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Preface

This course focuses on the foundational level of group theory and representation theory
in the context of chemistry and molecular symmetry. If you want a more mathematical
(and hence more abstract) treatment on basic groups and representations, you can
look at my notes on Natural Sciences Tripos Part IB Mathematical Methods. This
level of knowledge is essential (and should be enough) for a good grasp on theoretical
chemistry. Slightly more advanced notes on groups (and rings and modules) can be
found in Mathematical Tripos Part IB Groups, Rings and Modules, but they are largely
irrelevant to chemistry.
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1 Symmetry B8 Symmetry

1 Symmetry

Definition 1.1. For a system with Hamiltonian Ĥ, a symmetry operator is an operator R̂ such that
the inverse R̂−1 exists and commutes with the Hamiltonian

R̂Ĥ = ĤR̂ . (1.1)

The above condition can be trivially rewritten as

Ĥ = R̂ĤR̂−1 or Ĥ = R̂−1ĤR̂ . (1.2)

Then if we have |ψ〉 an eigenstate of the Hamiltonian

Ĥ |ψ〉 = E |ψ〉 , (1.3)

R̂ |ψ〉 is also an eigenstate of Ĥ with the same eigenvalue.

ĤR̂ |ψ〉 = R̂Ĥ |ψ〉 = R̂E |ψ〉 = ER̂ |ψ〉 . (1.4)

The resulting state R̂ |ψ〉 may be physically equivalent to |ψ〉, i.e. R̂ |ψ〉 = c |ψ〉 for some c ∈ C, but
otherwise |ψ〉 and R̂ |ψ〉 are different states with the same eigenvalue. We see that symmetry leads
to degeneracy.

We are going to make a postulate.

Postulate 1.2. If a set of eigenstates are degenerate, then the degeneracy must be a consequence of
some symmetry.

This is to say, we postulate that any degeneracy has an underlying symmetry (possibly hidden),
rather than being truly accidental.

Example. For a Hydrogen atom, the three 2p states are degenerate. They are related by spatial
rotations of 90◦. The 2s is also degenerate with the three 2p states. In this case there is no geometric
symmetry operations that transform e.g. |2s〉 to |2pz〉, but there do exist symmetry operators that
transform |2s〉 to |2pz〉 — it is only that we cannot find a corresponding geometric representation in
our physical space.1

1.1 Molecular Symmetry

We will consider molecular systems for which the Hamiltonian looks like

Ĥ = −
∑
i

ℏ2

2mi
∇2

i + V ({ri}) (1.6)

1Let’s have a close look at the Hamiltonian of a hydrogen atom:

Ĥ = −
1

2
∇2 −

1

r
= −

1

2

[
1

r2
∂

∂r

(
r2

∂

∂r

)
−
L̂2

r2

]
−

1

r
, (1.5)

where we have used the atomic units. As we all know, we can label a hydrogen energy eigenstate by |n, ℓ,m〉. There is
no L̂z involved in the expression of the Hamiltonian, so we are quite happy to accept that the energy of the hydrogen is
independent of m, i.e. the states that differ only by m are degenerate. This naturally follows from spherical rotational
symmetry of hydrogen atom characterised by the SO(3) group (see later) — a hydrogen atom should have no preference
on in which direction the angular momentum lies. However, we do have L̂2 appearing explicitly in the Hamiltonian,
so we would not expect states with different ℓ’s to be degenerate. In fact, this is true for any other atom, or indeed
for any other central potentials (except the 3D harmonic oscillator) — the degeneracy is 2ℓ + 1 for the states that
differ by mℓ only. However, there is another conserved quantity in hydrogen atom that arises because the potential is
exactly ∼ r−1. It is called the Runge–Lenz vector, which also appears in many other places like planetary orbits. This
enhances the symmetry group of a hydrogen atom from SO(3) to SO(4). Roughly speaking, aside from simply rotating
our system, we can also trade radial kinetic energy and Coulomb potential for different orbital kinetic energy whilst
keeping the total energy constant. This raises the degeneracy of a hydrogen atom from 2ℓ+ 1 to n2.
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1 Symmetry B8 Symmetry

such that the potential term V only depends on the distances between the particles. Let’s see what
symmetry such systems can have.

We can divide symmetries into two types: continuous symmetry and discrete symmetry.
Continuous symmetries are those that can be parameterised by continuous parameters (e.g. rotation
is parameterised by the degree of rotation, which is a continuous parameter), and discrete symmetries
are parameterised by discrete parameters. We will see a number of examples of them.

1.1.1 Continuous Symmetry

There is a deep and beautiful theorem related to continuous symmetry, which is arguably the most
beautiful and profound result in physics.
Theorem 1.3 (Noether’s theorem). Every continuous symmetry of a physical system leads to a
corresponding conservation law.

A brief proof of this using Lagrangian formulation is included in appendix section A. This is best
explained with some examples. In this course, we are mainly concerned with two continuous symmetry
operations.

(i) Translation. Translational symmetry leads to conservation of momentum.
Let’s consider a system described by a wavefunction ψ(xi,xj , . . . ) and move all particles by the
same amount a. Suppose this action can be represented by an operator Â, then it is easy to
see that the wavefunction after translation ψ′(xi,xj , . . . ) is given by

ψ′(xi,xj , . . . ) = Âψ(xi,xj , . . . ) = ψ(xi − a,xj − a, . . . ) . (1.7)

Since the distances between the particles are unchanged after translation of all particles,
the potential energy is also unchanged by our assumption. Mathematically, V (xi,xj , . . . ) =
V (x′

i,x
′
j , . . . ), where we have defined x′

k = xk − a, so

Â
−1
V (xi, . . . )Âψ(xi, . . . ) = Â

−1
V (xi, . . . )ψ(xi − a, . . . )

= Â
−1
V (xi − a, . . . )ψ(xi − a, . . . )

= Â
−1

(V ψ)(x′
i, . . . )

= V ψ(x) , (1.8)

i.e. the potential energy operator V commutes with the translation operator Â.
Moreover, from chain rule, we have

∇2
iψ

′(xi,xj , . . . ) =
∂2ψ′(xi,xj , . . . )

∂xi
2 +

∂2ψ′(xi,xj , . . . )

∂yi
2 +

∂2ψ′(xi,xj , . . . )

∂zi
2

=
∂2ψ′(xi,xj , . . . )

∂(xi − ax)
2 +

∂2ψ′(xi,xj , . . . )

∂(yi − ay)
2 +

∂2ψ′(xi,xj , . . . )

∂(zi − az)
2

=
∂2ψ(x′

i,x
′
j , . . . )

∂x′i
2 +

∂2ψ(x′
i,x

′
j , . . . )

∂y′i
2 +

∂2ψ(x′
i,x

′
j , . . . )

∂z′i
2

= ∇2
iψ(x

′
i,x

′
j , . . . ) , (1.9)

where x′
i = xi − a. By the same argument as above, we can see that the kinetic energy

operator (the Laplacian) also commutes with Â; hence the entire Hamiltonian commutes with
the translation operator Â — it is indeed a symmetry operator as we claimed.
Since there is no change in the system’s energy under uniform translation of all particles,

dptot

dt
= − d

da
Esys({xi + a})

∣∣∣∣
a=0

= 0 . (1.10)
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1 Symmetry B8 Symmetry

The total momentum of the system does not change. Translational symmetry implies the
conservation of momentum (Noether).

(ii) Rotation. Rotational symmetry leads to conservation of angular momentum.
The proof of rotation operator being a symmetry operator is essentially the same as for the
translation operator. Rotation also preserves the distances between the particles so the potential
energy does not change. Rotation also commutes with the Laplacian — this is the most easily
seen if we identify the rotational axis as the z axis, so that a rotation by degree α results in a
transformed wavefunction ψ′(r, θ, φ) = ψ(r, θ, φ− α) in spherical polar coordinates. Therefore,
rotating a molecule does not change its energy. Consequently, no torque is needed to perform
such operation, and the angular momentum is conserved.
In fact, we will see later that the rotation and angular momentum has a deep connection. For
example, if we consider the change in the wavefunction when we act an infinitesimal rotation
about the z axis

lim
δφ→0

R̂z(δφ)− Ê

δφ
ψ = − ∂

∂φ
ψ ∝ Ĵzψ . (1.11)

We say angular momentum generates spatial rotation.2

1.1.2 Discrete Symmetries

We will consider three discrete symmetries of a molecular system.

(i) Permutation of electrons.
Since all electrons are equivalent, the Hamiltonian has kinetic and potential energy terms of
the same form for each electron. Therefore, permuting the electrons has no effect on the
Hamiltonian, and any permutation is a symmetry operation.
Although permuting electrons does not change the energy, it has some subtle yet important
effect on the wavefunction itself. The Pauli principle requires the wavefunction to be
antisymmetric under exchange of identical Fermions, and symmetric under exchange of identical
Bosons. Electrons are Fermions, so

P̂ijψ(xi,xj , . . . ) = ψ(xj ,xi, . . . ) = −ψ(xi,xj , . . . ) . (1.13)

(ii) Permutation of identical nuclei.
Just as for electrons, the Hamiltonian is unchanged if we permute the labels of a set of identical
nuclei. But as an important aside, the Pauli principle still applies. Nuclei with even masses
have integer spins, so they are Bosons, and those of odd masses have half-integer spins, so they
are Fermions.

(iii) Parity inversion.
Parity operator inverts the coordinates of the particles through the origin. Again, this leaves
particle-particle distances and the kinetic Laplacian terms unchanged, so it commutes with the
Hamiltonian. The parity operator is denoted E∗ (or sometimes P ). Note that this is different
from the inversion operator ı̂, which only exists for molecules with a centre of symmetry.

2More explicitly, we have

R̂z(δφ) = Ê −
i

ℏ
δφĴz =⇒ lim

δφ→0

R̂z(δφ)− Ê

δφ
ψ = −

i

ℏ
Ĵzψ . (1.12)

This exact expression is non-examinable, and you can find more details in my notes on Principles of Quantum
Mechanics.

3



1 Symmetry B8 Symmetry

1.2 Internal Frame of Reference

We will investigate what operations like inversion and nuclear permutation do on the geometries of
our molecules. We are mainly interested in the internal degrees of freedom of the molecules, including
electronic and vibrational degrees of freedom of the molecules. To do this, apart from the global frame
of the system, (X,Y, Z), which measures the location of some point relative to an origin in the space,
it is often convenient to construct a local frame within the molecule, denoted (x, y, z).

For example, let’s consider a water molecule. The origin is chosen to be the centre of mass of
the molecule. It is conventional to define the z axis to be along the principal axis (the axis of the
highest rotational symmetry), so in our case, we let the z axis sit along the C2 axis, with the positive
direction bisecting the H−O−H reflex angle. We further define the y axis to be in the molecular
plane, perpendicular to the z axis and pointing from proton a to proton b, and we let the x axis be
the one completing the right-handed coordinate system. You can check that this well defines a unique
internal coordinate system in our H2O molecule.

z

y

x
a b

Let’s associate some orbitals and vectors to track what’s going on. Consider a nuclear permutation
operator (ab) that permutes the labels of the hydrogen nuclei a and b only, leaving everything else
unchanged. The action of this operator is shown in figure 1.1. Notice that since the internal frame
is defined using the nuclear labels, when we permute the labels, the internal frame also changes its
orientation. We can switch our perspective to reorient our system — then we see that the effect of
the (ab) operation on internal coordinates is the same as that of C2

z , a two-fold rotation along the z
axis that rotates the functions and coordinates only but not the nuclear labels.

z

y

x

z

y

x
a b

(ab)

z

y

x

z

y

x

b a

reorient

z

y

x

z

y

x
a b

Cz
2

Figure 1.1: The action of a nuclear permutation operator (ab) on H2O is equivalent to Cz
2 on associated

objects.

Similarly, the action of the parity inversion operator E∗ is the same as acting a σyz
v to the

associated objects (vectors, functions etc.), as shown in figure 1.2, and the action of (ab)E∗ is the
same as σxz

v to the associated objects as shown in figure 1.3.

1.2.1 Allowed Rotational States of Molecules

We can expand the total wavefunction of a molecule into a product of electronic, vibrational,
rotational, translational and nuclear spin factors

Ψ = ψelecψvibψrotψtransψns . (1.14)

4
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z

y

x

z

y

x
a b

E∗

z

y

x

z

y

x

b a

reorient

z

y

x

z

y

x
a b

σyz
v

Figure 1.2: The action of a parity inversion operator E∗ on H2O is equivalent to σyz
v on associated

objects.

z

y

x

z

y

x
a b

(ab)E∗

x

z

y

z

y

x
a b

reorient

z

y

x

z

y

x
a b

σxz
v

Figure 1.3: The action of a parity inversion operator (ab)E∗ on H2O is equivalent to σxz
v on associated

objects.

However, recall that Pauli principle requires the wavefunction to be symmetric with respect to
the exchange of identical Bosons (integer-spin nuclei) and antisymmetric with respect to the
exchange of identical Fermions (electrons and half-integer-spin nuclei). This means that we cannot
combine any components of the wavefunction with each other — we must maintain the overall
symmetry/antisymmetry.

Ortho and Para Hydrogen

Let’s consider a ground electronic and vibrational state H2 molecule with the two nuclei labelled by a
and b. What happens if we perform the symmetry operator (ab) which exchanges the proton labels?

The ground state electronic state of H2 is 1Σ+
g , i.e. totally symmetric, so it is unchanged by (ab).

The vibrational wavefunction only depends on the bond length ‖ra − rb‖, which is unchanged by the
exchange of the labels a and b. The translational wavefunction only depends on the overall (centre
of mass) position of the molecule. It is also unchanged by (ab).

However, ψrot is a spherical harmonic YJM (θ, φ), where θ and φ describes the orientation of
the molecule in the global frame. This orientation of the molecule is reversed when a and b are
interchanged. For example, if we define the direction of the molecule to be from a to b, and its
currently pointing in direction (θ, ϕ) in the global frame, then permuting the labels a and b would
make the molecule point in the reverse direction π−θ, π+φ. As a result, the rotational wavefunction
changes sign if J is odd, and is unchanged if J is even under such an inversion.3

3The easiest way to confirm this without using mathematics is to check the angular parts of the atomic orbitals.
J = 0 is the s orbitals, J = 1 is the p orbitals and J = 2 is the d orbitals etc. If you are not convinced by this, you can

5
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Finally, the spin of hydrogen is I = 1/2, so the nuclear spin function of H2 is either a singlet

ψsinglet =

√
1

2
(αaβb − βaαb) (1.18)

that is antisymmetric with respect to (ab), or one of the triplet functions

ψtriplet =


αaαb√

1
2 (αaβb + βaαb)

βaβb

(1.19)

that are symmetric with respect to (ab). Because the nuclear spins interact only very weakly with
the environment, the spin states do not change easily. We can speak of ortho hydrogen for the ones
with triplet nuclear spin, and para hydrogen for those with singlet nuclear spin.

Therefore, to maintain the overall antisymmetry of the total wavefunction when we perform the
permutation of the two Fermion nuclei a and b, the ortho hydrogen with symmetric spins must
combine with odd J rotational states, while the para hydrogen with antisymmetric spins must have
even rotational states. This can be confirmed in Raman spectrum. Since there are three times as
many ortho hydrogen as para at equilibrium at high temperatures due to nuclear spin degeneracy,
the rotational Raman spectra of H2 show alternating intensities of 3 : 1 between odd and even J .

Carbon Dioxide

In CO2, O has I = 0, so the nuclear spin function is trivially ψns = 1. The wavefunction is symmetric
with respect to the exchange of the labels of the two Bosonic oxygens, so only even J rotational
functions are allowed — odd-J peaks are absent in the rotational and vibration-rotational Raman
spectra of CO2.

Oxygen

The oxygen molecule has a more interesting ground electronic state of 3Σ−
g . The minus sign means

that the electronic wavefunction changes its sign upon reflection about a mirror plane that contains
the principal axis. When we exchange a and b, we inverted the direction of the z axis, and to maintain
the right-handedness of the internal coordinate system, we must also do such a mirror plane reflection
to permute the x and y axis. Hence, the electronic wavefunction changes its sign under (ab). The
nuclear wavefunction is symmetric under (ab). As a result, to obey Pauli principle, the rotational
wavefunction of O2 must have odd J .

check that the spherical harmonics have the general expression

Yℓm =

√
2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
P

|m|
ℓ (cos θ)eimφ , (1.15)

where Pm
ℓ is the associated Legendre polynomial, defined by

P
|m|
ℓ (x) = (−1)|m|(1− x2)|m|/2 d|m|

dx|m| (Pℓ(x)) , (1.16)

Pℓ(x) =
1

2ℓℓ!

dℓ

dxℓ
(x2 − 1)ℓ . (1.17)

The inversion is described by the change of coordinate (θ, φ) 7→ (π− θ, π+φ). One can straightforwardly confirm that
Pℓ(−x) = (−1)ℓPℓ(x), and so P |m|

ℓ (−x) = (−1)ℓ−|m|P
|m|
ℓ (x). Therefore we get the claimed result Yℓ,m(π−θ, π+φ) =

(−1)ℓYℓ,m(θ, φ).

6



2 Groups B8 Symmetry

2 Groups

Definition 2.1. A group is a triple (G, · , E) of a set G, a binary operation · : G × G → G often
known as the group product, and an element E ∈ G such that the following axioms are satisfied:4

1. Associativity: (R · S) · T = R · (S · T ) ∀R,S, T ∈ G. This allows us to write both as R · S · T
directly without ambiguity.

2. Identity: The identity element E satisfies R · E = E ·R = R for all R ∈ G.

3. Inverse: For every R ∈ G, there is an inverse R−1 ∈ G such that R ·R−1 = R−1 ·R = E.

Groups naturally arise when studying symmetries, because the symmetry operations of a certain
system naturally form a group. If you perform a symmetry operation, then perform another, then
the combined action is another symmetry operation. This defines the group product. Doing nothing
is a symmetry operation — this is the identity. Whatever symmetry operation you perform, you can
always undo it. This reverse operation is the inverse.

To better investigate the symmetry of objects using group theory, we need to let the group elements
(the symmetry operations) to act on some object (the object that we wish to describe the symmetry
of). This leads to the definition of a group action.

Definition 2.2. Let (G, · , E) be a group and X be a set. A group action ∗ of G on X is a map
∗ : G×X → X that satisfies the following axioms

1. Identity. E ∗ x = x ∀x ∈ X.

2. Compatibility. R ∗ (S ∗ x) = (R · S) ∗ x ∀R,S ∈ G, x ∈ X.

Example. Consider the rotational symmetry of a triangle. The group of the symmetry operations is
G = {E,C3, C

2
3}, and the set that group G is acting on is

X =

{
, ,

}
. (2.1)

Then we have, for example,

E ∗ = . (2.2)

C3 ∗ = . (2.3)

C3 ∗

(
C3 ∗

)
= C3 ∗ = (2.4)

= C2
3 ∗ = (2.5)

In the last equation, the first line computed the two actions separately, while in the second line we
take the group product first. This shows the compatibility axiom.

From now on, we use the notation ∗ for group action exclusively to avoid confusion. We will also
sometimes omit · or ∗ when what we are doing is clear from the context. However, note that RSψ
means R ∗ (S ∗ ψ). We act S on ψ first, and then act R on the result of S ∗ ψ.

4Some authors may include closure as one of the group axioms — this is stupid. Closure is naturally guaranteed by
the definition of a binary operation.

7
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Definition 2.3. A group G is finite if G consists of a finite number of elements. The order of a finite
group is the number of elements in it.

Definition 2.4. A group G is Abelian if ∀R,S ∈ G, RS = SR, i.e. the group product is commutative.

If a group is finite, then we can clearly list all possible results of the product of any two elements.
If we construct a table by putting the first argument of the group product in rows, and the second
argument of a group product in columns, then we obtain a multiplication table.

Example. The multiplication table of D3.

We define the symmetry operations on a dihedral triangle as shown in the diagram below.

Ca
2

Cb
2 Cc

2

C3

Then the symmetries form a D3 group, whose group table can be obtained as follows.

E C3 C2
3 Ca

2 Cb
2 Cc

2

E E C3 C2
3 Ca

2 Cb
2 Cc

2

C3 C3 C2
3 E Cc

2 Ca
2 Cb

2

C2
3 C2

3 E C3 Cb
2 Cc

2 Ca
2

Ca
2 Ca

2 Cb
2 Cc

2 E C3 C2
3

Cb
2 Cb

2 Cc
2 Ca

2 C2
3 E C3

Cc
2 Cc

2 Ca
2 Cb

2 C3 C2
3 E

For example, the entry marked in blue means that

C3C
a
2 = Cc

2 , (2.6)

i.e. if you flip the triangle along the axis a, then rotate 120◦ along the principal axis anticlockwise,
then the overall effect is equivalent to flipping the triangle along the axis c. However, if you do the
two operations in a reverse order, then what you get is the entry marked in red

Ca
2C3 = Cb

2 . (2.7)

This clearly shows that the D3 group is not Abelian — the order of operations matters.

Definition 2.5. A group is said to be generated by a subset of its elements if all the group elements
can be produced by performing group products within this subset of elements.

Example. The cyclic group Cn.

Consider the rotational symmetry of a regular n-gon. The cyclic group of order n, denoted Cn,
contains all the rotational symmetry operations, i.e. rotations by 360◦k/n for k = 1, . . . , n. We
denote the rotation of 360◦/n as R, then we see that the group Cn is generated by R, since all the
group elements can be written as Rk, and in particular, the identity element E = Rn.

8



2 Groups B8 Symmetry

A lot of groups are generated by more than one elements. For example, you can check that D3 is
generated by {C3, C

a
2 }.

Definition 2.6. If (G, · , E) is a group, then (H, · , E) is a subgroup of G, denoted H ≤ G, if H is
a non-empty subset of G, and H is a group on its own under the same group product · .

Example. C3 ≤ D3. This is evident from the group multiplication table.

E C3 C2
3 Ca

2 Cb
2 Cc

2

E E C3 C2
3 Ca

2 Cb
2 Cc

2

C3 C3 C2
3 E Cc

2 Ca
2 Cb

2

C2
3 C2

3 E C3 Cb
2 Cc

2 Ca
2

Ca
2 Ca

2 Cb
2 Cc

2 E C3 C2
3

Cb
2 Cb

2 Cc
2 Ca

2 C2
3 E C3

Cc
2 Cc

2 Ca
2 Cb

2 C3 C2
3 E

Definition 2.7. Let (G, ·G , E) and (H, ·H , I) be groups. Then the direct product group P = G×H
is a group whose elements are P = {(g, h) | g ∈ G,h ∈ H}, and the group product ◦ is defined by

(g1, h1) ◦ (g2, h2) = (g1 ·G g2, h1 ·H h2) . (2.8)

We can prove some properties of the direct product group.

Proposition 2.8. Let (G, ·G , E) be a group of order nG and (H, ·H , I) be a group of order nH .
Let P = G×H. Consider the following subsets of P :

G′ = {(g, I) | g ∈ G} and H ′ = {(E, h) | h ∈ H} . (2.9)

We have

(i) The order of P is nGnH .

(ii) G′, H ′ are subgroups of P .

(iii) G′ is the same group as G, and H ′ is the same group as H.

(iv) G′ ∩H ′ = {(E, I)}.

(v) Every element of P can be expressed as the product of an element in G′ and an element in H ′.

(vi) Every element in G′ commutes with every element in H ′.

Proof.

(i) There are nG elements in G and nH elements in H, so we can construct nGnH distinct pairs.

(ii) G′,H ′ are clearly subsets of P . G′ is closed because (g1, I) ◦ (g2, I) = (g1 ·G g2, I), which is by
definition in P because g1 ·G g2 ∈ G. The inverse of (g1, I) ∈ G is (g−1

1 , I) ∈ G. G′ is indeed a
group, so it is a subgroup. The same for H ′.

(iii) There is a one-to-one correspondence between elements in G and the elements in G′. If we
identify (g, I) ∈ G′ as g ∈ G, then clearly G′ and G are the same. Mathematically, we say G
and G′ are isomorphic, meaning that they are essentially the same group. Same for H ′.

(iv) Obvious.

(v) (g, h) = (g, I) ◦ (E, h).

(vi) (g, I) ◦ (E, h) = (g, h) = (E, h) ◦ (g, I). □

9



2 Groups B8 Symmetry

We can see that the direct product is the simplest possible way to build up large groups from smaller
groups. But more importantly, sometimes we may find that some larger groups are in fact the direct
product of some smaller groups. In that case, we may treat the symmetry of its component groups
individually.

Moreover, we can see that the conditions (iv), (v) and (vi) above uniquely determine the algebraic
structure of the direct product P . That is, if P is any group, and we have found two subgroups G
and H that satisfy the properties above, then P is necessarily the direct product of G and H. In this
situation, P is sometimes referred to as the internal direct product of its subgroups G and H.

Example. D3h = D3 × Cs, via

E C3 C2
3 Ca

2 Cb
2 Cc

2

E E C3 C2
3 Ca

2 Cb
2 Cc

2

σh σh S3 S2
3 σa

v σb
v σc

v

Definition 2.9. Two elements R,S ∈ G are equivalent, denoted R ∼ S, if there exists Q ∈ G such
that

S = QRQ−1 . (2.10)

The operator QRQ−1 can be thought of the operator obtained by applying Q to the operator R
itself. For example, in D3 group,

C3C
a
2C

−1
3 = Cb

2 , (2.11)

so Ca
2 ∼ Cb

2. The rotational axis of Cb
2 that of Ca

2 , rotated by C3.

However, not all operations “of the same type” are equivalent. For example, in C2v, there is no
symmetry operation that transforms the σxz

v plane to the σyz
v plane.

Proposition 2.10. Let G be a group.

(i) Reflexivity. S ∼ S.

(ii) Symmetry. If S ∼ R, then R ∼ S.

(iii) Transitivity. If S ∼ R and R ∼ T , then S ∼ T .

Proof.

(i) S = ESE−1.

(ii) If S = QRQ−1, then R = Q−1SQ.

(iii) If R = PSP−1 and S = QTQ−1, then R = (PQ)T (PQ)−1. □

This allows us to partition the group elements into conjugacy classes, so that all elements in the same
class are equivalent to each other, but elements from two different classes are inequivalent.

Note that in any group, the identity always forms a conjugacy class by itself, because for any Q,
QEQ−1 = E. Note also that in an Abelian group, every element forms a class by itself, since for any
Q,R, QRQ−1 = QQ−1R = R.

10



3 Representations B8 Symmetry

3 Representations

3.1 Matrix Representations

When we think of a group, we think of it as a collection of symmetry operations that we can act
on a physical object. But naturally, the operations we can do to an object, such as rotations and
inversions, can also be described by linear transformations if we consider the object to be embedded
in a vector space.

Let’s consider the rotational symmetries of a triangle, which forms the C3 group. To consider the
action of the C3 group operations on the triangle, we put it into a two dimensional vector space, with
the centre of mass at the origin and one of the unit vectors (say ı̂) parallel to one of the sides.

ı̂ȷ̂
C3

ı̂′

ȷ̂′

Then to act a C3 operation to the triangle, we can rotate the underlying vector space by 120◦. This
operation sends the unit vector ı̂ to ı̂′ = − 1

2 ı̂+
√
3
2 ȷ̂, and sends ȷ̂ to ȷ̂′ = −

√
3
2 ı̂− 1

2 ȷ̂. Mathematically,
this means that we can describe this by a transformation matrix

D(C3) =

(
− 1

2 −
√
3
2√

3
2 − 1

2

)
(3.1)

since this operation transform the basis by

C3 ∗
(
ı̂ ȷ̂

)
=
(
ı̂′ ȷ̂′

)
=
(
ı̂ ȷ̂

)(− 1
2 −

√
3
2√

3
2 − 1

2

)
. (3.2)

Then for any vector
v = vxı̂+ vy ȷ̂ =

(
ı̂ ȷ̂

)(vx
vy

)
, (3.3)

we have

C3 ∗ v = C3 ∗
(
ı̂ ȷ̂

)(vx
vy

)
=
(
ı̂ ȷ̂

)(− 1
2 −

√
3
2√

3
2 − 1

2

)(
vx
vy

)
. (3.4)

Similarly, to act the operation C2
3 to the triangle, one can rotate the underlying vector space by

240◦. This corresponds to a basis transformation matrix

D(C2
3 ) =

(
− 1

2

√
3
2

−
√
3
2 − 1

2

)
, (3.5)

since the transformed basis is (
ı̂′′ ȷ̂′′

)
=
(
ı̂ ȷ̂

)( − 1
2

√
3
2

−
√
3
2 − 1

2

)
. (3.6)

11
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Moreover, the identity operation does nothing to the vector space, and so it corresponds to the
identity matrix

D(E) =

(
1 0
0 1

)
. (3.7)

We have obtained a set of matrices, each corresponds to an operation in the group C3. A natural
consequence is that doing two group operations to the triangle is equivalent to doing two corresponding
actions on the underlying vector space. For example, since C3 ·C2

3 = E, transforming the underlying
vector space by rotation of 240◦, then 120◦ is equivalent to doing nothing, so we naturally have the
corresponding relationship for the transformation matrices

D(C3)D(C
2
3 ) = D(E) . (3.8)

What we have done above is to use a set of matrices to represent the elements in the C3 group,
such that the for any relationship of group elements under group product R · S = T , we have the
corresponding relationship for the representation matrices under matrix multiplication

D(R)D(S) = D(T ) . (3.9)

This is because for any vector v = vxı̂+ vy ȷ̂, we have

R ∗ (S ∗ v) = R ∗
(
ı̂ ȷ̂

)
D(S)

(
vx
vy

)
=
(
ı̂ ȷ̂

)
D(R)D(S)

(
vx
vy

)
, (3.10)

while by the compatibility of group actions, we also have

R ∗ (S ∗ v) = (R · S) ∗ v =
(
ı̂ ȷ̂

)
D(R · S)

(
vx
vy

)
. (3.11)

Mathematically, what we are constructing here is called a homomorphism.

Definition 3.1. Let (G, · , E) and (H, ◦, I) be groups. A function ϕ : G → H is a homomorphism
if for all R,S ∈ G,

ϕ(R) ◦ ϕ(S) = ϕ(R · S) . (3.12)

You can check that the set of all n × n invertible matrices with real entries form a group under
matrix multiplication, which is often called the general linear group, denoted GL(n,R) (or GL(n,C)
if the entries are complex). Therefore, what we have done in the above example is to construct a
homomorphism from the group C3 to GL(2,R), i.e. a map from the elements in C3 to 2×2 invertible
matrices that preserves the group product. In mathematics, this is called a representation.

Definition 3.2. A representation of a group G is a homomorphism from G to GL(n,F), where F is
some number field, and n is the dimension of the representation.

In our course, F will always be the complex number field C (or R). Representations on more
exotic vector spaces are possible, but we are not interested in them. Conventionally, we denote
a representation by Γ, and denote the representation matrix of a element R by D(R).

Definition 3.3. A complex representation is unitary if the representation matrices are unitary
matrices.

It can be shown that all complex representations of a finite group are unitary, and all representations
in this course (even for the infinite groups) are unitary.

12
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f(r)

R−1 ∗ x R

f ′(r) = f(R−1 ∗ r)x

Figure 3.1: Acting a group element on a function.

Given this generalised definition of representations, we find that the representation of a group is
not unique. For example, for any group, we can always construct the trivial or symmetric by mapping
all the elements to the one dimensional matrix (1), so that

D(R)D(S) = (1)(1) = (1) = D(RS) (3.13)

for all R,S in the group. For representations like this that maps different group elements to the same
matrix, we say the representation is unfaithful; if the representation matrix of all group elements are
different, then the representation is faithful.

To construct a different representation of a group, we can choose a different basis. We can choose
any basis we want as long as we ensure that the group action of any group element on any basis falls
in the span of the basis. You will find that a convenient and useful basis set is a set of functions.
From our previous discussion, we know how group elements can act on vectors in a vector space. We
need to consider what it means by acting a group element on a function.

3.1.1 Functions as a Basis

When talking about a function, what we do is to associate a value to each point in the space. When
we act the group element to the function, what we do is the change the associated value to a different
place. For example, if the value of a function f is f(r) at some position r. Then if we act a group
element R on the function, the value f(r) will now be associated to a new position R ∗ r. Therefore,
if we call the function after the group action f ′(r) := R ∗ f(r), then we have f ′(R ∗ r) = f(r). We
can rewrite this as

R ∗ f(r) = f ′(r) = f(R−1 ∗ r) . (3.14)

For example, to construct another representation of the C3 group, we can attach one s orbital to
each of the vertex of an equilateral triangle. Then under the symmetry operations of the triangle,
the three s orbitals transform to each other, so we can use the three s orbitals as a basis(

sA sB sC
)
. (3.15)

sA

sCsB

C3

s′C

s′Bs′A

13
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Then, for example, since we have

C3 ∗ sA = sB , C3 ∗ sB = sC , C3 ∗ sC = sA , (3.16)

the representation of C3 in this basis will be

D(C3) =

0 0 1
1 0 0
0 1 0

 . (3.17)

In general, the n-dimensional representation matrix D(R) of a symmetry operator R in a properly
chosen basis (φ1, φ2, . . . , φn) is defined by the equation

R ∗ φi =
∑
j

φjDji(R) . (3.18)

A representation constructed this way is guaranteed to be a homomorphism since

R ∗ (S ∗ φi) = R ∗ φjDji(S)

= φkDkj(R)Dji(S) (3.19)

(summation convention applies), and by compatibility,

R ∗ (S ∗ φi) = (R · S) ∗ φi

= φkDki(RS) , (3.20)

and therefore we have a homomorphism

D(R)D(S) = D(RS) . (3.21)

From the homomorphism condition, we can see that for any representation D of the group G,

D(R) = D(ER) = D(E)D(R) = ID(R) , (3.22)

so the representation of the identity element is always the identity matrix, and

D(E) = D(R)D(R−1) = I , (3.23)

so D(R−1) = (D(R))−1 for all R ∈ G.

3.2 Equivalence

Let (ı̂, ȷ̂, k̂) be a basis of a three dimensional vector space, and v be some vector with coordinates
(x, y, z) in this basis. Then

v =
(
ı̂ ȷ̂ k̂

)xy
z

 . (3.24)

Let T be any invertible matrix, then we have TT−1 = I, and so we also have

v =
(
ı̂ ȷ̂ k̂

)xy
z

 =
(
ı̂ ȷ̂ k̂

)
TT−1

xy
z

 =
(
ı̂′ ȷ̂′ k̂

′
)x′y′

z′

 , (3.25)

where (
ı̂′ ȷ̂′ k̂

′
)
=
(
ı̂ ȷ̂ k̂

)
T ,

x′y′
z′

 = T−1

xy
z

 (3.26)
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are a transformed basis and transformed coordinates of exactly the same vector in this transformed
basis.

We can do the same thing to transform a basis we used to construct a representation, and see
what happens to the representation matrix. Let the action of R on a vector v give

R ∗ v =
(
ı̂ ȷ̂ k̂

)
D(R)

xy
z

 , (3.27)

then we can also write

R ∗ v =
(
ı̂ ȷ̂ k̂

)
TT−1D(R)TT−1

xy
z


=
(
ı̂′ ȷ̂′ k̂

′
)
D(R)′

x′y′
z′

 . (3.28)

This time, in the transformed basis, the representation of R is given by

D(R)′ = T−1D(R)T . (3.29)

We call this type of transformations on a representation matrix similarity or equivalence transfor-
mation, and the two representation D and D′ are said to be equivalent. Crucially, there is nothing
fundamentally different between two equivalent representations — they have just used two different
set of basis vectors that represents the same vector space.

Example. Let’s consider a BF3 molecule, whose full symmetry is given by the D3h group. For
simplicity, we will use it to representation of a smaller group D3, which is a subgroup of D3h.

B

Fa

FcFb

E C3 C2
3 Ca

2 Cb
2 Cc

2

(s) (1) (1) (1) (1) (1) (1)
(pz) (1) (1) (1) (−1) (−1) (−1)

(px, py)

(
1 0
0 1

) (
− 1

2
−

√
3
2√

3
2

− 1
2

) (
− 1

2

√
3

2

−
√
3
2

− 1
2

) (
1 0
0 −1

) (
− 1

2
−

√
3

2

−
√
3

2
1
2

) (
− 1

2

√
3
2√

3
2

1
2

)
(p1, p−1)

(
1 0
0 1

) (
ω∗ 0
0 ω

) (
ω 0
0 ω∗

) (
0 −1
−1 0

) (
0 −ω

−ω∗ 0

) (
0 −ω∗

−ω 0

)
(sa, sb, sc)

1 0 0
0 1 0
0 0 1

 0 0 1
1 0 0
0 1 0

 0 1 0
0 0 1
1 0 0

 1 0 0
0 0 1
0 1 0

 0 0 1
0 1 0
1 0 0

 0 1 0
1 0 0
0 0 1



The basis functions are atomic orbitals of BF3. sa, sb and sc are the fluorine 2s orbitals and the
rest are boron orbitals. The functions p1 and p−1 are the complex p orbitals (that are eigenfunctions
of L̂z operators) defined by

p1 = − 1√
2
(px + ipy) p−1 =

1√
2
(px − ipy) . (3.30)
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ω is the third root of unity

ω = exp

(
2πi

3

)
= −1

2
+

√
3

2
i . (3.31)

From the definition of the complex p±1 orbitals, we can see that they span the same vector space
as the (px, py) basis functions, and so these two representations should be equivalent. We have

(
p1 p−1

)
=
(
px py

)
T =

(
px py

)(− 1√
2

1√
2

− i√
2

− i√
2

)
. (3.32)

You can check that these two rows of representation matrices are related by

D±1(R) = T−1Dxy(R)T . (3.33)

3.3 Reducibility

In the example above, we formed a one-dimensional representation of D3 using the basis set (pz) and
a two-dimensional representation using (px, py). There is nothing stopping us to construct a three-
dimensional representation using the combined basis set (px, py, pz). However, all the operations in
D3 will leave the px, py orbitals into a linear combination of themselves, and leave pz either unchanged
or merely change its sign. The two vector subspaces spanned by (px, py) and (pz) do not mix — that’s
why we are able to form representations using these two basis sets at the beginning. We call these two
space, span(px, py) and span(pz), the invariant subspaces of the whole vector space span(px, py, pz).
Then if we use this three dimensional basis set to form a representation, it will look like this.

Dxyz(E) =

 1 0 0
0 1 0
0 0 1

 Dxyz(C3) =

 − 1
2 −

√
3
2 0

√
3
2 − 1

2 0

0 0 1



Dxyz(C2
3 ) =

 − 1
2

√
3
2 0

−
√
3
2 − 1

2 0

0 0 1

 Dxyz(Ca
2 ) =

 1 0 0
0 −1 0
0 0 −1



Dxyz(C3) =

 − 1
2 −

√
3
2 0

−
√
3
2

1
2 0

0 0 −1

 Dxyz(C2
3 ) =

 − 1
2

√
3
2 0

√
3
2

1
2 0

0 0 −1

 . (3.34)

All these representations are in the block diagonal form, where the two blocks are the two smaller
representations formed by (px, py) and (pz).

Dxyz =

Dxy

Dz

 . (3.35)

There are no off-block-diagonal elements since as we just claimed before, the two vector subspaces do
not mix. For the representations that can be written in the block diagonal form, we say it is a direct
sum of its diagonal-block representations, written

Dxyz = Dxy ⊕ Dz . (3.36)

This definition can be extended to define direct sums of multiple representations.

Some representations themselves are not in the block diagonal form, but they are equivalent to
the direct sum of the direct sum of smaller representations. Let’s consider the example above again.
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This time, we define a new basis set

φ1 =

√
1

3
(sa + sb + sc)

φ2 =

√
1

6
(2sa − sb − sc)

φ3 =

√
1

2
(sb − sc) .

(3.37)

This is a transformation of the (sa, sb, sc) basis

(
φ1 φ2 φ3

)
=
(
sa sb sc

)

√

1
3

√
2
3 0√

1
3 −

√
1
6

√
1
2√

1
3 −

√
1
6 −

√
1
2

 , (3.38)

and so in this new basis, the representation matrices are

Dφ(E) =

 1 0 0
0 1 0
0 0 1

 Dφ(C3) =


1 0 0

0 − 1
2 −

√
3
2

0
√
3
2 − 1

2



Dφ(C2
3 ) =


1 0 0

0 − 1
2

√
3
2

0 −
√
3
2 − 1

2

 Dφ(Ca
2 ) =

 1 0 0
0 1 0
0 0 −1



Dφ(C3) =


1 0 0

0 − 1
2 −

√
3
2

0 −
√
3
2

1
2

 Dφ(C2
3 ) =


1 0 0

0 − 1
2

√
3
2

0
√
3
2

1
2

 . (3.39)

This time the representation is again in a direct sum form, with

Dφ = DB,s ⊕ Dxy , (3.40)

and hence the representation formed by fluorine s orbitals is equivalent to the direct sum of DB,s and
Dxy, written

DF,s ∼ DB,s ⊕ Dxy . (3.41)

If a representation is equivalent to a direct sum of some lower-dimensional representation, then
we say this representation is reducible. On the other hand, there are some representations that
cannot be reduced in this way (the one dimensional trivial representation is clearly an example).
These representations are irreducible. The irreducible representations of a group have their canonical
names, which you can find in the character table of the group (although we have not introduced what
is a character table yet).

Any representation of a group can be reduced into a number of irreducible representations of the
group (by finding a suitable basis in which this matrix is block diagonal) so we can always write

Γ ∼
N⊕
i=1

miΓ
i , (3.42)

where {Γi}Ni=1 are the inequivalent irreducible representations of the group, and the multiplicity mi is
the time a certain irreducible representation Γi appear on the diagonal blocks. However, in practice,
we often just write it as

Γ =

N⊕
i=1

miΓ
i (3.43)
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since we don’t usually distinguish between equivalent matrices.

However, it is not straight forward at all to figure out under what basis is our representation block
diagonal, making it seem very difficult to reduce a representation. Next, we will introduce a powerful
concept called character, which is, as its name suggests, characteristic of a representation and allows
us to reduce a representation easily.

18
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4 Characters

4.1 Characters

Representations are nice and intuitive, but they are just not the nicest thing to work with. Matrices
are large, and it is tedious to manipulate them. More crucially, two equivalent representations, which
are fundamentally the same thing, may look completely different after a similarity transform. Is there
a nicer thing that is invariant under the transformation of a basis?

The key is the trace.
Definition 4.1. The characters of a representation Γ are the traces of the representation matrices,
denoted χ.
Proposition 4.2. Let D,T be n× n matrices with T invertible. Then

tr(D) = tr(T−1DT) . (4.1)
Proof.

tr(T−1DT) = (T−1)ijDjkTki

= Tki(T
−1)ijDjk

= δkjDjk

= Djj = tr(D) . (4.2)
□

This has two immediate consequences. First, if two representations are equivalent, then their
characters are the same. This is obvious. Second, if R,S ∈ G are in the same conjugacy class
(say, R = QSQ−1), then their characters under the same representation are the same. This is
because by the homomorphism requirement,

D(R) = D(QSQ−1)

= D(Q)D(S)D(Q−1)

= D(Q)D(S)D(Q)−1 , (4.3)
so their traces are equal.

This allows us to construct a so-called character table to list the characters of all the inequivalent
irreducible representations of a group,5 in which the rows are the different inequivalent irreducible
representations and the columns are the character classes (Remember the characters of the elements
in the same class are equal, so we can list them in the same column). For example, for the D3 group,
we will get something like this.

E 2C3 3C2

A1 1 1 1
A2 1 1 −1
E 2 −1 0

Moreover, since the trace is a sum of the diagonal elements, it is clear that the character of a
reducible matrix is the character of its components. That is, if

Γ =

N⊕
i=1

miΓ
i , (4.4)

5For a finite group, there are necessarily finitely many irreducible representations, so the table can be listed — we
will show this later.
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then

χ =

N∑
i=1

miχ
i . (4.5)

Then, to figure out the component of a reducible representation Γ, we only need to work out the
characters of what irreducible representations (which are listed in the character table) sum to it.
This still seems to be a difficult task to do if we have a large number of irreducible representations.
But luckily, we have the orthogonality theorems!

4.2 Orthogonality Theorems

Now we will introduce one of the most powerful theorems in representation theory, upon which many
useful results are derived.

Theorem 4.3 (Great orthogonality theorem). Let {Γa} be the set of inequivalent irreducible
unitary representations of a finite group G, then∑

R∈G

Da
ip(R)

∗Db
jq(R) =

|G|
na

δabδijδpq . (4.6)

where na is the dimension of Γa.6

This is an extremely powerful result, as can be seen by the three Kronecker deltas — you need
to sum over the same element of the same irreducible representation, otherwise you will get a zero.
This great orthogonality theorem allows us to show some useful properties of the characters.

Theorem 4.4 (First orthogonality theorem). Let {χa} be the characters of the inequivalent
irreducible representations {Γa} of a finite group G.∑

R∈G

χa(R)∗χb(R) = |G| δab . (4.7)

Proof. ∑
R

χa(R)∗χb(R) =
∑
R

∑
i,k

Da
ii(R)

∗Db
kk(R)

=
∑
i,k

|G|
na

δabδikδik

= |G| δab . (4.8)

□

This is also known as row orthogonality, because what it says is that the rows of a character table
are orthogonal. To see this, we need to rewrite it a little bit. In a character table, we group the group
elements in the same conjugacy class together into the same column since their characters are the
same. We can use this to simplify our sum. Instead of summing over all the elements in the group, we
can sum over the conjugacy classes, provided that we remember to multiply the number of elements
in the conjugacy class.

6We requested the irreducible representations in {Γa} to be inequivalent to avoid the case that Γa ∼ Γb but Γa 6= Γb

— a formula does exist for such case, but it is more complicated. We are not proving this theorem here. A proof of
this, along with a more expanded and rigorous treatment of groups and representations can be found in my notes on
NST Part IB Mathematical Methods. It spends half a chapter to arrive at this result, so it is too large to fit in the
margin, or even in the appendix.
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Corollary (Row orthogonality).∑
c

hcχ
a(c)∗χb(c) = |G| δab , (4.9)

where hc is the size of the conjugacy class c.

If we view each row of a character table as the entries of a vector, what this means is that these
vectors are orthonormal under some slightly modified version of the dot product where we have an
additional factor:7

a ·b =
∑
i

hi
|G|

a∗i bi . (4.10)

This then allows us to conveniently reduce a reducible representation! Suppose we have a vector
space spanned by orthonormal basis (e1, e2, . . . , en), and we want to find out the components of a
vector v, i.e. to find out the coefficients c1, c2, . . . , cn such that

v =

n∑
i=1

ciei . (4.11)

What we can do is to take the dot product of v with each of the basis vector ej and we would obtain
the coefficient cj .

ej ·v =

n∑
i=1

ciej · ei

=

n∑
i=1

ciδij = cj . (4.12)

We can do exactly the same thing here, as long as we remember to use our slightly modified version
of the dot product.

Theorem 4.5 (Reduction formula). Let {χa}na=1 be the characters of the inequivalent irreducible
representations {Γa}na=1 of a finite group G, and Γ is a reducible representation with character χ,
then Γ is reduced to

Γ =

n⊕
a=1

maΓ
a (4.13)

with
ma =

1

|G|
∑
c

hcχ
a(c)∗χ(c) , (4.14)

where hc is the number of elements of conjugacy class c.

Proof. We use the row orthogonality.

1

|G|
∑
c

hcχ
a(c)∗χ(c) =

1

|G|
∑
c

hcχ
a(c)∗

∑
i

miχ
i(c)

=
∑
i

miδia

= ma . (4.15)

□

What’s even nicer about the character table is that the columns of it are also orthogonal! This is
the second orthogonality theorem, also known as column orthogonality.

7If you have learned some linear algebra before, you should notice that this is the metric of the inner product.
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Theorem 4.6 (Second orthogonality theorem (column orthogonality)). Let {χa} be the
characters of the inequivalent irreducible representations {Γa} of a finite group G.∑

a

χa(c)∗χa(c′) =
|G|
hc
δcc′ . (4.16)

This is, however, much harder to prove and we will not prove it. The row orthogonality and column
orthogonality combined leads to a very nice result.

Corollary (Character table is square). Let G be a finite group, then the number of inequivalent
irreducible representations of G and the number of conjugacy classes of G are equal.

Proof. Let {ci}pi=1 be the conjugacy classes and {Γa}ma=1 be the inequivalent irreducible representa-
tions, i.e. there are p conjugacy classes and m inequivalent irreducible representations.

Each row has p entries, so we can view each row as a vector in Cp, and by row orthogonality
these vectors are orthonormal. These m linearly independent vectors in Cp must span a subspace
Cm ≤ Cp, so m ≤ p. Similarly, column orthogonality means that viewing each column as a vector
in Cm, these vectors are also orthonormal. These are p linearly independent vectors in Cm, so they
must span a subspace Cp ≤ Cm, so p ≤ m. m = p. □

Corollary. Let {Γa} be the inequivalent irreducible representations of a finite group G, then∑
a

n2a = |G| , (4.17)

where na is the dimension of Γa.

Proof. Put c = c′ = {E}, the class of the identity element in the column orthogonality theorem
(4.16). □

Example. Consider again the representation of D3 group spanned by the three fluorine s orbital in
BF3. Last time we have shown that under the basis transformation

φ1 =

√
1

3
(sa + sb + sc)

φ2 =

√
1

6
(2sa − sb − sc)

φ3 =

√
1

2
(sb − sc) ,

(4.18)

this reducible representation becomes a direct sum

Γ = A1 ⊕ E . (4.19)

But finding the suitable basis transformation matrix out of nowhere to block-diagonalise the
representation matrix seems like a difficult thing to do. Now, using the reduction formula, we can
directly reduce a representation without doing so. To use the reduction formula, we only need to find
the character of our representation spanned by (sa, sb, sc). This is simple — the character is the sum
of the diagonal element of a representation matrix, and a diagonal element of a representation matrix
means how much has a basis transformed into itself after the group action. For example, to work out
the character of Ca

2 , we need to find

χ(Ca
2 ) = D11(C

a
2 ) +D22(C

a
2 ) +D33(C

a
2 ) . (4.20)

D11(C
a
2 ) is the sa component of sa after the action of Ca

2 ; sa is not moved by Ca
2 so this is one.

D22(C
a
2 ) is the sb component of sb after the action of Ca

2 , while sb is moved to sc after Ca
2 so this is
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zero, meaning s′b = Ca
2 ∗sb has no component of sb. Similarly, s′c = Ca

2 ∗sc has no component of sc, so
D33(C

a
2 ) = 0. Summing these up, we get χ(Ca

2 ) = 1+0+0 = 1. Now since the three C2 elements are
in the same conjugacy class, their characters are 1 as well. Doing this for all other character classes,
we find that the characters of our representation is

E 2C3 3C2

χ 3 0 1

Now to reduce this representation, we need the character table.

E 2C3 3C2

A1 1 1 1
A2 1 1 −1
E 2 −1 0

Now we can use the reduction formula to compute the multiplicities.

mA1
=

1

|G|
∑
c

hcχ
A1(c)∗χ(c) =

1

6
(1× 1× 3 + 2× 1× 0 + 3× 1× 1) = 1 (4.21)

mA2 =
1

|G|
∑
c

hcχ
A2(c)∗χ(c) =

1

6
(1× 1× 3 + 2× 1× 0 + 3× (−1)× 1) = 0 (4.22)

mE =
1

|G|
∑
c

hcχ
E(c)∗χ(c) =

1

6
(1× 2× 3 + 2× (−1)× 0 + 3× 0× 1) = 1 , (4.23)

and hence we have successfully reduced out representation:

Γ = A1 ⊕ E . (4.24)

4.3 Projection Formula and Gram–Schmidt Orthogonalisation

Now we can successfully reduce a representation without finding the basis transformation matrix
that block-diagonalises the representation matrix, but it actually turns out that this transformation
matrix is a rather useful thing, and we want to know it in the most cases. For example, if we know
that after the transformation

φ1 =

√
1

3
(sa + sb + sc)

φ2 =

√
1

6
(2sa − sb − sc)

φ3 =

√
1

2
(sb − sc) ,

(4.25)

the representation becomes block diagonalised to

Γφ =

 A1

E

 , (4.26)

then this means that (φ1) itself spans A1, and (φ2, φ3) together transforms as E. This is known
as the symmetry orbitals — the linear combination of atomic orbitals that transform as a specific
irreducible representation. They are extremely useful in molecular orbital theories since, as you have
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seen in Part IB Symmetry and Bonding course, only orbitals that transforms as the same irreducible
representations have non-zero interactions. Therefore, knowing how to construct these orbitals would
greatly reduce our workload when constructing molecular orbitals.

Luckily, this is not difficult to do as long as we know to what irreducible representations our
representation reduces to. Let’s consider the following operator

P̂ a
i :=

na
|G|

∑
R∈G

Da
ii(R)

∗R , (4.27)

which is a particular linear combination of group elements, and see how it acts on a vector
vb
j =

∑
k(v

b
j)kek, represented in the basis (e1, e2, . . . ), that transforms as the jth component of

the irreducible representation Γb. We have

P̂ a
i ∗ vb

j =
na
|G|

∑
R

Da
ii(R)

∗R ∗ vb
j

=
na
|G|

∑
R

Da
ii(R)

∗
∑
k

(vb
j)kekD

b
kj(R)

=
∑
k

δabδikδij(v
b
j)kek

=

{∑
k(v

a
i )kek = va

i if a = b, i = j

0 otherwise,
(4.28)

This is exactly what defines a projection operator! If you act P̂ a
i on any vector, you will only get

the component of it that transforms as the i component of the irreducible representation Γa, and
anything else will be annihilated, i.e. it projects a vector onto va

i .

Theoretically, we can use this to obtain each component of an irreducible representation by acting
the projection operators on arbitrary vectors, but this would require us to know the irreducible
representations. What we usually have is only the character of the irreducible representations.
What we can do is to sum up the components of the projection operators of the same irreducible
representations, and define

P̂ a :=

na∑
i=1

P̂ a
i =

na
|G|

∑
R

χa(R)∗R . (4.29)

Now when you act this on an arbitrary vector, you will obtain the sum of its projection on all the
components of an irreducible representation

P̂ a ∗ v =

na∑
i=1

P̂ a
i ∗ v =

∑
i

va
i . (4.30)

This could be troublesome for an irreducible representation that is not one-dimensional. For example,
in the BF3 example, if you act P̂E = P̂E

1 +P̂E
2 on an arbitrary vector, you will get a linear combination

of φ2 and φ3, the two components that together transform as E.

Of course, we can directly use this mixture as one of the components of E, since this is only a
basis transformation of E and you will still get something equivalent to E, which is still an E —
but we still need to get the other orthogonal components of the basis transforming as E. This is
done by a process called Gram–Schmidt orthogonalisation. Let v1 be the vector that we obtained
from the projection operator, which we use as the vector that transforms as the first component of
an irreducible representation Γ with dimension greater than 1. Γ is clearly not the totally symmetric
representation (since its dimension is not 1), so there must be an operator R that acts on v1 to
generate some vector v′ = R ∗ v1 that is not completely aligned with v1. Since v1 in the basis set
that generates Γ, it will only be transformed into a sum of different components that transform as Γ.
Therefore, if v′ = R∗v1 has some component orthogonal to v1, then this can be seen as a vector that
transforms as the second component of Γ. To extract this, we first normalise v1 and v′, and then let

v2 = v′ − (v′ ·v1)v1 (4.31)
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to get rid of any component of v′ that is aligned with v1. This v2 might be unnormalised, so we can
normalise it, and we then get a v2 that is orthonormal with v1. We can repeat this process until we
have generated all components of the basis that transforms as Γ.

Example. Back to the example of using the fluorine F orbitals in BF3 to represent D3 group. We
know that the representation is Γ = A1 + E, and let’s find out the symmetry orbitals.

First the A1 orbitals. This should be easy. We just pick any vector and act the projection operator
of A1,

P̂A1 =
nA1

|D3|
∑

R∈D3

χA1(R)∗R

=
1

6
(E + C3 + C2

3 + Ca
2 + Cb

2 + Cc
2) , (4.32)

onto it. The simplest choice of vector is one of the basis vectors. We would use sa and we get

P̂A1 ∗ sa =
1

6
(sa + sb + sc + sa + sc + sb) =

1

3
(sa + sb + sc) . (4.33)

This can be normalised to get the A1 symmetry orbital

ϕA1 =
1√
3
(sa + sb + sc) . (4.34)

Next, let’s calculate the E symmetry orbitals. This should be a little more difficult. Let’s first
construct the projection operator.

P̂E =
nE
|D3|

∑
R∈D3

χE(R)∗R

=
1

3
(2E − C3 − C2

3 ) . (4.35)

We act this on sa to get
P̂E ∗ sa =

1

3
(2sa − sb − sc) . (4.36)

We can normalise this to get the first E symmetry orbital

ϕE,1 =
1√
6
(2sa − sb − sc) . (4.37)

Next, let’s construct the second E symmetry orbital by Gram–Schmidt orthogonalisation. We act
some arbitrary group element onto our first symmetry orbital that does not leave it unchanged. C3

seems to be a good choice.
ϕ′ = C3 ∗ ϕE,1 =

1√
6
(2sb − sc − sa) . (4.38)

We subtract the ϕE,1 component from it and get

ϕ′ − (ϕ′ ·ϕE,1)ϕE,1 =
1√
6
(2sb − sc − sa)−

1

6
(−2− 2 + 1)

1√
6
(2sa − sb − sc)

=
3

2
√
6
(sb − sc) . (4.39)

This can be normalised to get the second symmetry orbital of E:

ϕE,2 =
1√
2
(sb − sc) . (4.40)

You can check that these are identical to what we asserted in (4.25).
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5 Rotation Group and Spherical Harmonics

In the first chapter, we have shown that for a molecular system, rotation is a symmetry operation. We
can therefore consider the group of all 3D rotations about any axis that leaves an origin unchanged
(that is the centre of mass for a molecular system), known as the full rotation group. We can denote
its elements by R(u), where u = αû, α = ‖u‖ is the angle of rotation, and û is the unit vector
along the rotation axis. Mathematically, the full rotation group is exactly the special orthogonal
group of order 3, the group of 3× 3 orthogonal matrices with determinant +1, denoted SO(3). There
is a one-to-one correspondence between rotation operations R and matrices R ∈ SO(3) — they are
isomorphic, so we see them as the same group.

We have claimed before that the theory of the SO(3) group is deeply linked to the theory of
angular momentum. This can be seen from Noether’s theorem, which says the rotational symmetry
leads to the conservation of angular momentum. Also, if we consider the rotation R ∈ SO(3) of a
function ψ(r) in 3D space (for example the wavefunction), then the function after rotation, denoted
ψ′(r), satisfies

ψ′(r) = ψ(R−1r) . (5.1)

More explicitly, if we identify the axis of rotation as the z axis, and we rotate by an angle α, then
the value of the rotated function now at (r, θ, φ) would be the value of the function originally at
(r, θ, φ− α). We can construct an operator

Ĵz = iℏ lim
α→0

R(αẑ)− E

α
(5.2)

which captures the effect of an infinitesimal rotation about z axis (the iℏ here is just a matter of
convention). This is known as the generator of the rotation. Then its effect on some function ψ is

Ĵzψ(r, θ, φ) = iℏ lim
α→0

ψ(r, θ, φ− α)− ψ(r, θ, φ)

α
= −iℏ∂ψ

∂φ
. (5.3)

This is exactly the z component of the angular momentum operator! We say angular momentum
generates the rotation.

The properties of rotations give hints on the properties of angular momentum operators. For
systems governed by Hamiltonians with rotational symmetries, since rotation is a symmetry action,
the angular momentum operator commutes with the Hamiltonian operator: [Ĥ, Ĵ] = 0. However,
rotations along different axes do not commute. You can try it! Find an object, rotate it 90◦ along
the x axis, then 90◦ along z axis, and you will find that it is different if you first rotate it 90◦ along
z axis then along x axis — the order of rotations matters. Hence the different components of the
angular momentum operators do not commute. However, the rotations along the same axis commute.
Therefore we have [Ĵi, Ĵj ] 6= 0 for i 6= j, while [Ĵi, Ĵi] = 0.

A quick aside, if you run the same process above for spatial translation, you will find that the
momentum operator P̂ is the generator of spatial translation. Rotating an object followed by a
translation is not the same as translating the object followed by a rotation (because the object is now
off the origin), unless the direction of translation and the axis of rotation is the same (then the object
is still on the rotation axis), so we have [Ĵi, P̂j ] 6= 0 for i 6= j, while [Ĵi, P̂i] = 0. More specifically,
since momentum is a vector, it transforms as a vector under rotation, so

[Ĵi, P̂j ] = iℏ
∑
k

ϵijkP̂k . (5.4)

The position operator X̂ is also a vector, so it also transforms as a vector under rotation

[Ĵi, X̂j ] = iℏ
∑
k

ϵijkX̂k . (5.5)
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However, translations in different directions commute: translation along x by 1 m then along y by
2 m is the same as first translating along y by 2 m then along x by 1 m — the order does not matter.
Therefore, all components of translation commute with each other

[P̂i, P̂j ] = 0 . (5.6)

Reporting your coordinate does not affect anything, so components of the position operator commute

[X̂i, X̂j ] = 0 . (5.7)

Finally, asking where you are and then move away is not the same as first move away then ask where
you are, unless the component of the position coordinate you are asking is orthogonal to the direction
you are moving, so

[X̂i, P̂j ] = iℏδij . (5.8)

The idea of generators allows us to understand the commutation relations of operators in a simple
and intuitive way.

Next, we will quote, without proof, some properties of the SO(3) group and its representations.
The theoretical details are far beyond the scope of our course.

(i) The rotation R(αû) through an angle α about an axis û is in the same class as a rotation
R(α′û′) if and only if α = α′. The class of SO(3) contains all rotations through the same angle
α about any axis.

(ii) The irreducible representations of SO(3) are labelled by the quantum number J of angular
momentum. Representation ΓJ has dimension 2J + 1.

(iii) The spherical harmonics YJM are the basis functions for the representation ΓJ .8

We can then work out the character of the irreducible representations of SO(3). The spherical
harmonics are

YJM (θ, φ) = CJMP
|M |
J (cos θ)eiMφ , (5.14)

8We will not prove this. This is exactly the last result in the Mathematical Tripos Part II Representation Theory
course so it is impossible to cover this in a 6-lecture chemistry course. However, we can briefly justify this. The angular
momentum operator generates a rotation, so an infinitesimal rotation R(δαẑ) is represented by

E −
i

ℏ
δαĴz (5.9)

by reverting the expression (5.2). Then a rotation of non-infinitesimal degree α can be obtained by repeatedly acting
the infinitesimal rotations by α/N for N → ∞ times:

R(αẑ) = lim
N→∞

(
1−

iα

ℏN
Ĵz

)N

= e−iαĴz/ℏ . (5.10)

This allows us to use the eigenstates of the angular momentum operator (spherical harmonics) as the basis, which are
labelled by |J,M〉, with

Ĵ
2 |J,M〉 = ℏ2J(J + 1) |J,M〉 (5.11)

Ĵz |J,M〉 = ℏM |J,M〉 . (5.12)

For any value of J , MJ ∈ {−J,−J + 1, . . . , J}, so there are 2J + 1 of them. {|J,M〉}JM=−J is therefore a 2J + 1
dimensional basis, and rotation along the z axis acting on them by

R(αẑ) ∗ |J,M〉 = e−iαĴz/ℏ |J,M〉 = e−iMα |J,M〉 . (5.13)

For this to be a homomorphism, we require R(2πẑ) to be mapped to the identity, so we must have e−2πiM = 1. This is
true if and only if M is an integer, which is true if and only if J is an integer. Hence, these representations are 2J + 1
dimensional with J an integer, and the basis functions are the spherical harmonics. However, we haven’t shown that
they are exactly the irreducible ones. Moreover, there are some subtle details with those half-integer J states. Roughly
speaking, the half-integer J states form the projective representations, when you consider all states λ |ψ〉, λ ∈ C to
be the same as |ψ〉 as in quantum mechanics, and those particles with half-integer spin values (internal J value) are
known as the spinors. For example, when J = 1

2
and M = ± 1

2
, you can see e−iMα returns to 1 when α = 720◦! You

will need to rotate an electron (s = 1
2

) by 720◦ for it to go back to its original state!
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where P |M |
J is the associated Legendre polynomial. Since the rotations of the same angle about any

axis are in the same conjugacy class, they have the same character, so it is the easiest to consider the
rotation about the z axis. We have

R(αẑ) ∗ YJM = YJM (θ, φ− α) = e−iMαYJM , (5.15)

so the M th diagonal component of the irreducible representation ΓJ is

DJ
MM (α) = e−iMα . (5.16)

The character is then

χJ(α) =

J∑
M=−J

e−iMα

=
eiJα[1− e−i(2J+1)α]

1− e−iα

=
sin(J + 1

2 )α

sin 1
2α

. (5.17)

Example. Suppose we are interested in the characters of the f orbitals in the Td point group, and we
cannot find them in our standard character table. We can work them out easily using the formula
above.

The f functions are exactly the spherical harmonics with J = 3. There are 7 of them, so the
character of E is 7. For C3, it is a rotation of 2π

3 , so

χ(C3) =
sin 7

2
2π
3

sin 1
2
2π
3

= 1 . (5.18)

For C2, which is a rotation by π, the character is

χ(C2) =
sin 7

2π

sin 1
2π

= −1 . (5.19)

Next, we have S4 = iC4. Since f functions change their sign under inversion, χ(S4) = χ(iC4) =
−χ(C4), and so

χ(S4) = −
sin 7

2
π
2

sin 1
2
π
2

= +1 . (5.20)

Similarly, σd = iC2, so
χ(σd) = −χ(C2) = +1 . (5.21)

Td E 8C3 3C2 6S4 6σd

7f 7 1 −1 1 1
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6 Totally Symmetric Representation and Direct Product
Representations

6.1 Totally Symmetric Representation

Every group has a special one-dimensional representation called the totally symmetric representation
(or trivial representation), where the representation matrices of all elements are (1) and the characters
are all 1. It has different conventional notations in different groups (A1, A1g, A

′
1,Σ

+
g , S etc.), but here

we call it Γ(1) for simplicity.

If we use the totally symmetric representation Γ(1) as one of the representations in the great
orthogonality theorem, then we get a useful formula

1

|G|
∑
R∈G

DΓ
ij(R) =

{
0 if Γ 6= Γ(1)

1 if Γ = Γ(1) ,
(6.1)

where both i and j are apparently forced to equal 1 in the totally symmetric case.

Next, let’s consider the behaviour of physical properties of molecules, such as charge or dipole
moment. If a molecule belongs to a certain point group, then all the action of all the symmetry
operations should, by definition, leave the appearance of the molecule unchanged, and so it cannot
change the value of any physical quantity. Let’s consider a physical quantity µ of a molecule, the
components of which span a representation Γµ. For example, if µ = (µx, µy, µz) is a vector, then its
three components will transform as vectors x, y and z (or equivalently as Cartesian functions x, y
and z) respectively, which spans a three dimensional representation. Then for any component of the
quantity µi, the action of any symmetry operation R should leave it unchanged:

µi = R ∗ µi =
∑
j

µjD
µ
ji(R) . (6.2)

Then if we sum over the operations in the group, we get

|G|µi =
∑
R∈G

R ∗ µi =
∑
j

µj

∑
R

Dµ
ji(R) . (6.3)

Then if Γµ is irreducible, by (6.1), we have µi = 0 unless Γµ = Γ(1). On the other hand, if Γµ = Γ(1),
then this equation is simply µi = µi. It tells us nothing about this quantity — it can take any value.
If Γµ is reducible, then we can reduce it and then apply it to each irreducible components of it. Only
the components that transform as Γ(1) can be non-zero.

This leads to an important conclusion. The number of independent nonzero components of a
physical quantity µ is the number of times that the totally symmetric representation occurs in Γµ.

Example. The polarisability α is a rank 2 symmetric tensor describing the dipole moment of an object
induced by an electric field

µi =
∑
j

αijEj , (6.4)

where i, j ∈ {x, y, z}, and αij = αji by symmetry. It therefore has six independent components and
the component αij transforms like the quadratic Cartesian function ij.

The BF3 molecule belongs to the D3h point group, and the character table of D3h tells us how
the quadratic functions transform in D3h.

The representation spanned by the polarisability components, Γα, has two A′
1 components, and so

the polarisability of BF3 can only have two independent components: αzz = α∥ and αxx = αyy = α⊥.
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Component Cartesian function Irrep Conclusion
αzz z2 A′

1 αzz 6= 0
αxx + αyy x2 + y2 A′

1 αxx + αyy 6= 0
αxx − αyy

αxy

x2 − y2

xy

}
E′

{
αxx − αyy = 0

αxy = 0
αxz

αyz

xz
yz

}
E′′

{ αxz = 0
αyz = 0

Table 1: The components of polarisability tensor in D3h, the Cartesian function and hence the
irreducible representation they transform as.

In quantum mechanics, we often encounter integrals, like
〈
ψ
∣∣∣Q̂∣∣∣ϕ〉 =

∫
dτ ψ∗Q̂ϕ which frequently

arise in spectroscopy. We are often not particularly interested in the exact value of the integral — we
just want to know whether it is zero or not. Then symmetry can be a particularly useful argument.

Let’s consider a simple integral
∫
dτ FΓ

i , whose integrand transform as the ith component of the
irreducible representation Γ. The integral is over all space, so we can freely transform our integrand
without affecting the value of the Integral

|G|
∫

dτ FΓ
i =

∑
R∈G

∫
dτ R ∗ FΓ

i =
∑
R∈G

∫
dτ FΓ

j Dji(R) , (6.5)

where FΓ
j is the corresponding function transforming as the jth component of Γ. Then by (6.1),∑

R∈G

Dji(R) = 0 (6.6)

unless Γ is the totally symmetric representation. Hence, we conclude that an integral can be non-zero
only if the integrand transforms as the totally symmetric representation.

However, if the integrand is a product of functions and operators, like in
∫
dτ ψ∗Q̂ϕ, where each

function and operator transform as some representation on their own, we need to work out how their
product transforms. To do this, we need the direct product representation.

6.2 Direct Product Representation

Suppose we have an m-dimensional representation Γa generated by a basis (u1, . . . ,um) and an
n-dimensional representation Γb generated by a basis (v1, . . . ,vn). We can define a direct product
basis, {ui ⊗ vj}mi=1

n
j=1 composed of mn ‘combined basis vectors’ composed of one basis taken from

each basis set. We can then use this to define the direct product representation9, Γa ⊗ Γb, defined by
9More formally in pure mathematics, they are known as the tensor product representations as they are representations

on the tensor product spaces. So in more formal representation theories, all those ‘direct products’ should be replaced
by tensor products as tensor products has more algebraic structures than the direct product that we have assumed
throughout our calculations below. The tensor product can be thought of as the direct product, but with the following
few extra equivalence relations imposed (mathematically, this is called taking a quotient)

(v, w) + (v′, w) ∼ (v + v′, w) , (v, w) + (v, w′) ∼ (v, w + w′) and c(v, w) ∼ (cv, w) ∼ (v, cw) . (6.7)

See more details in section B. However, this is a chemistry course so we will stick to chemists’ conventions and call
them direct products.
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the action

R ∗ (ui ⊗ vj) := (R ∗ ui)⊗ (R ∗ vj) =

(
m∑

k=1

ukD
a
ki(R)

)
⊗

(
n∑

l=1

vlD
b
lj(R)

)

=

m∑
k=1

n∑
l=1

uk ⊗ vlD
a
ki(R)D

b
lj(R)

=:

(m,n)∑
(k,l)=(1,1)

uk ⊗ vlD
Γa⊗Γb

(k,l),(i,j)(R) , (6.8)

and so
DΓa⊗Γb

(k,l),(i,j)
:= Da

ki(R)D
b
lj(R) . (6.9)

The resulting representation ismn dimensional, for which both the indices of the rows and the columns
run from (1, 1) to (m,n). Of course, you have the freedom to relabel them as a single number from
1 to mn.

We can also find the character of the direct product representation

χΓa⊗Γb

(R) =

(m,n)∑
(k,l)=(1,1)

(m,n)∑
(i,j)=(1,1)

δkiδljD
Γa⊗Γb

(k,l),(i,j)

=
∑
i,j

Da
ii(R)D

b
jj(R)

= χa(R)χb(R) . (6.10)
The character of a direct product is the product of the characters.
Proposition 6.1. The direct product is distributive on direct sums.

(Γa ⊕ Γb)⊗ (Γc ⊕ Γd) = (Γa ⊗ Γc)⊕ (Γa ⊗ Γd)⊕ (Γb ⊗ Γc)⊕ (Γb ⊗ Γd) . (6.11)
Remark. This allows us to take the direct product of reducible representations as well as the
irreducible ones.
Proof. This is the easiest seen by examining the characters of both sides. The character of the
left-hand side is

(χa + χb)× (χc + χd) = χaχc + χaχd + χbχc + χbχd , (6.12)
which is exactly the character of the right hand side. The characters are the same so the
representations are equivalent (up to a similarity transform) — remember that the character uniquely
determines the irreducible representation decomposition of a reducible representation. □

Now let’s consider how a group element act on a product of functions f(r)g(r) ≡ fg(r):
R ∗ (fg(r)) = fg(R−1 ∗ r)

= f(R−1 ∗ r)g(R−1 ∗ r)
= (R ∗ f(r))(R ∗ g(r)) . (6.13)

A symmetry operator R affects each function individually — this is exactly how we defined the direct
product representation. Therefore, if some functions (ξ1, . . . , ξm) transform as a representation Γa and
some functions (η1, . . . , ηn) transform as a representation Γb, then their products {ξiηj} transforms
as the direct product representation Γa ⊗ Γb.

To be more explicit, suppose the representation spanned by the set of functions {ξiηj} is Γ, then
the component of ξiηj along ξiηj after the action of R is

D(i,j),(i,j)(R) = R ∗ (ξiηj) · ξiηj
= (R ∗ ξi · ξi)(R ∗ ηj · ηj)
= Da

ii(R)D
b
jj(R) , (6.14)
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where · is some sort of dot product such that ξi · ξj = ηi · ηj = δij . The character of R is

χ(R) =

(m,n)∑
(i,j)=(1,1)

D(i,j),(i,j)(R) =
∑
i,j

Da
ii(R)D

b
jj(R) = χa(R)χb(R) . (6.15)

This is indeed the direct product representation.

It is useful to know how many times the totally symmetric representation occurs in a direct
product.

Proposition 6.2. If Γa and Γb are irreducible, then the direct product Γa∗⊗Γb (formed by the basis
{ξ∗i ηj}) contains the totally symmetric representation once if Γa ∼ Γb, and otherwise not at all.

Proof. We use the reduction formula to find the multiplicity of Γ(1) in the direct product
representation.

m1 =
1

|G|
∑
c

hcχ
(1)(c)∗χΓa∗⊗Γb

=
1

|G|
∑
c

hcχ
a(c)∗χb(c)

= δab . (6.16)

□

It is also possible to work out such a symmetric component.

Proposition 6.3. Suppose two bases {ξi} and {ηj} span two identical (not just equivalent)
irreducible representations Γa = Γb = Γ, then the symmetric component of a basis vector ξ∗i ηj
that transforms as the totally symmetric representation is

(ξ∗i ηj)
Γ(1)

= δij
1

nΓ

∑
k

ξ∗kηk . (6.17)

Proof. We can project the direct product basis vector ξ∗i ηj to Γ(1).

(ξ∗i ηj)
Γ(1)

=
1

|G|
∑
R

DΓ(1)

11 (R)R ∗ (ξ∗i ηj)

=
1

|G|
∑
R

∑
k,l

ξ∗kηlD
Γ
ki(R)

∗DΓ
lj(R)

=
1

nΓ

∑
k,l

δklδijξ
∗
kηl

= δij
1

nΓ

∑
k

ξ∗kηk . (6.18)

We can see that a basis function ξ∗i ηj has a symmetric component if and only if i = j. This is exactly
the (unnormalised) function in the span of the direct product basis that transforms as the totally
symmetric representation. □

Example. For example, in the BF3 molecule under D3,

ξx =
1√
2
(sc − sb)

ξy =
1√
6
(2sa − sb − sc) (6.19)
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transform as the x and y components of the E representation respectively. We also have

ηx = px

ηy = py (6.20)

transform as the x and y components of the E representation respectively. Then we know that

ξ∗xηx + ξ∗yηy (6.21)

transforms as the totally symmetric representation A1. If we, for any reason, want to work out the
components of the boron p orbitals and the fluorine s orbitals that give non-zero overlap integral,
then this is the one.

Let’s wrap up. If ξai transforms as the component i of irreducible representation Γa and ηnj
transforms as the component j of the irreducible representation Γb:

• The overlap integral ∫
dτ ξai

∗ηbj = 0 (6.22)

unless Γa ∼ Γb.

• If Γa = Γb = Γ and i 6= j, then ∫
dτ ξ∗i ηj = 0 . (6.23)

• If Γa = Γb = Γ and i = j, then ∫
dτ ξ∗i ηi =

1

nΓ

∫
dτ
∑
k

ξ∗kηk , (6.24)

which implies that the integral is the same for all i.

If, in addition, we have an operator Q̂c
k transforming as the component k of the irreducible

representation Γc, then

• The integral ∫
dτ ξai

∗Q̂c
kη

b
j = 0 (6.25)

unless Γa ∈ Γb ⊗ Γc.

• The operator is totally symmetric e.g. the Hamiltonian, then∫
dτ ξai

∗Q̂Γ(1)

ηbj = 0 (6.26)

unless Γa ∼ Γb.

• If the operator is totally symmetric and Γa = Γb = Γ, then∫
dτ ξ∗i Q̂

Γ(1)

ηj = 0 (6.27)

unless i = j, in which case the result will be the same for all i.
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6.3 The Symmetrised and Antisymmetrised Square

If we have two bases (ξ1, . . . , ξn) and (ηi, . . . , ηn) spanning the same representation Γ, then it turns
out to be more useful to consider a transformed direct product basis, known as the symmetrised and
antisymmetrised square basis. The symmetrised square basis are functions of the form {ξiηj + ξjηi}
that are symmetric with respect to the exchange of η and ξ, and the antisymmetrised square basis
are those of the form {ξiηj − ξjηi} that are antisymmetric with respect to the exchange of η and ξ.

It turns out that the symmetrised basis transform only among themselves, and so they span
a representation of dimension 1

2n(n + 1) called the symmetric square of Γ and denoted (Γ ⊗ Γ)+.
Similarly, the antisymmetrised square basis span a representation of dimension 1

2n(n− 1) called the
antisymmetrised square, denoted (Γ⊗ Γ)−.10

Proposition 6.4. The symmetrised and antisymmetrised square have characters

χ(Γ⊗Γ)±(R) =
1

2
[(χΓ(R))2 ± χΓ(R2)] . (6.28)

Proof. Consider the action of R on the basis function ξiηj ± ξjηi.

R ∗ [ξiηj ± ξjηi] =
∑
k,l

ξkD
Γ
ki(R)ηlD

Γ
lj(R)± ξkD

Γ
kj(R)ηlD

Γ
li(R)

=
∑
k,l

ξkηl[D
Γ
ki(R)D

Γ
lj(R)±DΓ

kj(R)D
Γ
li(R)] . (6.29)

We have the freedom to relabel k ↔ l and so

R ∗ [ξiηj ± ξjηi] =
∑
k,l

ξlηk[D
Γ
li(R)D

Γ
kj(R)±DΓ

lj(R)D
Γ
ki(R)]

= ±
∑
k,l

ξlηk[D
Γ
ki(R)D

Γ
lj(R)±DΓ

kj(R)D
Γ
li(R)] . (6.30)

We can add (6.29) and (6.30) to get

R ∗ [ξiηj ± ξjηi] =
1

2

∑
k,l

[ξkηl ± ξlηk][D
Γ
ki(R)D

Γ
lj(R)±DΓ

kj(R)D
Γ
li(R)]

=
∑
k,l

[ξkηl ± ξlηk] ·D(k,l)(i,j)(R) , (6.31)

where the representation of R is

D(k,l)(i,j)(R) =
1

2
[DΓ

ki(R)D
Γ
lj(R)±DΓ

kj(R)D
Γ
li(R)] . (6.32)

We can take its trace to get

χ(Γ⊗Γ)±(R) =
∑

(k,l)=(i,j)

1

2
[DΓ

ki(R)D
Γ
lj(R)±DΓ

kj(R)D
Γ
li(R)]

=
1

2

∑
i,j

Dii(R)Djj(R)±Dij(R)Dji(R)

=
1

2
[χ(R)2 ± χ(R2)] . (6.33)

□
10You can choose any distinct i and j to form a symmetric and antisymmetric basis vector — these account for

1
2
n(n − 1) of them each. In addition to that, symmetric basis can also have ξiηi + ηiξi ∼ ξiηi, so the symmetric

basis has n additional basis vectors of this type — these would vanish for the antisymmetric case. The symmetric and
antisymmetric basis sum up to n2 basis vectors as expected, as they are a basis transformation of the direct product
basis so they should span the same vector space, and we should apparently have Γ⊗ Γ = (Γ⊗ Γ)+ ⊕ (Γ⊗ Γ)−.
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It is possible to construct higher powers of a representation as well as their symmetrised and
antisymmetrised parts, but they are in general of less interest. You will meet the symmetrised cube
in one of the exercises.

Example. If we have two sets of basis functions, (ξx, ξy) and (ηx, ηy), both transforming as the
irreducible representation E in D3. Then the direct product basis is (ξxηx, ξxηy, ξyηx, ξyηy), and
the direct product transforms as E ⊗ E = A1 ⊕A2 ⊕ E.

We can transform this into symmetrised and antisymmetrised basis. The symmetrised basis is
(ξxηx, ξyηy, ξxηy + ξyηx) and the antisymmetrised basis is (ξxηy − ξyηx). The symmetrised square is
(E ⊗ E)+ = A1 ⊕ E, and the antisymmetrised square is (E ⊗ E)− = A2. We can also work out the
symmetry-adapted functions using the projection formula.

A1: ξxηx + ξyηy symmetric
A2: ξxηy − ξyηx antisymmetric

E: ξxηy + ξyηx
ξxηx − ξyηy

symmetric

6.4 Electronic Terms

An important application of this is in the electronic configuration of molecules. If we have two
electrons in the same degenerate set of orbitals {ψi}, then we can take the wavefunctions of the first
electron as a basis ξi = ψi(r1) and the wavefunctions of the second electron as a basis ηi = ψi(r2).
We can construct orbitally symmetric functions

ξiηj + ξjηi = ψi(r1)ψj(r2) + ψj(r1)ψi(r2) (6.34)

and orbitally antisymmetric ones

ξiηj − ξjηi = ψi(r1)ψj(r2)− ψj(r1)ψi(r2) . (6.35)

The orbitally symmetric ones, i.e. the components of the symmetrised square, are by construction
symmetric with respect to the exchange of the electrons’ spatial coordinates r1 ↔ r2, so by Pauli’s
principle, they have to be combined with antisymmetric (singlet) spin functions to maintain the
overall antisymmetry of the electronic wavefunction. Similarly, the orbitally antisymmetric ones are
the components of the antisymmetrised square, and should be combined with the symmetric (triplet)
spin wavefunction.

Example. In D3 group, we have
E ⊗ E = A1 ⊕ [A2]⊕ E , (6.36)

where the antisymmetrised square is in square brackets. For an e2 configuration of a D3 molecule,
with two electrons in a set of degenerate E orbitals. By the above argument, the allowed molecular
terms are 1A1, 3A2 and 1E, and 3A2 is the ground state by Hund’s first rule.

In Oh group,
T2g ⊗ T2g = A1g ⊕ Eg ⊕ [T1g]⊕ T2g , (6.37)

so the configuration t22g leads to the molecular terms 1A1g, 1Eg, 1T2g and 3T1g, and the term 3T1g is
the lowest energy one.

6.4.1 Direct Product Representations of the Full Rotation Group

Proposition 6.5 (Clebsch–Gordan Rule).

ΓJ1 ⊗ ΓJ2 = ΓJ1+J2 ⊕ ΓJ1+J2−1 ⊕ · · · ⊕ Γ|J1−J2| . (6.38)
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You will prove this in one of the exercises.

Proposition 6.6. The symmetrised and antisymmetrised squares of ΓJ are11

(ΓJ ⊗ ΓJ)+ = Γ2J ⊕ Γ2J−2 ⊕ · · · ⊕ Γ0

(ΓJ ⊗ ΓJ)− = Γ2J−1 ⊕ Γ2J−3 ⊕ · · · ⊕ Γ1 . (6.39)

We will not prove this, but this is rather useful. It allows us to construct the atomic terms.

Example. For the p2 configuration of an atom,

(P ⊗ P )+ = Γ2 ⊕ Γ0 = D ⊕ S

(P ⊗ P )− = Γ1 = P , (6.40)

so the allowed terms are 1D, 3P and 1S. 3P has the lowest energy.

Similarly the allowed terms for the d2 configuration are 1G, 3F , 1D, 3P and 1S. 3F has the lowest
energy.

6.5 Jahn–Teller Theorem

Consider a molecule with an electronic term Γ, where the dimension of the irreducible representation
Γ is n ≥ 1. If n = 1, then this is a non-degenerate electronic state |ψ〉, while if n > 1, we have
n degenerate electronic states {|ψ1〉 , |ψ2〉 , . . . , |ψn〉}. You probably have met Jahn–Teller effect in
coordination chemistry, where an asymmetric distortion of a complex breaks this degeneracy and
results in a decrease/increase of the energy. This is in fact a general phenomenon.

Theorem 6.7 (Jahn–Teller Theorem). Consider a distortion of symmetry ΓQ 6= Γ(1) to the
molecule.

• If the electronic state Γ is non-degenerate, then the distortion will not change the energy of |ψ〉
to the first order, i.e. the molecule is stable against distortion.

• If the electronic state Γ is degenerate, then the distortion will lower the energy of at least one
of the n degenerate electronic states {|ψ1〉 , |ψ2〉 , . . . , |ψn〉} if and only if ΓQ ∈ (Γ ⊗ Γ)+. This
is known as the Jahn–Teller condition.

This distortion can be done simply by a vibration of the atoms if there is a normal mode
with appropriate symmetry, so degenerate states of molecules are naturally unstable and would
spontaneously break their symmetry to reduce their energy.

Proof. If a molecule is distorted away from its original symmetric geometry, the Hamiltonian will
change. We can view this as introducing a perturbation VQ to the Hamiltonian of the symmetry ΓQ.
From non-degenerate perturbation theory,12 if Γ is one-dimensional, then the first order change in
energy is

ϵ =
〈
ψ
∣∣∣V̂Q∣∣∣ψ〉 , (6.41)

which transforms as Γ∗ ⊗ ΓQ ⊗ Γ = ΓQ 6= Γ(1). Therefore, this first order energy change will be
evaluated to zero. A closed shell molecule is stable against distortion.

11Here Γ1 without the brackets on 1 is the representation of SO(3) with J = 1, not the totally symmetric representation
which we denote by Γ(1).

12See my notes on C7: Further Quantum Mechanics or Mathematical Tripos Part II: Principles of Quantum
Mechanics.
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Now consider the case where Γ is degenerate. Degenerate perturbation theory shows that the
energy changes are, to the first order, the eigenvalues ϵi of the matrix V with matrix elements

Vij =
〈
ψi

∣∣∣V̂Q∣∣∣ψj

〉
. (6.42)

We will assume that the functions ψi are all real (which can always be made so for degenerate orbitals)
and note that the perturbation V̂Q is just a change in potential, which is a real function, so

Vij =

∫
dτ ψiψjVQ =

1

2

∫
dτ (ψiψj + ψjψi)VQ . (6.43)

This will be non-zero if and only if ΓQ ∈ (Γ ⊗ Γ)+. We will show that at least one of the energy
changes ϵi is negative.

The sum of the energy changes is zero since

∑
ϵi =

∑
Vii =

∫
dτ

(∑
i

ψ2
i

)
VQ , (6.44)

and
∑

i ψ
2
i transforms as the totally symmetric representation. Hence, this sum vanishes provided

ΓQ 6= Γ(1). However, the sum of the squares of the energy changes is∑
i

ϵ2i = tr(V2) =
∑
ij

VijVji =
∑
ij

|Vij |2 , (6.45)

which will be non-zero if any of the elements of V is non-zero. This is true if ΓQ ∈ (Γ⊗Γ)+. Combining
these two results, at least one of the energy changes should be negative. □
Claim 6.8. For all non-linear molecules, there is always a distortion with symmetry ΓQ ∈ (Γ⊗Γ)+.
However, for linear molecules, there is never a distortion satisfying the Jahn–Teller condition.

Proof. The first claim is difficult to prove. See Landau and Lifshitz, Quantum Mechanics (Non-
Relativistic Theory), 3rd edition, pp. 407-412 for a discussion. The second claim is not difficult, and
is one of your exercises. □

Stability and degeneracy are not possible simultaneously unless the molecule is a linear one.

6.5.1 Jahn–Teller Distortion in Octahedral d9 Complexes

The classical example of Jahn–Teller distortion is the octahedral d9 complex. The ground electronic
state is 2Eg, with symmetrised square A1g ⊕ Eg. Hence an Eg distortion will meet the Jahn–Teller
condition. Vibration modes with Eg symmetry will break the degeneracy of the two 2Eg states (which
technically should no longer be labelled 2Eg after distortion). The first component of the Eg ligand
vibration mode is when ligands along z direction move out and the x and y ones move in, and the
other component of this Eg mode has the x ligands moving out and the y ligands moving in, while the
z ligands are stationary. Any linear combination of these two degenerate normal modes will lead to
a splitting of the eg orbitals in first order, giving one orbital lowered in energy and the other raised.
For large distortions the repulsion between the ligands and the central ion causes the energy to rise.

Therefore, the d9 complexes will be distorted and the double degeneracy of the two 2Eg electronic
states will be broken to allow the molecule to sit in a lower energy non-degenerate electronic state.

6.5.2 Jahn–Teller Distortion in Octahedral d8 Complexes

The situation for the d8 complexes is more subtle. The electron configuration is e2g and the allowed
terms are 1Eg, 1A1g and 3A2g. By Hund’s first rule, the lowest energy state in the octahedral
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λ1
λ2

Figure 6.1: The energy of the two 2Eg electronic states of a d9 complex against two vibration
coordinates of Eg symmetry. The scale of the distortion along the two modes are λ1 and λ2
respectively, and the energy of one of the electronic states (the blue one) has its minima at non-zero
magnitude of distortions, leading to the spontaneous symmetry breaking of the complex.

λ1
λ2

Distortion

E

1Eg
3A2g

Figure 6.2: The energy of the electronic states of a d8 complex against distortion. In the undistorted
octahedral complex, the 3A2g is the ground state, but the 1Eg state is subjected to Jahn–Teller
distortion, which may or may not reduce its energy below the triplet state.

geometry is 3A2g, with 1Eg above it and the 1A1g above that. However, 1Eg is degenerate, so it
is subjected to Jahn–Teller distortion of Eg symmetry, which may reduce the energy below that of
triplet. Consequently in d8 we may get either a symmetric triplet state or a distorted singlet state.

6.5.3 The Dynamical Jahn–Teller Effect

In some molecules the energy associated with the Jahn–Teller distortion is small compared with
kBT , and then the distortion is not static but dynamic. This does not occur in the octahedral
d9 complexes, where there is a strong interaction between the eg orbitals and the ligands, but it is
common in complexes where only the t2g orbitals are occupied, since these interact much more weakly
with the ligands.
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7 Vibrational Coordinates

Now let’s turn to investigate the vibrations in a molecular system. In a molecule of N atoms,
each atom has 3 Cartesian displacement coordinates, so they form a basis of a 3N -dimensional
representation. We can reduce this representation in just the same way we did for molecular orbitals,
and we will get 3N symmetry-adapted vibration coordinates. Three of these will correspond to the
translation of the whole molecule, and another three of these correspond to rotations (or two for linear
molecules). Subtracting these off, we are left with 3N − 6 (or 3N − 5) vibrational normal modes.
This should be familiar from IB Chemistry A and A3: High Resolution Molecular Spectroscopy.

Example. For BF3 molecule with point group D3h, the 3N Cartesian displacement vectors transform
as A′

1 ⊕ A′
2 ⊕ 2A′′

2 ⊕ 3E′ ⊕ E′′. The translations transform as A′′
2 ⊕ E′, and the rotations transform

as A′
2 ⊕ E′′, leaving the vibrations A′

1 ⊕A′′
2 ⊕ 2E′.

F

F F

B xB

yB
zB

r1

t1

z1

r2
t2

z2 r3

t3

z3

It is non-trivial to work out the vibration coordinates — some are easier to guess, while others
are not. You will explore how to compute this in C7: Further Quantum Mechanics or in Part IB
Mathematics. Here we will state some of the results. The totally symmetric A′

1 mode is the symmetric
combination of the fluorine radial displacements

QA′
1
=

√
1

3
(r1 + r2 + r3) . (7.1)

The A′′
2 mode is a linear combination of zB and the symmetric combination of the fluorine z

displacements
QA′′

2
= c1zB + c2 (z1 + z2 + z3) , (7.2)

where coefficients c1 and c2 are chosen to leave the centre of mass stationary. The doubly degenerate
E′ modes are slightly more complicated. The first pair are formed by the radial movements of the F
atoms, balanced by the opposite movement of B

Q1E′
x
= d1xB + d2(r3 − r2) , (7.3)

Q1E′
y
= d3yB + d4(2r1 − r2 − r3) , (7.4)

and the second pair are from the tangential movements of the F atoms

Q2E′
x
= e1xB + e2(2t1 − t2 − t3) , (7.5)

Q2E′
y
= e3yB + e4(t3 − t2) . (7.6)

The constants di, ei are again to make the centre of the molecule stationary.

7.1 Allowed Harmonic Terms in Vibrational Potential

Normally the potential energy for the nuclear motion is some complex function of the nuclear
coordinates that we will expand in a Taylor series about the equilibrium geometry. This makes
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all the linear terms vanish, so the leading order terms we need to consider are the quadratic terms.
Under this approximation, the vibrational potential is harmonic.

However, the Hamiltonian should be totally symmetric, so only the symmetric terms can appear. If
we have a set of vibrational coordinates (Qa1, Qa2, . . . ) transforming as the irreducible representation
Γa, and another set (Qb1, Qb2, . . . ) transforming as Γb, then the possible quadratic terms QaiQbj

transform as the direct product Γa ⊗ Γb. Since all vibrational coordinates we are going to consider
are real, this set of elements includes a single symmetric component if and only if Γa ∼ Γb, and if
Γa = Γb, the symmetric component is proportional to

∑
iQaiQbi.

Example. The only quadratic terms that may appear in the vibrational potential of BF3 are

Q2
A′

1
, Q2

A′′
2
, Q2

1E′
x
+Q2

1E′
y
, Q2

2E′
x
+Q2

2E′
y

and Q1E′
x
Q2E′

x
+Q1E′

y
Q2E′

y
. (7.7)

If we introduce anharmonicity, i.e. consider cubic terms and above, there will be a lot more
possibilities.13

Example. Consider again BF3. We would like to find the cubic terms that transform totally
symmetrically. The possibilities are

(i) Any of the harmonic terms can be multiplied by QA′
1
, since A′

1 ⊗A′
1 = A′

1.

(ii) If we can construct a quadratic term transforming as A′′
2 , then we can multiply it by QA′′

2
to

get an A′
1 cubic term. However, the only quadratic A′′

2 term is QA′
1
QA′′

2
, giving a cubic term

QA′
1
Q2

A′′
2
. This situation is included in (i).

(iii) We can construct a quadratic E′ term from any two E′ ⊗ E′. The product of this
quadratic E′ with another E′ will give a cubic A′

1 component. For example, a quadratic
E′ term can be constructed from the product of (Q1E′

x
, Q1E′

y
) with itself, and we obtain

(Q2
1E′

x
− Q2

1E′
y
,−2Q1E′

x
Q1E′

y
). We defined it in a way such that it forms the identical (not

just equivalent) E′ representations like the others (i.e. like (x, y)). The A′
1 component of the

direct product of it with (Q1E′
x
, Q1E′

y
) is then

Q1E′
x
(Q2

1E′
x
−Q2

1E′
y
) +Q1E′

y
(−2Q1E′

x
Q1E′

y
) = Q3

1E′
x
− 3Q1E′

x
Q2

1E′
y
. (7.8)

Other terms of this form can be constructed using the Q2E′ components in the triple direct
product.

No other cubic terms may appear in the Hamiltonian.

Anharmonicity can lead to coupling between vibrational states, and hence to perturbations of their
energies. Because the Hamiltonian is symmetric, they can only couple states of the same symmetry.
See Fermi resonance later.

7.2 Ladder Operators

The Hamiltonian of a general harmonic oscillator is

Ĥ = − ℏ2

2m

∂2

∂Q2 +
1

2
kQ2 . (7.9)

As you have seen in IB Chemistry A: Introduction to Quantum Mechanics, if we define the length
scale s = (ℏ2/mk)1/4 and the scaled coordinate x = Q/s, and we express the energy in ℏ

√
k/m = ℏω,

then this Hamiltonian reduces to
Ĥ = −1

2

∂2

∂x2
+

1

2
x2 . (7.10)

13The contents beyond this point are non-examinable.
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We call this the standard harmonic oscillator — every harmonic oscillator is the same up to some
scaling.

Next, we make some seemingly arbitrary definition of the ladder operator

Â :=

√
1

2

(
x+

∂

∂x

)
(7.11)

and its Hermitian conjugate

Â† =

√
1

2

(
x− ∂

∂x

)
. (7.12)

The motivation of doing so is that it somehow “factorises” the Hamiltonian such that for any ψ,

ÂÂ†ψ =
1

2

(
x+

∂

∂x

)(
x− ∂

∂x

)
ψ =

1

2

(
x2 − ∂2

∂x2
+ 1

)
=

(
Ĥ +

1

2

)
ψ , (7.13)

and so
ÂÂ† = Ĥ +

1

2
. (7.14)

Similarly one can show that
Â†Â = Ĥ − 1

2
. (7.15)

Now suppose there is a wavefunction ψn that is an eigenfunction of Ĥ such that

Ĥψn = Enψn , (7.16)

consider the function Â†ψn, we find

Ĥ(Â†ψn) = (Â†Â+
1

2
)Â†ψn

= Â†
(
ÂÂ† +

1

2

)
ψn

= Â†(Ĥ + 1)ψn

= (En + 1)(Â†ψn) . (7.17)

This means that if we have an eigenstate ψn with eigenvalue En, we can always construct another
eigenstate with eigenvalue En + 1 by acting Â† to it. In the same way, one can show that Âψn is
also an eigenfunction with energy En−1. Â† and Â are therefore also called the raising and lowering
operators, respectively.

Suppose we start from a particular eigenstate of Ĥ, with eigenvalue k, then it seems that by
repeatedly acting Â and Â†, we can generate a whole sequence of eigenstates with eigenvalues k + n
with n ∈ Z, corresponding to energies (k + n)ℏω from negative to plus infinity. However, the energy
of a harmonic oscillator cannot be negative,14 so we cannot infinitely act Â on an eigenstate — the
lowering process must terminate at some point and we must have a particular eigenstate ψ0 with
Âψ0 = 0, after which keep acting Â gives nothing. We can solve for this state:15

Âψ0 =

√
1

2

(
x+

∂

∂x

)
ψ0 = 0 , (7.19)

14We can have a formal justification for this. Consider〈
ψn

∣∣∣∣Ĥ −
1

2

∣∣∣∣ψn

〉
=

〈
ψn

∣∣∣Â†Â
∣∣∣ψn

〉
=

∥∥∥Â |ψn〉
∥∥∥2 ≥ 0 (7.18)

since the norm is always non-negative. Hence
〈
ψn

∣∣∣Ĥ∣∣∣ψn

〉
= En ≥ 1

2
.

15This is a first order linear homogeneous ODE — much easier than the original second order eigenvalue problem.
Everyone should be able to solve it.
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giving the (unnormalised) wavefunction

ψ0 = exp

(
−1

2
x2
)
. (7.20)

This is the state of the lowest energy, also known as the ground state, with eigenvalue

Ĥψ0 =

(
Â†Â+

1

2

)
ψ0 =

1

2
ψ0 (7.21)

in units of ℏω. The wavefunctions of the other vibrational excited states are

ψn = (Â†)nψ0 (7.22)

with energies (n+ 1
2 )ℏω.

7.2.1 Symmetries of the Vibrational States

Let’s consider the symmetry of the vibrational eigenstates. First consider the non-degenerate case
where the scaled vibrational coordinate x = Q/s scales as some one-dimensional representation ΓQ.
Then since x2 will always transform as ΓQ ⊗ ΓQ = Γ(1), the wavefunction

ψ0 = exp

(
−1

2
x2
)

(7.23)

is also totally symmetric. Since Â† has the same symmetry as x (obvious from its definition),

ψ1 = Â†ψ0 (7.24)

must transform as ΓQ ⊗ Γ(1) = ΓQ, the same irreducible representation as the vibrational coordinate
Q. Next,

ψ2 = Â†ψ1 (7.25)

will transform as ΓQ ⊗ ΓQ = Γ(1), so it is again totally symmetric. We can see that this alternating
pattern carries on. For non-degenerate vibrations, the vibrational states ψn alternate between totally
symmetric (for even n) and the same symmetry as the vibrational coordinate (odd n).

For degenerate vibration with coordinates (x1, x2, . . . ) transforming as an irreducible representa-
tion ΓQ with dimension larger than one, there is a pair of ladder operators Â and Â† for each xi. The
ground state has zero quanta of excitation in each mode, and it is

ψ00... = exp

(
−1

2
(x21 + x22 + . . . )

)
. (7.26)

This is again totally symmetric. There is a set of singly-excited states

Â†
iψ00... , (7.27)

which together transform like the Â†
i and hence like (x1, x2, . . . ), with irreducible representation ΓQ.

The doubly-excited states are
Â†

i Â
†
jψ00... , (7.28)

transforming as the products Â†
i Â

†
j . But since Â†

i Â
†
j = Â†

jÂ
†
i , we only get the components of the

symmetrised square.
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7.3 Fermi Resonance

As we claimed above, due to anharmonicity, there may be coupling between vibrational states of the
same symmetry. This is best illustrated with an example.

Example. The vibrational modes of CO2 with D∞h point group have irreducible representations
Σ+

g ⊕ Πu ⊕ Σ+
u (we will label the vibrational states in this order). The bending vibration v2 has

symmetry Πu and frequency ν̃2 = 667 cm−1. We will label the first excited state of this mode by
0110, where the superscript for a degenerate mode indicates that this mode has an angular momentum
±1 about the molecular axis (and hence it has symmetry Π). The doubly-excited state of this mode
has symmetry (Πu ⊗ Πu)+ = Σ+

g ⊕∆g, and are denoted 0200 and 0220 respectively. They will have
energy 2ν̃2 = 1334 cm−1

Σ+
g 000

Σ+
g 100

Πu 0110

Σ+
g 0200

∆g 0220

Figure 7.1: Fermi Resonances in CO2.

However, we find that the symmetric stretch v1 mode also has Σ+ symmetry with frequency
ν̃1 = 1388 cm−1, meaning that the first excited state of this mode, denoted 100, has symmetry
Σ+ and energy ν̃1 = 1388 cm−1 above the ground state. We have two states 100 and 0200 with
the same symmetry and close in energy, so they will interact, just like two orbitals with the same
symmetry and similar energy will interact. This is possible since there will be an anharmonic term
in the Hamiltonian proportional to Q1(Q

2
2x +Q2

2y) = Q1Q
2
2sym. The two states are therefore mixed,

resulting in a splitting in energy. The strength of the coupling is

〈
0200

∣∣Vanh
∣∣100〉 = 1

2

(
∂3V

∂Q2sym
2∂Q1

)
〈0|Q1|1〉

〈
20
∣∣Q2

2sym
∣∣0〉 〈0|0〉 , (7.29)

where there are three equivalent contributions so the factor of 1
3! in the Taylor expansion of the

potential becomes 1
2 .
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8 More on Symmetry Operations

8.1 Non-Rigid Molecules

Let’s consider the ammonia molecule. There are six possible permutations of the three protons, which
can be labelled E, (ab), (ac), (bc), (abc) and (acb). All of them can be combined with the inversion
E∗ operation to give another six permutation-inversions. These are twelve operations altogether, but
the symmetry group of NH3 is C3v, which contains only six elements. Which six of the twelve do
these correspond to, and what do the other six operations do?

Using the same method as what we did for H2O in chapter 1, we find that (abc) and (acb)
correspond to C3 and C−1

3 , and (ab)∗, (bc)∗ and (ac)∗ correspond to the three reflections in C3v

group. What does other permutation-inversion operations do? Let’s use E∗ as an example. We
define the z axis to be along the principal axis and at the opposite side of the H atoms, x axis so
that xz plane contains atom a, and y to complete the right-handed frame. You will find that it is
impossible to reorient the molecule transformed by E∗ to align it with the original molecule. For
example, if you choose to make the atoms N and Ha coincide with the original molecule, then the b
and c are necessarily in the wrong order.

x

z

y

a

b

c

E∗
x

z

ya

b

c

reorient
x

z

y

a

b

c

atoms not superimposable

σh

x

z

y a

b

c

re-define axes

x

z

y

a

b

c

reorient

Figure 8.1: An ammonia molecule transformed by parity inversion E∗ is identical to the flipped
ammonia molecule. We can regard it as a σh operation which is not in the symmetry group of
ammonia.

The new configuration of ammonia generated by the E∗ operation is not superimposable on the
original one — it is a mirror image. It is a second version of the equilibrium geometry, distinguishable
from the first if we take nuclear labels into account. Moreover, it is accessible from the original
configuration by “flipping” the configuration of the molecule via a planar transition structure, with
a low energy barrier of 25 kJ mol−1.

The vibrational wavefunction of the two versions of ammonia can also mix by tunnelling through
the barrier, leading to a small but observable splitting of the vibrational energy level. The
wavefunctions are either symmetric or antisymmetric with respect to the E∗ operation, so we need
it to get a complete symmetry classification.
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Figure 8.2: Vibrational wavefunctions when considering the inversion of ammonia. The wavefunction
can be symmetric or antisymmetric with respect to E∗, with a detectable energy gap.

In ammonia, the two versions of the equilibrium geometry are easily accessible from each other
via a low barrier. The operations that convert one version into the other are said to be feasible, and
we need them for a complete classification of the energy levels.

Next, let’s consider methane molecule, where there are 24 permutations of the four H atoms, and
24 permutation-inversions. However a half of these lead to an inverted configuration of methane that
can only be reached by crossing a very high energy barrier. There is essentially no mixing between
the wavefunction of these two versions of methane, and the symmetry operations that convert one
into the other do not add any useful information. Such non-feasible operations can be ignored. The
molecular symmetry group is the set of all feasible permutations and permutation-inversions.

Ammonia is an example of a non-rigid molecule. Such molecules have more than one version of
the minimum energy geometry, distinguished from one another by nuclear labels, and connected to
each other by low-energy pathways on the potential energy surfaces.

An important class of such non-rigid molecules comprises weakly-bound van der Waals molecules.
In the water dimer, for example, one molecule acts as a proton donor to the other to form a hydrogen
bond. The resulting structure has a Cs symmetry. The H atom in the hydrogen bond can be any of
the four; moreover the two H atoms in the acceptor molecule can change places by a feasible motion.
Consequently there are eight versions of the equilibrium structure, each having a Cs symmetry, so
there are sixteen symmetry operations in the molecular symmetry group. All of these must be included
in order to classify the vibrational states. Often the symmetry groups for the molecules clusters like
this do not correspond to any of the standard tabulated symmetry point groups.

8.2 Approximate Symmetry and Descent in Symmetry

Consider the complex [Ni(en)3]
2+ (en=ethylene diamine), where six nitrogen atoms act as ligands to

the metal ion. Formally, the complex has D3 symmetry only, and the metal d orbitals transform as
A1 ⊕ 2E.

This information does not itself tell us much about the relative energies of the d orbitals. However
the immediate environment of the metal ion is approximately octahedral. In Oh symmetry we know
that the d orbitals split into Eg ⊕ T2g, with Eg orbitals higher in energy by the crystal-field splitting
∆, which we can estimate reasonably reliably from our knowledge of true octahedral complexes.

To determine what happens in [Ni(en)3]
2+, we use descent in symmetry. We start by classifying

the orbitals according to the approximate symmetry Oh. Then we investigate the behaviour of the
Oh symmetry orbitals under the symmetry operations that remain in D3.

Of the 48 symmetry operations in Oh, only six survive in D3: the identity, one of the C3 operations
and its inverse, and three of the six dihedral C2 operations. In the Oh character table, we delete all
columns that do not remain in the D3, leaving three surviving columns only. For each representation
Γ of Oh, these three columns give the character for the surviving elements in D3. We can reduce this
character to determine the corresponding symmetry species in D3.
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Figure 8.3: Eight possible configurations of water dimers.
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Oh E C3 C2 D3

A1g 1 1 1 A1

A2g 1 1 −1 A2

Eg 2 −1 1 E
T1g 3 0 −1 A2 ⊕ E
T2g 3 0 1 A1 ⊕ E

Table 2: Descent of symmetry table from Oh to D3.

T2g

Eg

A1

E

E

H3N NH3

NH3

NH3

H3N

NH3

Ni N N

N

N

N

N

Ni

Figure 8.4: Thinking of [Ni(en)3]
2+ as a perturbation to the octahedral species.

The idea of doing so is that if the molecule has a Oh symmetry, the d orbitals split into a doubly
degenerate pair Eg and a triply degenerate pair T2g, with distinct energy. We now make a slight
tweak to the system that breaks the symmetry of Oh into D3. Since the change is small, we are
not expected to see a large change in the energy of the orbitals. But some of the orbitals that were
degenerate in the Oh group will have their degeneracies lifted in the D3 group as the symmetry is
reduced. We then expect a small splitting in the energy levels. In this case, we see that the Eg

orbitals remain degenerate, and are now called E in D3, while the degeneracy of the T2g orbitals is
broken, and they are split into an A1 set and an E set; symmetry doesn’t tell us which of them is
higher, but often the application of perturbation theory can answer such questions.
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9 Selection Rules

Time-dependent perturbation theory16 tells us that the transition probability between states |Ψ′′〉 and
|Ψ′〉 when an oscillatory perturbation V cosωt is applied is proportional to |〈Ψ′|V |Ψ′′〉|2, provided
that ℏω = |E′ − E′′|. This oscillatory perturbation can arise in various ways. In electric dipole
transition where the dipole of a molecule interacts with an oscillating electric field, the strength of
perturbation V is proportional to the electric dipole, and in magnetic resonance, V is proportional
to the magnetic dipole operator, and in Raman scattering, it is proportional to the polarisability etc.
We will consider only the electric dipole case.

When an electromagnetic wave interacts with a molecule, the perturbation is the scalar product
−µ̂ ·E cosωt between the electric dipole operator of the molecule and the electric vector of the
radiation field. Then if |Ψ′〉, |Ψ′′〉 and µ̂ transform as Γ′, Γ′′ and Γµ respectively, the transition
probability will be non-zero only if Γ′∗⊗Γµ⊗Γ′′ has a totally symmetric component, or equivalently
Γ′ ∈ Γµ ⊗ Γ′′.

To derive the selection rules, we first write the wavefunction of the molecule as

Ψ = ψrotψint , (9.1)

where ψrot is the rotational wavefunction and ψint internal wavefunction including the vibrational and
electronic (vibronic) parts. We have neglected the translational part because there is no spectroscopy
involving that (the energy levels are spaced too closely for molecules in any macroscopic containers).
Suppose the light is polarised in Z direction (fixed in space in global coordinate) so that V = −µ̂ZEZ

is proportional to the component µ̂Z of the dipole operator. We have µ̂Z(Ω) =
∑

α∈{x,y,z} lαZ(Ω)µ̂α,
where lαZ are the direction cosines depending on the orientation Ω of the molecule in space (global
frame), projecting the coordinates of the internal axis (x, y, z) to the direction Z in the global axis,
and µ̂α are the components of µ̂ relative to the internal axis of the molecule.

We can then factorise the transition moment integral into a part that depends on the molecular
orientation, and a part that depends only on the internal coordinates

〈Ψ′|µ̂Z |Ψ′′〉 =
∫

dτ ψ′
rot

∗
ψ′

int
∗
µ̂Zψ

′′
rotψ

′′
int

=
∑

α∈{x,y,z}

∫
dΩψ′

rot
∗
lαZψ

′′
rot

∫
dQ dqψ′

int
∗
µ̂αψ

′′
int , (9.2)

where Q and q refer to the vibrational and electronic coordinates, respectively, and dΩ = sin θdθ dφ .

9.1 Pure Rotational Spectroscopy

In the pure rotational spectroscopy, the transition happens between different rotational levels of the
same vibronic state, usually the ground state, so ψ′

int = ψ′′
int = ψ0

int. The second integral in (9.2)
is then just the expectation value of the dipole of the molecule in this vibronic state. At least one
component of the molecular dipole must be non-zero for pure rotational transitions to occur. This is
the gross selection rule. The first integral in (9.2) gives the detailed selection rule.

For example, consider a linear molecule. Here µx = µy = 0, and the only non-zero term in (9.2)
has α = z. If the molecular axis z lies in the direction (θ, φ) in the global axis, then lzZ = cos θ, which
is proportional to the spherical harmonic Y10, while the rotational wavefunctions are also spherical
harmonics. Consequently the rotational factor takes the form∫

dΩY ∗
J ′M ′Y10YJ ′′M ′′ , (9.3)

16See C7: Further Quantum Mechanics.
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which is zero unless ΓJ ′ ∈ Γ1⊗ΓJ ′′
= ΓJ ′′+1⊕ΓJ ′′ ⊕ΓJ ′′−1, so we must have J ′ = J ′′ or J ′ = J ′′±1,

excluding J ′′ = J ′ = 0. However, if we take a parity inversion to this integrand, the integral also
should not change, because∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz f(−x,−y,−z)

= (−1)3
∫ −∞

∞
d(−x)

∫ −∞

∞
d(−y)

∫ −∞

∞
d(−z) f(−x,−y,−z)

=

∫ ∞

−∞
d(−x)

∫ ∞

−∞
d(−y)

∫ ∞

−∞
d(−z) f(−x,−y,−z)

=

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz f(x, y, z) (9.4)

by relabelling the variables. YJM changes sign under parity inversion if J is odd but not if J is even,
so the integral vanishes if J ′ + J ′′ + 1 is odd, which it is if J ′ = J ′′. Consequently the selection rule
is J ′ = J ′′ ± 1.

9.2 Vibration-Rotation Spectroscopy

We write
ψint = ψelec(q,Q)ψvib(Q) (9.5)

and integrate over the electronic coordinates q. The transition is between vibration-rotation levels of
the same electronic state, so ψ′

elec = ψ′′
elec = ψn

elec and the second integral in (9.2) becomes∫
dQψ′

vib
∗
µ̂n
α(Q)ψ′′

vib , (9.6)

where µn(Q) is the dipole moment operator in state ψn
elec:

µ̂n
α(Q) =

∫
dqψn

elec(q,Q)∗µ̂α(q,Q)ψn
elec(q,Q) . (9.7)

µ̂n
α is a function of Q. We can expand it in a Taylor series about the equilibrium geometry

µ̂n
α(Q) = (µ̂n

α)eq +
∑
k

Qk

(
∂µ̂n

α

∂Qk

)
eq

+
1

2

∑
k,l

QkQl

(
∂2µ̂n

α

∂Qk∂Ql

)
eq

+O(QiQjQk) . (9.8)

The left and the right hand side of this expansion must transform in the same way. The left hand side
is a vector component, so it transforms as that component (as x, y or z). The first term is a constant,
so it is totally symmetric. Therefore it must be zero unless µ̂α is totally symmetric. In the second
term, ∂µ̂n

α/∂Qk is also just a scalar, so it is totally symmetric. Therefore this term transforms as the
vibration coordinate Γk. Therefore ∂µ̂n

α/∂Qk must be zero unless Γk transforms as µ̂α — otherwise
the two sides of the equation will transform in a different way. We will come back to this vibrational
part later, and first deal with the rotational part (the first integral in (9.2)).

The first factor in (9.2) gives the selection rule in the same way as before, but now we have
vibrations happening at the same time: we may have parallel vibrations in which µ̂z varies, and
perpendicular vibrations in which µ̂x or µ̂y varies. For the former, the rotational selection rules are
the same as the pure rotational spectroscopy, so the spectrum shows P and R branches but no Q;
for the latter, it turns out that the Q branch is allowed as well. We won’t go any deeper. If you are
interested, see Hollas High Resolution Spectroscopy or Bernath Spectra of Atoms and Molecules.
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We now look at the second term responsible for vibrational transitions. The integral is now∫
dQψ′

vib
∗
µ̂n
α(Q)ψ′′

vib =

∫
dQψ′

vib
∗
(
(µ̂n

α)eq +
∑
k

Qk

(
∂µ̂n

α

∂Qk

)
eq

+ . . .

)
ψ′′

vib

= (µn
α)eq

∫
dQψ′

vib
∗
ψ′′

vib

+
∑
k

(
∂µn

α

∂Qk

)
eq

∫
dQk ψ

′
vib

∗
Qkψ

′′
vib + . . . (9.9)

The first term is an overlap integral between vibrational eigenfunctions, and is zero unless ψ′
vb = ψ′′

vib,
in which case we are back to the pure rotational spectroscopy.

In the second term, we can write Qk in terms of the ladder operators:

Qk =

√
1

2
(Âk + Â†

k) . (9.10)

Operating this on ψ′′
vib will increase or reduce the vibrational quantum number in mode k by 1, so

we obtain the harmonic vibrational selection rule ∆vk = ±1.

In the case of anharmonic potentials, we have higher order terms, like

1

2

∑
k,l

QkQl

(
∂2µn

α

∂Qk∂Ql

)
eq

+ . . . (9.11)

to consider. These give rise to overtones and combination bands, since QkQl will contain terms like
Â†

KÂ
†
l .

Example. In H2O, with C2v symmetry, there is a B2 mode and an A1 mode, and the y component
of the dipole moment transforms as B2. Therefore, the combination transition from (0, 0) to (1, 1) is
allowed, since

〈1, 1|µy|0, 0〉 =
(

∂2µy

∂Q1∂Q2

)
eq
〈1|Q1|0〉 〈1|Q2|0〉 (9.12)

is non-zero. (The factor of 1
2 disappears because there are two such contributions).

9.3 Electronic Spectroscopy

If ψ′
elec = ψn

elec 6= ψ′′
elec = ψm

elec, we can still follow the same procedure to get an expansion of the
transition dipole moment between the electronic states m and n

µ̂mn
α (Q) =

∫
dqψm

elec(q,Q)
∗
µ̂α(q,Q)ψn

elec(q,Q)

= (µ̂mn
α )eq +

∑
k

Qk

(
∂µ̂mn

α

∂Qk

)
eq

+ . . . (9.13)

If (µ̂mn
α )eq 6= 0, the transition is allowed. If (µ̂mn

α )eq = 0, then the transition is electronically forbidden,
but the second term in the expansion may still be non-zero, so that the transition dipole becomes
non-zero when the molecule is distorted, and we get a simultaneous vibrational-electronic transition.
Such transitions are substantially weaker than normal allowed transitions.

Example. In octahedral transition metal complexes, the low-lying excited states arise from d − d
transitions between the t2g and eg levels. This is a g ↔ g transition, and is forbidden by the Laporte
(parity) selection rule.
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Consider however a transition in a d1 complex from the 2T2g electronic ground state in its
vibrational ground state to the 2Eg electronic excited state with, say, a T1u vibration excited. This
upper state has Eg ⊗ T1u = T1u ⊕ T2u symmetry.

The dipole operator transforms as T1u, so the transitions from the ground state are allowed to
excited states that transforms as one of the components of Γµ⊗Γ′′ = T1u⊗T2g = A2u⊕Eu⊕T1u⊕T2u.
Consequently transitions to both the T1u and T2u components of the excited state are allowed.

T2g

v = 0 Eg

v = 1 T1u, T2u
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Appendices

A Noether’s Theorem

The simplest way of deriving the Noether’s theorem is to use the Lagrangian mechanics, which is
another way of formulating classical mechanics. First let’s be clear of our notations. For a system
of N particles in d dimensions, we will rewrite the coordinates ri as xA, where A = 1, . . . , dN . The
Newton’s equations are

ṗA = − ∂V

∂xA
, (A.1)

where pA = mAẋ
A. To reduce the cluttering in notations, when we write xA in the argument of a

function, we mean that it is a function of all xA.

Lagrangian mechanics starts from defining the Lagrangian of a system.

Definition A.1. The Lagrangian for a system is defined by

L(xA, ẋA) = T (ẋA)− V (xA) , (A.2)

where T = 1
2

∑
AmA(ẋ

A)2 is the kinetic energy and V (xA) is the potential energy.

Note the weird minus sign between the kinetic and the potential energy. Despite this strange definition
of the Lagrangian, it works really elegantly.

If we know that at t = t0, the particles are at xA(t0) = xA0 , and at t = t1, the particles are at
xA(t1) = xA1 , there are infinite ways the systems can evolve with times between these two end points.
How do we find the true paths xA(t) taken by the particles?

Theorem A.2 (Principle of Least Action). The actual path taken by the system is an extremum
of the action, defined by

S[xA(t)] =

∫ t1

t0

dt L(xA(t), ẋA(t)) . (A.3)

The S is an example of a functional. It maps functions to a number.

Proof. Consider varying a given path slightly, so

xA(t) −→ xA(t) + δxA(t) , (A.4)

where we fix the end points of the path by demanding δxA(t0) = δxA(t1) = 0. Then this results in a
change in the action

δS = δ

[∫ t1

t0

dt L

]
=

∫ t1

t0

dt δL

=

∫ t1

t0

dt
∑
A

∂L

∂xA
δxA +

∂L

∂ẋA
δẋA . (A.5)

We integrate the second term by parts to get

δS =

∫ t1

t0

dt
∑
A

[
∂L

∂xA
− d

dt

(
∂L

∂ẋA

)]
δxA +

[
∂L

∂ẋA
δxA

]t1
t0

. (A.6)
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The boundary term vanishes since we required δxA(t0) = δxA(t1) = 0. At an extremum of the action
S, δS = 0 for all changes in the path δxA(t). This holds if and only if

∂L

∂xA
− d

dt

(
∂L

∂ẋA

)
= 0 . (A.7)

for all A. These are known as the Euler–Lagrange equations. To finish the proof, we only need to
show that Euler–Lagrange equations are equivalent to Newton’s equations. From the definition of
the Lagrangian, we have

∂L

∂xA
= − ∂V

∂xA
, (A.8)

while
∂L

∂ẋA
= pA . (A.9)

Then it’s easy to see that Newton’s equations (A.1) are indeed equivalent to Euler–Lagrange equations
(A.7). □

In fact Lagrangian mechanics is much more powerful than that. It turns out we can use any
generalised coordinate we want (e.g. spherical, hyperbolic, or just some arbitrary parameters that
uniquely defines the configuration of the system), and we may add constraints to the coordinates,
making it much more powerful than Newton’s formulation of classical mechanics. Unfortunately,
we can’t go into too much detail here. If you are interested, see e.g. Prof. David Tong’s notes on
Classical Dynamics. But the important conclusion is that for any Lagrangian written in generalised
coordinates L(qi, q̇i, t), the Euler–Lagrange equations still hold:

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
= 0 . (A.10)

Definition A.3. Consider a one-parameter transformation of maps

qi(t) −→ Qi(s, t) (A.11)

for s ∈ R such that Qi(0, t) = qi(t). Then this transformation is said to be a continuous symmetry of
the Lagrangian L if

∂

∂s
L(Qi(s, t), Q̇i(s, t), t) = 0 . (A.12)

Theorem A.4 (Noether’s theorem). For each continuous symmetry, there is a conserved quan-
tity.

Proof.
∂L

∂s
=
∑
i

∂L

∂Qi

∂Qi

∂s
+

∂L

∂Q̇i

∂Q̇i

∂s
, (A.13)

so we have

0 =
∂L

∂s

∣∣∣∣
s=0

=
∑
i

∂L

∂qi

∂Qi

∂s

∣∣∣∣
s=0

+
∂L

∂q̇i

∂Q̇i

∂s

∣∣∣∣
s=0

=
∑
i

d

dt

(
∂L

∂q̇i

)
∂Qi

∂s

∣∣∣∣
s=0

+
∂L

∂q̇i

∂Q̇i

∂s

∣∣∣∣
s=0

=
d

dt

(∑
i

∂L

∂q̇i

∂Qi

∂s

∣∣∣∣
s=0

)
. (A.14)

The quantity ∑
i

∂L

∂q̇i

∂Qi

∂s

∣∣∣∣
s=0

(A.15)

is constant for all time. □
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Let’s find some examples.

Example. Homogeneity of space.

Consider a system of N particles with Lagrangian

L =
1

2

∑
i

miṙi
2 − V (rij) , (A.16)

where V (rij) means that the potential is only dependent on the relative distances rij = ‖ri − rj‖
between particles, not on their absolute positions. Then this Lagrangian has symmetry of translation:
ri → ri + sn for any vector n and real number s.

L(ri, ṙi, t) = L(ri + sn, ṙi, t) . (A.17)

Then by Noether’s theorem, the constant that holds in constant is∑
i

∂L

∂ṙi
·n =

∑
i

pi ·n . (A.18)

The component of linear momentum in any direction is conserved, and hence∑
i

pi (A.19)

is also conserved.

Homogeneity in space =⇒ translational invariance of L =⇒ conservation of total linear
momentum.

Example. Isotropy of Space.

The isotropy of space means that a closed system is invariant under rotations around an axis n̂,
so all ri → r′i are rotated by the same amount. To work out the corresponding conserved quantity it
suffices to work with the infinitesimal form of the rotations

ri −→ ri + δri = ri + αn̂×ri , (A.20)

where α is infinitesimal. To see that this is indeed a rotation, you can calculate the length of the
vector and notice it is preserved to linear order in α. Then we have

L(ri, ṙi) = L(ri + αn̂×ri, ṙi + αn̂×ṙi) , (A.21)

giving us the conserved quantity∑
i

∂L

∂ṙi
· (n̂×ri) =

∑
i

n̂ · (ri×pi) = n̂ ·L . (A.22)

This is the component of the total angular momentum in the direction n̂. Since n̂ is arbitrary, L is
conserved.

Isotropy of space =⇒ rotational invariance of L =⇒ conservation of total angular momentum.

B Tensor Product

There are many ways to define a tensor product space. The definition we will take here is a rather
hands-on construction of the space, which involves picking a basis.
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Definition B.1. Let V and W be vector spaces over F (always C in our cases). Let (v1, . . . ,vm)
and (w1, . . . ,wn) be the bases of V and W respectively. The tensor product space V ⊗ W is an
nm-dimensional vector space over F with basis given by formal symbols

{vi ⊗wj | 1 ≤ i ≤ m, 1 ≤ j ≤ n} (B.1)

and thus

V ⊗W =

∑
i,j

λijvi ⊗wj

∣∣∣∣∣∣λij ∈ F

 (B.2)

with addition ∑
i,j

λijvi ⊗wj +
∑
i,j

µijvi ⊗wj =
∑
i,j

(λij + µij)vi ⊗wj (B.3)

and inner product defined via basis

(vi ⊗wj) · (vk ⊗wl) = (vi ·vk)(wj ·wl) . (B.4)

If
v =

∑
i

αivi ∈ V , w =
∑
j

βjwj ∈W , (B.5)

then their tensor product is defined as

v ⊗w =
∑
i,j

αiβj(vi ⊗wj) ∈ V ⊗W . (B.6)

Remark. This allows us to compactly write a vector in a tensor product space as a matrix, with
components λij , and hence a matrix is also known as a rank-two tensor.

Definition B.2. Let P : V → V andQ :W →W be linear maps (matrices) on V andW respectively.
Then we define P ⊗Q to be a linear map on V ⊗W , defined by

(P ⊗Q)(vi ⊗wj) = (Pvi)⊗ (Qwj) . (B.7)

A direct product representation, which should really be called a tensor product representation, is
then defined as the tensor product of representations.
Definition B.3. Let G be a finite group and ΓV : G → GL(V ) and ΓW : G → GL(W ) be
representations of G. Then the tensor product representation ΓV ⊗ ΓW is defined by

ΓV ⊗ ΓW : G→ GL(V ⊗W )

g 7→ ΓV (g)⊗ ΓW (g) . (B.8)

Proposition B.4. If the character of ΓV is χV and the character of ΓW is χW , then the character
of ΓV ⊗ ΓW is χV χW .

Proof. For g ∈ G, let (v1, . . . ,vm) be a basis of V of eigenvectors of ΓV (g) and let (w1, . . . ,wm) be
a basis of eigenvectors of ΓW (g), with

ΓV (g)vi = λivi , ΓWwj = µjwj . (B.9)

Then

(ΓV ⊗ ΓW )(g)(vi ⊗wj) = ΓV (g)vi ⊗ ΓW (g)wj

= λivi ⊗ µjwj

= (λiµj)(vi ⊗wj) . (B.10)

So

χΓV ⊗ΓW

(g) =
∑
i,j

λiµj =

(∑
i

λi

)∑
j

µj

 = χV (g)χW (g) . (B.11)

□
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B.1 Symmetrised and Antisymmetrised Squares

Now let’s work in C and make the two vector spaces in the tensor product to be equal, and denote

V ⊗2 = V ⊗ V . (B.12)

We define a permutation function

τ : V ⊗2 −→ V ⊗2∑
λijvi ⊗ vj 7−→

∑
λijvj ⊗ vi . (B.13)

This is a linear endomorphism on V ⊗2 such that τ2 = 1, so its eigenvalues are ±1. We can then find
its eigenspaces spanned by those eigenvectors with the same eigenvalues.

Definition B.5. We define the symmetrised and antisymmetrised (exterior) square of V to be

S2V = {x ∈ V ⊗2 | τ(x) = x} (B.14)
Λ2V = {x ∈ V ⊗2 | τ(x) = −x} . (B.15)

Then the subspace S2V has the basis

{vivj := vi ⊗ vj + vj ⊗ vi | 1 ≤ i ≤ j ≤ n} , (B.16)

and Λ2V has the basis

{vi ∧ vj := vi ⊗ vj − vj ⊗ vi | 1 ≤ i < j ≤ n} . (B.17)

Hence
dimS2V =

1

2
n(n+ 1) dimΛ2V =

1

2
n(n− 1) , (B.18)

and so
V ⊗2 = S2V ⊕ Λ2V , (B.19)

where we can write any x ∈ V ⊗2 as

x =
1

2
(x+ τ(x))︸ ︷︷ ︸

∈S2V

+
1

2
(x− τ(x))︸ ︷︷ ︸

∈Λ2V

. (B.20)

Those are just technical details. What we can now show is the formula of characters of symmetrised
and antisymmetrised square.

Proposition B.6. Let Γ : G → GL(V ) be a representation with character χ. Let χS and χΛ be
the characters of subrepresentations of the tensor product representation Γ ⊗ Γ on S2V and Λ2V
respectively, then

χS(g) =
1

2
(χ(g)2 + χ(g2)) (B.21)

χΛ(g) =
1

2
(χ(g)2 − χ(g2)) . (B.22)

Proof. Since V ⊗2 = S2V ⊕ Λ2V , it is immediate that χ2 = χS + χΛ. Let vi, . . . ,vn the eigenvectors
of Γ(g) so that it is a basis of V , with

Γ(g)vi = λivi . (B.23)

Acting the tensor product representation on Λ2V , we get

Γ⊗ Γ(g)(vi ∧ vj) = λiλjvi ∧ vj . (B.24)
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Summing over all basis vectors of Λ2V , we get

χΛ(g) =
∑

1≤i<j≤n

λiλj . (B.25)

Consider

χ(g)2 =
(∑

λi

)2
=
∑

λ2i + 2
∑
i<j

λiλj

= χ(g2) + 2χΛ(g) , (B.26)

and so
χΛ(g) =

1

2
(χ(g)2 − χ(g2)) . (B.27)

Then
χS = χ2 − χΛ =

1

2
(χ(g)2 + χ(g2)) . (B.28)

□

This is a much more concise and elegant proof than the one presented in the main text.

If you are interested in more of this, see e.g. Dexter Chua’s notes on Mathematical Tripos Part
II: Representation Theory.
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