rewrote the volume in terms of the overall fraction of volume occupied,
ϕ := Nv0/V . We note that this function diverges when ϕ → 1/4. In reality, hard spheres can
be compressed to the close-packed volume fraction ϕ = π/

√
18 ≈ 0.7405, and so the approximate

partition function above is not appropriate at higher densities. This hard-sphere equation of state, and
the corresponding van der Waals equation of state that we will derive from it, are thus approximations
that are only reasonable at low density.

3.4.2 Mean-Field Attractions

We have accounted for, in an approximated way, the hard-core repulsion between particles. We
would now like to add the weak pairwise attraction −ϵ. In particular, we consider the limit of very
weak attractions (ϵ → 0) that are very long-range (Rc → ∞). In this limit, the potential energy
of the perturbed fluid can be computed directly. Within a shell of radius Rc, there will be, on
average, Nc = (4/3)πR3

cρ other particles, where ρ is the number density of the fluid. All these
particles contribute −ϵ/2 to the potential energy of the fluid, with the factor of 1/2 accounting for
the double-counting of pairwise interaction. For Rc → ∞, the number of neighbours Nc also tends
to infinity and hence the relative fluctuation in Nc becomes negligible, as it is of order 1/

√
Nc. It

then follows that the fluctuation in the perturbation (i.e. U1 − U0) also becomes negligible and,
since we have shown that the second derivative of the free energy is proportional to the variance in
U1 − U0, the first-order Maclaurin expansion of the free energy in λ becomes exact. Therefore the
Gibbs–Bogoliubov inequality becomes an identity. The free energy per particle of the van der Waals
fluid is therefore (

A

N

)
vdW

(ρ, T ) =

(
A

N

)
HS

(ρ, T )− ρa , (3.45)

where we have defined a = (2π/3)R3
cϵ. The corresponding pressure is

PvdW = −
(
∂AvdW
∂V

)
N,T

= ρ2
∂(A/N)vdW

∂ρ
= PHS(ρ, T )− aρ2 , (3.46)

where PHS denotes the pressure of the hard-sphere reference system. We therefore have the well-known
van der Waals equation

(PvdW + aρ2)(V −Nb) = NkBT , (3.47)
where b = 4v0. This equation is very interesting to study because it is probably the simplest model
system which exhibits vapour-liquid coexistence. A simple way of computing the phase diagram
involves the use of Maxwell’s equal-area construction.
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3.4.3 Maxwell Equal-Area Construction

We can sketch the behaviour of the pressure with volume above and below the critical point. Above
the critical point, a single fluid phase exists; below the critical point, a vapour (low-density fluid)
and a liquid (high-density fluid) are predicted. Below the critical point, there are regions where
the equation of state describes a mechanically unstable state where the isothermal compressibility
is negative, and where a single pressure corresponds to multiple possible volumes. Such regions are
known as van der Waals loops. The critical point itself occurs at the point at which the minimum and
the maximum of the van der Waals loop merge, i.e. the first and second derivatives of the pressure
with respect to volume vanish.

In regions where there are van der Waals loops, we can immediately find the points corresponding
to limits of mechanical stability: these spinodals correspond to the points at which (∂P/∂V ) changes
sign. Finding the points of coexistence (the binodals) is slightly more challenging. Various approaches
can be used; here, we will use a method called Maxwell construction.

We have already shown that the condition for phase equilibrium — in this case between the
liquid and the vapour — is the equality of pressures, temperatures and chemical potentials. From
our discussion of the common tangent construction approach, we know that the condition that the
chemical potentials are equal is given by

Nµ1 = Nµ2 = A1 + PcommV1 = A2 + PcommV2 , (3.48)

where Pcomm is the common pressure. This is fulfilled if Pcomm(V1 − V2) = A1 −A2.

We can also express the pressure as P = −(∂A/∂V )N,T , and therefore, if we use thermodynamic
integration, we find that

A1 −A2 = −
∫ V1

0

dV P +

∫ V2

0

dV P . (3.49)

Hence the condition for coexistence is

Pcomm(V2 − V1) =

∫ V2

V1

dV P . (3.50)

This condition means that the area of the rectangle spanned by V1 and V2 along the volume axis and
0 and Pcomm along the pressure axis is equal to the area under the P curve between V1 and V2. As can
be seen in the figure, the only difference between the two areas is the region where area 1 carves an
area into the rectangle and area 2 protrudes from the rectangle: to satisfy (3.50), we simply require
that area 1 should equal area 2. In practice, we need to vary Pcomm until the two areas match. A
phase diagram corresponding to the van der Waals equation of state is shown in the figure.

We used an approximate equation of state for a hard-sphere gas in our derivation, and so, as
we argued above, the van der Waals equation of state is also only reasonable at low density. If,
on the other hand, we use the exact equation of state of hard spheres as deduced from computer
simulations, then we can compute the ‘exact’ equation of state of the van der Waals model (i.e. the
equation of state that van der Waals would have given an arm and a leg for). Using this approach,
Longuet–Higgins and Widom were the first to compute the true phase diagram of the van der Waals
model.

3.4.4 The Critical Point

Let’s now return to discuss what happened at the critical point. Mathematically, a critical point
corresponds to where

∂P

∂V
=

∂2P

∂V 2 = 0 . (3.51)
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Figure 3.7: (a) The pressure as a function of the volume above, at and below the critical temperature.
All quantities are scaled by their values at the critical point. (b) Below the critical point, the pressure
has a ‘van der Waals loop’. A Maxwell equal-area construction, shown here, is used to find the point
of coexistence (labelled ‘B’). Spinodals, where the system becomes mechanically unstable, are labelled
‘S’. (c) The coexistence region results in constant pressure region. (d) Phase diagram for the van der
Waals model determined using Maxwell constructions.
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Figure 3.8: Longuet–Higgins–Widom-style phase diagram for the ‘exact’ van der Waals model. This
phase diagram was computed by using the hard-sphere system as a reference system and adding a
weak, long-ranged attractive interaction.

Having an expression of the pressure, we can of course solve for this condition by brute force, but
there is a slightly more elegant way to find the critical point. We will again use the notation v = V/N
to denote the volume per particle to reduce some notational cluttering. We rearrange the van der
Waals equation to get a cubic

Pv3 − (Pb+ kBT )v
2 + av − ab = 0 . (3.52)

For T < Tc, the equation has three real roots, while for T > Tc, there is just one. This means that
precisely at the T = Tc, the three roots must therefore coincide before two of them move off onto the
complex plane. This means that at the critical point, the curve can be rewritten as

Pc(v − vc)
3 = 0 . (3.53)

By comparing the coefficients, we get

kBTc =
8a

27b
, vc = 3b , Pc =

a

27b2
. (3.54)

The Law of Corresponding States Revisited

This time, we can express the temperature, pressure and volume in reduced quantities relative to the
critical values

Tr :=
T

Tc
, vr :=

v

vc
, pr :=

P

Pc
(3.55)

and rewrite the van der Waals equation of state into a form universal to all gases

Pr =
8Tr

3vr − 1
− 3

v2r
. (3.56)

This again illustrates the law of corresponding states. Moreover, since the three critical quantities
Tc, Pc and Vc are written in just two variables a and b, we can construct a combination of them
which is independent of a and b and therefore should be the same for all gases. This is the universal
compressibility ratio

Pcvc
kBTc

=
3

8
. (3.57)

Comparing to real gases, for which this value ranges from 0.28 to 0.30, our proposed value is a little
high. We shouldn’t be too discouraged by this; after all, we knew from the beginning that the van
der Waals equation is unlikely to be accurate in the liquid regime where the particle number density
is high.
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Critical Exponents

We now turn to ask a different question. How do various quantities change as we approach the critical
point?

First, we can ask what happens to the difference in (inverse) densities vgas−vliquid as we approach
the critical point along the coexistence curve. For T < Tc, or equivalently Tr < 1, the reduced van
der Waals equation has two stable solutions

Pr =
8Tr

3vr,gas − 1
− 3

v2r,gas
=

8Tr

3vr,liquid − 1
− 3

v2r,liquid
. (3.58)

Solving this for Tr, we get

Tr =
(3vr,liquid − 1)(3vr,gas − 1)(vr,liquid + vr,gas)

8v2r,liquidv
2
r,gas

. (3.59)

Notice that as we approach the critical point, vr,liquid, vr,gas → 1 and the equation above tells us that
Tr → 1 as expected. We can see exactly how we approach Tr = 1 by expanding the right-hand side
for small ϵ = vr,gas− vr,liquid. To do this quickly, it’s best to notice that the equation is symmetric in
vr,gas and vr,liquid, so close to the critical point we can write vr,gas = 1 + ϵ/2 and vr,liquid = 1 − ϵ/2.
Substituting this into the equation above and keeping just the leading order term, we find

Tr ≈ 1− 1

16
(vr,gas − vr,liquid)

2 , (3.60)

or rearranging, as we approach Tc,

vgas − vliquid ∼ (Tc − T )1/2 . (3.61)

This answers our first question.

Our second question is: how does the volume change with pressure as we move along the critical
isotherm? It turns out that we can answer this question without doing any work. We know that at
the critical point, ∂P/∂v = ∂2P/∂v2 = 0, so a Taylor expansion around the critical point must start
with the cubic term,

P − Pc ∼ (v − vc)
3 . (3.62)

This answers our second question.

Our final question concerns the compressibility, defined as

κ = −1

v

(
∂v

∂P

)
T

. (3.63)

We want to understand how changes as we approach T → Tc from above. We already know that at
the critical point ∂P/∂v = 0. So expanding for temperatures close to Tc, we expect(

∂P

∂v

)
T=Tc

= −a(T − Tc) + . . . (3.64)

This tells us the compressibility should diverge at the critical point, scaling as

κ ∼ (T − Tc)
−1 . (3.65)

We now have three answers to three questions:

vgas − vliquid ∼ (Tc − T )β β =
1

2
(3.66)

P − Pc ∼ (v − vc)
δ δ = 3 (3.67)

κ ∼ (T − Tc)
−γ γ = 1 . (3.68)
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Do they agree with experiment? Remember that we’re not sure that we can trust the van der
Waals equation at the critical point so we should be nervous. However, there is also reason for some
confidence. Notice, in particular, that when computing (3.62) and (3.65), we didn’t actually need
any details of the van der Waals equation. We simply needed to assume the existence of the critical
point and an analytic Taylor expansion of various quantities in the neighbourhood. Given that the
answers follow from such general grounds, one may hope that they provide the correct answers for
a gas in the neighbourhood of the critical point even though we know that the approximations that
went into the van der Waals equation aren’t valid there. Fortunately, that isn’t the case: the physics
is much more interesting than that!

The experimental results for a gas in the neighbourhood of the critical point do share one feature
in common with the discussion above: they are completely independent of the atomic make-up of
the gas — again illustrating the law of corresponding states. However, the scaling that we computed
using the van der Waals equation is not fully accurate. The correct results are as follows:

vgas − vliquid ∼ (Tc − T )β β ≈ 0.32 (3.69)
P − Pc ∼ (v − vc)

δ δ ≈ 4.8 (3.70)
κ ∼ (T − Tc)

−γ γ ≈ 1.2 . (3.71)

The quantities β, γ and δ are examples of critical exponents. The van der Waals equation provides
only a crude first approximation to the critical exponents.

Fluctuations

We see that the van der Waals equation didn’t do too badly in capturing the dynamics of an interacting
gas. It gets the qualitative behaviour right, but fails on precise quantitative tests. So what went
wrong? We mentioned during the derivation of the van der Waals equation that we made certain
approximations that are valid only at low density. So perhaps it is not surprising that it fails to get
the numbers right near the critical point where v = 3b. But there’s actually a deeper reason that the
van der Waals equation fails: fluctuations.

This is simplest to see in the grand canonical ensemble. You will show in one of the exercises
that ∆N/N ∼ 1/

√
N , which essentially allows us to work in a grand canonical ensemble even when

we have a fixed particle number under normal conditions. In the context of the liquid-gas transition,
fluctuating particle number is the same thing as fluctuating density ρ = N/V . You will also show in
one of the exercises that

∆N2

N
= − 1

βV

(
∂ ⟨N⟩
∂V

)
p,T

(
∂V

∂p

)
N,T

. (3.72)

This relates the fluctuations in the particle number to the compressibility, which is diverging at the
critical point. This means that there are large fluctuations in the density of the fluid at this point.
The result is that any simple equation of state, like the van der Waals equation, which works only
with the average volume, pressure and density will miss this key aspect of the physics.

Understanding how to correctly account for these fluctuations is the subject of critical phenomena,
which is unfortunately a far deeper subject. It has close links with the renormalization group and
conformal field theory which also arise in fancy places like particle physics and string theory. We will
briefly account for this in the appendix section H using Landau–Ginzburg theory.
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Universality

Something magical happens if you try to compute the critical exponents of the Ising model under our
mean field treatment using the method analogous to above. They are given by

m0 ∼ (Tc − T )β β =
1

2
(3.73)

B ∼ mδ δ = 3 (3.74)
χ ∼ (T − Tc)

−γ γ = 1 , (3.75)

where m = ⟨s⟩ is the mean magnetisation, m0 is the mean magnetisation at B = 0 and κ is the
magnetic susceptibility defined as

χ = N

(
∂m

∂B

)
T

. (3.76)

These critical exponents are exactly the ones that we have calculated for the van der Waals
equation of state!

We saw that the mean field approach to the Ising model gave the same critical exponents as the
van der Waals equation. They are both wrong, and they are both wrong in the same, complicated,
way with regard to the same true answer! Why on earth would a system of spins on a lattice have
anything to do with the phase transition between a liquid and gas? It is as if all memory of the
microscopic physics — the type of particles, the nature of the interactions — has been lost at the
critical point. And that’s exactly what happens.

What we’re seeing here is evidence for universality. There is a single theory which describes the
physics at the critical point of the liquid gas transition, the 3D Ising model and many other systems.
This is a theoretician’s dream! We spend a great deal of time trying to throw away the messy details of
a system to focus on the elegant essentials. But, at a critical point, Nature does this for us! Although
critical points in two dimensions are well understood, there is still much that we don’t know about
critical points in three dimensions.

3.5 Widom’s Particle Insertion Method

We all have an intuitive idea of what most thermodynamic variables are, like temperature, pressure,
volume etc., but the chemical potential µ still seems a little bit mysterious. Here, we will introduce
an idea proposed by Benjamin Widom, which would help us to understand chemical potential in an
intuitive way, and calculate it easily.

Consider a one-component system of N particles, with Helmholtz energy A = −kBT lnQ(N,V, T ).
Then for sufficiently large N , we can effectively treat the number of particles as a continuum. The
chemical potential is given by

µ =

(
∂A

∂N

)
V,T

= −kBT lim
∆N→0

lnQ(N +∆N,V, T )− lnQ(N,V, T )

∆N

≈ −kBT ln

(
Q(N + 1, V, T )

Q(N,V, T )

)
. (3.77)

∆N = 1 is the smallest variation we can do. This should hold when N is large and we can effectively
treat ∆N = 1 as an “infinitesimal” change.

For an ideal gas, Q(N,V, T ) = V N/Λ3NN !, and so using (3.77), the chemical potential is

µid = −kBT ln

(
V

Λ3(N + 1)

)
. (3.78)
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In the N → ∞ limit, this agrees with a perhaps more familiar form of the chemical potential of an
ideal gas

µid = kBT ln(Λ3ρ) , (3.79)

where ρ = N/V is the particle number density. Then for a non-ideal gas system, we may define the
excess chemical potential as

µex(N/V, T ) := µ(N/V, T )− µid(N/V, T )

= −kBT ln

( ∫ ∏N+1
j=1 d3rj exp[−βU({ri}N+1

i=1 )]

V
∫ ∏N

j=1 d
3rj exp[−βU({ri}Ni=1)]

)
. (3.80)

We separate the potential energy of the N + 1-particle system as a sum of the N -particle system
and the interaction energy of the N + 1th particle with the rest of the system, so that U({ri}N+1

i=1 ) =
U({ri}Ni=1) + ∆UN,N+1. We can then rewrite

µex(N/V, T ) = −kBT ln

(∫
d3rN+1

∫ ∏N
i=1 d

3ri exp[−βU({ri}Ni=1)] exp[−β∆UN,N+1]

V
∫ ∏N

j=1 d
3rj exp[−βU({ri}Ni=1)]

)

= −kBT ln

(
1

V

∫
d3rN+1 ⟨exp(−β∆UN,N+1)⟩N

)
. (3.81)

Here ⟨−⟩N denote the canonical ensemble average over the configuration space of the N -particles. In
other words, the excess chemical potential is related to the average of ⟨exp(−β∆UN,N+1)⟩N over all
possible positions of the particle N + 1. In a translationally invariant system, such as a liquid or a
gas, this quantity should not depend rN+1, so we may write

µex(N/V, T ) = −kBT ln ⟨exp(−β∆UN,N+1)⟩N . (3.82)

This is often known as the particle insertion method because it relates the excess chemical potential
to the average of the Boltzmann factor exp(−β∆UN,N+1) associated with the random insertion of an
additional particle in the system where N particles are already present.

3.5.1 Excess Chemical Potential of a Hard-Sphere Gas

As an example, let’s calculate the excess chemical potential of a hard-sphere gas system. A trial
particle is inserted into the system — it has a probability P to not overlap with the already-existing
N particles, and probability 1− P to overlap with some of the particles. By the definition of a hard
sphere potential, if there is no overlapping of particles, ∆UN,N+1 = 0 so exp(−β∆UN,N+1) = 1; if
the particles overlap, ∆UN,N+1 =∞ so exp(−β∆UN,N+1) = 0. Hence we have the average

⟨exp(−β∆UN,N+1)⟩ = P × 1 + (1− P )× 0 = P . (3.83)

The excess chemical potential is then

µex = −kBT lnP . (3.84)

3.6 Virial Expansion for Classical Imperfect Gases

In the limit of dilute gas, the mean distance between the nearest-neighbour atoms greatly exceeds the
range of the interatomic potential ϕ(r). Under these conditions, the particles do not interact with
each other except during very rare binary collisions, so we can treat them as ideal:

Z :=
PV

NkBT
= 1 (3.85)
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∆UN,N+1 = 0

exp(−β∆UN,N+1) = 1

∆UN,N+1 =∞
exp(−β∆UN,N+1) = 0

Figure 3.9: A sample configuration of a hard sphere system.

when ρ∗ = (Nσ3/V )≪ 1. The probability of finding two atoms within a volume of the order of the
atomic volume σ3 is of the order of (ρ∗)2, and hence we expect deviation from ideal gas compressibility
(3.85) as ρ∗ increases. It therefore seems that we can express the compressibility factor of a non-ideal
gas as a power series in the particle number density

Z :=
P

ρkBT
= 1 +B2(T )ρ+B3(T )ρ

2 + . . . (3.86)

This is known as the virial expansion of the compressibility factor, and the coefficients Bn(T ) are
known as the nth virial coefficient.8

There is a traditional way in statistical mechanics to calculate these virial coefficients known
as the cluster expansion. This method is a bit mathematically challenging, and it gets more and
more complicated when calculating higher orders of virial coefficients — but it is a really elegant
method, and it has important implications in some other related fields like perturbation theory or
even quantum field theory. It is a shame not to mention it, so I put it in the appendix section E.
However, Widom’s particle insertion method provides us with an alternative easier way to calculate
the second virial coefficient.9

First, we want to get an expression for µex. From the Gibbs–Duhem relation V dP = Ndµ, we
get

∂P

∂ρ
= ρ

∂µ

∂ρ
. (3.87)

As µid = kBT ln(ρΛ3),
ρ

kBT

∂µid

∂ρ
= 1 . (3.88)

If we differentiate the virial expansion with respect to ρ, we get

1

kBT

∂P

∂ρ
= 1 + 2B2(T )ρ+ 3B3(T )ρ

2 + . . . (3.89)

From (3.87), we can rewrite

ρ

kBT

∂µ

∂ρ
= 1 + 2B2(T )ρ+ 3B3(T )ρ

2 + . . .

=
ρ

kBT

∂µid

∂ρ
+ 2B2(T )ρ+ 3B3(T )ρ

2 + . . . (3.90)

8Technically, this expansion is only valid if the interatomic potential decays sufficiently quickly. We will show this
in appendix section E.

9This method will encounter a whole lot of complications when we try to calculate higher virial coefficients, such as
overlap of interaction zones etc. If we are interested in them, the systematic cluster expansion is a much better choice.
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Probability =
V − Vint

V

Rmax

vint

Probability =
Vint
V

Figure 3.10: Widom insertion method to determine the excess chemical potential of a dilute non-ideal
gas system.

where we observed that 1 corresponds to the derivative of the ideal gas chemical potential (3.88),
so we can naturally relate the rest of the virial expansion with the derivative of the excess chemical
potential

ρ

kBT

∂µex

∂ρ
= 2B2(T )ρ+ 3B3(T )ρ

2 + . . . (3.91)

Dividing this equation by ρ and integrating from 0 to ρ, we obtain

µex = kBT

∞∑
n=2

n

n− 1
Bn(T )ρ

n−1 = kBT [2B2ρ+ . . . ] . (3.92)

We can work out the expansion of the excess chemical potential to obtain the second virial coefficient.

We then use Widom method (3.82) to work out µex. In the regime of extremely dilute gas
(ρ→ 0), we may assume an inserted particle will either have significant interaction with only one of
the already-present N particles, or it will interact significantly with none of them, where we assumed
that the interaction between particles will be negligible beyond some finite distance Rmax. This
corresponds to a particle number density ρ ≪ R−3

max, and our end result should be independent of
Rmax. We may also assume that the interaction volumes vint = 4

3πR
3
max of the particles do not

overlap. Then the total interaction volume of the N particles is

Vint = Nvint =
4

3
NπR3

max . (3.93)

Now, if we insert a particle randomly, it has probability (V −Vint)/V to not fall into the interaction
zone with any of the other particles, giving ∆U = 0. With a probability Vint/V , the insertion will
happen in one of the interaction zones, and the average value of exp(−β∆U) is

1

vint

∫
vint

d3r exp[−βϕ(r)] . (3.94)

Therefore, we have the average

⟨exp(−β∆UN,N+1)⟩N =

(
V − Vint

V

)
+

(
Vint
V

)
× 1

vint

∫
vint

d3r exp[−βϕ(r)]

= 1 + ρ

(
−vint +

∫
vint

d3r exp[−βϕ(r)]
)

. (3.95)

Since vint =
∫
vint

d3r , we can write this as

⟨exp(−β∆UN,N+1)⟩N = 1 + ρ

∫
vint

d3r [exp(−βϕ(r))− 1] . (3.96)
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(a)

r/σ

ϕ(r)

1

(b)

r/σ

ϕ(r)

1 λ
−ϵ

Figure 3.11: Two pair potentials: (a) Hard-sphere potential (b) Square-well potential.

By the Widom formula (3.82), we have

µex = −kBT ln

(
1 + ρ

∫
vint

d3r [exp(−βϕ(r))− 1]

)
. (3.97)

By construction, ϕ(r) ≈ 0 outside the interaction zone, so we can change the limits of the integral to
the whole space. Finally, as ρvint ≪ 1, we can use Taylor expansion ln(1+x) ≈ x to expand it to the
first order

µex ≈ kBTρ

∫
d3r [1− exp(−βϕ(r))] . (3.98)

This is the term linear in ρ in the density expansion of µex. Comparing with our expansion of µex,
we identify the second virial coefficient

B2(T ) =
1

2

∫
d3r [1− exp(−βϕ(r))] . (3.99)

If the potential is spherically symmetric, ϕ(r) = ϕ(r), we may write

B2(T ) = 2π

∫
dr r2[1− exp(−βϕ(r))] . (3.100)

The quantity 1− exp(−βϕ(r)) occurring repeatedly in our expression is called the Mayer f function
and is usually denoted as f(r). It seems to just somehow randomly emerge in our derivation, but it
actually has a significant importance in the canonical derivation of virial coefficients — see appendix
section E.

Let’s calculate B2(T ) for two simple interatomic potentials. First, let’s consider the hard-sphere
potential

ϕHS(r) =

{
∞ if r < σ

0 if r ≥ σ ,
(3.101)

and so f(r) = −1 if r < σ and f(r) = 0 otherwise. Thus

BHS
2 (T ) =

2πσ3

3
. (3.102)

It is a half of the excluded volume around a sphere. In this case, B2 is independent of temperature,
and hence such a system is called athermal. It reflects the fact that there is no energy scale in the
hard-sphere potential — no matter how high the temperature, the entropy never wins the infinite
energy when particles overlap. The corresponding correction in Z (or equivalently P ) from ideal gas
law is positive, as the hard-sphere potential is purely repulsive.
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BSW
2 /BHS

2

βϵ

1

Figure 3.12: A plot of B2(T ) against βϵ. The temperature at which B2(T ) = 0 is the Boyle
temperature.

Next, consider the square-well potential

ϕSW(r) =


∞ if r < σ

−ϵ if σ ≤ r < λσ

0 if r ≥ λσ .

(3.103)

Here, ϵ parameterises the depth of the well and λ parameterises its width. In this case,

BSW
2 (T ) =

2πσ3

3

[
1− (λ3 − 1)(exp(βϵ)− 1)

]
. (3.104)

This is plotted in the figure below. B2(T ) can be both positive and negative — in low T , B2 < 0
because attraction dominates, whilst at high T , kBT ≫ ϵ so the attractive part of the potential is
unimportant, while the thermal energy still can’t break the infinitely high potential barrier of the
hard particle core, so the hard-sphere limit is recovered. The temperature at which B2(T ) = 0 is
called the Boyle temperature, because at this temperature, the system behaves very close to being
ideal (at least to the first order in ρ).

3.7 Flory–Huggins Theory of Polymer Solutions

Let’s consider polymers living on a lattice. Suppose we have a cubic lattice of M sites in total, and
we have N monodisperse (of the same size) polymer molecules, each comprises r segments. Each
lattice site can either be occupied by a single polymer segment, or it will be taken up by the solvent.
The polymer chain is connected by covalent bonds, which we are never going to break in any cases,
so we may safely ignore their contributions to the energy of our system — it is just an additive
constant. We further assume that neighbouring polymer segments that are not covalently bonded
has an interaction energy ϵPP; neighbouring solvent molecules interact with energy ϵSS; neighbouring
solvent-polymer segment pair interact with ϵSP.

We will again use mean field approximation and calculate the excess chemical potential using
Widom’s insertion method. If we replace r solvent sites by a polymer chain of length r, then

µex = −kBT ln ⟨exp(−β∆U)⟩ . (3.105)

First, let’s calculate the probability that the inserted polymer does not overlap with the already-
existing N polymer. If we denote the fractional occupation by

η =
Nr

M
, (3.106)
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S S interaction energy ϵSS

S P interaction energy ϵSP

P P interaction energy ϵPP

P P covalent bond

then the probability of the successful insertion of the first segment without overlapping is given by
1− η. We then encounter some problems. The insertion of successive segments in a polymer chain is
correlated — if the first segment is inserted near a polymer chain, then the probability of overlapping
when inserting the second segment is very high, since the second segment must be in a neighbouring
site of the first segment. On the other hand, if the first segment inserted is far from any other
polymers, then the second segment has zero probability of overlapping. To make some progress,
we will make a drastic simplification that the probabilities for the successful insertion of subsequent
segments are uncorrelated, i.e. the inserted segments are not connected.10 Then the probability that
a single chain can be inserted without overlaps is (1− η)r.

Next, we compute the average energy change of a successful insertion. Again, to simplify our
calculation, we have to assume that the inserted segments are decoupled. Moreover, we further
assume that the existing polymers are also distributed randomly in the lattice sites. Therefore, for
any particular inserted segment, the probability of any particular neighbour being occupied by an
existing polymer segment is η, and the probability of it being a solvent is 1−η. Therefore, the average
change in energy of any nearest neighbour pair is

∆ϵnn = η(ϵPP − ϵSP) + (1− η)(ϵSP − ϵSS)

= η(ϵPP + ϵSS − 2ϵSP) + (ϵSP − ϵSS) . (3.107)

If we denote

∆ϵ := ϵSP −
ϵPP + ϵSS

2
(3.108)

δϵ := ϵSP − ϵSS , (3.109)

then the average total change in energy of inserting a polymer of r segments is

∆U = rz∆ϵnn

= −2rzη∆ϵ+ rzδϵ , (3.110)

where z is the average number of non-bonded nearest neighbours of a segment.

Now we can estimate µex using Widom’s formula, which gives

µex = rkBT ln(1− η)− 2rzη∆ϵ+ rzδϵ . (3.111)

The ideal contribution to the chemical potential of N polymers is

µid = kBT ln
N

M
= kBT ln η − kBT ln r . (3.112)

We add these two terms together and throw away all the constant terms independent of η (since they
don’t affect the phase behaviour), then the mean field chemical potential of the polymer solution is

µ = kBT ln η − rkBT ln(1− η)− 2rzη∆ϵ+ const. (3.113)
10As you can tell, this is a horribly drastic assumption. If our model goes wrong compared with experiments, this

is likely to be the main culprit (but rather surprisingly, our model actually agrees with the experiments astonishingly
well!).
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η

µ T > Tc

T = Tc

T < Tc

Figure 3.13: The Flory–Huggins chemical potential. Phase separation may occur when T < Tc.

It is common to define the Flory–Huggins parameter χ by

χ :=
z∆ϵ

kBT
, (3.114)

then we get
µ = kBT (ln η − r ln(1− η)− 2rχη) , (3.115)

where we have omitted the constant term. This is the Flory–Huggins expression for the chemical
potential of a polymer solution.

3.7.1 Flory–Huggins Critical Point

It is experimentally observed that a polymer solution shows phase behaviour, where below a certain
critical temperature, a polymer solution with some η values will separate into phases. Let’s rationalise
this behaviour using the chemical potential we calculated.

In order for a phase separation to occur, there must be two phases with different η values with
the same chemical potential.11 Therefore, a plot of µ versus η must have a van der Waals loop (see
figure 3.7). As we increase the temperature, this loop will disappear when the maximum and the
minimum of the µ-η curve merge. Hence, to find the critical point, we only need to find the point
where the equation

∂βµ

∂η
=

1

η
+

r

1− η
− 2rχ = 0

=⇒ 2rχη2 − 2r

(
χ− 1

2
+

1

2r

)
η + 1 = 0 (3.116)

has a double root.12 This happens at the point

ηcrit =
r
(
χcrit − 1

2 + 1
2r

)
2rχcrit

(3.118)

when the discriminant vanishes:

r2
(
χcrit −

1

2
+

1

2r

)2

= 2rχcrit . (3.119)

11This is a necessary condition, but it is not sufficient — the pressure must also be equal.
12When dealing with the van der Waals gas, we identified the critical point to be the point at which both the first

and the second derivative of A with respect to V vanishes. One can show that this is equivalent to the condition here
once we identify V with M as the lattice analogue, by showing(

∂P

∂M

)
T

∝
(
∂µ

∂η

)
T

(3.117)

using Gibbs–Duhem relation.
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η

kBT/z∆ϵ
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r = 1

r = 4

r = 100
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Figure 3.14: The Flory–Huggins phase diagram.

Solving these conditions gives

χcrit =
(1 +

√
r)2

2r
(3.120)

ηcrit =
1

1 +
√
r
. (3.121)

For r = 1, ηcrit = 0.5 and χcrit = 2. The µ-η diagram is symmetric, and this is in fact identical
to the regular solution model which you will investigate in one of the exercises. As r increases,
ηcrit decreases as the µ-η diagram becomes more and more asymmetric, and χcrit also decreases,
so the critical temperature Tcrit increases. In the limit of large polymers, limr→∞ ηcrit = 0 and
limr→∞ χcrit =

1
2 .

What leads to the asymmetry of the phase diagram at non-unity r? We can investigate the
energy and entropic change of mixing explicitly. Consider a fully mixed system with Nr polymer
segments and M −Nr solvent particles. The potential energy contributed by each polymer segment
is UP = zηϵPP+z(1−η)ϵSP, and the energy contributed by each solvent particle is US = zηϵSP+z(1−
η)ϵSS. If the polymers and the solvent are completely separated, then Upre

P = zϵPP and Upre
S = zϵSS

respectively. Hence, the energy change of mixing is

∆mixU =
1

2
[Nr(UP − Upre

P ) + (M −Nr)(US − Upre
S )]

= Mz∆ϵη(1− η) = MkBTχη(1− η) . (3.122)

This is symmetric in η. If N1 particles of volume V1 and N2 particles of volume V2 are mixed, forming
a mixture of volume V = V1 + V2, then the entropy change of mixing is

∆mixS/kB = N1 ln

(
V

V1

)
+N2 ln

(
V

V2

)
. (3.123)

In our case, we have N1 = V1 = M − Nr solvent particles and N2 = V2 = Nr polymer molecules.
This gives

∆mixS/kB = (M −Nr) ln
M

M −Nr
+N ln

M

Nr

= −M
[
(1− η) ln(1− η) +

η

r
ln η
]
. (3.124)

We can see that this is asymmetric in η.
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Poor solvent
χ > 1

2

θ solvent
χ = 1

2

Good solvent
χ < 1

2

Figure 3.15: The effect of solvent quality on the behaviour of polymers in solution.

3.7.2 Flory–Huggins Parameter

The Flory–Huggins parameter χ actually has more physical meanings: it tells us whether a solvent
is good or not for a given polymer. Recall the virial series for the excess chemical potential

βµex = 2B2ρ+
3

2
B3ρ

2 + . . . (3.125)

Using ρ = N/M and η = Nr/M , we can rewrite the expansion in terms of η

βµex =
2B2

r
η + . . . (3.126)

The virial expansion applies in the dilute regime, i.e. at small η, and so we can use Taylor expansion
ln(1− x) ≈ −x in the excess chemical potential (3.111) to write

βµex ≈ rη + 2rηχ . (3.127)

Comparing the coefficients of the two expansions, we can get the second virial coefficient

B2 = r2
[
1

2
− χ

]
. (3.128)

We find that when χ = 1
2 , B2 = 0 and the ideal behaviour is recovered (at least to the leading

order). At this point, the energetic and entropic contributions cancel out exactly, and the polymer
behaves like a freely joined chain (see later chapters). The conditions under which this is achieved
are known as the θ conditions (just like the Boyle temperature for non-ideal gas). By contrast, if
the energetic penalty is smaller than the entropic gain, χ < 1

2 , the entropic term dominates and the
second virial coefficient is positive. The polymer segments repel each other and maximise the mixing.
This increases the osmotic pressure of the polymer solution, and we say that the solvent is a good
solvent. By contrast, if χ > 1

2 , then B2 < 0. The polymer segments attract each other, and the
solvent is said to be a poor solvent.

3.8 Landau Theory of Phase Transitions

We have spent a long time investigating phase transitions for different systems case by case. But we
have seen that the van der Waals equation and mean field Ising model gave the same wrong answers
for the critical exponents with regard to the same true answer. This universality suggests that there
should be a unified way to look at phase transitions. Such a method was developed by Lev Landau.
It is worth stressing that the Landau approach to phase transitions often only gives qualitatively
correct results. However, its advantage is that it is extremely straightforward and easy.
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3.8.1 Order of Phase Transitions

Let’s first introduce a classification of phase transitions. As we can see in previous sections, free
energy plays an important role in phase transition, and hence a natural classification, introduced by
Paul Ehrenfest, is based on how the free energy behaves at the critical point. The free energy itself
of the two phases must be equal at the phase transition, so the free energy must be continuous at
the critical point as a function of temperature or volume/pressure etc. — but its derivatives do not
have to. If the first derivative of the free energy with respect to pressure/volume and temperature
are discontinuous, then the transition is called a first order phase transition. If the first derivatives
are continuous, but the second ones are not, then the phase transition is called a second order phase
transition, and so on. There are rarely phase transitions above third order.13

The reason we are interested in this is that, a first order phase transition behaves very differently
from a second order one. For example, if the first derivatives of the Gibbs free energy of some system
are discontinuous, then there will be a volume change and a non-zero enthalpy of phase transition
(which is the latent heat that you are familiar with)(

∂G1

∂P

)
T

−
(
∂G2

∂P

)
T

= V1 − V2 = ∆trsV ̸= 0 (3.129)(
∂G1

∂T

)
P

−
(
∂G2

∂T

)
P

= −S1 + S2 = −∆trsS = −∆trsH

Ttrs
̸= 0 . (3.130)

Moreover, in a first order phase transition, a phase can remain metastable over a significant region.
A famous example is the supercooling of water. In such metastable regions, the state of the system
depends on its history. This phenomenon is known as hysteresis. By contrast, in a continuous phase
transition, the system smoothly passes to the new phase without needing to overcome any free energy
barrier, making such transition very fast.

Our aim is then to arrive at a unified theory to look at phase transitions and to determine whether
a phase transition is first order or not in a simple way.

3.8.2 Free Energy Expansion and Order Parameter

What makes two phases different from each other? A plausible answer is symmetry. As Landau
points out, a symmetry is either there or not there — there isn’t something like a partial symmetry.
Just like a crystal is either cubic or it is not — it cannot be ‘slightly cubic’. The symmetry of a
system cannot change continuously.

To quantify this, we introduce a concept called the order parameter. It is some suitably chosen
parameter in our system of interest that is zero in one of the phases and non-zero in another so that we
hope when the phase transition occurs, the order parameter will jump from zero to a non-zero value.
Sometimes it is obvious what to take as the order parameter; other times less so. For magnetic or
electric systems, the order parameter is typically some form of magnetization (as for the Ising model)
or the polarization. For the liquid-gas transition, the relevant order parameter is the difference in
densities between the two phases, vgas − vliquid. In something like a liquid crystal, as shown in
figure 3.16, a suitable order parameter would be some sort of measurement of the average orientation
of the molecules along some axis.

Landau theory is based around the free energy, so the next thing we do is to write the free energy
in terms of the order parameter. Let’s be clear of what we are doing here. We have certainly worked
out some expressions like this before. For example, in the Ising model, where the mean magnetisation

13However, it should be pointed out that under modern theory of critical phenomena, this classification can no longer
be strictly maintained — but it is still a useful one.
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Figure 3.16: A schematic diagram of the isotropic and nematic phases of a liquid crystal. The order
parameter can be chosen to be M =

〈
3 cos2 θ − 1

〉
/2, which is 0 in the isotropic case, 1 if all particles

are perfectly aligned along z axis, and −1/2 if all particles are orthogonal to the z axis. Figure
adapted from official course notes.

m is the order parameter, we have worked out the free energy expression (3.34)

A =
1

2
NJzm2 −NkBT ln[2 cosh(βJzm)] . (3.131)

But so far in this course, we’ve considered only systems in equilibrium. The free energy, like all other
thermodynamic potentials, has only been defined on equilibrium states. Yet the equation above can
be thought of as an expression for A as a function of m, where m can be any number, including the
non-equilibrium ones. Of course, what we should do is to substitute in the equilibrium value of m
given by (3.33) to give the true equilibrium free energy with solid physical meaning, but it seems a
shame to throw out A(m) when it is such a nice function. Surely we can put it to some use!

The key in Landau theory is to treat the function A = A(N,V, T ;m) seriously. This means that
we are extending our viewpoint away from equilibrium states to a whole class of states which have
a constant average value of m. You could imagine some external magical power that holds m fixed.
The free energy A(N,V, T ;m) is then telling us the equilibrium properties in the presence of this
magical power. Perhaps more convincing is what we do with the free energy in the absence of any
magical constraint. We have seen that equilibrium is guaranteed if we sit at the minimum of A. This
means that what we want to do is to solve

∂A

∂m
= 0 , (3.132)

and find where A is the minimum. If this occurs at m = 0, then at this condition the disordered
phase with zero value of order parameter is stable; if this occurs at non-zero value of m, then the
ordered phase is stable.

However, finding an expression of the free energy A seems like a difficult thing to do. This
is exactly what we have done in this whole chapter, spending a lot of efforts writing down the free
energy of different system, which we have found is not an easy task even for simple models! Moreover,
we promised that we will derive a general theory of phase transition, but the details of the free energy
clearly depends on the physics of the system. How do we just write down the free energy in the
general case? The trick is to assume that we can expand the free energy in an analytic power series
in the order parameter. For this to be true, the order parameter must be small which is guaranteed
if we are close to a critical point (since we assume that for T > Tc we have the disordered phase with
m = 0). This allows us to write

A(N,V, T,M) = A(N,V, T, 0) + aM + bM2 + cM3 + dM4 + . . . (3.133)

Let’s look at a couple of simple examples.
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M

A−A0

T > Tch

T > Tch

T > Tch

Figure 3.17: A sketch of the Landau free energy A as a function of the order parameter M for a
system that is an even function of M . The phase transition occurs at T = Tch, where the quadratic
coefficient changes the sign if the quartic coefficient is assumed positive.

3.8.3 Second Order Phase Transitions

We first look at a system in which there is a symmetry in the order parameter by M ↔ −M . An
example of such a system is Ising model without external fields, where the order parameter is the
magnetisation m — a system with magnetisation +m is completely equivalent to a system with
magnetisation −m, so the free energy must be an even function of m. We are investigating the phase
transitions caused by changes in temperatures only, so for this kind of a system, we will write

A(T,M) = A(T, 0) + b(T )M2 + d(T )M4 + f(T )M6 + . . . (3.134)

We will focus on the temperature regime where the quadratic coefficient changes its sign, since this is
the lowest order term and should cause the greatest effect on the behaviour of A near M = 0. We will
assume this sign change occurs at T = Tch so that we can write, to the linear order, b(T ) = α(T−Tch).
We will approximate higher coefficients to be constant near T = Tch. Let’s see what happens if α > 0
and d > 0, so that

A(T,M) ≈ A(T, 0) + α(T − Tch)M
2 + dM4 . (3.135)

A plot of A(T,M) at different T is shown in figure 3.17.

It can be seen that, above Tch, the minimum of the free energy occurs at M = 0, so the disordered
phase is more stable. Below Tch, the point M = 0 changes from being a minimum in free energy to
a local maximum. Instead the minimum in the free energy is easily found to be

m = ±
√

α(Tch − T )

2d
. (3.136)

We can substitute this expression back into our free energy expansion, so that we know the free
energy of the most stable state is

Amin =

{
A(T, 0) T ≥ Tch

A(T, 0)− α2(T−T 2
ch)

4d T < Tch .
(3.137)

Assuming A(T, 0) is a smooth function of T , we can see that both the free energy and its first
derivative are continuous at the phase transition. However, the second derivative, which is related to
the heat capacity

CV = −T
(
∂2A

∂T 2

)
V

, (3.138)
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M

A−A0

T > Tcoex

T = Tcoex

T < Tcoex

Figure 3.18: A sketch of the Landau free energy A as a function of the order parameter M when cubic
terms are included in the expansion. The free energy is now not the same for positive and negative
M . The phase transition is now first order, and in order for that to occur, a large free energy barrier
is needed to overcome.

is discontinuous. This is characteristic of a second-order phase transition.

You will show in one of the exercises that the Ising model with no external field is exactly the
situation depicted above by explicitly expanding the free energy.

3.8.4 First Order Phase Transition

If we relax the condition of the quartic coefficient d being positive, and instead assume that the M6

coefficient is positive, then we have the free energy expansion

A(T,M) ≈ A(T, 0) + α(T − Tch)M
2 + dM4 + fM6 (3.139)

with α, f > 0 while d < 0. This leads to a more interesting tricritical point, which you will investigate
in one of the exercises. Crucially, this time, the first derivative of the free energy is discontinuous at
the critical temperature

T = Tch +
d2

4αf
, (3.140)

so this results in a first order phase transition.

Now, let’s instead look at an important cases when A includes odd powers of M .

A(T,M) = A(T, 0) + α(T − Tch)M
2 + cM3 + dM4 + . . . (3.141)

We set α, d > 0 while c < 0. A plot of A(M) at different T is shown in figure 3.18.

The phase transition now occurs when A has two double roots. Hence, it can be solved that the
critical temperature is

T − Tch =
c2

4da
. (3.142)

The minimum jumps to M = −c/2d and a first order phase transition takes place. To prove this,
we would like to work out how Amin(T ) = A(Mmin, T ) changes with temperature. Since Mmin
also depends on the temperature, we can’t differentiate A directly. Although we can substitute the
expression of Mmin into the expression of A to obtain an explicit expression of Amin and differentiate
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(a) B > 0
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A−A0

(b) B = 0

M

A−A0

(c) B < 0

Figure 3.19: The Landau free energy of Ising model with non-zero magnetic fields at low temperatures
for different magnetic fields.

it, we will instead work it in a more clever way. Consider the total differential

dA =

(
∂A

∂M

)
V,T

dM +

(
∂A

∂T

)
V,M

dT , (3.143)

which gives the total derivative(
dA

dT

)
V

=

(
∂A

∂M

)
V,T

(
∂M

∂T

)
V

+

(
∂A

∂T

)
M,V

. (3.144)

Now since at the free energy minimum, (∂A/∂M)V,T = 0, we have(
dAmin
dT

)
V

=

(
∂A

∂T

)
M=Mmin,V

= αM2 . (3.145)

Since there is a jump of M at phase transition, the derivative of free energy minimum against the
temperature is also discontinuous, giving a first order phase transition.

Note also that in this situation, in order for a phase transition to occur, the system needs to
overcome a large free energy barrier. This is known as hysteresis. This type of phase transitions
occur when there is no symmetry between states with positive and negative order parameters, like
freezing, evaporation and the isotropic-nematic transitions. They are all first order.

Finally, let’s look at a somehow complicated system. Let’s consider the Ising model with a non-zero
external magnetic field. It is not difficult to show that

A(T,B,M) = A(T,B, 0) + a(T,B)M + b(T,B)M2 + d(T,B)M4 . . . (3.146)

This is essentially the same expression as for the B = 0 case, just with an extra linear term. The
magnetic field creates a preferred direction in the system, making it no longer symmetric about
M ↔ −M . Also, the equilibrium state at high temperature no longer has M = 0.

The free energy once again has a double well, except now slightly skewed. The local maximum is
still an unstable point. But this time around, the minima with the lower free energy is preferred over
the other one. This is the true ground state of the system. In contrast, the point which is locally, but
not globally, a minimum corresponds to a metastable state of the system. In order for the system to
leave this state, it must first fluctuate up and over the energy barrier separating the two. Thus, when
we switch the magnetic field from B > 0 to B < 0, the phase transition is first order.

At very high temperature, the double well potential is lost in favour of a single minimum. There
is a unique ground state, albeit shifted from M = 0 by the presence of the linear term a(T,B) in the
expansion above (which translates into the magnetic field B in the Ising model). The temperature
at which the metastable ground state of the system is lost corresponds to the spinodal point in our
discussion of the liquid-gas transition. This time, when we switch the direction of the magnetic field,
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Figure 3.20: The Landau free energy of an Ising model with non-zero magnetic field as temperature
changes. (a) The temperature is low and the free energy curve shows a double well. (b) This is the
spinodal where the metastable state disappears. (c) This is the phase transition temperature when
B = 0. Above this temperature, there will be no phase transition as we change B. (d) This is the
high temperature case.

T

B

Tch

Figure 3.21: The phase diagram of the Ising model.

no phase transition will occur, and similarly when the magnetic field is non-zero, there will be no
phase transition as we change the temperature.

It is worth noticing that although Landau theory is a simple and useful way of analysing phase
transitions, it is not rigorous. In particular, it makes the assumption that the state of a system is
completely determined by the minimum of the Landau free energy. However, as we have seen before,
fluctuations about the minimum are crucial in phase transitions. This problem can be fixed by a
more advanced theory called Landau–Ginzburg theory, which you can find in appendix section H.
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4 Transport Phenomena

4.1 Diffusion and Einstein Relation

At non-zero temperatures, molecules are always in motion. If they are in liquid or gas phase where
there are enough translational degrees of freedom, they will move and collide frequently and as a
result, follow highly irregular trajectories that are often called random walks. It is difficult to observe
the thermal motion of molecules directly, but large particles also undergo thermal motion. The
most famous example is the Brownian motion, which was discovered by Robert Brown and was first
rationalised by Albert Einstein. This random motion of molecules is responsible for the process that
we call diffusion. If we carefully introduce a small droplet of ink into a glass of water, then even
without stirring, the droplet will become increasingly fuzzy until the colour is uniform in the water.
The initial inhomogeneities are washed out over time.

In what follows, we will consider the simplest type of diffusion known as self-diffusion. This is
when the diffusing molecules move in a medium consisting of the same species. In experiment, we
can study self-diffusion if we can label some of the molecules without affecting their interactions with
the others by controlling their nuclear spins or isotopic composition.

The macroscopic law that describes diffusion is Fick’s first law. It states that whenever there is a
local concentration gradient of some species, then there will be a flux j proportional to the negative
of the concentration gradient. In one dimension, if the concentration of some species at a point x at
time t is c(x, t), then there will be a flux of the species given by

j(x, t) = −D ∂c

∂x
, (4.1)

where the constant of proportionality D is known as the diffusion coefficient.

Now consider a small region between x and x + δx. The change in the number of the species of
interest over a small time interval δt is

δN = Nin −Nout = [j(x)− j(x+ δx)]δt . (4.2)

By the definition of concentration in one dimension, we have
∂c

∂t
= lim

δt→0

δc

δt
= lim

δt→0
lim
δx→0

δN

δxδt

= − lim
δx→0

j(x+ δx)− j(x)

δx

= − ∂j

∂x
. (4.3)

From this, we get Fick’s second law
∂c

∂t
= D

∂2c

∂x2 , (4.4)

which is also known as the diffusion equation in one dimension.

This is a second-order linear partial differential equation. It is not difficult to solve. A particularly
important case is when the initial condition is the Dirac delta function c(x, 0) = δ(x). Then the
solution is given by

c(x, t) =
1

(4πDt)1/2
exp

(
− x2

4Dt

)
. (4.5)

This is a Gaussian of width increasing with time. However, in this course, we will not need to solve
this diffusion equation directly. Instead, we just want to find out time dependence of the mean
squared width of a concentration profile,〈

x2(t)
〉
=

∫
dxx2c(x, t) , (4.6)
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where we have assumed the concentration is normalised∫
dx c(x, t) = 1 (4.7)

so that the total particle number of the diffusion species we are interested in is always unity. We can
multiply the diffusion equation by x2 and integrate to get∫

dxx2 ∂c

∂t
= D

∫
dxx2 ∂

2c

∂x2 . (4.8)

We can move the differentiation with respect to t outside of the integration by the Leibniz integral
rule, giving

∂

∂t

∫
dxx2c ≡ ∂

∂t

〈
x2(t)

〉
= D

∫
dxx2 ∂

2c

∂x2 . (4.9)

We can apply integration by parts twice to the right-hand side to get

∂
〈
x2
〉

∂t
= D

[
x2 ∂c

∂x

]∞
−∞
− 2D [xc]

∞
−∞ + 2D

∫
dx c(x, t) . (4.10)

If the concentration and its derivative decay fast enough,14 like in the delta function case where c
decays as a Gaussian, then the previous two boundary terms vanish, and we get

∂
〈
x2(t)

〉
∂t

= 2D , (4.11)

or equivalently 〈
x2(t)

〉
= 2Dt . (4.12)

This is the Einstein relation, relating the diffusion coefficient D to the width of the concentration
profile. This can easily be generalised to 3D systems to give〈

x2(t)
〉
= 6Dt . (4.13)

It should be realised that, whilst D is a macroscopic transport coefficient,
〈
x2
〉

has a microscopic
interpretation: it is the mean squared distance over which the labelled molecules have moved in a
time interval t. If we can follow the motion of individual molecules, we can then determine D from
a knowledge of the particle trajectories.

4.2 Random Walk Model of Diffusion

Let’s consider a simplified model of diffusion, in which both space and time are discretised. We
assume that the particles live on an infinite 1D array of points, and they jump to a neighbouring
point at a rate Γ per unit time. At every jump, the particle will move a distance ℓ, either to the
left or to the right, with equal probability, and the direction of each jump is independent. Then the
average distance of each jump is

⟨∆x1⟩ = 0.5× ℓ− 0.5× ℓ = 0 (4.14)

as one might expect from symmetry: the particles do not move on average. However, the mean
squared displacement of the particle after one jump is non-zero,〈

(∆x1)
2
〉
= 0.5× ℓ2 + 0.5× (−ℓ)2 = ℓ2 . (4.15)

14The concentration should decay faster than x−1 in order for the
∫
dx c to converge, and so these boundary terms

should vanish.
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Now let’s consider what will happen after time t. By then, the molecule will have attempted M = Γt
jumps on average, and the mean displacement will be

⟨∆x⟩ =

〈
M∑
i=1

∆xi

〉
=

M∑
i=1

⟨∆xi⟩ = 0 , (4.16)

where ∆xi is the displacement of the ith jump. Next, we have

〈
x2(t)

〉
=

〈(
M∑
i=1

∆xi

)2〉
=

〈
M∑
i=1

M∑
j=1

∆xi∆xj

〉
=

M∑
i=1

M∑
j=1

⟨∆xi∆xj⟩ . (4.17)

As different jumps are uncorrelated, we have

⟨∆xi∆xj⟩ =
1

4
[ℓ× ℓ+ ℓ× (−ℓ) + (−ℓ)× ℓ+ (−ℓ)× (−ℓ)] = 0 (4.18)

for i ̸= j, while if i = j, ⟨∆xi∆xj⟩ =
〈
(∆xi)

2
〉
= ℓ2. Therefore,

〈
x2(t)

〉
=

M∑
i=1

〈
(∆xi)

2
〉
= Mℓ2 = Γtℓ2 . (4.19)

We can relate this to the Einstein relation

∂
〈
x2(t)

〉
∂t

= 2D , (4.20)

and so we get the diffusion coefficient for a random walk model

D =
1

2
Γℓ2 . (4.21)

This relates the macroscopic diffusion coefficient D to the microscopic jump frequency Γ and jump
distance ℓ.

We can use this to model the diffusion of gas molecules in 3D. If the molecules move at a typical
thermal speed v between collisions, and the mean free path between collisions is λ (both of which
can be obtained from kinetic theory), then we can model the movement of a molecule between each
collision as a single jump in random walk, with mean jump distance in any direction given by15

ℓ2 ≈ λ2

3
(4.22)

and mean jumping rate
Γ ≈ v

λ
. (4.23)

Then the diffusion coefficient can be estimated to be

D =
1

2
Γℓ2 ≈ 1

6
vλ . (4.24)

4.3 The Green–Kubo Relation

The above random walk is a highly simplified model. Molecules in liquid and gas do not move by
jumps. Rather, their velocity changes continuously in time. If a molecule has an initial x-velocity
vx(0) at time t = 0, then its velocity will still be close to vx(0) at a short time afterwards before

15We have a factor 1
3

because the walk is in three dimensions, which probably does not matter for an order-of-
magnitude estimate.
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t∗

⟨v(0) ·v(t∗)⟩ /
〈
v2(0)

〉

0

0.5

1 initially highly
correlated

cage effect

decay to zero

Figure 4.1: A schematic plot of velocity autocorrelation functions for liquid. For short time t∗,
the velocity is highly correlated to its initial value since the velocity of a particle does not change
significantly before colliding with another particle. In a liquid, particles are often surrounded by a
cage of other particles, and so we often see an anti-correlation after a short time, where the particle
has bounced back after hitting the cage and is travelling in the opposite direction from the one it
started with. In the long time limit, the particle has collided with many other particles, which has
effectively randomised its velocity vector, so it is no longer correlated with the initial value. The
velocity autocorrelation function decays to zero.

it collides with another molecule. ‘Short’ in this context depends on the conditions. For a water
molecule at room temperature, it takes around 10−13 s before a molecule forgets about its initial
velocity.

The displacement ∆r(t) that we are interested in is simply the time integral of the velocity of the
labelled particle,

∆r(t) =

∫ t

0

dt′ v(t′) . (4.25)

The Einstein relation (4.11) allows us to relate the diffusion coefficient in terms of the particle
velocities, so we start from

D =
1

2
lim
t→∞

∂
〈
x2(t)

〉
∂t

, (4.26)

where we have only considered the x component of the mean squared displacement for convenience.16

We can write x(t) as the time integral of the x-component of the labelled particle velocity, so

〈
x2(t)

〉
=

〈(∫ t

0

dt vx(t
′)

)2
〉

=

∫ t

0

dt′
∫ t

0

dt′′ ⟨vx(t′)vx(t′′)⟩ . (4.27)

The quantity ⟨vx(t′)vx(t′′)⟩ is called the velocity autocorrelation function. It measures the average
correlation between the velocity of a particle at times t′ and t′′. A typical velocity autocorrelation
function is shown in figure 4.1.

We can simplify this integral

〈
x2(t)

〉
=

∫ t

0

dt′
∫ t′

0

dt′′ ⟨vx(t′)vx(t′′)⟩+
∫ t

0

dt′
∫ t

t′
dt′′ ⟨vx(t′)vx(t′′)⟩

=

∫ t

0

dt′
∫ t′

0

dt′′ ⟨vx(t′)vx(t′′)⟩+
∫ t

0

dt′′
∫ t′′

0

dt′ ⟨vx(t′)vx(t′′)⟩

= 2

∫ t

0

dt′
∫ t′

0

dt′′ ⟨vx(t′)vx(t′′)⟩ . (4.28)

16We set the limit t → ∞ to ensure the motion of the molecule is diffusive rather than ballistic. You can see more
on this discussion in one of the exercises.
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The velocity autocorrelation function is an equilibrium property of the system, since it describes
the average correlation between velocities at different times along an equilibrium trajectory. As
equilibrium properties are time invariant, we can shift the time origin by an arbitrary amount ∆t, so
that

⟨vx(t′)vx(t′′)⟩ = ⟨vx(t′ +∆t)vx(t
′′ +∆t)⟩ . (4.29)

We therefore have
⟨vx(t′)vx(t′′)⟩ = ⟨vx(t′ − t′′)vx(0)⟩ , (4.30)

so 〈
x2(t)

〉
= 2

∫ t

0

dt′
∫ t′

0

dt′′ ⟨vx(t′ − t′′)vx(0)⟩ . (4.31)

Finally using the Einstein relation, we can write

D = lim
t→∞

∂

∂t

∫ t

0

dt′
∫ t′

0

dt′′ ⟨vx(t′ − t′′)vx(0)⟩

= lim
t→∞

∫ t

0

dt′′ ⟨vx(t− t′′)vx(0)⟩ . (4.32)

By introducing the variable τ = t− t′′, we have

D =

∫ ∞

0

dτ ⟨vx(τ)vx(0)⟩ (4.33)

known as the Green–Kubo relation, which relates the diffusion coefficient D to the velocity
autocorrelation function. In an isotropic 3D system, this becomes

D =
1

3

∫ ∞

0

dτ ⟨v(τ) ·v(0)⟩ . (4.34)

More generally, a Green–Kubo relation is any equation that relates an integral of a time-correlation
function to a transport coefficient, such as shear viscosity, thermal conductivity and electrical
conductivity etc. It should be emphasised that for classical systems, the Green–Kubo relation for D
and the Einstein relation

〈
x2
〉
= 2Dt are strictly equivalent.

4.4 Langevin Equation and Stokes–Einstein Relation

The Green–Kubo expression for the diffusion coefficient provides a way of estimating the diffusion
coefficient of particles dissolved in viscous fluid, since in such cases, we can make a few reasonable
assumptions to compute the velocity autocorrelation function. In particular, we will assume the
following:

• When a particle is subjected to a constant external force F, the average drift velocity will be
given by

⟨v⟩ = F

γ
, (4.35)

where γ is the friction coefficient, and a related quantity is µ = 1/γ known as the mobility.

• If you put some fluid between two parallel plates of area A separated by h and move the two
plates relative to each other with constant relative velocity v, then usually there will be a
constant velocity gradient

∂u

∂z
=

v

h
(4.36)
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stationary plate

moving plate velocity v

h fluid ∂u
∂z

= v
h

Figure 4.2: When two parallel plates filled with fluid are moving with relative velocity v, the retarding
force will be proportional to both the area of the plates and the velocity gradient, with proportionality
constant known as the viscosity. To avoid boundary effects in experiments, this is usually done using
rotating discs.

within the fluid. The magnitude of the force F that has to be exerted on the top plate to
maintain the relative motion is given by

F = ηA
v

h
, (4.37)

where the constant of proportionality η is known as the viscosity. We will assume that our fluid
has a constant viscosity η.

• For a spherical particle with a radius a moving in a fluid with viscosity η, we can approximate
the friction coefficient γ by the Stokes expression

γ = 6πηa . (4.38)

This assumes no slippage of the fluid at the surface of the sphere.

• The particles experience random collisions with their neighbours. The effect of these collisions
is to exert a random force FR(t) on our particle. We will assume that FR(t) for t > 0 is not
correlated with the velocity of the particle at time t = 0.

For simplicity, we again only consider the x component of the motion. The above assumptions
allow us to write, by Newton’s second law,

mv̇x(t) + γvx(t) = FR
x (t) . (4.39)

This is known as the Langevin equation.

We can multiply both sides of the Langevin equation (4.39) by v(0) and use the assumption〈
vx(0)F

R
x (t)

〉
= 0 to obtain the condition of the velocity correlation function

m ⟨vx(0)v̇x(t)⟩+ γ ⟨vx(0)vx(t)⟩ = 0 . (4.40)

This is an easy ordinary differential equation with solution

⟨vx(0)vx(t)⟩ =
〈
vx(0)

2
〉
exp

(
−γt

m

)
. (4.41)

At equilibrium, the velocities of the particles are distributed according to the Maxwell distribution,
with

〈
v2x(0)

〉
= kBT/m.17 We then have

D =

∫ ∞

0

dt
kBT

m
exp

(
−γt

m

)
=

kBT

γ
. (4.42)

17Or, equally well, by the equipartition of energy.
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If we use the Stokes approximation for γ, we get

D =
kBT

6πηa
, (4.43)

known as the Stokes–Einstein relation. It is extremely useful and it correctly reproduces the
experimental fact that for many liquids, the product Dη is very nearly proportional to the
temperature, even when D and η each vary orders of magnitude. It is also a good way to determine
Boltzmann’s constant experimentally. The experiment was done in 1909 by Jean-Baptiste Perrin and
won him the 1926 Nobel prize.

The Stokes–Einstein relation actually has profound implications. It tells us diffusion and viscosity
are closely related — their microscopic origins are both the random bombardment of molecules. It
is also an important example of the fluctuation-dissipation theorem. The fluctuations of the particle
as it undergoes its random walk are related to the drag force (or dissipation of momentum) that the
particle feels as it moves through the fluid.

4.5 The Einstein–Smoluchowski Relation

There is another more general way of deriving the relation between the mobility and the diffusion
coefficient D. Consider a solution in a closed volume V . If there is a concentration gradient of the
dissolved species, then this will result in a diffusion flux j as predicted by Fick’s first law. The diffusive
flux equals the product of the number density and the average drift velocity of these particles,

j = ρ ⟨v⟩ . (4.44)

Now suppose that the dissolved particles are subject to an external potential U(x). If this potential
is not constant, then there will be a net force acting on the particles, given by

fx = −∂U(x)

∂x
, (4.45)

where we have again reduced the problem to one dimension for simplicity. The average drift velocity
of a particle due to this force is

⟨vx⟩ = µfx = −µ∂U(x)

∂x
. (4.46)

As the particles move under the influence of this force, the density becomes inhomogeneous. But if
the particle number density is not constant, there is also a diffusion flux. When the system reaches
equilibrium, the flux due to diffusion and the flux due to external force will balance

0 = jtot = ρ(x) ⟨vx⟩ −D
∂ρ(x)

∂x
= −ρ(x)µ∂U(x)

∂x
−D

∂ρ(x)

∂x
. (4.47)

At equilibrium, the probability of finding a particle at a position x for an inhomogeneous system is
proportional to the Boltzmann factor,

ρ(x) = ρ0 exp

(
−U(x)

kBT

)
. (4.48)

Therefore, we have
−ρ(x)µ∂U(x)

∂x
+

D

kBT
ρ(x)

∂U(x)

∂x
= 0 . (4.49)

This equation is satisfied for all x if
µ =

D

kBT
, (4.50)

which is known as the Einstein–Smoluchowski relation. We have recovered the same expression as
obtained from the Langevin equation, but we have made fewer assumptions along the way. Moreover,
this approach is more easily generalisable to include external fields.

A more systematic, formal approach to fluctuation-dissipation relations and the link between
transport coefficients and equilibrium statistical mechanics is explored in appendix section I
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5 Polymers

In the last chapter, we found that the distribution of displacements of particles under diffusion is given
by a Gaussian function. Rather interestingly, the same distribution describes the end-to-end distance
of a polymer chain consisting of non-interacting segments. The similarity is more than superficial: it
arises from the random walk nature of both phenomena.

5.1 Size of an Ideal Polymer

Let’s consider a polymer that consists of N segments of length ℓ. When the polymer is fully stretched
into a straight line, the total length of the polymer chain is

Rc = Nℓ , (5.1)

known as the contour length of the polymer. However, a real polymer molecule is rarely completely
straight: when it coils up, its size will be less than Rc. We will model the polymer as fully flexible,
so that every segment can rotate freely around its connecting point to the previous segment. Of
course this is a huge simplification, but in practice, many polymers do behave like a freely joined
chain, although the length ℓ is larger than the size of a monomer — it is the length at which the
orientation of the polymer chain becomes uncorrelated. In addition, we will make the assumption
that the polymer is ideal, such that different segments do not interact. We have seen that under θ
conditions, the polymer segments do behave ideally, and this can be used as a rough estimate of the
behaviour of non-ideal polymers.

We want to find out the average end-to-end distance of an ideal polymer. If we denote the vector
pointing from the beginning to the end point of the ith segment by ℓi such that ∥ℓi∥ = ℓ, then the
total end-to-end vector is

Ree =

N∑
i=1

ℓi . (5.2)

We would like to compute its average. However, by symmetry, a polymer segment has equal
probability to point in any orientation, so ⟨ℓi⟩ = 0. As a result, the average end-to-end distance
of a polymer is

⟨Ree⟩ =

〈
N∑
i=1

ℓi

〉
=

N∑
i=1

⟨ℓi⟩ = 0 (5.3)

as one might predict by symmetry. Just like in the case of diffusion, a better measure for the size of
a coiled ideal polymer is the mean squared end-to-end distance

〈
R2

ee
〉
,

〈
R2

ee
〉
=

〈(
N∑
i=1

ℓi

)2〉
=

〈(
N∑
i=1

ℓi

)
·
(

N∑
i=1

ℓi

)〉

=

〈
N∑

i,j=1

ℓi · ℓj

〉
=

N∑
i,j=1

⟨ℓi · ℓj⟩ = ℓ2
N∑

i,j=1

⟨cos θij⟩ . (5.4)

For different segments i ̸= j, the orientations are uncorrelated, so ⟨cos θij⟩ = 0. However, for i = j,
θij = 0 and hence cos θii = 1. As a consequence, all the cross-terms with i ̸= j vanish and we have〈

R2
ee
〉
= Nℓ2 . (5.5)

The root mean squared end-to-end distance is therefore√〈
R2

ee
〉
=
√
Nℓ . (5.6)
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5.2 Probability Distribution for the End-to-End Distance

We can actually do better than simply calculating the mean squared end-to-end distance of a polymer:
we can actually compute the probability distribution of Ree. However, to simplify matters, we will
only consider the one-dimensional case. Again, consider N freely joined segments of length ℓ. We
denote the number of segments pointing right by NR, and the number pointing to the left by NL.
We denote their difference NR −NL =: D and clearly the end-to-end distance is Xee = Dℓ. We can
compute the probability of finding the chain in a conformation with a given value of D. The total
number of conformations of N polymer segments is 2N , and the number of ways in which we can
have NR segments pointing to the right and NL segments pointing to the left is

Ω(NR, NL) =
N !

NR!NL!
=

N !

[ 12 (N +D)]![ 12 (N −D)]!
. (5.7)

Hence, the probability of having a conformation with some D is

Prob(N,D) =
N !

[ 12 (N +D)]![ 12 (N −D)]!

(
1

2

)N

. (5.8)

We can expand this using Stirling’s approximation

lnx! = x lnx− x+ ln
√
2πx+O

(
1

x

)
(5.9)

to get

ln Prob(N,D) = −1

2
N ln

(
1− D2

N2

)
+ ln

√
2πN

− ln
√
π(N +D)− ln

√
π(N −D)− 1

2
D ln

(
1 + D

N

1− D
N

)
(5.10)

for large N . For D/N ≪ 1, we can use Taylor expansion ln(1 ± x) = ±x + O(x2) when |x| ≪ 1 to
write

ln Prob(N,D) ≈ −D2

2N
− ln

√
πN/2 , (5.11)

from which we have
Prob(N,D) =

1√
πN/2

exp

(
−D2

2N

)
. (5.12)

However, if you try to integrate this expression, you will find that this is not properly normalised:∫ ∞

−∞
dD Prob(D,N) = 2 . (5.13)

What is wrong with this expression? Notice that if in order to keep NR + NL = N fixed, if NR

increases by 1, then NL should decrease by 1 — this leads to a change in D by 2. When N is even,
then D can only be even, and if N is odd, then D can only be odd. This means that half of the
probability distribution of D should actually be 0.

Prob(N,D) =

 1√
πN/2

exp
(
−D2

2N

)
if N ≡ D (mod 2)

0 otherwise .
(5.14)

However, in practice, it is more often to just halve the probability density and write

Prob(D) =
1√
2πN

exp

(
−D2

2N

)
(5.15)
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so that it is properly normalised and gives the probability of D being in some interval from D
to D + ∆D correctly when N is large so that we can effectively treat D as a continuum. From
this Gaussian distribution, we can also deduce the mean squared end-to-end distance of the one-
dimensional chain to be 〈

X2
ee
〉
= ℓ2

〈
D2
〉
= Nℓ2 (5.16)

as obtained previously.

5.3 Thermodynamics of Ideal Polymers

Finally we can make a link to the thermodynamics. From the statistical mechanical definition of the
entropy, we have

S(D) = −D2kB
2N

+ const. (5.17)

where const. accounts for all terms that are independent of D. This expression is valid for small
D. The end-to-end elongation of the polymer is Xee = Dℓ, so the entropy of a polymer chain with
end-to-end distance Xee is

S(Xee) = −
X2

eekB
2Nℓ2

+ const. (5.18)

Since the polymer is ideal, there is no energetic preference for any value of Xee, and the internal energy
E only depends on the temperature, just as for an ideal gas. By the first law of thermodynamics,

dE = d̄w + d̄q . (5.19)

The heat transfer is given by the Clausius expression d̄q = TdS and the work done to change the
length of a polymer is d̄w = FdXee, where F is the external force applied to stretch the polymer.
We then have

dE = TdS + FdXee , (5.20)

and so at constant temperature,(
∂E

∂Xee

)
T

= 0 = T

(
∂S

∂Xee

)
T

+ F , (5.21)

and hence
F = −T

(
∂S

∂Xee

)
T

. (5.22)

By our expression of the entropy, we get

F =
kBT

Nℓ2
Xee . (5.23)

The restoring force −F is linear in the extension Xee when the extension is small: Xee ≪
√
Nℓ

— just like a normal spring. But unlike a metal spring, the spring constant is proportional to
temperature. This is exactly the force you feel when stretching a polymer, like a rubber band, and
rather surprisingly, this force is purely entropic!

We can combine (5.16) and (5.23) to get an expression of the spring constant of an ideal polymer

κ =
kBT

⟨X2
ee⟩

. (5.24)

In the post-lecture question, you will show that this result is actually also valid for non-ideal polymers.

Finally, let’s consider what will happen if we stretch a polymer adiabatically, i.e. without heat
exchange to the environment. For a reversible process, this means that the entropy is held constant,
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as dqrev = TdS. The internal energy is clearly a function of T and Xee, so by chain rule, the total
derivative of energy against the extension is(

∂E

∂Xee

)
S

=

(
∂E

∂T

)
Xee

(
∂T

∂Xee

)
S

+

(
∂E

∂Xee

)
T

. (5.25)

By comparing to the fundamental equation

dE = TdS + FdXee , (5.26)

we have (
∂E

∂Xee

)
S

= F , (5.27)

and we also know that by definition, (
∂E

∂T

)
Xee

= CXee , (5.28)

the heat capacity at constant extension. For an ideal polymer, (∂E/∂Xee)T = 0, and so we have(
∂T

∂Xee

)
S

=
F

CXee

=
kBT

CXeeNℓ2
Xee . (5.29)

As the heat capacity is always positive, it follows that the temperature increases when the polymer
is stretched adiabatically, and decreases when the polymer is released.
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Appendices

A Thermodynamics

Thermodynamics is a remarkable discipline. It provides us with relations between measurable
quantities such as (∂S/∂V )T = (∂P/∂T )V . These relations are valid for any substance. But, precisely
for this reason, thermodynamics contains no information whatsoever about the underlying microscopic
structure of a substance. Thermodynamics preceded statistical mechanics and quantum mechanics,
yet not a single thermodynamic relation had to be modified in light of these later developments. The
reason is simple: thermodynamics is a phenomenological science. It is based on the properties of
matter as we observe them, not upon any theoretical ideas that we may have about matter.

A.1 The First Law

The first law of thermodynamics expresses the empirical observation that energy is conserved, even
though it can be converted into various forms. The internal energy of a system can be changed by
either performing work on the system or by transferring an amount of heat.

Law (First law of thermodynamics). Let d̄q be the heat transferred to a system and let d̄w be
the work done to the system. Then the change in the internal energy of the system is given by

∆E = d̄q + d̄w . (A.1)

A.2 The Second Law

The second law is based on experimental observations.

Law (Kelvin’s second law). It is impossible to make an engine that converts heat from a single
heat bath (i.e. a large reservoir at equilibrium) into work.

This observation is equivalent to another equally empirical observation.

Law (Clausius’ second law). Heat can never flow spontaneously (i.e. without work being
performed) from a cold reservoir to a warmer reservoir.

This statement is actually a bit more subtle than it seems because, before we have defined temperature,
we can only distinguish hotter and colder by looking at the direction of heat flow. What the second
law says is that it is never possible to make heat flow spontaneously in the “wrong” direction. How
do we get from such a seemingly trivial statement to something as abstract as entropy? This is most
easily achieved by introducing the concept of a reversible heat engine.

A.2.1 Heat Engines

A reversible engine is, as the word suggests, an engine that can be operated in reverse. During one
cycle (i.e. a sequence of steps that is completed when the engine is returned into its original state), this
engine takes in an amount of heat q1 from a hot reservoir, converts part of it into work w and delivers
the remaining amount of heat q2 to a cold reservoir. The reverse process is that, by performing an
amount of work w, we can take an amount of heat q2 from the cold reservoir and deliver an amount of
heat q1 to the hot reservoir. Reversible engines are an idealisation because in any real engine, there
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cold reservoir

hot reservoir

q1 q′1

q2 q′2

wengine A engine A′

Figure A.1: If the efficiencies of the two heat engines are not equal, then this setup violates the second
law of thermodynamics.

will be additional heat losses. However, the ideal reversible engine can be approximated arbitrarily
closely by a real engine if, at every stage, the real engine is sufficiently close to equilibrium. As the
engine is returned to its original state at the end of one cycle, its internal energy E has not changed.
Hence, the first law tells us that ∆E = q1 − (w + q2) = 0 or q1 = w + q2.

Now consider the efficiency of the engine η := w/q1, i.e. the amount of work delivered per amount
of heat taken in. At first, one might think that η depends on the precise design of our reversible
engine, but this turns out not to be the case: η is the same for all reversible engines operating between
the same two reservoirs. To demonstrate this, suppose that we have another reversible engine with
efficiency η′ that takes in an amount of heat q′1 from the hot reservoir, delivers the same amount of
work w, and then delivers an amount of heat q′2 to the cold reservoir, as shown in figure A.1. Suppose
η ̸= η′, then we use the work generated by the engine with the higher efficiency (say η) to drive the
second engine (with efficiency η′) in reverse. The amount of heat delivered to the hot reservoir by
the second engine is

q′1 =
w

η′
=

q1η

η′
. (A.2)

As η′ < η by construction, it follows that q′1 > q1. Hence there is a net heat flow from the cold
reservoir into the hot reservoir, which contradicts the second law of thermodynamics (in the form
“heat can never spontaneously flow from a cold to a hot reservoir”). We have therefore proved by
contradiction that the efficiency of all reversible heat engines operating between the same reservoirs
is identical.

A.2.2 Absolute Temperatures

Since η does not depend on the specific design of a reversible engine, the only variables it can depend
on are the temperatures t1 and t2 of the reservoirs it connects, i.e. η = η(t1, t2). We are denoting these
temperatures with a lowercase t for the time being because we have not yet defined precisely what we
mean by the absolute temperature; the “temperatures” defined here merely need to be well-ordered
(i.e. monotonic) and serve to identify which reservoir is colder and which is hotter.

For further convenience, we will also consider the quantity

R12(t1, t2) := 1− η(t1, t2) =
q1 − w

q1
=

q2
q1

. (A.3)

Suppose now that we have a reversible engine that consists of two stages: engine 1 working between
reservoirs A and B, and engine 2 working between reservoirs B and C, as shown in the figure. The
three reservoirs are at temperatures tA, tB and tC , respectively. We have RAB and RBC

RAB =
q1B
q1A

, and RBC =
q2C
q2B

.
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reservoir C

reservoir B

reservoir A

engine 1RAB =
q1B
q1A

engine 2RBC =
q2C
q2B

engine 3 RAC =
q3C
q3A

Rtot =
q2C
q1A

Since by construction, the combined engine 1+2 is a reversible engine working in two stages, reservoir
B must be neither a source nor a sink of energy, otherwise the overall efficiency of the engine would
depend on how many such stages it is made up of, but we saw earlier that the efficiency of every
reversible engine is the same. We must therefore conclude that q1B = q2B . The overall value of
Rtot = 1− ηtot for the combined reversible engine is thus given by

Rtot =
q2C
q1A

= RABRBC . (A.4)

Suppose that in addition, we have another reversible engine, engine 3, that works directly between
reservoirs A and C, with

RAC =
q3C
q3A

. (A.5)

Since the engines are reversible, engine 3 and the combined engine 1 + 2 must be equally efficient, as
we showed above. This means that

RABRBC = RAC . (A.6)

However, recall that these ratios are functions solely of the temperatures of the reservoirs. The
right-hand side does not depend on tB , and so the product of RAB and RBC must therefore result in
the cancellation of this functional dependence. The above equality can only hold in general provided
that

RAB =
f(tB)

f(tA)
, RBC =

f(tC)

f(tB)
and RAC =

f(tC)

f(tA)
, (A.7)

where f(t) is some function of our previously defined temperature t.

What we do next is to introduce an absolute (or thermodynamic) temperature T given by T = f(t)
so that

RAB =
qB
qA

=
TB

TA
. (A.8)

This well-defines the temperatures! We can first claim a certain object has a temperature T0. Then
to measure the temperature of another object, we only need to construct a reversible heat engine
between them and measure the efficiency η. Then the temperature ratio of the two objects would be
R = 1− η.

The absolute temperature is defined up to an overall scaling constant. In practice, this is fixed
such that 1 unit in the absolute (Kelvin) scale is equal to 1 degree Celsius. But that choice is of
course purely historical.
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entropy S0

heat exchange

reversible
work w

heat −w

entropy S1

insulate walls
remove piston

spontaneous
change

entropy S0

Figure A.2: To drive a system away from equilibrium, e.g. by changing the density, we need to do
work. If we do this work reversibly and maintain the total energy of the system, this entails a loss
of heat from the system. Hence S1 < S0. When we remove the constraint, the system spontaneously
returns to equilibrium and its entropy is once again S0. For spontaneous changes, ∆S > 0.

A.2.3 Entropy

The reason we derived everything above is to introduce the entropy. To do so, we rewrite (A.8) as
qA
TA

=
qB
TB

, (A.9)

where qA is the heat that flows in reversibly at the high temperature TA, and qB is the heat that
flows out reversibly at the low temperature TB . We see therefore that, during a complete cycle,
the difference between qA/TA and qB/TB is zero. Recall that, at the end of a cycle, the internal
energy of the system has not changed. Now (A.9) tells us that there is also another quantity that we
call entropy and that we denote by S that is unchanged when we restore the system to its original
state. In the language of thermodynamics, we call S a state function. We do not know what S is,
but we do know how to compute its change. In the above example, the change in S was given by
∆S = (qA/TA) − (qB/TB) = 0. In general, the change in entropy of a system due to the reversible
addition of an infinitesimal amount of heat δqrev from a reservoir at temperature T is

δS =
δqrev
T

. (A.10)

We also note that S is extensive. That means that the total entropy of two non-interacting systems
is equal to the sum of the entropies of the individual systems. Consider a system with a fixed number
of particles N and a fixed volume V . If we transfer an infinitesimal amount of heat δq to this system,
then the change in the internal energy of the system, dE, is equal to δq. Therefore(

∂S

∂E

)
V,N

=
1

T
. (A.11)

From these, we can get the most famous, albeit not most intuitively obvious, statement of the
second law of thermodynamics:

Law (Second law of thermodynamics). Any spontaneous change in a system that exchanges
neither heat nor particles with its environment can never lead to a decrease of the entropy.

Hence, at equilibrium, the entropy of an isolated system is at a maximum.

As an example, let us consider a system with an energy E, volume V and number of particles
N that is at equilibrium. The entropy of this system is S0(E, V,N). Suppose we wish to change
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something in this system; for instance, we increase the density in one half and decrease it in the
other. As the system was at equilibrium, this change does not occur spontaneously; in order to effect
this change, we must perform a certain amount of work w, for instance by placing a piston in the
system and moving it. Let us perform this work reversibly in such a way that E, the total energy of
the system, stays constant, as do V and N . The first law tells us that we can only keep E constant
if, while we do the work, we allow an amount of heat q to flow out of the system, such that −q = w.
However, when an amount of heat −q flows out of the system, (A.10) tells us that the entropy S of
the system must decrease: S1(E, V,N) < S0(E, V,N).

Having completed the change in the system, we insulate the system thermally from the rest of
the world, and we remove the constraint that kept the system in its special constrained state. In our
piston example, this might entail making a hole in the piston separating the two parts of the system.
Now the system goes back spontaneously and irreversibly to equilibrium. However, since the volume
is fixed, no work is done, and since the system is thermally insulated, no heat is transferred. Hence
the final energy E is equal to the original energy, and V and N are also unchanged. This means
that the system is now back in its original equilibrium state and its entropy is once more equal to
S0(E, V,N).

The entropy change during this spontaneous change is equal to ∆S = S0 − S1. But, as S1 < S0,
it follows that ∆S > 0.

A.3 The Third Law

From this point on, we can derive all of thermodynamics, except one law — the so-called third law
of thermodynamics.
Law (Third law of thermodynamics). At T = 0, the entropy of the equilibrium state of a pure,
perfectly crystalline substance equals zero.

The third law is not nearly as fundamental as the first two, and in any case, as discussed in the main
text, statistical mechanics gives us a more direct interpretation of its meaning.

A.4 Fundamental Equations

From the first law of thermodynamics, we write, in infinitesimal form

dErev = d̄qrev + d̄wrev . (A.12)

If the system only does reversible PV work, then d̄wrev = −PdV . For reversible processes, the
Clausius inequality, dS ≥ d̄q/T is an equality (A.10); this is a statement of the second law of
thermodynamics. Thus we can write dErev = TdS − PdV . Since the internal energy is a state
function, this equation applies between any equilibrium state, not just along reversible pathways.
The equation is known as the fundamental equation for the internal energy.

A.4.1 Legendre Transforms

Consider a general function f(x, y), whose total differential is

df =

(
∂f

∂x

)
y

dx+

(
∂f

∂y

)
x

dy = udx+ vdy . (A.13)

Since u is the derivative of f with respect to x, we say that u and x are conjugate variables. Then,
consider the function F = f − (ux), whose differential is

dF = df − d(ux) = vdy − xdu . (A.14)
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The function F is known as the Legendre transform of f . Evidently, F remains a function of y, but
is now a function of u, the conjugate pair of x, rather than of x itself.

To see how this formalism can be applied to thermodynamics, consider the enthalpy. When you
were first introduced to it in Part IA, we said that we wanted a state function corresponding to the
heat flow at constant pressure. But how do we know how to define it? The enthalpy is the appropriate
measure of “energy” for a system at constant pressure rather than constant volume, so we would like
to convert E = E(S, V ) into H = H(S, P ) so that P is a natural variable of our function H that we
can control, and V is a derived property. The enthalpy is the Legendre transform of E, defined as

H = E + PV (A.15)
so that

dH = TdS + V dP . (A.16)
Similarly, we may change the natural variable from S to T for internal energy and enthalpy, giving
Helmholtz free energy A = A(T, V ) and Gibbs free energy G = G(T, P ) defined by Legendre transforms

A = E − TS , (A.17)
G = H − TS , (A.18)

so that we have the fundamental equations
dA = −SdT − PdV (A.19)
dG = −SdT + V dP . (A.20)

The above relations are for the cases where the number of particles N is fixed. If the number of
particles can also change, we need to add a further term +µdN to the above fundamental equations,
where µ is the chemical potential. This allows us to define further Legendre transforms to change the
natural variables from N to µ. The one we are interested in is the Grand potential

Φ = E − TS −Nµ , (A.21)
so that

dΦ = −SdT − PdV −Ndµ . (A.22)

This completes the definition of the five most common thermodynamic potentials: E,H,A,G,Φ.
More thermodynamic potentials can be defined by doing further Legendre transforms, but they are
of less interest.

A.4.2 Maxwell Relations

Schwarz’s theorem guarantees that if f = f(x, y, . . . ) have continuous second partial derivatives, then
∂

∂x

(
∂f

∂y

)
=

∂

∂y

(
∂f

∂x

)
. (A.23)

Since the fundamental equations are exact differentials, we can apply the Schwarz’s theorem to our
thermodynamic potentials. For example, from the fundamental equation of the internal energy

dE = TdS − PdV + µdN , (A.24)
we have [

∂

∂V

(
∂E

∂S

)
V

]
S

=

[
∂

∂S

(
∂E

∂V

)
S

]
V

, (A.25)

which gives the relation (
∂T

∂V

)
S

= −
(
∂P

∂S

)
V

. (A.26)

We can get a lot more relations like this from the fundamental equations of different thermodynamic
potentials, using the symmetry of partial derivatives with respect to different variables. They are
called the Maxwell relations. They are not worth memorising as they can be easily derived.
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A.4.3 Euler Relations

Since all natural variables of the internal energy E are extensive quantities,

αE(N,V, S) = E(αN,αV, αS) (A.27)

for α ∈ R. The total differential is now

d(αE) =

(
∂(αE)

∂(αN)

)
αV,αS

d(αN) +

(
∂(αE)

∂(αV )

)
αN,αS

d(αV ) +

(
∂(αE)

∂(αS)

)
αN,αV

d(αS) . (A.28)

Differentiating both sides with respect to α gives(
∂(αE)

∂α

)
N,V,S

=

(
∂(αE)

∂(αN)

)
αV,αS

(
∂(αN)

∂α

)
N,V,S

+

(
∂(αE)

∂(αV )

)
αN,αS

(
∂(αV )

∂α

)
N,V,S

+

(
∂(αE)

∂(αS)

)
αN,αV

(
∂(αS)

∂α

)
N,V,S

. (A.29)

Simplify this derivative and set α = 1 gives

E =

(
∂E

∂N

)
V,S

N +

(
∂E

∂V

)
N,S

V +

(
∂E

∂S

)
N,V

S

= µN − PV + TS . (A.30)

This is the Euler relation.18

Substituting the Euler relation into the expressions for the other main potentials gives

A = −PV + µN (A.31)
H = TS + µN (A.32)
G = µN (A.33)
Φ = −PV . (A.34)

This is essentially why we said the chemical potential µ is equal to the Gibbs energy per particle.

We may differentiate G = µN to get dG = Ndµ + µdN . From the fundamental equation
dG = −SdT + V dP + µdN , we can get the Gibbs–Duhem relation

Ndµ = V dP − SdT . (A.35)

B From Quantum to Classical

It is possible to derive the classical partition function directly from the quantum partition function
without resorting to hand-waving. It will also show us why the factor of 1/h sits outside the partition
function. The derivation is a little tedious, but worth seeing. (Similar techniques are useful in later
courses when you first meet the path integral). To make life easier, let’s consider a single particle
moving in one spatial dimension. It has position operator x̂, momentum operator p̂ and Hamiltonian

Ĥ =
p̂2

2m
+ V (x̂) . (B.1)

18It was not discovered by Euler in an investigation of thermodynamics, which did not exist in his day. It is called
the Euler relation just because Euler’s theorem on homogeneous functions leads to it.
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If |n⟩ is the energy eigenstate with energy En, the quantum partition function is

Q =
∑
n

e−βEn =
∑
n

〈
n
∣∣∣e−βĤ

∣∣∣n〉 , (B.2)

where the exponential of an operator X̂ is defined via the expansion

eX̂ =

∞∑
n=0

X̂n

n!
. (B.3)

In what follows, we’ll make liberal use of the fact that we can insert the identity operator anywhere
in this expression. We have the resolution of the identities in the position eigenstates |x⟩ and the
momentum eigenstates |p⟩:

1 =

∫
dx |x⟩ ⟨x| and 1 =

∫
dp |p⟩ ⟨p| . (B.4)

We insert two copies of the identity built from position eigenstates into our partition function to get

Q =
∑
n

〈
n

∣∣∣∣∫ dx

∣∣∣∣x〉〈x∣∣∣∣e−βĤ

∫
dx′

∣∣∣∣x′
〉
⟨x′|n⟩

=

∫
dx dx′

〈
x
∣∣∣e−βĤ

∣∣∣x′
〉∑

n

⟨x′|n⟩ ⟨n|x⟩ . (B.5)

And now
∑

n |n⟩ ⟨n| is the identity, while |x′⟩ ⟨x| = δ(x− x′), so

Q =

∫
dx
〈
x
∣∣∣e−βĤ

∣∣∣x〉 . (B.6)

We see that the result is to replace the sum over energy eigenstates with a sum (or integral) over
position eigenstates. If you wanted, you could play the same game and get the sum over any complete
basis of eigenstates of your choosing. This means that we can write the partition function in a basis
independent fashion as

Q = tr e−βĤ . (B.7)

So far, our manipulations could have been done for any quantum system. Now we want to use
the fact that we are taking the classical limit. This comes about when we try to factorize e−βH into
a momentum term and a position term — the trouble is that this isn’t always possible when there
are matrices (or operators) in the exponent. The Hamiltonian Ĥ is the sum of a kinetic part T̂ and
a potential part V̂ . The kinetic energy eigenstates are also the momentum eigenstates, but potential
energy eigenstates are the position eigenstates, so Ĥ = T̂ + V̂ is not diagonal in either basis i.e. T̂
and V̂ does not commute. In fact, we have

eÂeB̂ = eÂ+B̂+ 1
2 [Â,B̂]+... . (B.8)

For us [x, p] = iℏ. This means that if we’re willing to neglect terms of order ℏ — which is the meaning
of taking the classical limit — then we can write

e−βĤ = e−βT̂ e−βV̂ = e−βp̂2/2me−βV (x̂) . (B.9)

We can now start to replace some of the operators in the exponent, like V (x̂), with functions V (x).
(Note the subtle but important notational difference!)

Q =

∫
dx
〈
x
∣∣∣e−βV (x̂)e−βp̂2/2m

∣∣∣x〉
=

∫
dx dx′ dr dr′

〈
x
∣∣∣e−βV̂ (x̂)

∣∣∣x′
〉
⟨x′|p⟩

〈
p
∣∣∣e−βp̂2/2m

∣∣∣p′〉 ⟨p′|x⟩
=

∫
dx dp

〈
x
∣∣∣e−βV̂ (x̂)

∣∣∣x〉 ⟨x|p⟩〈p∣∣∣e−βp̂2/2m
∣∣∣p〉 ⟨p|x⟩

=

∫
dx dp |⟨x|p⟩|2 e−βp2/2me−βV (x) , (B.10)
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where we have used the fact that all matrix elements are diagonal. We have that

⟨x|p⟩ = 1√
2πℏ

eipx/ℏ (B.11)

is the wavefunction of the momentum eigenstate, so

Q =
1

h

∫
dx dp e−βH(x,p) . (B.12)

C Pressure from Clausius Virial

Very often, there is not just one way of deriving a particular result. In the main text, we derived an
expression for the pressure of interacting particles in terms of the inter-particle forces directly from
the partition function by using a scaling argument. We show here a derivation using a completely
different line of reasoning, originally proposed by Clausius.

Consider a system of N particles in a volume V at total energy E. Define the virial of the system
to be

V :=

N∑
i=1

ri ·pi . (C.1)

This is one half of the time derivative of the moment of inertia I of the system since

1

2

∂I

∂t
=

1

2

N∑
i=1

mi
∂

∂t
ri · ri =

N∑
i=1

miri · ṙi = V . (C.2)

Since the particles are constrained in a container, and the total kinetic energy is bounded by E, V is
also bounded both above and below, by Vmax and Vmin. At long times τ → ∞, the time average of
the time derivative of V, denoted by V̇, vanishes:

V̇ =
1

τ

∫ τ

0

V̇(t)dt =
V(τ)− V(0)

τ
→ 0 as τ →∞ . (C.3)

We can also evaluate this time derivative explicitly:

V̇ =

N∑
i=1

ṙi ·pi + ri · ṗi = 0 . (C.4)

We have ṙi = pi/mi and ṗi = f i by Newton’s second law, where f i is the force on the particle i, so
we can write

N∑
i=1

p2i
mi

+ ri · f i = 0 . (C.5)

The first term on the left is simply twice the kinetic energy of the system. Using the equipartition
theorem, we can write this as 3NkBT . We thus find that

3NkBT +

N∑
i=1

ri · f i = 0 . (C.6)

The force f i acting on a particle can originate either from the intermolecular interactions or
interactions with the wall of the container. Let us consider the contribution to the virial due to the
interaction with a surface element dS of the wall of the container. We denote the position of this
surface element by rS . Whenever a particle collides with this surface element, its coordinate must be
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given by rS . The contribution to the force virial arising from collisions with this surface element is
thus given by (

N∑
i=1

ri · f i

)(dS)

=

N∑
i=1

rS · f (dS)i = rS ·
N∑
i=1

f
(dS)
i = rS ·FdS

tot . (C.7)

FdS
tot is the average total force exerted on the particles by the wall of the container — by Newton’s

third law, this is also the force exerted on the container wall by the particles. This is exactly the
force causing the pressure! Therefore we have

(
N∑
i=1

ri · f i

)(dS)

= rS · (−P )dS . (C.8)

We can now integrate over the entire surface of the container to obtain

N∑
i=1

ri · f i = −P
∫

dS · rS . (C.9)

Using the divergence theorem, we can write

−P
∫

dS · rS = −P
∫

dV (∇ · r) = −3PV . (C.10)

Therefore,

3NkBT +

N∑
i=1

ri · f inter
i − 3PV = 0 . (C.11)

We get the same result

P =
NkBT

V
+

1

3V

〈
N∑
i=1

ri · f i

〉
, (C.12)

where notice that we have replaced the time average by a Boltzmann-weighted average over states at
constant N , V and T .

D Ising and Lattice-Gas Model Equivalence

The Ising model for a lattice of interacting magnetic spins is amongst the most widely used models in
physics because many other models can be mapped onto it. As an example, we consider the relation
between the Ising model and a lattice gas. The lattice gas model is a simple model used to describe
the liquid-vapour transition. Let us first consider the Ising model, in which neighbouring parallel
spins have an interaction energy −J , whilst anti-parallel spins have an interaction energy +J . We
denote the value of the spin on lattice site i by si ∈ {±1}. The Ising Hamiltonian in the presence of
a magnetic field B is given by

HIsing = −J

2

N∑
i=1

∑
⟨i,j⟩

sisj −B

N∑
i=1

si . (D.1)

The partition function of the Ising model can be written as

QIsing =
∑

(sk)Nk=1

exp

−β
−J

2

N∑
i=1

∑
⟨i,j⟩

sisj −B

N∑
i=1

si

 , (D.2)

where (sk)
N
k=1 denote all possible arrangements of spin values (s1, . . . , sN ).
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Now consider a gas on a lattice with N sites, where there can be at most one particle per lattice
site. Neighbouring particles have an interaction energy −ϵ. The Hamiltonian is

HLG = − ϵ

2

N∑
i=1

∑
⟨i,j⟩

ninj , (D.3)

where ni ∈ {0, 1} denotes the number of particles on site i. The partition function is

QLG(M) =
∑

(nk)Nk=1|M

exp

−β
− ϵ

2

N∑
i=1

∑
⟨i,j⟩

ninj

 , (D.4)

where M is the number of particles and (nk)
N
k=1|M is the arrangement of occupation numbers that

satisfy
∑

i ni = M . It turns out to be more convenient to consider the grand partition function Ξ
instead to remove this awkward constraint.

Ξ =

N∑
M=0

∑
(nk)Nk=1|M

exp

−β
− ϵ

2

N∑
i=1

∑
⟨i,j⟩

ninj

 eβµM

=
∑

(nk)Nk=1

exp

−β
− ϵ

2

N∑
i=1

∑
⟨i,j⟩

ninj − µ

N∑
i=1

ni

 . (D.5)

This looks remarkably similar to the canonical partition function of the Ising model (D.2) — it
seems that we only need to change the letters and (D.5) will become (D.2). But there is actually an
important difference: si takes value in {±1}, while ni takes value in {0,+1}. We have to identify
s = 2n− 1 to make the exact mapping between the two cases. On doing so, we also need to identify

J =
ϵ

4
and B =

µ

2
+

qϵ

4
. (D.6)

After doing so, the grand partition function of this lattice gas will be exactly the same as the canonical
partition function of an Ising model in a magnetic field. This probably makes the universality we
introduced in the main text less shocking than it first seems.

E More on Interacting Gases

In this section, we will re-do some of our previous calculations in a more unified approach, and extend
the results to the beautiful and important cluster expansions.19

E.1 Mayer f Functions and Second Virial Coefficients

The Hamiltonian of the interacting gas is

H =

N∑
i=1

p2i
2m

+
∑
i>j

U(rij) . (E.1)

We would like to find a general method calculating the coefficients for the virial expansion

p

kBT
=

N

V
+B2(T )

N2

V 2
+B3(T )

N3

V 3
+ . . . (E.2)

19This section is extremely mathematically demanding. This is included in my notes because of my personal interests.
This is not in the official notes.
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As we’ve seen before, the partition function is

Q(N,V, T ) =
1

h3NN !

∫ N∏
i=1

d3pi d
3ri e

−βH

=
1

Λ3NN !

∫ ∏
i

d3ri e
−β

∑
j<k U(rjk) . (E.3)

We still need to do the integral over positions, which looks hard. The interactions mean that the
integrals don’t factor in any obvious way.

An obvious thing to try is the Taylor expansion, which should better be called a cumulant
expansion in this context.

e−β
∑

j<k U(rjk) = 1− β
∑
j<k

U(rjk) +
β2

2

∑
j<k,l<m

U(rjk)U(rlm) + . . . (E.4)

Unfortunately, this is not very useful. We want each term to be smaller than the preceding one. But
as rij → 0, the potential U(rij)→∞, which does not look promising for an expansion parameter.

We will instead work with the following quantity called the Mayer f function.

f(r) := e−βU(r) − 1 . (E.5)

This is a nicer expansion parameter. When the particles are far, f(r) → 0 and when particles are
close, f(r)→ −1.

Let us define
fij = f(rij) , (E.6)

then we can write the partition function as

Q(N,V, T ) =
1

Λ3NN !

∫ ∏
i

d3ri
∏
j>k

(1 + fjk)

=
1

Λ3NN !

∫ ∏
i

d3ri

1 +
∑
j>k

fjk +
∑

j>k,l>m

fjkflm + . . .

 . (E.7)

The first term simply gives a factor of the volume V for each integral, so we get V N . The second
term has a sum, each element of which is the same. They all look like∫ N∏

i=1

d3ri f12 = V N−2

∫
d3r1 d

3r2 f(r12) = V N−1

∫
d3r f(r) , (E.8)

where, in the last equality, we have changed the integration variables from r1 and r2 to the centre of
mass R = 1

2 (r1 + r2) and the separation r = r1 − r2. You might worry that the limits of integration
change in the integral over r, but the integral over f(r) only picks up contributions from atomic
size distances and this is only actually a problem close to the boundaries of the system where it is
negligible.

There is a term like this for each pair of particles, so there are in total 1
2N(N − 1) ≈ 1

2N
2 terms.

Then ignoring terms O(f2), the partition function is given approximately by

Q(N,V, T ) =
V N

Λ3NN !

(
1 +

N2

2V

∫
d3r f(r) + . . .

)
= Qideal

(
1 +

N

2V

∫
d3r f(r) + . . .

)N

, (E.9)

71



E More on Interacting Gases B7 Statistical Mechanics

where we promoted one power of N from the front of the integral to an overall exponent. Massaging
the expression in this way ensures that the free energy is proportional to the number of particles as
one would expect:

A = −kBT lnQ = Aideal −NkBT ln

(
1 +

N

2V

∫
d3r f(r)

)
. (E.10)

From this expression for the free energy, it is clear that we are indeed performing an expansion in
density of the gas since the correction term is proportional to N/V . This form of the free energy will
give us the second virial coefficient B2(T ).

We can be somewhat more precise about what it means to be at low density in which our expression
is valid. The exact form of the integral

∫
d3r f(r) depends on the potential, but for both the Lennard

Jones potential and the hard-core repulsion the integral is approximately
∫
d3r f(r) ∼ r30, where r0

some measure of the length scale of the potential (We will compute this later). For the expansion to
be valid, we want each term with an extra power of f to be smaller than the preceding one. That
means that the second term in the argument of the log should be smaller than 1. In other words,

N

V
≪ 1

r30
. (E.11)

We have a name for the substance packed as closely as in the right hand side — we call them liquids.
Our expansion is valid for densities of the gas that are much lower than that of the liquid state.

E.2 van der Waals Equation of State

We can use the free energy equation (E.10) to compute the pressure of the gas. Expanding the log
gives

P = −∂A

∂V
=

NkBT

V

(
1− N

2V

∫
d3r f(r) + . . .

)
. (E.12)

As expected, the pressure deviates from that of an ideal gas. We can characterise this by writing
PV

NkBT
= 1− N

2V

∫
d3r f(r) . (E.13)

To understand this, we need to calculate the integral. But first, let us look at two trivial examples.

• Repulsion. Suppose that U(r) > 0 for all r with U(∞) = 0. Then f < 0 and so the pressure
will increase.

• Attraction. If U(r) < 0 then f > 0 and so the pressure will decrease.

Let’s try this with some different potentials. We can define a hard core potential with van der
Waals attraction

U(r) =

{
∞ r < r0

−U0

(
r0
r

)6
r ≥ r0 .

(E.14)

The integral of the Mayer f function is∫
d3r f(r) =

∫ r0

0

d3 r(−1) +
∫ ∞

r0

d3r
(
eβU0(r0/r)

6

− 1
)
. (E.15)

We will approximate the second integral in the high temperature limit with βU0 ≪ 1, where
eβU0(r0/r)

6 ≈ 1 + βU0(r0/r)
6. Then∫
d3r f(r) = −4π

∫ r0

0

dr r2 +
4πU0

kBT

∫ ∞

r0

dr
r60
r4

=
4πr30
3

(
U0

kBT
− 1

)
. (E.16)
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Insert this into equation (E.13), we have

PV

NkBT
= 1− N

V

(
a

kBT
− b

)
, (E.17)

where a and b are constants defined by

a =
2πr30U0

3
, b =

2πr30
3

. (E.18)

We can recognise that this is indeed the second virial coefficient.

We can rearrange this equation to a more useful form

kBT =
V

N

(
P +

N2

V 2
a

)(
1 +

N

V
b

)−1

. (E.19)

As we are working in an expansion in density, we can do another Taylor expansion to get

kBT =

(
P +

N2

V 2
a

)(
V

N
− b

)
. (E.20)

This again gives the famous van der Waals equation of state. This equation is valid at low densities
and high temperatures.

It seems that the equation we obtained (E.13) can be used to compute the equation of state for
any potential between atoms. However, there are limitations. The integral only converges for the
long-range potentials in the form 1/rn when n ≥ 4. This means that the techniques described above
do not work for long-range potentials with fall-off 1/r3 or slower. This includes the important case
of 1/r Coulomb interactions.

E.3 The Cluster Expansion

We will now develop the full expansion and explain how to compute the higher virial coefficients.

Let us go back to our first expression of the partition function in terms of f .

Q(N,V, T ) =
1

Λ3NN !

∫ ∏
i

d3ri
∏
j>k

(1 + fjk)

=
1

Λ3NN !

∫ ∏
i

d3ri

1 +
∑
j>k

fjk +
∑

j>k,l>m

fjkflm + . . .

 . (E.21)

Above we effectively related the second virial coefficient to the term linear in f : this is the essence
of the equation of state equation (E.13). One might think that terms quadratic in f give rise to the
third virial coefficient and so on. But we will see that the expansion is more subtle than that.

The expansion in equation (E.21) includes terms of the form fijfklfmn . . ., where the indices
denote pairs of atoms, (i, j) and (k, l) and so on. These pairs may have atoms in common or they
may all be different. However, the same pair never appears twice in a given term as you may check
by going back to the first line in equation (E.21).

We will introduce a diagrammatic method to keep track of all the terms in the sum. To each term
of the form fijfklfmn . . . we associate a picture using the following rules:

• Draw N atoms (We actually need pictures with much less than N ∼ 1023 atoms).

• Draw a line to connect each pair of atoms that appear as indices.

73



E More on Interacting Gases B7 Statistical Mechanics

This allows us to never repeat the same pair of indices.

For example, if N = 4, we may have the following pictures for different terms in the expansion:

f12 =

1 2

3 4
f12f34 =

1 2

3 4

f12f23 =

1 2

3 4
f12f23f13 =

1 2

3 4
.

(E.22)

We call these diagrams graphs. Each possible graph appears exactly once in the partition function
equation (E.21). In other words, the partition function is a sum over all graphs. We still have to do
the integrals over all positions ri. We will denote the integral over graph G to be W [G]. Then the
partition function is

Q(N,V, T ) =
1

Λ3NN !

∑
G

W [G] . (E.23)

Nearly all the graphs that we can draw will have disconnected components. For example, those graphs
that correspond to just a single fij will have two atoms connected and the remaining N − 2 sitting
alone. Those graphs that correspond to fijfkl fall into two categories: either they consist of two pairs
of atoms (like the second example above) or, if (i, j) shares an atom with (k, l), there are three linked
atoms (like the third example above). Importantly, the integral over positions ri then factorises into
a product of integrals over the positions of atoms in disconnected components. This is illustrated by
an example with N = 5 atoms

W


1 2

3

4

5
 =

(∫
d3r1 d

3r2 d
3r3 f12f23f31

)(∫
d3r4 d

3r5 f45

)
. (E.24)

We call the disconnected components of the graph clusters. If a cluster has ℓ atoms, we will call it an
ℓ-cluster. The N = 5 example above has a single 3-cluster and a single 2-cluster. In general, a graph
G will split into mℓ ℓ-clusters. Clearly, we must have

N∑
ℓ=1

mℓℓ = N . (E.25)

The key idea is that we will organise the expansion in such a way that the (ℓ+ 1)-clusters are much
less important than the ℓ-clusters. Then we do not need to draw all N ∼ 1023 atoms in the graph.

To see how this works, let us focus on the 3-clusters for now. There are 4 different ways that we
can have a 3-cluster:

1 2

3

1 2

3

1 2

3

1 2

3

Each of these 3-clusters will appear in a graph with any other combination of clusters among the
remaining N − 3 atoms. But since clusters factorise in the partition function, we know that Q must
include a factor

U3 =

∫
d3r1 d

3r2 d
3r3


1 2

3

+
1 2

3

+
1 2

3

+
1 2

3
 . (E.26)
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U3 contains terms of order f2 and f3. It turns out that this is the correct way to arrange the
expansion: not in terms of the number of lines in the diagram, which is equal to the power of f , but
instead the number of atoms that they connect. The partition function will similarly contain factors
associated to all other ℓ-clusters. We define the corresponding integrals as

Uℓ ≡
∫ ℓ∏

i=1

d3ri
∑

G∈{ℓ-cluster}

G . (E.27)

Notice that U1 is simply the integral over space, so U1 = V . The full partition function must be a
product of Uℓ’s. The tricky part is to get all the combinatoric factors right to make sure that you
count each graph exactly once. The sum over graphs G that appears in the partition function turns
out to be ∑

G

W [G] = N !
∑
(mℓ)

∏
ℓ

Umℓ

ℓ

(ℓ!)mℓmℓ!
. (E.28)

Where the sum over (mℓ) means to take the sum over all possible (m1,m2, . . . ,mN ) under the
constraint (E.25), and the product N !/

∏
ℓ mℓ!(ℓ!)

mℓ counts the number of ways to split the particles
into mℓ ℓ-clusters, while ignoring the different ways to internally connect each cluster: this is taken
into account in the integral Uℓ.

Let us make a couple checks to make sure that we have got the right answer. First consider N = 4
atoms splitting into two 2-clusters (i.e. m2 = 2). There are three such diagrams.

f12f34 =

1 2

3 4
, f13f24 =

1 2

3 4
, f14f23 =

1 2

3 4
. (E.29)

Each of these gives the same answer when integrated, namely U2
2 so the final result should be 3U2

2 .We
can check this against the relevant terms in equation (E.28), which are 4!U2

2 /2!
22! = 3U2

2 as expected.

Another check: N = 5 atoms with m2 = m3 = 1. All diagrams come in the combinations

U3U2 =

∫ 5∏
i=1

d3ri

(
+ + +

)
(E.30)

together with graphs that are related by permutations. The permutations are fully determined by the
choice of the two atoms that sit in the pair: there are 10 such choices. The answer should therefore
be 10U3U2. Comparing to equation (E.28), we have 5!U3U2/3!2! = 10U3U2 as required.

The end result for the partition function is therefore

Q(N,V, T ) =
1

Λ3N

∑
(mℓ)

∏
ℓ

Umℓ

ℓ

(ℓ!)mℓmℓ!
. (E.31)

The problem with computing this sum is that we still have to work out the different ways that
we can split N atoms into different clusters. In other words, we still have to obey the constraint
equation (E.25). It will be much easier if we do not have to worry about this. Then we could just
sum over any mℓ. This is exactly what we can do if we work in the grand canonical ensemble where
N is not fixed. The grand partition function is

Ξ(µ, V, T ) =
∑
N

zNQ(N,V, T ) , (E.32)
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where z := eβµ is the fugacity. Then we can write

Ξ(µ, V, T ) =
∑
N

zNQ(N,V, T )

=

∞∑
mℓ=0

∞∏
ℓ=1

( z

Λ3

)mℓℓ 1

mℓ!

(
Uℓ

ℓ!

)m1

=

∞∏
ℓ=1

exp

(
Uℓz

ℓ

Λ3ℓℓ!

)
. (E.33)

Define
bℓ =

Λ3

V

Uℓ

ℓ!Λ3ℓ
. (E.34)

Notice in particular that U1 = V so this definition gives b1 = 1. Then we can write the grand partition
function as

Ξ(µ, V, T ) =

∞∏
ℓ=1

exp

(
V

Λ3
bℓz

ℓ

)
= exp

(
V

Λ3

∞∑
ℓ=1

bℓz
ℓ

)
. (E.35)

Something interesting happened here. The sum over all the diagrams got rewritten as the exponential
over the sum of all the clusters. This is a general lesson which also carries over to many places —
like when we are dealing with the Ising model later, or even in fancy stuff like quantum field theory
when dealing with the Feynman diagrams.

Back to the main plot of the story, we can now compute the pressure

PV

kBT
= lnΞ =

V

Λ3

∞∑
ℓ=1

bℓz
ℓ , (E.36)

and the number of particles
N

V
=

z

V

∂

∂z
ln Ξ =

1

Λ3

∞∑
ℓ=1

ℓbℓz
ℓ . (E.37)

Dividing the two gives us the equation of state

PV

NkBT
=

∑
ℓ bℓz

ℓ∑
ℓ ℓbℓz

ℓ
. (E.38)

The only downside is that the equation of state is expressed in terms of z. To massage it into the
form of the virial expansion, we need to invert equation (E.37) to get z in terms of the particle density
N/V . Equating equation (E.38) with the virial equation (and defining B1 = 1), we have

∞∑
ℓ=1

bℓz
ℓ =

∞∑
ℓ=1

Bℓ

(
N

V

)ℓ−1 ∞∑
m=1

mbmzm

=

∞∑
ℓ=1

Bℓ

Λ3(ℓ−1)

( ∞∑
n=1

nbnz
n

)ℓ−1 ∞∑
m=1

mbmzm

=

[
1 +

B2

Λ3
(z + 2b2z

2 + 3b3z
3 + . . . ) +

B3

Λ6
(z + 2b2z

2 + 3b3z
3 + . . . ) + . . .

]
× [z + 2b2z

2 + 3b3z
3 + . . . ] , (E.39)

where we have used both B1 = 1 and b1 = 1. Expanding out the left- and right-hand sides to order
z3 gives

z + b2z
2 + b3z

3 = z +

(
B2

Λ3
+ 2b2

)
z2 +

(
3b3 +

4b2B2

Λ3
+

B3

Λ6

)
z3 + . . . (E.40)

Comparing the terms and recollecting the definitions of bℓ in terms of Uℓ gives the second virial
coefficient

B2 = −Λ3b2 = − U2

2V
= − 1

2V

∫
d3r1 d

3r2 f(r1 − r2) = −
1

2

∫
d3r f(r) . (E.41)
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This reproduces the result (E.13) we found before.

We now also have an expression for the third coefficient

B3 = Λ6(4b22 − 2b3) (E.42)

where we still have nasty integrals to do before we have a concrete result…

F Some Exact Results on the Ising Model

In this section, we will describe some exact results for the Ising model using techniques that do not
rely on the mean field approximation.20 Many of the results that we derive have broader implications
for systems beyond the Ising model.

There is an exact solution for the Ising model in d = 1 dimension and, when B = 0, in d = 2
dimensions. Here we will describe the d = 1 solution but not the full d = 2 solution because it is
infamously complicated. We will, however, derive a number of results for the d = 2 Ising model which,
while falling short of the full solution, nonetheless provides important insights into the physics.

F.1 The Ising Model in d = 1 Dimension

We start with the Ising chain, the Ising model on a one-dimensional line. Here we will see that the
mean field approximation fails miserably, giving qualitatively incorrect results: the exact results show
that there are no phase transitions in the Ising chain. We will write the energy in a slightly unusual
form

E = −J
N∑
i=1

sisi+1 −
B

2

N∑
i=1

(si + si+1) . (F.1)

We will impose periodic boundary conditions, so the spins live on a circular lattice with sN+1 ≡ s1.
The partition function is then

Q =
∑

s1=±1

· · ·
∑

sN=±1

N∏
i=1

exp

(
βJsisi+1 +

βB

2
(si + si+1)

)
. (F.2)

The crucial observation that allows us to solve the problem is that this partition function can be
written as a product of matrices. We adopt notation from quantum mechanics and define the 2 × 2
matrix,

⟨si|T |si+1⟩ := exp

(
βJsisi+1 +

βB

2
(si + si+1)

)
. (F.3)

The row of the matrix is specified by the value of si = ±1 and the column by si+1 = ±1. T is known
as the transfer matrix and, in more conventional notation, is given by

T =

(
eβJ+βB e−βJ

e−βJ eβJ−βB

)
. (F.4)

The sums over the spins
∑

si
and product over lattice sites

∏
i in the partition function (F.2) simply

tell us to multiply the matrices defined in (F.3) and the partition function becomes

Q = ⟨s1|T |s2⟩ ⟨s2|T |s3⟩ . . . ⟨sN |T |s1⟩ = trTN , (F.5)
20Again, this section is extremely mathematically demanding. It is included in my notes because of my personal

interests. It is not in the official notes.
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where the trace arises because we have imposed periodic boundary conditions. To complete the story,
we need only compute the eigenvalues of T to determine the partition function. A quick calculation
shows that the two eigenvalues of T are

λ± = eβJ coshβB ±
√
e2βJ cosh2 βB − 2 sinh 2βJ , (F.6)

where, clearly, λ− < λ+. The partition function is then

Q = λN
+ + λN

− = λN
+

(
1 +

λN
−

λN
+

)
≈ λN

+ (F.7)

for very large N .

The partition function Q contains many quantities of interest. In particular, we can use it to
compute the magnetisation as a function of temperature when B = 0. This, recall, is the quantity
which is predicted to undergo a phase transition in the mean field approximation, going abruptly to
zero at some critical temperature. In the d = 1 Ising model, the magnetisation is given by

⟨s⟩0 =
1

Nβ

∂ lnQ

∂B

∣∣∣∣
B=0

=
1

λ+β

∂λ+

∂B

∣∣∣∣
B=0

= 0 . (F.8)

We see that the true physics for d = 1 is very different than that suggested by the mean field
approximation. When B = 0, there is no magnetisation! While the J term in the energy encourages
the spins to align, this is completely overwhelmed by thermal fluctuations for any value of the
temperature.

There is a general lesson in this calculation: thermal fluctuations always win in one-dimensional
systems. They never exhibit ordered phases and, for this reason, never exhibit phase transitions. The
mean field approximation is bad in one dimension.

F.2 2D Ising Model

Let’s now turn to the Ising model in d = 2 dimensions. We’ll work on a square lattice and set B = 0.
Rather than trying to solve the model exactly, we’ll have more modest goals. We will compute the
partition function in two different limits: high temperature and low temperature.

F.2.1 Low Temperature Limit and Peierls Droplets

The partition function is given by the sum over all states, weighted by e−βE . At low temperatures,
this is always dominated by the lowest lying states. For the Ising model, we have21

Q =
∑
(si)

exp

βJ
∑
⟨ij⟩

sisj

 . (F.9)

The low temperature limit is βJ →∞, where the partition function can be approximated by the sum
over the first few lowest energy states. All we need to do is list these states.

The ground states are easy. There are two of them: spins all up or spins all down. For example,
the ground state with spins all up looks like
Each of these ground states has energy E = E0 = −2NJ .

The first excited states arise by flipping a single spin. Each spin has q = 4 nearest neighbours —
denoted by red lines in the example below — each of which leads to an energy cost of J − (−J) = 2J .
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The energy of the first excited states is therefore E1 = E0 + 8J .
There are, of course, N different spins that we can flip and, correspondingly, the first energy level
has a degeneracy of N .

To proceed, we introduce a diagrammatic method to list the different states. We draw only the
broken bonds which connect two spins with opposite orientation and, as in the diagram above, denote
these by red lines. We further draw the flipped spins as red dots, the unflipped spins as blue dots.
The energy of the state is determined simply by the number of red lines in the diagram. Pictorially,
we write the first excited state as

E1 = E0 + 8J

Degeneracy = N

The next lowest state has six broken bonds. It takes the form where the extra factor of 2 in the

E2 = E0 + 12J

Degeneracy = 2N

degeneracy comes from the two possible orientations (vertical and horizontal) of the graph.

Things are more interesting for the states which sit at the third excited level. These have 8 broken
bonds. The simplest configuration consists of two, disconnected, flipped spins

E3 = E0 + 16J

Degeneracy = 1
2N(N − 5)

(F.10)

The factor of N in the degeneracy comes from placing the first graph; the factor of N − 5 arises
because the flipped spin in the second graph can sit anywhere apart from on the five vertices used in
the first graph. Finally, the factor of 1/2 arises from the interchange of the two vertices.

21From now on, we will directly use
∑

⟨ij⟩ (without the comma) to denote the sum over all neighbouring pairs which
we used to denote as

∑
i

∑
⟨i,j⟩ to reduce the cluttering of notations.
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There are also three further graphs with the same energy E3. These are and where the degeneracy

E3 = E0 + 16J

Degeneracy = N

E3 = E0 + 16J

Degeneracy = 2N

comes from the two orientations, and finally where the degeneracy comes from the four orientations.

E3 = E0 + 16J

Degeneracy = 4N

We can of course calculate more excited states but we will stop here. Adding all the graphs above
gives us an expansion of the partition function in power of e−βJ ≪ 1. This is

Q = 2e2NβJ

(
1 +Ne−8βJ + 2Ne−12βJ +

1

2
(N2 + 9N)e−16βJ + . . .

)
, (F.11)

where the overall factor of 2 originates from the two ground states of the system. We’ll make use of
the specific coefficients in this expansion in section F.2.3. Before we focus on the physics hiding in the
low temperature expansion, it’s worth making a quick comment that something quite nice happens
if we take the log of the partition function and expand ln(1 + x) = x− 1

2x
2 + . . ., we get

lnQ = ln 2 + 2NβJ +Ne−8βJ + 2Ne−12βJ +
9

2
Ne−16βJ + . . . (F.12)

The thing to notice is that the N2 term in the partition function has precisely cancelled out and
lnQ is proportional to N , which is to be expected since the free energy of the system is extensive.
Looking back, we see that the N2 term was associated to the disconnected diagrams in (F.10). There
is actually a general lesson hiding here: the partition function can be written as the exponential of the
sum of connected diagrams. We saw exactly the same issue arise in the cluster expansion in (E.35).

Peierls Droplets

Continuing the low temperature expansion provides a heuristic, but physically intuitive, explanation
for why phase transitions happen in d ≥ 2 dimensions but not in d = 1. As we flip more and more
spins, the low energy states become droplets, consisting of a region of space in which all the spins are
flipped, surrounded by a larger sea in which the spins have their original alignment. The energy cost
of such a droplet is roughly

E ∼ 2JL , (F.13)
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where L is the perimeter of the droplet. Notice that the energy does not scale as the area of the
droplet since all spins inside are aligned with their neighbours. It is only those on the edge which
are misaligned and this is the reason for the perimeter scaling. To understand how these droplets
contribute to the partition function, we also need to know their degeneracy. We will now argue that
the degeneracy of droplets scales as

Degeneracy ∼ eαL (F.14)

for some value of α. To see this, consider firstly the problem of a random walk on a 2D square lattice.
At each step, we can move in one of four directions. So the number of paths of length L is

#paths ∼ 4L = eL ln 4 . (F.15)

Of course, the perimeter of a droplet is more constrained than a random walk. Firstly, the perimeter
can’t go back on itself, so it really only has three directions that it can move in at each step. Secondly,
the perimeter must return to its starting point after L steps. And, finally, the perimeter cannot
self-intersect. One can show that the number of paths that obey these conditions is

#paths ∼ eαL , (F.16)

where ln 2 < α < ln 3. Since the degeneracy scales as eαL, the entropy of the droplets is proportional
to L.

The fact that both energy and entropy scale with L means that there is an interesting competition
between them. At temperatures where the droplets are important, the partition function is
schematically of the form

Q ∼
∑
L

eαLe−2βJL . (F.17)

For large β (i.e. low temperature) the partition function converges. However, as the temperature
increases, one reaches the critical temperature

kBTc ≈
2J

α
(F.18)

where the partition function no longer converges. At this point, the entropy wins over the energy cost
and it is favourable to populate the system with droplets of arbitrary sizes. This is how one sees the
phase transition in the partition function. For temperature above Tc, the low-temperature expansion
breaks down and the ordered magnetic phase is destroyed.

We can also use the droplet argument to see why phase transitions don’t occur in d = 1 dimension.
On a line, the boundary of any droplet always consists of just two points. This means that the energy
cost to forming a droplet is always E = 2J , regardless of the size of the droplet. But, since the
droplet can exist anywhere along the line, its degeneracy is N . The net result is that the free energy
associated to creating a droplet scales as

A = 2J − kBT lnN (F.19)

and, as N → ∞, the free energy is negative for any T > 0. This means that the system will prefer
to create droplets of arbitrary length, randomizing the spins. This is the intuitive reason why there
is no magnetic ordered phase in the d = 1 Ising model.

F.2.2 High Temperature Limit

We now turn to the 2D Ising model in the opposite limit of high temperature. Here we expect the
partition function to be dominated by the completely random, disordered configurations of maximum
entropy. Our goal is to find a way to expand the partition function in βJ ≪ 1.
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We again work with zero magnetic field, B = 0 and write the partition function as

Q =
∑
(si)

exp

βJ
∑
⟨ij⟩

sisj

 =
∑
(si)

∏
⟨ij⟩

eβJsisj . (F.20)

There is a useful way to rewrite eβJsisj which relies on the fact that the product sisj only takes ±1.
It doesn’t take long to check the following identity:

eβJsisj = cosh βJ + sisj sinhβJ

= cosh βJ(1 + sisj tanhβJ) . (F.21)

Using this, the partition function becomes

Q =
∑
(si)

∏
⟨ij⟩

coshβJ(1 + sisj tanhβJ)

= (cosh βJ)qN/2
∑
(si)

∏
⟨ij⟩

(1 + sisj tanhβJ) , (F.22)

where the number of nearest neighbours is q = 4 for the 2D square lattice.

With the partition function in this form, there is a natural expansion which suggests itself. At high
temperatures βJ ≪ 1 which, of course, means that tanhβJ ≪ 1. But the partition function is now
naturally a product of powers of tanhβJ . This is again somewhat analogous to the cluster expansion
for the interacting gas. As in the cluster expansion, we will represent the expansion graphically.

We need no graphics for the leading order term. It has no factors of tanhβJ and is simply

Q ≈ (coshβJ)2N
∑
(si)

1 = 2N (coshβJ)2N . (F.23)

Let’s now turn to the leading correction. Expanding the partition function (F.22), each power of
tanhβJ is associated to a nearest neighbour pair ⟨i, j⟩. We’ll represent this by drawing a line on the
lattice:

i j = sisj tanhβJ . (F.24)

But a sum over graphs of these kinds vanishes: each factor of tanhβJ in (F.22) also comes with a
sum over all spins si and sj . And these are +1 and −1 which means that they simply sum to zero∑

si,sj

sisj = +1− 1− 1 + 1 = 0 . (F.25)

How can we avoid this? The only way is to make sure that we’re summing over an even number of
spins on each site, since then we get factors of s2i = 1 and no cancellations. Graphically, this means
that every site must have an even number of lines attached to it. The first correction is then of the
form

1 2

34

= (tanh βJ)4
∑
(si)

s1s2 s2s3 s3s4 s4s1 = 24(tanh βJ)4 . (F.26)

There are N such terms since the upper left corner of the square can be on any one of the N lattice
sites (assuming periodic boundary conditions for the lattice). So including the leading term and first
correction, we have

Q = 2N (coshβJ)2N (1 +N(tanh βJ)4 + . . . ) . (F.27)

We can go further. The next terms arise from graphs of length 6 and the only possibilities are
rectangles, oriented as either landscape or portrait. Each of them can sit on one of N sites, giving a
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contribution

+ = 2N(tanh βJ)6 . (F.28)

Things get more interesting when we look at graphs of length 8. We have four different types of
graphs. Firstly, there are the trivial, disconnected pair of squares

=
1

2
N(N − 5)(tanh βJ)8 . (F.29)

Here the first factor of N is the possible positions of the first square; the factor of N−5 arises because
there are 5 locations the second square can’t be: overlapping or neighbouring with the first square.
Finally, the factor of 1/2 comes because the two squares are identical. The other graphs of length 8
are a large square, a rectangle and a corner.

= N(tanh βJ)8 , (F.30)

= 2N(tanh βJ)8 (F.31)

and

= 4N(tanh βJ)8 . (F.32)

Adding all contributions together gives us the first few terms in high temperature expansion of the
partition function

Q = 2N (coshβJ)2N
(
1 +N(tanh βJ)4 + 2N(tanh βJ)6

+
1

2
(N2 + 9N)(tanh βJ)8 + . . .

)
. (F.33)

You might have already noticed, everything above are weirdly familiar to everything in the low
temperature expansion.

F.2.3 Kramers–Wannier Duality

We have computed the partition function perturbatively in two extreme regimes of low temperature
and high temperature. The physics in the two cases is, of course, very different. At low temperatures,
the partition function is dominated by the lowest energy states; at high temperatures it is dominated
by maximally disordered states. Yet comparing the partition functions at low temperature (F.11)
and high temperature (F.33) reveals an extraordinary symmetry between them! The two series agree
if we exchange

e−2βJ ←→ tanhβJ . (F.34)
Of course, we’ve only checked the agreement to the first few orders in perturbation. Below we shall
prove that this miracle continues to all orders in perturbation theory. The symmetry of the partition
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function under the interchange (F.34) is known as Kramers–Wannier duality. Before we prove this
duality, we will first just assume that it is true and extract some consequences.

We can express the statement of the duality more clearly. The Ising model at temperature β is
related to the same model at temperature β̃, defined as

e−2β̃J = tanh βJ . (F.35)

This way of writing things hides the symmetry of the transformation. A little algebra shows that this
is equivalent to

sinh 2β̃J =
1

sinh 2βJ
. (F.36)

This is a hot-cold duality — when β is large, β̃ is small. Kramers–Wannier duality is the statement
that, when B = 0, the partition functions of the Ising model at two temperatures are related by

Q(β) =
2N (coshβJ)2N

2e2Nβ̃J
Q(β̃)

= 2N−1(coshβJ sinhβJ)NQ(β̃) . (F.37)

This means that if you know the thermodynamics of the Ising model at one temperature, then you
also know the thermodynamics at the other temperature. Notice however, that it does not say that
all the physics of the two models is equivalent. In particular, when one system is in the ordered phase,
the other typically lies in the disordered phase.

One immediate consequence of the duality is that we can use it to compute the exact critical
temperature Tc. This is the temperature at which the partition function is singular in the N → ∞
limit. If we further assume that there is just a single phase transition as we vary the temperature,
then it must happen at the special self-dual point β = β̃. This is

kBT =
2J

ln(
√
2 + 1)

≈ 2.269J . (F.38)

The exact solution of Onsager confirms that this is indeed the transition temperature. It’s also
worth noting that it’s fully consistent with the more heuristic Peierls droplet argument (F.18) since
ln 2 < ln(1 +

√
2) < ln 3.

Proving the Kramers–Wannier Duality

The key idea that we need can actually be found in the various graphs that we have drawn. You
may have realised that the graphs we have drawn in the two expansions are actually the same, albeit
drawn differently. For example, consider the two “corner” diagrams

vs

The two graphs are dual. The red lines in the first graph intersect the black lines in the second as
can be seen by placing them on top of each other:
The same pattern occurs more generally: the graphs appearing in the low temperature expansion are
in one-to-one correspondence with the dual graphs of the high temperature expansion. Here we will
show how this occurs and how one can map the partition functions onto each other.
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Let’s start by writing the partition function in the form (F.22) that we met in the high temperature
expansion and presenting it in a slightly different way,

Q(β) =
∑
(si)

∏
⟨ij⟩

(coshβJ + sisj sinhβJ)

=
∑
(si)

∏
⟨ij⟩

∑
kij=0,1

Ckij
(βJ)(sisj)

kij , (F.39)

where we have introduced the rather strange variable kij associated to each nearest neighbour pair
that takes values 0 and 1, together with the functions

C0(βJ) = cosh βJ and C1(βJ) = sinh βJ . (F.40)

The variables in the original Ising model were spins on the lattice sites. The observation that the
graphs which appear in the two expansions are dual suggests that it might be profitable to focus
attention on the links between lattice sites. Clearly, we have one link for every nearest neighbour
pair. If we label these links by ℓ, we can trivially rewrite the partition function as

Q =
∑

kℓ=0,1

∏
ℓ

∑
(si)

Ckℓ
(βJ)(sisj)

kℓ . (F.41)

Notice that the strange label kij has now become a variable that lives on the links ℓ rather than the
original lattice sites i.

At this stage, we do the sum over the spins si. We’ve already seen that if a given spin, say si,
appears in a term an odd number of times, then that term will vanish when we sum over the spin.
Alternatively, if the spin si appears an even number of times, then the sum will give 2. We’ll say
that a given link ℓ is turned on in configurations with kℓ = 1 and turned off when kℓ = 0. In this
language, a term in the sum over spin si contributes only if an even number of links attached to site
i are turned on. The partition function then becomes

Q = 2N
∑
kℓ

∏
ℓ

Ckℓ
(βJ)

∣∣∣∣∣
constrained

. (F.42)

Now we have something interesting. Rather than summing over spins on lattice sites, we’re now
summing over the new variables kℓ living on links. This looks like the partition function of a totally
different physical system, where the degrees of freedom live on the links of the original lattice. But
there’s a catch — that “constrained” label on the sum. This is there to remind us that we don’t sum
over all kℓ configurations; only those for which an even number of links are turned on for every lattice
site. And that’s annoying. It’s telling us that the kℓ aren’t really independent variables. There are
some constraints that must be imposed.

Fortunately, for the 2D square lattice, there is a simple way to solve the constraint. We introduce
yet more variables, s̃i which, like the original spin variables, take values ±1. However, the s̃i do not
live on the original lattice sites. Instead, they live on the vertices of the dual lattice. For the 2D
square lattice, the dual vertices are drawn in the figure. The original lattice sites are in white; the
dual lattice sites in black.
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s1s2

s3

s4

s5
s̃1

s̃2

s̃4

s̃3

k12

The link variables kℓ are related to the two nearest (dual) spin variables s̃i as follows:

k12 =
1

2
(1− s̃1s̃2) (F.43)

k13 =
1

2
(1− s̃2s̃3) (F.44)

k14 =
1

2
(1− s̃3s̃4) (F.45)

k15 =
1

2
(1− s̃1s̃4) (F.46)

Notice that we’ve replaced four variables kℓ taking values 0, 1 with four variables s̃i taking values ±1.
Each set of variables gives 24 possibilities. However, the map is not one-to-one. It is not possible to
construct for all values of kℓ using the parameterization in terms of s̃i. To see this, we need only look
at

k12 + k13 + k14 + k15 = 2− 1

2
(s̃1s̃2 + s̃2s̃3 + s̃3s̃4 + s̃1s̃4)

= 2− 1

2
(s̃1 + s̃3)(s̃2 + s̃4)

= 0, 2 or 4 . (F.47)

In other words, the number of links that are turned on must be even. But that’s exactly what we want!
Writing the kℓ in terms of the auxiliary spins s̃i automatically solves the constraint that is imposed
on the sum in (F.42). Moreover, it is simple to check that for every configuration {kℓ} obeying the
constraint, there are two configurations of {s̃i}. This means that we can replace the constrained sum
over {kℓ} with an unconstrained sum over {s̃i}. The only price we pay is an additional factor of 1/2.

Q(β) =
1

2
2N
∑
(s̃i)

∏
⟨ij⟩

C 1
2 (1−s̃is̃j)(βJ) . (F.48)

Finally, we’d like to find a simple expression for C0 and C1 in terms of s̃i. That’s easy enough. We
can write

Ck(βJ) = cosh βJ exp(k ln tanh βJ)

= (sinh βJ coshβJ)1/2 exp

(
−1

2
s̃is̃j ln tanh βJ

)
. (F.49)

Substituting this into our newly re-written partition function gives

Q(β) = 2N−1
∑
(s̃i)

∏
⟨ij⟩

(sinh βJ coshβJ)1/2 exp

(
−1

2
s̃is̃j ln tanh βJ

)

= 2N−1(sinh βJ coshβJ)N
∑
(s̃i)

exp

−1

2
ln(tanh βJ)

∑
⟨ij⟩

s̃is̃j

 . (F.50)

This final form of the partition function in terms of the dual spins s̃i has exactly the same functional
form as the original partition function in terms of the spins si! More precisely, we can write

Q(β) = 2N−1(sinh 2βJ)NQ(β̃) , (F.51)
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where
e−2β̃J = tanh βJ (F.52)

as advertised. This is the Kramers–Wannier duality.

This seems to be too out of a tangent from our main theme, but the concept of duality is a major
feature in theoretical research. The key idea is that when the temperature gets large there may be a
different set of variables in which a theory can be written where it appears to live at low temperature.
The same idea often holds in quantum theories, where duality maps strong coupling problems to weak
coupling problems.

The duality in the Ising model is special for two reasons: firstly, the new variables s̃i are governed
by the same Hamiltonian as the original variables si. We say that the Ising model is self-dual. In
general, this need not be the case — the high temperature limit of one system could look like the
low-temperature limit of a very different system. Secondly, the duality in the Ising model can be
proven explicitly. For most systems, we have no such luck. Nonetheless, the idea that there may be
dual variables in other, more difficult theories, is compelling. Commonly studied examples include
the exchange particles and vortices in two dimensions, and electrons and magnetic monopoles in three
dimensions.

G Lee–Yang Theorem

You may have noticed that the flavour of our discussion on phase transitions is a little different
from the previous chapter. Our previous philosophy was to regard the partition function as the
most important quantity that we can use to derive everything, but when doing phase transitions, we
dumped the partition function as soon as we could, preferring instead to work with the macroscopic
variable like the free energy. Why didn’t we stick with the partition function and examine phase
transitions directly?

The reason is that the approach using the partition function is hard! In this short appendix
section, which is somewhat tangential to our main discussion, we will describe how phase transitions
manifest themselves in the partition function.

For concreteness, let’s go back to the classical non-ideal gas with pairwise-additive interactions,
although the results we derive will be more general. We’ll work in the grand canonical ensemble, with
the partition function

Ξ =
∑
N

zNQ(N,V, T ) =
∑
N

zN

N !Λ3N

∫ ∏
i

d3ri e
−β

∑
j<k U(rjk) . (G.1)

To regulate any potential difficulties with short distances, it is useful to assume that the particles
have hard cores so that they cannot approach to a distance less than r0. We model this by requiring
that the potential satisfies

U(rjk) =∞ for rjk < r0 . (G.2)
But this has an obvious consequence: if the particles have finite size, then there is a maximum number
of particles, NV , that we can fit into a finite volume V . (Roughly this number is NV ∼ V/r30). But
that, in turn, means that the canonical partition function Q(N,V, T ) = 0 for N > NV , and the
grand partition function Ξ is therefore a finite polynomial in the fugacity z, of order NV . But if the
partition function is a finite polynomial, there can’t be any discontinuous behaviour associated with
a phase transition. In particular, we can calculate

PV = kBT ln Ξ , (G.3)

which gives us PV as a smooth function of z. We can also calculate

N = z
∂

∂z
ln Ξ , (G.4)
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which gives us N as a function of z. Eliminating z between these two functions tells us that pressure
p is a smooth function of density N/V . We’re never going to get the behaviour that we derived from
the Maxwell construction in which the plot of pressure against density shown in figure 3.7 exhibits a
discontinuous derivative.

The discussion above is just re-iterating a statement that we’ve alluded to before: there are no
phase transitions in a finite system. To see the discontinuous behaviour, we need to take the limit
V →∞. A theorem due to Lee and Yang gives us a handle on the analytic properties of the partition
function in this limit.

The surprising insight of Lee and Yang is that if you’re interested in phase transitions, you should
look at the zeros of Ξ in the complex z-plane.22 Let’s first look at these when V is finite. Importantly,
at finite V there can be no zeros on the positive real axis, z > 0. This follows from the definition of Ξ
where it is a sum of positive quantities. Moreover, from (G.4), we can see that Ξ is a monotonically
increasing function of z because we necessarily have N > 0. Nonetheless, Ξ is a polynomial in z of
order NV so it certainly has NV zeros somewhere in the complex z-plane. Since Ξ∗(z) = Ξ(z∗), these
zeros must either sit on the real negative axis or come in complex conjugate pairs.

However, the statements above rely on the fact that Ξ is a finite polynomial. As we take the limit
V → ∞, the maximum number of particles that we can fit in the system diverges, NV → ∞, and
Ξ is now defined as an infinite series. But infinite series can do things that finite ones can’t. The
Lee-Yang theorem says that as long as the zeros of Ξ continue to stay away from the positive real
axis as V →∞, then no phase transitions can happen. But if one or more zeros happen to touch the
positive real axis, life gets more interesting.
Theorem (Lee–Yang Theorem). The quantity

Θ := lim
V→∞

[
1

V
ln Ξ(z, V, T )

]
(G.5)

exists for all z > 0. The result is a continuous, non-decreasing function of z which is independent
of the shape of the box (up to some sensible assumptions such as Surface Area/V ∼ V −1/3 which
ensures that the box isn’t some stupid fractal shape).

Moreover, let R be a fixed, volume independent, region in the complex z plane which contains
part of the real, positive axis. If R contains no zero of Ξ(z, V, T ) for all z ∈ R, then Θ is an analytic
function of z for all z ∈ R. In particular, all derivatives of Θ are continuous.

In other words, there can be no phase transitions in the region R even in the V →∞ limit. The
last result means that, as long as we are safely in a region R, taking derivatives with respect to z
commutes with taking the limit V → ∞. In other words, we are allowed to use (G.4) to write the
particle density ρ = N/V as

lim
V→∞

ρ = lim
V→∞

z
∂

∂z

(
P

kBT

)
= z

∂Θ

∂z
. (G.6)

However, if we look at points z where zeros appear on the positive real axis, then Θ will generally
not be analytic. If ∂Θ/∂z is discontinuous, then the system is said to undergo a first order phase
transition. More generally, if ∂mΘ/∂z is discontinuous for m = n, but continuous for all m < n, then
the system undergoes an nth order phase transition.

H Landau–Ginzburg Theory

Landau’s theory of phase transition focuses only on the average quantity, the order parameter.
It ignores the fluctuations of the system, assuming that they are negligible. Here we sketch a

22This probably isn’t too surprising if you stare at the definition of canonical partition function long enough and
suddenly realise that Q(N,V, T ) is the (discrete) Laplace transform of Ω(N,V,E).
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generalisation which attempts to account for these fluctuations. It is known as Landau–Ginzburg
theory.

The idea is to stick with the concept of order parameter m, but now we allow the order parameter
to vary in space so it becomes a function m(r). Let us restrict ourselves to the situation where there
is a symmetry m→ −m so we only need to consider even powers in the expansion of the free energy.
We add to these a gradient term whose role is to capture the fact that there is some stiffness in the
system — it costs energy to vary the order parameter from one point to another. (For the example of
the Ising model, this is simply the statement that nearby spins want to be aligned). The (truncated)
free energy is then given by

A[m(r)] =

∫
ddr [a(T )m2 + b(T )m4 + c(T )(∇m)2] . (H.1)

Notice that we start with terms quadratic in the gradient: a term linear in the gradient would violate
the rotational symmetry of the system.

We again require that the free energy is minimised. But now A is a functional — it is a function
of the function m(r). If you have learned variational principles, the stationary points will be given
by the Euler–Lagrange equations. If you have not, long story short, we consider varying the function
m(r) by δm(r). The variation of the free energy will then be

δA =

∫
ddr [2amδm+ 4bm3δm+ 2c∇m ·∇δm]

=

∫
ddr [2am+ 4bm3 − 2c∇2m]δm , (H.2)

where we used integration by parts. The minimum energy occurs when δA = 0 for any δm to the
first order, and so

c∇2m = am+ 2bm3 . (H.3)
The simplest solution to this equation have m constant, reducing us back to Landau theory. However,
allowing for the possibility of spatial variation in m opens up the possibility for us to search for some
more interesting solutions.

H.1 Domain Walls

Suppose we have T < Tc, the critical temperature, so there exists two degenerate ground states,
m = ±m0. We could cook up a situation in which one half of space, say x < 0, lives in the ground
state m = −m0 while the other half of space, x > 0 lives in m = +m0. This is exactly analogous to
the liquid–gas phase separation where we have a half liquid and a half gas. The two regions in which
spins point up or down are called domains. The place where these regions meet is called the domain
wall.

We would like to understand the structure of the domain wall. How does the system interpolate
between these two states? The transition can’t happen instantaneously because that would result
in the gradient term (∇m)2 giving an infinite contribution to the free energy. But neither can the
transition linger too much because any point at which m(r) differs significantly from the value ±m0

costs free energy from the m2 and m4 terms. There must be an equilibrium between these two effects.

To describe the system with two domains, m(r) must vary, but it need only change in one direction:
m = m(x). The equation (H.3) then reduces to an ordinary differential equation

d2m

dx2 =
am

c
+

2bm3

c
. (H.4)

Remember we are below phase transition temperature, so a < 0. We then have

m = m0 tanh

(√
−a
2c

x

)
, (H.5)
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where m0 =
√
−a/2b is the constant ground state solution for the spin. As x → ±∞, the tanh

function tends towards ±1 which means that m→ ±m0, so this solution indeed interpolates between
the two domains as required. We learn that the width of the domain wall is given by

√
−2c/a.

Outside this region, the magnetisation relaxes exponentially quickly back to the ground state values.

We can also compute the cost in free energy due to the presence of the domain wall. To do this,
we substitute the solution back into the free energy expression. The cost is not proportional to the
volume of the system, but instead proportional to the area of the domain wall. This means that if
the system has a linear size L then the free energy of the ground state scales as Ld while the free
energy required by the wall scales only as Ld−1. It is simple to find the parametric dependence of
this domain wall energy without doing any integrals; the energy per unit area scales as

√
−ca3/b.

Notice that as we approach the critical point, and a→ 0, the two vacua are closer, the width of the
domain wall increases and its energy decreases.

H.2 Correlations

One of the most important applications of Landau–Ginzburg theory is to understand the correlations
between fluctuations of the system at different points in space. Suppose that we know that the system
has an unusually high fluctuation away from the average at some point in space, let’s say the origin
r = 0. What is the effect of this on nearby points?

There is a simple way to answer this question that requires us only to solve the differential
equation (H.3). However, there is also a more complicated way to derive the same result which has
the advantage of stressing the underlying physics and the role played by fluctuations. We’ll start by
deriving the correlations in the simple manner. We’ll then see how it can also be derived using the
more technical machinery.

We assume that the system sits in a given ground state, say m = +m0, and imagine a small
perturbation around this. We write the magnetisation as

m(r) = m0 + δm(r) . (H.6)

If we substitute this into equation (H.3) and keep only terms linear in δm, we find

c∇2δm+ 2aδm = 0 , (H.7)

where we have substituted m2
0 = −a/2b. We now perturb the system. This can be modelled by

putting a delta-function source at the origin, so that the above equation becomes

c∇2δm+ 2aδm =
1

2c
δ(r) , (H.8)

where the strength of the delta function is chosen merely to make the equation somewhat nicer. It is
straightforward to solve the asymptotic behaviour of this equation.23 Neglecting constant factors, it
is

δm(r) ∼ e−r/ξ

r(d−1)/2
. (H.9)

This tells us how the perturbation decays as we move away from the origin. This equation has
several names, reflecting the fact that it arises in many contexts. In liquids, it is usually called the
Ornstein–Zernicke correlation. It also arises in particle physics as the Yukawa potential. The length
scale ξ is called the correlation length

ξ =

√
−c
2a

. (H.10)

It provides a measure of the distance it takes for correlations to decay. Notice that as we approach
the critical point, a→ 0 and the correlation length diverges. This provides yet another hint that we
need more powerful tools to understand the physics at the critical point. We will now take the first
step towards developing these tools.

23The same type of equation will arise in the Debye–Hückel model of screening.
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Figure H.1: Coarse graining in the Ising model lattice to define m(x).

H.3 Fluctuations

The main motivation to allow the order parameter to depend on space is to take into account the
effect of fluctuations. To see how we can do this, we first need to think a little more about the
meaning of the quantity A[m(r)] and what we can use it for.

To understand this point, it is best if we go back to basics. We know that the true free energy of
the system can be equated with the log of the partition function. The Landau–Ginzburg functional
A[m(r)] is closely related to the true free energy, but it is not quite the same thing as we will see
shortly. To avoid confusion, we will call the true free energy F . Since F = −kBT lnQ, we can write

e−βF = Q =
∑
n

e−βEn . (H.11)

We would like to understand the right way to view the functional A[m(r)] in this framework. Here
we give a heuristic and fairly handwaving argument. A fuller treatment involves the idea of the
renormalisation group, which you will learn if you decide to study statistical field theory.

The idea is that each microstate |n⟩ of the system can be associated to some specific function of
the spatially varying order parameter m(r). To illustrate this, we’ll talk in the language of the Ising
model although the discussion generalises to any system. For the Ising model of N lattice points,
we can divide the lattice into uniform blocks, each consisting of a number of lattice sites (say N ′

lattice points per box) but its scale should be smaller than any other length scales in our model (in
particular, it should be smaller than the correlation length). This step is called coarse graining. For
each box, we can evaluate its average magnetisation m(r) = 1

N ′

∑
i si, where r is the centre of the box.

Clearly this function is defined only at discrete points, if the number of boxes N/N ′ is big enough, we
can effectively treat r as being continuous. Moreover, at each r, m(r) is quantised in units of 1/N ′,
so we also need to take N ′ big enough so m(r) can effectively take any value between 1 and −1.

In this way, we get a map from the microstates to the magnetisation function, |n⟩ → m(r). But
due to the averaging process, this map is clearly not one-to-one. In this way, many microstates map
onto the same average magnetisation. Summing over just these microstates provides a first principle
construction of the A[m(r)]:

e−βA[m(r)] =
∑

n|m(r)

e−βEn . (H.12)

Of course, we didn’t actually perform this procedure to get to (H.1): we simply wrote it down the
most general form in the vicinity of a critical point with a bunch of unknown coefficients a(T ), b(T )
and c(T ). But if we were up for a challenge, the above procedure tells us how we could go about
figuring out those functions from first principles. More importantly, it also tells us what we should
do with the Landau–Ginzburg free energy. Because in (H.12) we have only summed over those states
that correspond to a particular value of m(r). To compute the full partition function, we need to
sum over all states. But we can do that by summing over all possible values of m(r). In other words,

Q =

∫
Dm(r) e−βA[m(r)] . (H.13)
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This is a tricky beast: it is a functional integral. We are integrating over all possible functions m(r),
which is the same thing as performing an infinite number of integrations. (Actually because the order
parameter m(r) arose from an underlying lattice and are suitably smooth on short distance scales in
our case, the problem is somewhat mitigated).

The result (H.13) is physically very nice, albeit mathematically somewhat daunting. It means
that we should view the Landau–Ginzburg free energy as an effective Hamiltonian for a continuous
variable m(r), so that by integrating over all possible m(r), we get the partition function. It arises
from performing the partition function sum over much of the microscopic information, but still leaves
us with a final sum, or integral, over fluctuations in an averaged quantity, namely the order parameter.

To complete the problem, we need to perform the functional integral (H.13). This is hard. Here
“hard” means that the majority of the unsolved problems in theoretical physics can be boiled down
to performing integrals of this type. Yet the fact it’s hard shouldn’t dissuade us, since there is a
wealth of rich and beautiful physics hiding in the path integral, including the deep reason behind
universality. You will explore this if you study statistical field theory.

I An Introduction to Linear-Response Theory

We have derived a number of links between equilibrium properties and transport coefficients,
specifically diffusion. We investigated how the approach of a system to equilibrium (diffusion of
a particle) and the fluctuations at equilibrium (the root mean square distance travelled by a particle)
turns out to be very closely related (by the Einstein relation). In fact, this relation is not limited
to diffusion: there is a general set of relations known as Onsager reciprocal relations, that express
how ratios of flows and forces are related in near-equilibrium systems. We can extend out discussion
slightly and formalise the link between equilibrium statistical mechanics and transport coefficients
using what is known as the linear-response theory, and derive the relation between the mobility and
the diffusion coefficient in another way still.

We first note that the thermal average of an observable X is

⟨X⟩ =
∫
dΓ e−βH(Γ)X(Γ)∫
dΓ e−βH(Γ)

, (I.1)

where we have denoted a point in the phase space by Γ = (p1, . . . ,pN , r1, . . . , rN ), and H = K + U
is the total Hamiltonian. Now consider a small, linear perturbation λB, so that the perturbed
Hamiltonian can be written as H = H(0) + λB, where B is some field to be defined later and λ is its
strength. We can then decompose the thermal average of X into its unperturbed part ⟨X⟩0 and a
change due to the perturbation ∆X such that

⟨X⟩ = ⟨X0⟩+ ⟨∆X⟩ =
∫
dΓ e−β(H(0)+λB)X∫
dΓ e−β(H(0)+λB)

. (I.2)

Now suppose ⟨X⟩ is analytic in λ, so that we can write

⟨X⟩ = ⟨X⟩0 +
(
∂ ⟨X⟩
∂λ

)
λ=0

λ+
1

2

(
∂2 ⟨X⟩
∂λ2

)
λ=0

λ2 + . . . (I.3)

We will focus on the linear response, i.e. the first order correction in the language of perturbation
theory, and write

⟨∆X⟩ =
(
∂ ⟨X⟩
∂λ

)
λ=0

λ+O(λ2) . (I.4)
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We can find out an explicit expression for this simply by differentiating ⟨X⟩ and get

∂ ⟨X⟩
∂λ

=

∫
dΓ ∂

∂λ e
−β(H(0)+λB)X∫

dΓ e−β(H(0)+λB)
−
∫
dΓ e−β(H(0)+λB)X

[
∫
dΓ e−β(H(0)+λB)]2

∫
dΓ

∂

∂λ
e−β(H(0)+λB)

= −β
∫
dΓ e−β(H(0)+λB)BX∫
dΓ e−β(H(0)+λB)

+ β

∫
dΓ e−β(H(0)+λB)X∫
dΓ e−β(H(0)+λB)

∫
dΓ e−β(H(0)+λB)B∫
dΓ e−β(H(0)+λB)

= −β[⟨BX⟩ − ⟨B⟩ ⟨X⟩] . (I.5)

We can evaluate this at λ = 0 to obtain the linear response to the perturbation

⟨∆X⟩ = −βλ[⟨BX⟩0 − ⟨B⟩0 ⟨X⟩0] +O((βλB)2) . (I.6)

As an example, let’s consider the response of the polarisation P of a system to a weak static
electric field Ex. The perturbative Hamiltonian is −ExPx, so

⟨∆Px⟩ = −βEx[−⟨PxPx⟩0 + ⟨Px⟩0 ⟨Px⟩0] = βEx[
〈
P 2
x

〉
0
− ⟨Px⟩20] . (I.7)

The response to the external electric field therefore scales as
〈
P 2
x

〉
0
− ⟨Px⟩20. This is nothing other

than the variance of the spontaneous polarisation without the electric field, which is a measure of the
fluctuations of this property in the system at equilibrium. This is in fact quite a general result: the
larger the spontaneous fluctuations a mechanical observable, the larger the response to an external
field that is coupled to this observable.

Let’s now focus on a more general case of a system that we have equilibrated with an active
perturbation with Hamiltonian H = H(0) + λB, but we switch off this perturbation at time t = 0.
For notational simplicity, we will assume that in the absence of the field, ⟨X⟩0 = 0. If this were not
the case, we could simply define a new variable suitably shifted so that its average is zero, and we
are not losing generality here. In classical mechanics, the motion is deterministic, and in the absence
of an external force, the value of a mechanical observable at time t depends on the initial conditions,
say at t = 0. Hence, we may evaluate the thermal average at time t using the integral of the phase
space at t = 0,

⟨∆X(t)⟩ = dΓ(0) e−β(H(0)+λB)X(t)∫
dΓ(0) e−β(H(0)+λB)

, (I.8)

where the Hamiltonian is evaluated at t = 0, where B = B(0) is at full strength. The remaining steps
are exactly the same as above, and we get

⟨∆X(t)⟩ = −βλ[⟨B(0)X(t)⟩0 − ⟨B(0)⟩0 ⟨X(t)⟩0] . (I.9)

Since we have assumed that in the absence of the field, ⟨X⟩0 = 0, we are left with

⟨∆X(t)⟩ = −βλ ⟨B(0)X(t)⟩0 = −βλCXB(t) , (I.10)

where CXB(t) := ⟨B(0)X(t)⟩0 is the correlation function relating the mechanical property X at time
t to the perturbative field B at times t = 0. For example, in the case of the weak electric field we
considered above, when the field is on, there is a net polarisation Px(0), but the field is switched
off, then polarisation decays to zero as ⟨Px(t)⟩ = βEx ⟨Px(0)Px(t)⟩, where ⟨Px(0)Px(t)⟩ is the dipole
autocorrelation function.

Finally, in order to make a link to the Einstein–Smoluchowski relation, we need to go one step
further. Suppose that we write our perturbed Hamiltonian as H = H(0) + λ(t)B, where λ(t) is some
function of time that governs the extent to which the perturbation is switched on. In general, we can
write the response of the mechanical property X to the linear order in λ as

⟨∆X(t)⟩ =
∫ ∞

−∞
dt′ χXB(t, t

′)λ(t′) , (I.11)

where the response function χXB(t, t
′) is to be determined. There are two properties we require of

this function:
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• The response must be causal, i.e. the system cannot respond to the perturbation before it has
been applied. Hence the correlation function must be zero if we are looking at correlations with
some future behaviour of the system, i.e χ(t, t′) = 0 if t < t′. We can take this into account by
integrating in t′ from −∞ to t only, so

⟨∆X(t)⟩ =
∫ t

−∞
dt′ χXB(t, t

′)λ(t′) . (I.12)

• The response must be stationary, i.e. if we apply the perturbation at a later stage, the response
simply occurs correspondingly later. In other words, the response can only depend on the time
difference t− t′, rather than the absolute time, so

⟨X(t)⟩ =
∫ t

−∞
dt′ χXB(t− t′)λ(t′) . (I.13)

Assuming that we are dealing with the same case as above, i.e. that λ(t) = λ for t < 0 and 0
otherwise, we can shift the upper limit from t down to zero. Using the substitution τ = t − t′ and
swapping the limits of integration, we then have

⟨∆X(t)⟩ = λ

∫ ∞

t

dτ χXB(τ) . (I.14)

We can equate this with (I.10) to get

β ⟨B(0)X(t)⟩0 = −
∫ ∞

t

dτ χXB(τ) . (I.15)

We can differentiate both sides with respect to t to get

χXB(t) =

{
β
〈
B(0)Ẋ(t)

〉
0

if t > 0

0 otherwise.
(I.16)

Notice that since time-correlation functions are stationary,

0 =
∂

∂t
⟨B(t)X(t+ t′)⟩ =

〈
Ḃ(t)X(t+ t′)

〉
+
〈
B(t)Ẋ(t+ t′)

〉
, (I.17)

we can alternatively write (I.16) as

χXB(t) =

{
−β
〈
Ḃ(0)X(t)

〉
0

if t > 0

0 otherwise.

= −βH(t)
〈
Ḃ(0)X(t)

〉
0
, (I.18)

where H(t) is the Heaviside step function that ensures the causality condition is satisfied.

Finally, we are in the position to consider the diffusion again. Suppose we have applied some force
to move the molecules in a non-random direction. If a particle is moving under the influence of a
force Fx, then H = H(0) − Fxx, so in the notation used so far, B = x and λ = −Fx. Suppose again
that the force acts until a steady state is reached at t = 0, at which point it is switched off. The drift
velocity vx(t) averages to zero (⟨vx⟩0 = 0) in the absence of an external force, satisfying one of the
assumptions we have previously made. Moreover, it is a mechanical observable, so we can write its
average in terms of (I.14) as

⟨∆vx(t)⟩ = ⟨vx(t)⟩ = −Fx

∫ ∞

t

dτ χvxx(τ) . (I.19)
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Since χvxx = −β ⟨ẋ(0)vx(t)⟩0 = −β ⟨vx(0)vx(t)⟩ for t > 0, we have

⟨vx(t)⟩ = βFx

∫ ∞

t

dτ ⟨vx(0)vx(τ)⟩ . (I.20)

Comparing this to the phenomenological steady-state velocity when a force is applied (i.e. at time
t = 0), ⟨vx(0)⟩ = uFx, where u is the mobility, gives

u = β

∫ ∞

0

dτ ⟨vx(0)vx(τ)⟩ . (I.21)

Using the Green–Kubo relation, we obtain the Einstein–Smoluchowski relation u = βD.

We have thus derived the Einstein–Smoluchowski relation in another way, this time approaching
the problem from an explicit out-of-equilibrium approach. In section 4.5, we obtained the same
result from a consideration of steady-state fluxes. We thus have another, more formal way of
justifying Onsager’s regression hypothesis that spontaneous fluctuations and the approach from a
non-equilibrium state towards equilibrium are indistinguishable.

The formalism introduced here entails many steps to obtain results that we were able to find
considerably more simply in lectures. We shall leave our discussion of near-equilibrium behaviour
at this stage, and so the machinery we have developed in this appendix will not be especially
helpful to us in this course. More broadly, however, linear-response theory is a rather useful tool in
statistical mechanics and allied fields. One could for example look at the energy dissipation caused
by a perturbation, where it is possible to show that the shape of the infra-red absorption spectrum
is determined by the dipole correlation function; in fact, every spectroscopic technique probes a
correlation function. You will see numerous further examples of linear-response theory in Part III.
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