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Figure 1.1: Characteristic length scales and time scales of computational simulations. This course
focuses on the first two regimes. Figure adapted from the official course notes by Prof. Angelos
Michaelides.

Part 1

Introduction to Computational Chemistry

1 Introduction

Theoretical chemistry has a long history, with roots in this Department and across Cambridge.
Computational studies can be done at various length and time scales, as shown in figure 1.1. This
course is a gentle introduction with a focus on the quantum mechanical and atomistic/molecular
sides of the field. Simulations at larger length scales are not covered in this course — mesoscopic
simulations will be covered in Course C8: Computer Simulation Methods.

When considering techniques in computational chemistry, or indeed computer simulation in
general, there is always a trade-off between accuracy and simulation cost, and this limits the system
size and simulation length. This trade-off is represented with a plot in figure 1.2, and the red line in
the figure can be considered as a frontier. Techniques that pass the test of time and get widely used
are techniques that penetrate this frontier. One of the techniques that has penetrated this frontier is
density functional theory (DFT), which is one of the main topics in this course. Another technique
that has very recently penetrated this frontier is machine learning interatomic potentials (MLIPs),
which is the topic of Part IIT L10: Frontiers of Atomistic Simulation Techniques.

Simulations at the atomistic and molecular level can generally be split into two categories:

(i) electronic structure methods in which the quantum nature of electrons is taken into account —
these are generally computationally expensive.

(ii) classical atomistic approaches in which force fields are used to describe the interactions between
atoms — these are usually computationally cheap.

Nowadays the boundaries between the two worlds are blurred and there are a number of approaches
at the intersection.
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Figure 1.2: Quantum Chemistry is a trade-off between accuracy and computational efficiency.

2 The Schrodinger Equation

To deal with a molecular system quantum mechanically, we need the Schrédinger equation. Let’s
start with the time-independent Schrodinger equation

H\Il(rl,...,rn,Rl...,RN) :E\I/(I‘l,...7l‘n,R1...,RN), (21)

where H is the Hamiltonian of the system, W is the total wavefunction that depends both on the
nuclei coordinates {R;}¥_; and the electron coordinates {r;}" ;, and E is the energy of the system.

For an isolated molecular system, which is our main interest, the Hamiltonian is given by
f{ _ Tn + Te + Vn—n + Vn—e + Ve—e , (2.2)
where

o T™ is the kinetic energy of the nuclei;

o T is the kinetic energy of the electrons;

Vo1 g the potential energy from nucleus-nucleus repulsion;
« V™ is the potential energy from nucleus-electron attraction;

o V¢ is the potential energy from electron-electron repulsion.

We may expand everything out and write

N 2 n
= _ 2 L)
I; 2M VRI+; om, VT
N n
ZIZ]e Z[G
It . 2.3
Z471'60|R1—RJ| ;;4WGO|R1—r| Z47T60|I‘1—I'J| (2.3)

To avoid writing out so many constants, we introduce the atomic units, in which

(i) unit of length is Bohr ag;

(ii) unit of charge is the magnitude of the charge on the electron e;
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(iii) unit of action is reduced Planck’s constant h;

(iv) unit of mass is the mass of the electron m..

Then

N

—~ 1 Z1Zy
= Z—* Rt Vet LR, Ry szf—u Zm-m 24

We have a horrible quantum many-body equation to solve! The motions of electrons and nuclei are
coupled in a complicated manner, making it impossible to give exact solutions of the Schrédinger
equation apart from the simplest systems (hydrogen-like atoms), or the limiting case like an infinite
‘jellium’. We therefore need to make approximations.

2.1 Born—-Oppenheimer Approximation

We will start with a simple but powerful approximation which you have met in Part IB: the Born—
Oppenheimer approzimation.

The Born—Oppenheimer approximation is based on the fact that the nuclei have masses much
greater than the electrons: the proton-to-electron mass ratio is m,/m. ~ 1836 and the neutron-
to-electron mass ratio is m,/m. &~ 1839. Since nuclei are much heavier than electrons, they move
much more slowly. Essentially, the Born-Oppenheimer approximation assumes that the fast-moving
electrons can adjust instantaneously to the changing positions of the slow-moving nuclei. This is
called an adiabatic approximation, where the fast electronic degrees of freedom are assumed to adjust
instantaneously to the nuclear positions. In practice one often follows the electronic ground-state
potential energy surface, so that the electron relaxes to the ground state for each nuclear geometry,
although excited-state surfaces can also be considered. An immediate result is that this allows us to
decouple the motion of the electrons and nuclei, so we can approximate the total wavefunction as a
product of an electronic wavefunction and a nuclear wavefunction:

B Oy, .. rp,Ri...,Ry) =%y, ...,r;Ry ..., Ry)TU™(R;...,Ry). (2.5)

It is important to note that the electronic wavefunction W¢ is parametrically dependent upon the
nuclear coordinates, i.e. they are treated as fixed.

For convenience, we will denote r = (r1,...,r,) and R=(R;...,Rpn).

Then, for a given set of nuclear geometries, we can write out the electronic Hamiltonian®

He(r;R) = T°(r) + V*™(R) + V™°(r;R) + V() (2.6)
and solve for the electronic Schrédinger equation
He(r;R)U°(r;R) = E°(R)¥°(r; R). (2.7)

We may repeat this calculation for a large number of different nuclear geometries and get the electronic
energy as a function of the nuclear geometry. This is seen as the average energy of a molecule at a
certain nuclear configuration would have, assuming the nuclei are not moving.

The energy we obtained above can be thought of as the potential energy for nuclear motion, and
can be combined with the nuclear kinetic energy operator to give the nuclear motion Hamiltonian

H"(R) = T*(R) + E°(R). (2.8)

IThere is no clear convention whether V“’“(R) should appear in the electronic Hamiltonian or in the nuclear
Hamiltonian — but it should definitely appear once, and only once. This is just a constant energy term for each
particular nuclear geometry, so it does not affect the solution. But remember to always include it in the potential
energy surface (see later).
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Solving the Schrédinger equation with this Hamiltonian gives the total energy E and the nuclear
wavefunction ¥"(R).

The Born—Oppenheimer approximation is a foundational approximation used in the vast majority
of simulations in computational chemistry. It allows for a computationally tractable approach to
molecular systems by significantly reducing the complexity of the coupled electron-nuclei problem.
We are now left with only one term in the Hamiltonian that is difficult to deal with, which is the
electron-electron repulsion.

Born—Oppenheimer approximation works well in most situations where the nuclei move much
slower than the electrons. However, it breaks in situations where we have e.g. excited electronic states,
conical intersections (where different potential energy surfaces become degenerate and intersect), high
energy collisions, certain diffusion processes on metal surfaces.

2.1.1 The Potential Energy Surfaces

As we pointed out above, since E°(R) can be thought of as the potential energy for a given nuclear
configuration, a plot of E° as a function of the nuclear coordinates R = (Ry,...,Ry) is known as a
potential energy surface (PES).

However, note that translations and rotations do not affect the electronic energies of a molecular
system, so E° actually has fewer degrees of freedom than dim R = 3N. A molecule has 3 translational
degrees of freedom and 3 rotational degrees of freedom (or 2 if the molecule is linear), hence a PES
is a 3N — 6 dimensional surface (or 3N — 5 for linear molecules).

The PES is crucial in studying chemical reactions, as it allows us to identify transition states (the
highest energy points along the reaction pathway) and compute activation energies. These features
of the PES help determine how fast a reaction will occur.

Since the Born-Oppenheimer approximation underpins the concept of the PES, PESs are often
called Born—Oppenheimer surfaces or Born—Oppenheimer PESs.

PESs will be covered in more detail in the Part 11T M4: Energy Landscapes and Soft Matter course.
We limit our discussion here to key features that are helpful for understanding what comes later in
this course.

Figure 2.1 is an example of a (simplified) potential energy surface with key features labeled. The
key features include

(i) Minima: Local minima on the PES correspond to stable molecular geometries where the
molecule has low energy. These are labeled as the Initial State and Final State on figure 2.1.
The global minimum represents the most stable structure (the equilibrium geometry) of the
system.

(ii) Transition States: Saddle points on the PES correspond to transition states, which are higher-
energy configurations that the system may pass through during a chemical reaction. These are
critical in determining the activation energy required for a reaction to occur.

(iii) Energy Barriers: The energy difference between a reactant minimum and a transition state is
the activation energy.

(iv) The reaction pathway is the route taken from reactants to products on the PES. It shows
how the nuclei rearrange during a chemical reaction. By following the lowest-energy path (the
minimum energy pathway, red line in figure 2.1) between two minima, we can understand how
a reaction proceeds.
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Figure 2.1: A 2-dimensional PES showing the reaction of NH3z with HCI to produce NHI and CI™.
Figure adapted from the official course notes by Prof. Angelos Michaelides.

One limitation of PESs is that for systems with a large number of atoms, the PES becomes a
high-dimensional object that is difficult to visualize or compute.

3 Types of Simulations

We will now briefly explain the various types of simulations in quantum chemistry.

(i)

(i)

(iii)

Single point calculations: It calculates the energy of a molecule at a particular nuclear
configuration. This corresponds to computing a single, fixed point on a PES.

Geometry optimisation: it finds the most stable structure of a molecule with the nuclear
positions giving the lowest energy. During optimization, the molecular geometry is iteratively
refined by minimising the total energy of the system, which is typically done by calculating the
forces acting on each atom, given by

OVprs(R)
Fj=-——=7 3.1
! OR; (3:1)
The nuclear positions are adjusted until the forces on all atoms are (sufficiently close to) zero.
The result corresponds to a local/global minimum of the PES.

Molecular dynamics (MD): it simulates the time evolution of a system consisting of interacting
atoms/molecules. It may either be done completely classically or quantum mechanically. The
nuclei may also be treated quantum mechanically in path integral molecular dynamics (PIMD)
using the path integral formulation of quantum mechanics by Feynman.

Monte Carlo (MC): it is a class of stochastic algorithms used to model systems by randomly
sampling possible configurations according to a probability distribution, often related to the
system’s energy. It focuses on exploring the configurational space of a system to estimate
properties such as thermodynamic averages or equilibrium distributions.

Finally, we note that in doing simulations we have a choice about whether to treat the elec-
trons/nuclei classically or quantum mechanically. The vast majority of simulations in computational
chemistry involve classical nuclei. Simulations with quantum nuclei are much less common, but
quantum nuclear effects like tunneling and zero-point energy can be significant on light elements like
hydrogen.
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Figure 3.1: simplified categorisation of some broad classes of simulation techniques in theoretical
chemistry.

4 Force Fields

4.1 Traditional Force Fields

Schrodinger equations for molecular systems are infamously hard to solve, so a genius idea would be
discarding them and going back to Newton’s classical mechanics.

Force field (FF) methods neglect the electrons as well as the quantum mechanical nature of
molecules, and calculate the energies of chemical systems using empirical potentials.

A familiar example is the Morse potential, which is often used to model the interaction between
a pair of atoms in a diatomic molecule. It has the form
2

V(r) =D, (1 - e_ﬁ(”"_“)) (4.1)

Comments (that should be familiar from IB):
(i) D. is the dissociation energy, i.e. D, = lim,_ ., V(7).
(ii) The minimum of V(r) occurs at r = r., the equilibrium bond length.
(iii) B controls the width of the potential, which is related to the stiffness of the bond.
)

(iv) The potential is anharmonic: it is steeper for compression (r < r.) than for stretching (r > 7).
The potential is approximately harmonic near the equilibrium point (from Taylor expansion).

Another example is the Lennard-Jones potential, which is used to describe the intermolecular
interaction between a pair of neutral atoms or molecules. It has the expression

v =1 |(2) - (2)] (1.2

Comments (that should be familiar from IB):

(i) e is the depth of the potential well.

)
(ii) o is the zero point of the potential.
(iii) The (o/r)® term represents the long-ranged attractive van der Waals interaction.
)

(iv) The (o/r)'? term represents the strong repulsive interaction at short distances due to Pauli
repulsion. The choice of the power 12 here is arbitrary — it’s just for computational convenience
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while making sure that it dominates over the (o /r)® term at short distances. A more physically
motivated form replaces this with an exponential (the exp-6 or Buckingham potential).

To describe more complicated molecules, more complicated potentials have been developed. It’s
common to refer to these as molecular mechanics potentials. Examples of these include widely used
force fields such as AMBER, CHARMM, and OPLS. A generic energy expression for potentials of
this type can be written as

Etotal = Estretch + Ebend + Etorsion + Enon—bonded . (43)

Some of the simplest possible forms of these potentials might be

Bond stretching energy: This may be modeled by a harmonic potential

Egtretch = Z kb(r - re)2 . (44)
bonds

Angle bending energy: This is the energy due to deviation from equilibrium bond angles, which
can also be modeled by a harmonic potential

Eyena = Z k9(9 - 06)2 . (45)

angles

Torsional (dihedral) energy: This is the energy associated with rotation around bonds, typically
modeled using a periodic potential function

Vn
Etorsion = 4 Z 7 [1 + COS(”¢ - ,Y)] ) (46)
dihedrals

where n is the periodicity of the torsion and +y is the phase offset.

Non-bonded interaction energies: this includes the van der Waals energy, which may be modeled
using the Lennard-Jones potential

mae 3 a2 )]. an

non-bonded
and the electrostatic energy, which is computed by Coulomb’s law
4iq;
Eelectrostatic = Z —= (48)

4dmegr;;
non-bonded 0%ij

The advantages of the force field methods include

Fast and has good computational scaling O(n), meaning that computational time scales with
n, the number of atoms in the system. For comparison, the scaling of quantum methods: DFT

is O(n?®) and CCSD(T) is O(n7).
Can be accurate, if the system is inside the space the force field is parameterised.
Tuning parameters can give insight.

Simple and easy to use (once a model is developed).

Disadvantages include

Not accurate outside training space.

Generally not good for reactions.

No electrons (most are not polarisable).

Difficult and labour-intensive to parameterise — tons of parameters need to be fitted.
Struggle for complex systems and interfaces.

Functional forms can be too restrictive.
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4.2 Machine Learning Force Fields

You may have noticed that machine learning (ML) has become phenomenal in society over the last
few years. It has also had a huge impact in the physical sciences, including chemistry, winning two
Nobel prizes in 2024.

Here we discuss a new class of force fields that are commonly referred to as machine learning
interatomic potentials (MLIPs). MLIPs is a rapidly evolving field at the frontier of theoretical
chemistry, delivering the accuracy of ab initio/electronic structure methods at a cost more typical of
force fields.

We will only give a quick overview of MLIPs. You will learn more about it in Part ITI L10 course.

The generation of accurate MLIPs relies heavily on large amounts of high quality data against
which the potentials are parameterised. The most common current approach for the generation of
MLIPs is outlined here as the following sequence of steps

(i) Assemble a set of reference points that serve as training data for the properties we seek to learn:
in the current context it is the multi-dimensional PES that we are aiming to learn.

(ii) Represent the training data in terms of atomic environments using appropriate “descriptors”.
This is sort of translating the dataset into something that a machine can understand and fit.

(iii) Train the machine learning model.

(iv) Test, validate, and if necessary iteratively improve the MLIP.
Then the MLIP is ready to be applied.
Here we will briefly introduce two types of MLIPs:

(i) Behler—Parrinello Neural Network Potentials (NNPs): It uses neural networks to predict the
potential energy of a system by summing up contributions from each atom. These atomic
contributions depend on the local environment of each atom. As the descriptor to describe
the local environment they use so-called atom-centered symmetry functions. These descriptors
capture information about the local environment of the atom: e.g. distances and angles between
neighboring atoms, and they are invariant to rotations, translations, and the permutation of
atoms. The total energy of the system is the sum of the individual atomic energies predicted
by the neural network.

—~
—e
=

~—

Gaussian Approximation Potentials (GAP): It models the potential energy surface using
the smooth overlap of atomic positions (SOAP) descriptor to represent the local atomic
environment. SOAP describes the distribution of neighboring atoms around a central atom
in a way that is invariant to rotations.

5 Density Functional Theory

Rather than stepping back to classical mechanics, what else can we do to avoid solving the horrible
looking Schrédinger equation

HU(ry,....,ry,Ri...,Ry) = EU(ry,...,r,,Ri...,Ry) (5.1)

while preserving the quantum mechanical nature of molecular systems?

The answer is, rather than looking at the molecular wavefunction ¥ : R3NV+7) — C of 3(N + n)
variables, we look at the electron density n : R® — R, an apparently lower dimensional and so simpler



5 Density Functional Theory A4 Theoretical Techniques

object. This leads to the density functional theory (DFT).?

Before introducing density functional theory, let’s first introduce what a functional is. Abstractly,
let V' be a vector space over a field F, then a functional is a map F : V — F. Within our context,
we can think of a functional as special type of function whose input is a function, and the output is
a number. For example, max,cp is a functional, giving max,eg[sinz] = 1, max,cr[4 — 22] = 4 etc.
A particularly important class of functionals is definite integrals, such as

B
Flf] = / dz f(z) (5.2)

for some «, 3. Note that it is conventional to put the argument of a functional in square brackets [ ].

5.1 The Hohenberg—Kohn Theorems
5.1.1 The First Hohenberg—Kohn Theorem

The essence of density functional theory is that the ground state electron energy is a unique functional
of the ground state electron density. This means that given a ground state electron density n(r), then
we know which external potential (generated by the nuclei under Born—Oppenheimer approximation)
uniques produces it, and then we know the unique electron wavefunction it corresponds to, and also
the ground state electron energy, and everything else.

This is known as the First Hohenberg—Kohn theorem.

Theorem 5.1 (The first Hohenberg—Kohn theorem). The external potential Vo (r) and hence
the total energy are unique functionals of the electron density n(r) up to an additive constant.

Proof. Suppose there are two external potentials Vi (r) and Vz(r) both lead to the same n(r). There
will be two Hamiltonians H; and Hy with the same ground state density, but different wavefunctions
¥, and ¥,. Now use the variational principle,

B < o) () - (e )
=59+ [ drn( Vi) - Vo), (5.3)

where E} and EY are the ground state energies for H, and H’g, respectively. The subscripts 1 and 2
may be interchanged to give a second inequality. These two inequalities may be added to give

EY + EY < EY + EY, (5.4)

which is a contradiction. O

Thus, at least in principle, the ground-state density determines (within a constant) the external
potential in the Schrédinger equation of which it is a solution. Therefore, the electronic energy is
also uniquely determined, via

E[n] = ()| 7 + V<[] + V<
=T[n] + V**[n] + V°[n]

w[n])

= ] + Veln] + / &r Ve [] (1)(x) (5.5)

where W[n] and Viy[n](r) are the wavefunction and the external potential determined by n(r).

2 A more mathematical treatment of DFT can be found in my notes on B10: Electronic Structure. Pathetically, this
part of the course is now removed, so you can’t see it in the official course notes.
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5.1.2 The Second Hohenberg—Kohn theorem

The First Hohenberg—Kohn theorem shows that working with electron density is theoretically possible,
however, the form of E°[n] it gives is troublesome: the Vi [n](r) depends on the electron density.
Rather, in a real problem, under Born—Oppenheimer approximation, we have a specific nuclear
arrangement and hence a known potential, and we want to find a optimum electron density. This is
realised by the second Hohenberg—Kohn theorem.

We introduce the shorthand notation

ﬂ@:<ﬂﬁ@>:<ﬂT+Vﬁ

@>=ﬂm+vwmy (5.6)

Now an energy functional for an arbitrary external potential Vi (r) unrelated to the f/ext(r)
determined by n(r) can be defined:

Ey[n] = F[n] + /d3r Vext (r)n(r) . (5.7)

Theorem 5.2 (The second Hohenberg—Kohn theorem). For an arbitrary external potential
Vext and electron densities n(r) of N electrons,

_mm:Fm+/&w&mmmz%, (5.8)

where FEy is the ground state energy for N electrons in the external potential Vi (r), and this
functional reaches its minimum if and only if n is the true ground state electron density in such
external potential Viyy.

Proof. By the first theorem, a given n(r) determines its own external potential Voy(r) and ground
state ‘\il> If this state is used as a trial state for the Hamiltonian with external potential Vey(r), we
have

<@\ﬁ]@> - <¢\ﬁ\@> + (9] Ve

\Il> = F[n] + /dSr Vext(r)n(r) = Ev[n] > Ey (5.9)

by the variational principle. For non-degenerate ground states, equality holds if

\i/> is the ground
state for the potential Vey(r). O

This means that to find the true ground state energy of a molecular system, we only need to find
the electron density n(r) that minimises the functional Ey [n]!

5.2 Kohn—Sham Theory

Using the Hohenberg-Kohn theorems, we have reformulated the Schrédinger equation, i.e. finding ¥
that minimises R . R
<\]¥‘Te + Vn—e + Ve—e

@> : (5.10)

to finding the electron density n that minimises the energy functional
Evn] =TC°n]+ Ven] + /d3r Vexs (r)n(r) , (5.11)

which should be much simpler as n is a lower dimensional object.

This now seems like an easy problem as long as we know what the functionals 7°[n] and V°¢[n]
are — but we don’t. We haven’t changed the nature that this is a quantum many-body problem.

10
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The complicated correlated motions of the electrons made it impossible to give their kinetic and
interaction energy in a simple closed form. To make progress, we need Kohn—Sham theory.

Although we don’t know the kinetic energy of correlated electrons, we know the kinetic energy of
a single electron with wavefunction 1, which is

—% / dPryp*(r)V3(r). (5.12)

Hence, if we assume that the electrons are moving in their orbitals {¢;} without interacting with each
other?, we have the kinetic energy

T3l =5 3 [ oo vio). (5.13)

These {¢;} are known as the Kohn-Sham orbitals. TS[n] is the kinetic energy functional of non-
interacting electrons of density n, where the subscript s indicates “single-particle” electrons.

We also don’t know the potential energy from electron interaction due to exchange interactions
and correlations*. However, we are very familiar with the Coulomb interaction energy of the electrons.
This contribution is known as the Hartree energy and has the simple form

1 /
EHartree[n] _ 3 /d3rd3r/ W (5.14)

Hence, by pulling these two contributions out, we obtain the formula

Ev[n] = T%n] + V°[n] + V"°[n]
_ Tse [TL] =+ EHartree [n] + yn-e [n} + (Te [n] 4 ve-e ['I”L] _T° [n} _ EHartree [n])

= T¢[n] + EMore¢[n] + V™°[n] + EX°[n], (5.15)
where
E*[n] := T®[n] + V[n] — TC[n] — EMartee[p] (5.16)

is the exchange and correlation energy. This is now the only term that is unknown. All the complicated
quantum-mechanical many-body effects are placed in this term only.

Recall when we introduced the Kohn—Sham orbitals, we defined them as the “effective non-
interacting one-electron orbitals”. In order to solve them, we need to solve their Schrédinger equation.
The effective potential that the electron is moving is

6(EHartree[n] +Vn-e[n] +EXC[TL])

on(r)
S E*¢[n]

_ 3,/ n(r') r
= [ g Vet 5

= VHamCC(r) + Vext () + V(1) (5.17)

veli(r) =

so the Kohn—Sham orbitals are solved from the Schrédinger equation
1
{2v2 + veﬂ i(r) = eii(r) . (5.18)

This is a single electron Schrodinger equation so it is not painful to solve.

3Recall that orbitals are effective one-electron wavefunctions. Kohn—-Sham theory essentially assumes the system to
have a non-interacting wavefunction as a Slater determinant made from the Kohn—-Sham orbitals.

4Correlation basically means that an electronic system can lower its energy by letting its electrons to avoid each
other, so the motion of the electrons are “correlated”. See more in later chapters on Hartree—Fock theory.

11



5 Density Functional Theory A4 Theoretical Techniques

Initial guess for n(r)

Compute effective potential
Veff(r) — Vvext (I‘) + VHartree [n] + yxe [n]

Solve Kohn—Sham equations

[—3V? + V()] ¢ = eigs

Update electron density

n(r) =Y, [¢i(r)

@ Converge?

Compute properties

Figure 5.1: Illustration of the self-consistent field (SCF) cycle used to solve the Kohn—Sham equations
and obtain the ground state density and total energy.

As you can see, the electron density for minimum energy depends on the energy functional, which
depends on the Kohn—Sham orbitals, which depends on the effective potentials, which in turn depends
on the electron density. Thus, we need to perform this in an iterative process. We must have an
initial guess on the electron density n(r), work everything out, and determine a new electron density
n(r), and repeat until the electron density n(r) converges. This is known as a self-consistent field
(SCF) method. A flow chart is shown in figure 5.1.

5.3 Exchange and Correlation

As we commented above, all the complexity of Kohn—Sham theory lies in the exchange correlation
functional, where all the quantum many-body effects live in. It is impossible to give an exact and
closed form expression of this functional, so approximations must be made.

As its name suggests, E*°[n] have two contributions

(i) Electron exchange: this arises because a many-body wavefunction must by antisymmetric under
exchange of any two electrons since electrons are fermions. This leads to the Pauli exclusion
principle, which reduces the probability of electrons with the same spin coming close to each
other, and therefore reduces the Coulomb repulsion.

(ii) Electron correlation: it also reduces the Coulomb energy between electrons because the motion
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of each individual electron is correlated with the motion of all others, helping electrons to keep
spatially separated.

Note that an important consequence of exchange interaction being approximated is that it leads
to self-interaction error, i.e. an electron is repelling itself. In theories like Hartree—Fock where
electron exchange are exact, the self repulsion in the Coulomb term is precisely cancelled by the self
exchange in the exchange term, so there is no self-interaction. However in DFT, the Coulomb term
(Hartree energy) is exact, while the exchange term is not, so the self-interaction is not completely
cancelled. This significantly affects the accuracy of DFT for systems with strongly correlated electrons
or localised electrons (e.g. transition metal complexes). More errors in DFT will be introduced in
later sections.

An exchange correlation functional can be classified as being either “empirical” or “non-empirical”.
An empirical functional aims to reproduce experiment results and usually contain a lot of parameters
fitted from experimental data. A non-empirical functional is designed to abide by a number of physical
constraints which the exact E*° functional should obey and do not include parameters other than
the fundamental constants.

A major way of categorising exchange correlation functional is to group them in terms of their
physical complexity, and it is known as the Jacob’s ladder. As you climb up the ladder, the functional

gets more complex and computationally more expensive, but will usually give higher accuracy. The
five rungs of the Jacob’s ladder, from low to high, are

(i) local density approximation (LDA);

(ii) generalised gradient approximation (GGA);

)

)
(iii) meta-GGA;
(iv) hybrid functionals;
)

(v) double-hybrid functionals.

5.3.1 Local Density Approximation

There is a system in which the exchange energy is known exactly, which is the uniform electron gas
(a “jellium”). A uniform electron gas with constant electron density n has the exchange energy

3
ExVEG[) = —% (3) /d3rn4/3. (5.19)
™

There are also some widely accepted expressions for the correlation energy in uniform electron gas,
but they are significantly more complicated. It has the general form

E“UEG) = /dgrneC'UEG(n) (5.20)
C-UEG'

for some function €

Knowing this, a natural thought of approximating the exchange and correlation energy in a general
system is to treat each point locally as uniform electron gas, so that

ExeLDA) — /d?’rn(r)exc'LDA(n(r))7 (5.21)

xc-LDA

where € is the exchange-correlation energy per particle of the homogeneous electron gas of
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density n. From our expressions for uniform electron gas, it should be

6xc—LDA(n(r)) — 6x—LDA + 6(:—LDA

i(i)S”U3@)+eOmﬂﬁn@D- (5.22)

This is called local density approzimation (LDA).

Strictly, the LDA is valid only for slowly varying densities. However, experience with calculations
of atoms, molecules, and solids shows that the LDA actually works surprisingly well, given its
crudeness.

5.3.2 Generalised Gradient Approximation

To go beyond LDA, a natural thought is to include the local gradient of the electron density, in
addition to the electron density itself, into the exchange correlation energy expression. Hence, this is
known as generalised gradient approxzimation (GGA). It has the general form

EWQMMFi/erﬂJMMAm@LVMﬂ) (5.23)

Since it is extremely difficult to come up with a valid correlation functional, there is an extremely
limited number of them. Hence, the main difference between the GGAs is usually found in the
exchange energy density terms. Since the GGA should reduce to LDA when |Vn| =0, a lot of GGA
exchange functionals can be written as a series expansion

6x—GGA( x—LDAFx—GGA(S)

n,s) =e , (5.24)
where F**GGA(s) is known as the enhancement factor and s = |Vn| /2(372)'/3n*/3 is a dimensionless
reduced density gradient.

Example. Two related GGA functionals PBE and revPBE have the enhancement factor

FXPBE — 9 4~ (5.25)

1_;'_#52’

K

where p is some parameter that is the same for PBE and revPBE. The difference is only in the
parameter k: x"PBE — 1245 while kPPF = 0.804. This makes F, rise more rapidly with s for
revPBE than for PBE. As a consequence, regions with large reduced density gradients are stabilised
more with revPBE than PBE. This means that in a revPBE calculation, a rapid reduction of the
electron density in the internuclear region is expected, which in turn leads to weaker interactions with
revPBE.

DFT only became widely used in quantum chemistry after GGAs were developed. It generally
has a significant improvement in accuracy compared with LDA, while it does not increase the
computational costs significantly.

5.3.3 Meta-GGAs

Having included the local electron density gradients in GGAs, we can further include the second
order terms such as the second derivative of electron density V2n(r), and/or kinetic energy densities

To(n) =13, |V¢i|>. These are known as meta-GGAs.
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larger enhancement
factor

Figure 5.2: GGA with high enhancement factors encourage regions with high local gradient densities.
Therefore they predict weaker binding.

5.3.4 Hybrid Functionals

The hybrid functionals (or hybrid GGA) add the exact exchange interaction calculated from Hartree—
Fock (HF) theory to some conventional treatment of DFT exchange and correlation via a technique
called adiabatic connection’.
For example, the most widely used functional in quantum chemistry, B3LYP, takes the following
form
EX¢ — Exc—GGA + a(Ex—HF _ Ex—GGA) ) (526)

Hybrid functionals have significantly better accuracy, along with a significantly longer computation
time. Hybrid functionals are so successful because they benefit from error compensation between
“underbinding” of (meta-)GGAs and the “overbinding” of Hartree—Fock. The underbinding of GGAs
is due to the self-interaction error and the overbinding of HF is due to the lack of correlation.

5.3.5 Double-hybrid Functionals

Double-hybrid functionals incorporate virtual (unoccupied) orbitals into the functional. For example,
the B2-PLYP functional has the form

EX¢ — (1 _ ax)Ex—DFT + axEx—HF + (1 _ ac)Ec—DFT + aCEc—PT2 ) (527)

It can be seen that in addition to exact exchange (via HF), electron correlation is taken into account
through perturbation theory (PT).

These functionals are very computationally expensive and are still not as widely used as other
functionals.

5.4 Dispersion Forces in DFT

Another serious problem found for functionals on the first four rungs of Jacob’s ladder is that they
fail to account for van der Waals dispersion forces. This greatly limited the use of DFT in areas such
as biology. Since this century, considerable progress has been made to correct this dispersion error.

5Detail in my course notes on B10 electronic structure.
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5.4.1 Dispersion Force

The concept of dispersion forces should be familiar. It originates from the electrostatic attraction
between the instantaneous dipole in one particle arising from electron density fluctuation and the
induced dipole on another particle.

It is hard for DFT to account for dispersion forces because

(i) Under Kohn—Sham approximation, the DFT is a mean field theory, in which an electron interacts
with the total electron density, rather than with instantaneous electron positions which is the
basis of the dispersion interaction.

(ii) Most exchange correlation functionals used are local. They only use information about the local
electron density at a single point, so there is no way electrons on one molecule know there are
instantaneous dipole produced on another molecule.

This means that for two noble gas atoms, for example, these functionals can give binding or
repulsion only when there is an overlap of the electron densities of the two atoms.

Theorem 5.3. For large r, the dispersion potential energy of two molecules scales as —%.

© KXo

Proof. Consider a molecule at the origin and another molecule at r. The molecule at r has an
instantaneous dipole modeled by two charges of +¢q and —q separated by d, so it has the dipole
p = gd. By assumption, |r| > |d|. The potential at O generated by this dipole is

_ (a9
47reo [r| |r+d|

= (S <+dV+(dV)r >)

4me
q
= = . 5.28
" dwey 13 47r60r3 ( )

Then the electric field at O is

1 0 My T
471'60 “ox; (zpaR)3/?

- e l'ujéij(mkxk) 2 — pja; - %(Ilfl)l/2 : 25%%1

E=-V¢=-—

deg (TmTm)?

1 3(r-p)rr — pr

- 471'6061 r6
M A Ava N
- 471'607‘3 [3([‘ . [L)I‘ - [L] ’ (529)

which scales as r~3. Let the molecule at O have a polarisability «, then the dipole induced by the
electric field is
u' =aE. (5.30)
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Figure 5.3: Binding curves for the Kr dimer obtained with the PBE exchange-correlation functional
and an accurate model potential. PBE can not predict dispersion force, so all the interactions it
predicts come from electron density overlap, which decays ~ exp(—r) at large . It does predict some
binding — but this does not arise from the correct physics. It is because the enhancement factor
in this functional is not large enough i.e. it arises because the DFT’s inaccuracy in electron density
overlap interaction. Figure adapted from J. Chem. Phys. 137, 120901 (2012).

Note that the energy of a dipole-induced dipole pair isn’t just —p « E — this would be the case for
two permanent dipoles. For the induced dipole here, p itself depends on E, so instead, we compute
the work done in turning on the field from E = 0 to its final value:

E
U= —/ dE’ -/ (E)
0

1
= —§E-aE
12
— P I3t = 4l -al3(F e )F — O, 5.31
2(47r60)27,6[ (& p)t — a]-af3(F- @)t — fif (5.31)
This scales as r—% as claimed. O

Here we will introduce some of the most widely used approaches for dispersion force correction.

5.4.2 (¢ Correction Schemes

The basic requirement for any DFT-based dispersion scheme should be that it recovers the correct
—1/r% asymptotic behaviour, so an obvious idea is to add a —1/r% term separately after the DFT
calculation, so the total energy is

E = Eprr + Edisp - (5.32)

DFT-D Scheme

If we assume the dispersion force to be pairwise additive, isotropic, and constant for the same pair of

elements, then we can assume the dispersion interaction between element A and element B is always
C&B/r5, and so

CAB
Edisp = — Z Tgi (5.33)
A>B 'AB

This very primitive scheme is known as DFT-D.

It has some obvious drawbacks:
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Figure 5.4: Examples of different damping functions. One function goes to zero at short distances
and the other goes to a finite value. Figure adapted from Chem. Rev. 116, 5105 (2016); DOTI:
10.1021/acs.chemrev.5b00533.

(i) It is not clear where one should obtain the Cg coefficients: various formulae involving various
quantities have been proposed.

(ii) Different chemical states of the atom in different environments have different dispersion
interaction. This is neglected.

(ili) The divergence for 1/r% at r = 0 must be removed.

DFT-D2 Scheme

In the second generation, DFT-D2, the dispersion coefficients are calculated from a formula which
couples ionisation potentials and static polarisabilities of isolated atoms. Also, a damping term is
introduced to avoid the divergence at » = 0. Furthermore, the dispersion energy, Faisp, is scaled
according to the exchange functional used. This leads to the energy expression

CAB
Eaisp = — Y _ f(ras, A, B,DFT)—0—. (5.34)

,
A>B AB

The shape of the underlying binding curve is sensitive to the XC functional used and so the damping
functions must be adjusted so as to be compatible with each XC functional. This fitting is also
sensitive to the definition of atomic size (van der Waals radii are usually used) and must be done
carefully since the damping function can actually affect the binding energies even more than the Cg
coefficients.

Some problems still remain. The same coefficient will be assigned to an element no matter what
its oxidation or hybridisation state. This error can be huge: the carbon Cy coeflicients can differ by
35% between the sp and sp? hybridized states.

DFT-D3 and DFT-D4

In DFT-D3 this environmental dependence of the Cy coefficients is captured considering the number
of neighbors (coordination number) each atom has. This effect is accounted for by having a range of
precalculated Cy coefficients for various pairs of elements in different reference (hybridization) states.

Despite being a simple scheme and having negligible computational cost, it obtains pretty accuracy
results (mean error 8.4% for a reference set).
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Figure 5.5: C&* values for carbon and nitrogen with different coordination number in DFT-D3
scheme. Figure from Chem. Rev. 116, 5105 (2016).

While DFT-D3 takes only coordination number into account, DF'T-D4 considers more information.
The Cg coefficients are calculated by numerical integration, considering atomic partial charge,
polarisability and geometry.

Tkatchenko—Scheffler Scheme

The difference in Cy coefficients for the same atom in different environments is mainly caused by their
different volumes, leading to different polarisabilities. Therefore, in the Tkatchenko—-Scheffler (TS)
scheme, we have a volume-dependent Cg coefficient for atoms, determined from

% 2
CA o gipfree (A ) (5.35)
6 6 V/free

A

This gives a mean absolute error of 5.4% in the same data set.

There are some other Cfg dispersion correction schemes, like the Becke Johnson model. The
method we discussed so far all require predetermined input parameters to calculate the dispersion
interaction, so they are all empirical.

5.4.3 Long-range Density Functional

We want some method that does not require any predetermined data — everything can just be
calculated using the electron density. This means that we need to write out a functional for such
non-local electron correlations, known as long-range density functional. These have the form

penl — / &ry Bryn(r)d(ry, r)n(rs), (5.36)

where ¢ is some integration kernel that gives the ~ 1/r% asymptotic behaviour. As you can see,
the functional is non-local because it takes the electron densities at two locations and integrates.
However, the formula has a pairwise form (it adds the contribution from r; and ro infinitesimally via
integration) and thus ignores the medium between points r1 and ra. This rather severe limitation
was removed by Dion et al. in 2004 who proposed a functional form which can be evaluated for
overlapping molecules and for arbitrary geometries. Within this approach, the exchange correlation
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functional is
EX¢ — Ex—GGA + Ec—LDA + Ec—nl. (537)

This method is called the van der Waals density functional, vdW-DF. It is a very important conceptual
development since it adds a description of dispersion directly within a DFT functional and combines
correlations of all ranges in a single formula.

5.4.4 Beyond pairwise approaches

So far we have only discussed dispersion as being pairwise additive. That is the interaction energy
of two atoms or molecules remains constant no matter what material separates them and all atoms
interact on their own. This is a simplification that does not account for higher order collective
excitations.

Some methods can extend the pairwise addition to three-body interaction, e.g. Axilrod—Teller—
Muto corrections. Such correction is often added to the DFT-D approach.

There are a lot of other methods: some approximate each atom as a quantum harmonic oscillator,
some use orbitals to calculate the correlation energy. We shall not explain them further.

6 Practical Considerations for (DFT) Simulations

6.1 Periodicity and Simulation Cells

It is hard to simulate crystals with O(10%%) atoms, but fortunately, crystalline solids have, by
definition, periodicity. Thus, it is possible to describe periodic solids with small unit cells and
periodic boundary conditions.

Bloch’s theorem allows the electronic structure problem for infinite solids to be tackled in periodic
3D simulation cells, primitive or otherwise. In brief, Bloch’s theorem states that the wavefunction of
an electron in a periodic potential can be written as

i (r) = eik""uk(r) , (6.1)

where uy(r) is a periodic function that has the same periodicity as the lattice, and k some wavevector
in the first Brillouin zone.

The energy eigenvalues E,, (k) describe the energy of an electron in the n'® band for a given value
of k. They are periodic in reciprocal space:

En(k) = E,(k+ G), (6.2)

where G is a reciprocal lattice vector. This means that we can consider k only from the first Brillouin
zone (so the primitive cell in reciprocal space). For an infinite crystal, the k-space is smooth but in
a computer calculation it needs to be discretised. To theoretically evaluate some variables in solid
state, it requires integration over the k-space. In computer simulation, this is replaced by summation
over finite grid of k points. There is no variational principle governing the convergence with respect
to the k-point mesh. This means that the total energy does not necessarily decrease while the density
of the k-point mesh is increased. Thus convergence needs to be tested on the property of interest.
Usually, insulators have flatter bands than metals so fewer k-points are needed for convergence.

Note that liquid or amorphous systems which lack translational symmetry need to be treated with
large supercells to achieve quasi-random structure.
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6.2 Basis Sets

To represent the molecular orbitals v, we expand it in terms of a linear combination of functions in
a basis set
w = Z Ci’(/Ji . (63)
i

The coefficients ¢; are optimised to give the lowest ground state energy in a computation.

The choice of basis set can have a significant impact on the accuracy of all types of electronic
calculation. A good basis set needs to be

(i) Well-adapted (i.e. few functions needed)

(ii) Systematic convergence (the error in the energy decreases systematically as the basis is made
more complete)

(iii) Good computational scaling

(iv) Simple operations/calculations between basis functions

(v

(vi

)
)
) Easy calculation of forces

) Bias free (not imposing any assumed property of the system)

It is almost impossible to design a basis set that perfectly satisfies all the criteria above.

A basis set can be composed of either atom-centered functions or non-atom-centered functions (or
both). We will introduce two major types of basis sets: Gaussian-type orbital (GTO) basis set, and
plane wave basis set. GTOs put orbitals around each atom, so it is atom-centered. It is particularly
suitable for molecular systems. Plane waves are non-atom-centered, and are suitable for condensed
phase materials, especially crystals due to their periodicity.

6.2.1 Gaussian Type Basis Set

The functions used in Gaussian basis sets are Gaussian functions, which have the form

7(17’2
o(r)=e . (6.4)
You can see further classification of these in B10: FElectronic Structure.

The most important characteristic of basis sets is their completeness, often referred to as basis
set size. The vector space of functions is infinite dimensional, but we can only put a finite number
of functions in the basis set. Hence, our calculated wavefunction (electron density) composed of the
linear combination of a finite number of basis function will almost certainly deviate from the true
wavefunction. We will get a closer mimic to the true wavefunction, and obtain lower energy by putting
more functions into our basis set. This concept should be familiar from variational principles.

The errors resulted from using an incomplete basis set are

(i) basis set incompleteness error (BSIE);

(i) basis set superposition error (BSSE).

The basis set incompleteness error is straightforward. It is simply because employed basis set is not
flexible enough to describe the fine details of the electron density. It is relevant to both atom-centered
and non-atom-centered basis sets.
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Figure 6.1: Schematic illustration of the BSSE for a gas phase dimer. While at a large distance there
is no overlap of the basis functions belonging to the individual atoms, A and B, at shorter distances
the respective basis functions start overlapping leading to an overestimation of the interaction energy
for small basis sets.

The basis set superposition error is an error that affects calculations with atom-centered basis sets.
It is particularly relevant when comparing the properties of two or more similar atoms/molecules or
atoms of molecules binding to surfaces, as the errors in the calculated properties may not be the same
for each system, leading to errors in the relative properties. This error arises because the basis set
used to describe each fragment is not the same as the basis set that describes the whole system, as
shown in figure 6.1.

One way to correct this is to use a larger and larger basis. Another way is the counterpoise
correction. Usually when calculating the interaction energy of a dimer AB, we use

D = Ezp[AB] — Ea[A] — Eg[B], (6.5)

where the subscript means that we use the basis set on A to calculate E[A], the basis set on B to
calculate E[B], and the basis set on both A and B to calculate E[AB]. The counterpoise-corrected
interaction energy of a dimer AB is defined as

DCP = Eag[AB] — Eag[A] — Eag[B], (6.6)
where we use the basis set on both A and B to calculate all quantities. The BSSE is then
ACP =D — D%, (6.7)

6.2.2 Plane Wave Basis Set

The most widely used type of basis set for condensed phase calculations are plane wave basis sets.
Plane waves are a very convenient representation in periodic systems like crystals. In these systems,
the periodic potential can efficiently be represented by a superposition of plane waves.

In a plane-wave basis set, the electron wavefunction 1 (r) is expressed as a linear combination of
plane waves

P(r) =D e T (6.8)

An important concept in plane-wave basis sets is the energy cut-off, which is the highest energy
of the plane wave function we wish to include in our basis set. This is
h2k2

JO— max | .
¢ 2m (6 9)

The higher the cut-off energy, the more plane waves are included, leading to more accurate but
computationally expensive calculations.
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o~

Figure 6.2: A schematic illustration of the use of pseudopotential smoothening the wavefunction.
Figure adapted from Wikipedia.

There are several good points about the plane wave basis set, for example, they are orthogonal
and thus several terms in the electronic Hamiltonian are simple to evaluate. Moreover, they describe
the whole cell in the same way and thus there is no BSSE. However, they are very inefficient when
one wants to study molecules or surfaces since a lot of effort is spent describing vacuum. Moreover,
there are fast oscillations of wavefunctions near the nuclei, so this requires a very high cut-off to be
well-depicted. This is addressed through the use of pseudopotentials, which we discuss in the next
section.

6.3 Pseudopotentials

In the pseudopotential (or effective core potential) method, the core electrons are replaced by a
pseudopotential, which is a smooth function that approximates the electron-ion interaction for the
valence electrons. This allows the calculation to focus on the valence electrons, which are the ones
that determine the chemical properties of the system. The pseudopotential also reduces the number
of electrons that need to be treated explicitly, making the calculations more efficient.

The pseudopotential is localised around the nucleus within some radial cut-off r. and the potential
acting on the valence electrons is not affected for distances larger than the cut-off.

The quality of pseudopotential is usually discussed in terms of their transferability. A more
accurate pseudopotential is said to be more transferable i.e., applicable in more situations. A second
way the quality of pseudopotential is discussed is in terms of its hardness. Often a high quality
pseudopotential will be harder and require a higher plane wave cut-off than a soft pseudopotential,
which will require a low plane wave cut-off. There are two main factors that determine the quality
of a pseudopotential. These are: (i) the cut-off radius, 7., and; (ii) the number of electrons treated
as valence electrons. A pseudopotential with a small r. is likely to be more accurate but a higher
plane-wave cut-off will generally be required. The more electrons treated explicitly as valence electrons
the more accurate the pseudopotential is likely to be but also the computational cost will increase.
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Figure 7.1: (a) Remember to compare like for like. The experimental value and the theoretically
computed value may not be the same thing. (b) Do not confuse convergence tests with validations
to experiment. You may find your computation being extraordinarily accurate compared with the
experiment values, but it is actually not yet converged.

7 The Accuracy of (DFT) Simulations

When it comes to computer simulations in chemistry it is important to ensure that all the individual
choices of computational settings have been checked and converged. If not, any agreement with
experiment may simply be fortuitous (by a cancellation of errors). So to test the quality of a
pseudopotential we should make comparisons to all-electron calculations. To test the quality of a
basis set we should compare to calculations with larger basis sets. To test whether a unit cell is large
enough we should compare to simulations with larger unit cells. To test whether a surface model is
thick enough we should compare to thicker slabs, etc.

7.1 Accuracy of DFT

Over the last decades, computational chemistry has changed from being data poor to data rich. This
in turn has led to the emergence of reference datasets (“gold standards”) by which the accuracy of
current methods (functionals, codes, pseudopotentials,...) can be established and the development of
improved techniques accelerated.

We will make some general comments.

In general it is now known that for most systems LDA tends to overbind, predicting shorter bond
lengths and higher cohesive energies than experiments. GGA functionals like PBE typically correct
this, and sometimes leads to underbinding, but can still underestimate long-range interactions like
van der Waals forces. Hybrid functionals such as PBEO or B3LYP, by incorporating a fraction of
exact exchange, provide better accuracy for reaction barriers and electronic properties but at the cost

of increased computational effort. The accuracy generally increases as we move up along the Jacob’s
ladder.

7.1.1 DFT for Solids and Condensed Phases

Benchmarks and validations are more challenging in the condensed phase and it is harder to do
reproducible calculations.

To enable like for like comparison between a range of exchange-correlation functionals, we restrict
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Figure 7.2: Accuracies of various types of DFT functionals, for (a) reaction barrier (b) non-covalent
dimer interaction. Figure from Molecular Physics 115, 2315 (2017).

ourselves here to a discussion of only three key quantities, namely (i) E<"; (ii) ag, the equilibrium
lattice constant; and (iii) By, the bulk modulus.

(i) LDA predicts the smallest lattice constants, the largest bulk moduli, and the largest cohesive
energies. Comparing with experiments, lattice constants are smaller (—2%), the bulk moduli
are larger (+10%), and the cohesive energies are larger (+20%), reflecting the fact that LDA
generally overbind. The errors are large.

(ii) The PBE (GGA) functional results are generally closer to experiment than LDA. The average
errors for these metals are +1.3% for the lattice constants, and —5% for both the bulk moduli
and cohesive energies.

(iii) The TPSS (meta-GGA) predicts significantly more accurate lattice constants (+0.5%), but
inaccurate bulk moduli (+11%).

(iv) For metals the hybrid PBEO functional does not appear to offer any clear improvement over
the other functionals.

In conclusion, of the functionals discussed here, no single one stands out as being significantly
superior to the others for treating metals. The situation is similar for insulators.

It is generally found that LDA and GGA functionals predict Kohn-Sham band gaps that are
considerably smaller than the experimentally observed optical band gaps. The LDA and PBE band
gaps of C in the diamond lattice, for example, are 4.2 and 4.8 eV, respectively, compared to the

corresponding experimental value of 7.3 eV. Hybrid functionals are generally more accurate e.g.
PBEO predicts 6.7 eV for diamond.

7.1.2 Water and Ice

Some general comments:

(i) LDA is abysmal — it strongly overbinds water clusters and ice (and hydrogen bonds in general),
by approximately 50%;

(ii) Dispersion interactions are important for many aspects of water and ice and must be accounted
for to ensure accurate structures and energies.
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ag(A) By (Mbar) Ecoh(eV)
Ref. [78] Ref. [48] Ref. [79] Ref. [78] Ref. [48] Ref. [79] Ref. [78] Ref. [48] Ref. [79]

Al LDA 4.01 3.98 0.82 0.84 4.07
PBE 4.06 4.04 4.04 0.76 0.77 0.78 3.43 3.60
TPSS 4.04 0.85
PBE0 4.01 0.86 3.39
expt. 4.03 (4.02) 0.79 3.39

Cu LDA 353 3.52 1.88 1.92 4.57
PBE 364 3.64 3.63 1.50 1.36 1.42 3.48 3.51
TPSS  3.59 1.71
PBE0 3.64 1.30 3.05
expt. 3.60 (3.60) 1.42 3.49

Pd LDA 385 3.85 2.35 2.22 5.04
PBE 3.95 3.94 3.95 1.77 1.66 1.63 3.71 3.63
TPSS 3.92 2.00
PBE0 3.92 1.72 2.88
expt. 3.88 (3.88) 1.95 3.89

Ag LDA 400 1.49
PBE 4.3 4.15 1.06 0.89 2.52
TPSS 4.08 1.27
PBE0 4.14 0.87 2.33
expt. 4.07 (4.06) 1.09 2.95

Figure 7.3: Bulk properties of Al, Cu, Pd, and Ag, as computed from DFT with the LDA, PBE (a
GGA), TPSS (a meta GGA), and PBEO (a hybrid) exchange correlation functionals.
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Part II

Theoretical Chemistry

8 Molecular Orbitals

We’ve been trying to avoid solving the Schrédinger equation. It’s time to face it.

8.1 The Orbital Approximation

Most of chemistry cares little about the idea of the total wavefunction because it is generally concerned
with the making and breaking of chemical bonds whose nature seems inherently localised, and it is
an appealing and highly useful picture to envision electrons allocated individually to orbitals when
thinking about electronic structure.

This idea is supported by the fact that if a Hamiltonian can be separated as one-electron
Hamiltonians

H(I‘l,rg) :ﬁl(r1)+ﬁ2(r2), (81)
and if we can find v; and 9 solving these one-electron Schrodinger equation
Hypi = ety (82)

then their product solves the total Hamiltonian
IA{\IJ(I‘l, 1‘2) = (61 + 62)\11(1‘17 1'2) (83)

for U(ry,re) = 91(r1)1h2(ra). Therefore, we want to separate the overall wavefunction as a Hartree
product

\I/(I‘l, ceay I‘n) = ¢1 (I‘l)wg(rg) e 1@,1(1‘”) . (84)

Each one-electron wavefunction solves the Schrédinger equation with the effective one-electron
Hamiltonian

1
Heg(r) = =5 V7 + Ver, (8.5)

where Vg is the average potential that the electron feels from the attraction of the nuclei and average
repulsion of the other electrons. These one-electron wavefunctions are known as the molecular orbitals
and this approximation is known as orbital approximation.

The next question is: how to find these molecular orbitals. If we don’t know anything about the
electron, how do we find the effective potential and then solve the Schrédinger equation? It turns out
that a useful way of constructing molecular orbitals is to think of them as being made up from the
respective atomic orbitals of elements — this should be a familiar idea from IA and IB. This leads to
the idea of linear combination of atomic orbitals (LCAQ), where each molecular orbital is written as

(I Z C]('i)ébj ; (8.6)
J

where ¢; are the atomic orbitals.

By making further approximations, it is actually possible to solve these coefficients ¢;; and hence
determine the molecular orbitals using pen and paper! This is Hiickel theory.
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8.2 Hiickel Theory

This should be familiar from IB Chemistry A. We will do a quick derivation.

The first simplification in Hiickel theory is that we are only interested in the delocalised 7 system
in a molecule, so we only consider one orbital on each atom at one time. If the molecule has e.g. two
orthogonal 7 systems, they can be computed separately.

Suppose we have n atomic orbitals from n atoms in total, and we want to form n orthonormal
molecular orbitals. By the Rayleigh-Ritz principle of variation, finding the eigenvalues of a Hermitian
operator His equivalent to finding the stationary values of the Rayleigh quotient®

<1/fi H‘¢z>
(Yili)

(8.7)

€, —

We expand it in our basis of atomic orbitals

. <Zs 9, g‘Zt CEi)¢t> _ S ()<¢S H‘¢t> (8.8)
T ds) T S sl |

We define the Hamiltonian matric Hy, = <¢)s
can rewrite this as o N
Sy = ey s (8.9)
s,t s,t

For the ¢; to be stationary with respect to all variations of coefficients ¢;,., we differentiate both sides
with respect to c(z)* and set 861/3(30)* 0forall 1 <r <ntoget

S bt Hay =6y st S (8.10)
s,t s,t

Hence, we have the secular equation

H ¢t> and the overlap matriz Sg; = (¢s|¢¢). Then we

Z(Cgi)Hrt - €i0§i)5rt) =0, (8.11)

t

or in matrix form

Hiickel theory approximates the matrix elements to take the form

ay ifs=t
Hg = ¢ Bs if s,t are bonded (8.13)

0 otherwise

and

1 ifs=t
Sst = 65t = 8.14
¢ ‘ {0 otherwise, ( )

as can be thought of as the energy of the atomic orbital on atom s, and the resonance integral By is
the interaction of orbital s and t. Note that they are both negative. What Hiickel’s approximation
says is essentially that two atoms only interact if they are neighbouring, and the atomic orbitals on

6 A proof can be found in IB Mathematical Methods. It is obvious from the variational principles that the eigenvector
with the lowest eigenvalue can be constructed in this way by minimising the expectation value of the energy. We are
claiming that higher eigenvalues are also the stationary values (not a minimum though) of this expectation value of
energy.
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different atoms do not overlap, i.e. our basis of atomic orbitals is orthonormal. Our secular equation
then simplifies to
(H - €i|)ci = O7 (815)

or
Hci = €;C; . (816)

This is essentially diagonalising H, where the eigenvalues are the orbital energies and the eigenvectors
are the molecular orbital coefficients. Since H is Hermitian, we are guaranteed to get m mutually
orthonormal eigenvectors (or at least can be made orthonormal if degeneracy arises) with n real
eigenvalues.

8.2.1 Symmetry

Diagonalising large matrices by hand is painful. Luckily, it is possible to reduce the problems using
symmetry.

An important fact is that only orbitals with the same symmetry (transforming as the same
irreducible representation) can interact. Therefore, we can create a set of normalised symmetry
orbitals

0= ¢.Dsp (8.17)

such that each 6, transforms as a particular irreducible representation. Then the Hamiltonian matrix
element becomes

Hyy = (0u|H|0,) = D3, HaDy, (8.18)
s,t
or in matrix form ~
H=D'HD. (8.19)

This can be seen as a basis transformation, where D is the basis transformation matrix,
transforming from the basis {¢} to the basis {6, }. In this new basis, the Hamiltonian will necessarily
be in the block diagonal form

|:|F1 0 . 0
_ 0 HFE ... 0
H= , (8.20)
0 0 --- HTm

where each block H''# consists of the matrix elements spanned by the basis transforming as the same
irreducible representation I';. The off-block-diagonal elements are necessarily 0 because orbitals with
different symmetries do not interact.

_ Then, instead of diagonalising the huge matrix H, we only need to diagonalise some small matrices
HT:. The eigenvectors obtained are now the molecular orbitals in the new, transformed basis {6, }.
We can easily convert it back to the original atomic orbital basis {¢s} by

i =) 0,0 (8.21)
i

8.2.2 Special Systems
Linear Polyenes

The 7 system of a linear polyene with N carbons is analogous to a particle-in-a-box problem, but
the space is discretised. You also get a sine wave solution, and the boundary conditions become
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c(()n) = CS\TILZA = 0 which correspond to orbitals “off-the-end” of the molecule. The orbital coefficients
are

2 . nws
Sin
N+1 N+1’°

(8.22)

cg") =

and the orbital energies are

™
€n = o + 20 cos N1 (8.23)
for 1 <n<N.
1 1 —1 1+1 N
2 i N -1
Cyclic Polyenes
Consider a cyclic polyene of N atoms. By single-valuedness, we must have cgn) = cii)N. It is analogous

to a particle on a ring, and has orbital coefficients

/1 .
an) _ Ne2ﬂ—ln8/N (824)

2
€n = @+ 25 cos % . (8.25)

with energies

for —N/2 < n < N/2.

The energy levels can be conveniently viewed as the vertices of the N-gon inscribed in a circle
with radius 208 and centered at «. This is known as the Frost circle construction.

This expression (8.24) of molecular orbitals is nice and compact, but the values are complex. We

a—208 4 -
aA
a+28 - S -

Figure 8.1: Frost circle construction for the energy levels of cyclic polyene.
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can make everything real by doing linear combinations of the degenerate orbitals and get

&0 = A% (8.26)
&) = % sin 27]7\73 (8.27)
ére) = % cos 27;\7;5 (8.28)
& = /Ly, (8.29)

where the N/2 orbital exists only if N is even.

8.3 Is Hiickel Theory Predictive?
8.3.1 Total Energies

By Hiickel theory, we have worked out a set of molecular orbitals for a bunch of electrons. The next
question is, how to put these electrons into the orbitals, and how to work out the total energy of the
system?

By Pauli’s principle, we can only put two electrons with opposite spins in the same orbital. And
a system always wants to keep its energy as low as possible. Therefore, we occupy the orbitals from
the lowest to the highest until we have put in all of the electrons. To work out the total energy, we
simply need to add up all the orbital energies that each electron sits in.” We define an occupation
number, f,, as the number of electrons in orbital n (it would be 0, 1 or 2), then since we assumed all
electrons are independent under our effective potential approximation,

EHiickel - Z fnen . (830)

8.3.2 Delocalisation Energy

One of the triumphs of Hiickel theory was to rationalise the stability of benzene and other aromatics,
showing that they are made more stable by a significant delocalisation energy.

Let’s take benzene as an example. The molecular orbital diagrams of benzene and a normal double
bond (ethene) are shown in the figure.

Benzene Ethene

— a—20

a—p

S
4%; a+24

"The answer is actually not that simple... See later.
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The delocalisation energy is the energy difference between the total energy of the delocalised
molecule and the energy if the 7 system were localised i.e. each 7 bond is treated separately. For
benzene, this is

Edeloc = [2(0( + 25) + 4(Oé + 6)] - [6(04 + ﬁ)]
=28. (8.31)

We see that Hiickel theory predicts the extra stability of benzene through delocalisation i.e.
aromaticity.

We can calculate the delocalisation energy for more aromatic compounds. The results are shown
in the table below.

Molecule Theory Experiment / kJ mol™'  Estimated |3] / kJ mol
benzene 25 -155 7.7
naphthalene 3.680 -315 85.7
anthracene 5.3273 -441 82.7
phenanthrene  5.453 -462 84.8

Two conclusions can be drawn from this. First, the close parallel between the Hiickel theory
prediction on the variation of the delocalisation energy for the series, as compared to experiment,
which indicates that even such crude calculations are able to reproduce a significant trend. Taking
B to be about —80 kJ mol " leads to a reasonable agreement between predicted and experimental
delocalisation energies. Second, phenanthrene (three benzene rings fused in a “zig-zag” fashion)
is slightly more stable than anthracene (three benzene rings fused in a straight line). This trend
continues for larger systems: the annulation to give “zig-zag” forms are indeed experimentally more
stable than the corresponding linear ones.

It is impressive that our very crude theory is able to give some interesting, semi-quantitative,
results.

8.3.3 Orbital Energies

Matters look less rosy if we consider a different type of measurement of 5, using ionisation energies.

Recall that the first ionisation energy is the minimum energy required to remove an electron from
a molecule, and therefore it is reasonable to suppose that the electron removed comes from HOMO.
Since, according to Hiickel theory, the energy of an orbital can be written in the form

e=a+z8, (8.32)

where x is a suitable coefficient which depends on the molecule, one may suppose that if we take a
series of molecules (e.g. benzene, naphthalene, anthracene, etc.), for which the x can be calculated,
and plot the ionisation energy as a function of x, then the slope of such a (hopefully linear) curve
would yield 8, whereas the intercept would yield «. It turns out that a least-squares fit yields

Experimental Orbital Energy = —685 + (—239 & 16)z kJ mol . (8.33)

We obtained a value of 8 ~ —240 kJ mol ™' — almost three times as large as what we’ve predicted
using total energy!

In fact this turns out to be a quite general feature of Hiickel theory. Experiments which depend
on the energy of single orbitals turn out to yield values of § which are always roughly a factor of

32



8 Molecular Orbitals A4 Theoretical Techniques

two larger than those based on total energies, in which the energies of many orbitals are summed
together.

The explanation for this behaviour can be found by considering the manner in which electron-
electron interactions are dealt with in the Hamiltonian H. Recall that the H is an effective
Hamiltonian in which an electron sees the average field due to all other electrons. In other words,
electron 1 sees a field due to the average of electrons 2, 3, etc., and this field, in addition to the field
due to the nuclear framework, determines the energy eigenvalue of electron 1. Similarly, electron 2
sees the average field of electron 1, electron 3, etc., and its energy eigenvalue reflects these interactions
as well.

Therefore, if we add the energy eigenvalue of electron 1 and electron 2, we have counted twice the
average electrostatic interaction between electron 1 and electron 2. This is exactly what is done in
our method of calculating the total m-energy: we simply add the energy of all occupied levels. On
the other hand, if we are dealing with purely the energy of a single energy level, there is no double
counting. Therefore, it should not be surprising that methods used to estimate 8 based on the total
energies yield values about 1/2 of that from ionisation potential experiments.®

Example. We will illustrate our idea with a toy model. Consider a 3-electron system with only
repulsion.

U12

The energy of each electron is
€1 = U12 + U13

€2 = U12 + U3 (8.34)
€3 = U13 + U23 .
If we directly sum up the individual energy of each electron, we get
E =€ + €9 + €3 = 2uq9 + 2u13 + 2usg3 . (835)
However, the actual total energy should be
Etotal = w12 + w1z + u23 . (8.36)

We have double-counted all the interactions!

8.4 Populations and Bond Orders

While the MOs produce a delocalised picture of bonding in a molecule, it is often helpful to be able
to ask more specific questions, such as whether the electrons are concentrated on particular atoms, or
to probe the relative strengths of bonding between two neighbouring atoms. With this information,
we would, for example, be able to say whether in butadiene the canonical picture of two terminal
double bonds is the most appropriate.

For some state |¢), define the projection operator

q=19){¢l . (8.37)

8To fix such a problem, one uses theories that treat the effective Hamiltonian more carefully. See Hartree-Fock
theory.
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What is the meaning of this? Let’s act it on some general state [¢)). We get
qlv) = [9) (l) . (8.38)

It returns the state |¢) we are projecting onto, scaled by the inner product of two states (¢|y). As
its name tells, it “projects” the state |¢)) on to |@).

Let’s see how it acts on the molecular orbitals. Let’s evaluate the expectation value of a molecular
orbital under the projection operator of an atomic orbital §; = |¢;) (¢;|. Since under Hiickel’s
approximation, the atomic orbitals {¢;} are orthonormal, we have

(D Giltn) = <Zc<%s ¢i> <¢>¢ Zcﬁ’”¢t>

t

— (Z (n *5%> (Z an)fsit)
_ .’

n)* (n)

(8.39)

The effect is to extract the squared modulus of the coefficient of the given atomic orbital, which can
in turn be thought of as the population on that atom from the orbital.

We may therefore work out the total population on atom s, by summing together such quantities

qs = an <wn‘(js|'¢)n>

2
_ an an) , (8.40)
n
where recall f,, is the occupation number of orbital n.
Analogously, we may define the operator
1
= 5 ([6s) (@] + [e) () (8.41)

which combines the sign and amplitude information of the orbital coefficients from neighbouring sites,
giving a measure of the bonding. The |¢,) (¢:| and its Hermitian conjugate |¢:) (¢s| are averaged
to make this operator Hermitian. Summing over orbitals, the bond order between two neighbouring
atoms s and t can be calculated by

Pst = Z fn <"/}n|ﬁst|¢n>
=3 fuRe[el™ ™). (8.42)

The sign and magnitude of pg; indicate the bonding, with +1 indicating one bonding contribution,
and —1 one anti-bonding contribution.

8.5 Alternant Hydrocarbons

A useful application of Hiickel theory is to rationalise the differing properties of alternant and non-
alternant hydrocarbons. An alternant hydrocarbon is one in which the carbon atoms can be divided
into a “starred” class and a “non-starred” class, such that each starred atom is neighboured by only
unstarred atoms, and vice versa. The starred class is generally taken to be the larger of the two
classes of atoms. Two examples in figure 8.2 illustrate this.

In Hiickel theory, alternant hydrocarbons have the following properties:
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Alternant Non-alternant

Figure 8.2: Examples of alternant and non-alternant hydrocarbons.

4

5/ 3

6 \ 2
N
1
Figure 8.3: Numbering of pyridine.

(i) The energy levels of alternant hydrocarbons are symmetrically paired around an «, such that if
orbital n has energy €, = o+ kf then its pair, orbital N —n + 1 has energy en_n4+1 = a — kf.

(ii) The AO coefficients in any pair of complementary orbitals are related by changing the sign of
the coefficients on the unstarred atoms.

(iii) In a neutral alternant, the atomic populations in the ground state are precisely unity.

(iv) In odd-alternants, there is a non-bonding orbital, with nonzero coefficients only on the starred
atoms, and the sum of coefficients on starred atoms which surround an unstarred site is zero.

8.6 Heteroconjugated Systems and Perturbation Theory

Suppose we want to use Hiickel theory to solve a heteroconjugated system (a conjugated system
involving more than one type of atoms) e.g. pyridine or pyrrole. Since nitrogen has a different energy
than carbon, and a C-C 7w bond would have a different strength than a C-N 7 bond, we should set a
different o and (8 value for them.

8.6.1 Non-degenerate Perturbation Theory

Suppose we want to solve for pyridine. We use the numbering shown in the figure. Then the 7 system
has the Hamiltonian matrix

an Pne 0 0 0 fnc
ﬂNC « ﬂ 0 0 0
h=| 0 P B 00 (8.43)
0 0 B a B 0
O 0 08 a 8
Bne 00 0 B«

Let’s set an = a+ 0.58 and fne = 0.865.

Of course we can solve this Hamiltonian matrix directly, but isn’t this system (and the Hamiltonian
of course) too similar to benzene, which we already know the solution? It might be helpful to think
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\

/

€;

0 [AH]|

Figure 8.4: We expect that, by changing the Hamiltonian slightly, the molecular orbital energies will
also shift only slightly. This shift should be smoothly dependent on the “size” of the perturbation.
We can easily work out this change in first order.

of this Hamiltonian as the Hamiltonian for benzene, plus a small modification, which we call a
perturbation

H=Ho + AH
a B0 0 0 B 058 —028 0 0 0 —0.28
B a B 0 0 0 —028 0 000 0
0B ap 00, | o0 0 000 o | (8.44)
00 B8 a B 0 0 0 000 0
000 B8 a B 0 0 000 0
B0 0 0 B8 «a —028 0 000 0

where H( is the Hamiltonian of our reference system, benzene in this case, and AH is our perturbation.
We hope that, by modifying the Hamiltonian only slightly, the molecular orbitals only change slightly
as well. Then, it might be possible to express, even if only approximately, the energy levels and MOs
of the perturbed Hamiltonian (e.g. pyridine) in terms of the unperturbed one (e.g. benzene).

This is the topic of perturbation theory. It will be covered in great depth in course C7: Further
Quantum Mechanics (and in even greater depth in Mathematical Tripos Part IT Principles of Quantum
Mechanics). We will show some simple results here.

We will first work on the case where the molecular orbital energy levels are non-degenerate.

Proposition 8.1. Let H be a perturbed Hamiltonian that can be written as
H=H,+AH. (8.45)

Suppose we know that the unperturbed Hamiltonian ﬁo has a normalised non-degenerate eigenstate
|1;) and corresponding eigenvalue ¢;. Then, after the perturbation, the corresponding eigenvalue is
changed by

AW, = <¢i AH

'(/Ji> (8.46)

to first order.

Proof. We will show this result loosely. For a rigorous proof, see C7 or Principles of Quantum
Mechanics.
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Suppose when we change Hy to Hy + AH, 1; has changed to v; + Av;, then the energy has
changed to

(s 4+ 0| Ho + A + Ay )
(Vi + Athi|vh; + A¢y)

Note that to change 1; meaningfully, Avy; must be orthogonal to 1); since scaling not does actually
change the state, so (Ay;|v;) = 0. Expand to the first order in A, we get

€; +A67 =

(8.47)

@ <¢i Hy 1/)i> + <A¢i Hy ¢i> + <¢i AH ¢i> + <1/Jz' Ho’A¢i>
Gt aa= (Yilthi) + (il Avhi) + (Avi[ehs)
=&+ <A1/Ji Hy 1/Jz‘> + <¢z‘ AH 1/%> + <1/1i Hy A¢i> . (8.48)
Since Hyy; = €;4;, we have
<¢i ﬁo‘A¢i>* = <A”t/1i Hy 1/1i> =& (A1) = 0. (8.49)
Hence,
AW, = <¢i AH ¢i> (8.50)
as claimed. O

8.7 Degenerate Perturbation Theory

When applying this to degenerate orbitals you must take a little more care to recover a well-defined
solution. Recall that in the reference system, any orthogonal linear combination of two degenerate
orbitals would still have the same energy and can be regarded as equally valid. Once the perturbation
has been applied however, the different linear combinations may produce different energy changes.
In such cases, the perturbation is said to break the degeneracy. To recover a well-defined energy
change, we resort to the variational principle again, asking: which combination of the degenerate
states produces the lowest energy under the perturbation? This is none other than our old friend the
secular problem, and we must therefore diagonalize a small matrix consisting of just the degenerate
states to solve it.

If there are some degenerate eigenstates of ﬁo, denoted ;, then we may write out the perturbation
AH in the basis of these two orbitals

AH;; = <wi AH ¢j> . (8.51)
To determine the appropriate energies, we then solve
(AH — Ael)c=0. (8.52)

The eigenvalues, Ae are the appropriate perturbed energies, and the eigenvectors give the appropriate
linear combination of 1; which has that perturbed energy.

Example. Let’s try this on the occupied orbitals of pyridine. We use the numbering as before, thinking
it as a perturbation on the reference system benzene, whose orbital coefficients and energies are
well-known

1 T
0 _ 0) —
= (1 111 1 1) EO = +283 (8.53)
o — L (2 1 -1 -2 -1 1)T EU) =a+ (8.54)
V12
1 T
) = B (0 110 -1 fl) EM =a+5. (8.55)
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The perturbation is

5 -2 0 0 0 -2
-2 0 0 0 0 O
10 0 0O0O0 O
PN 8.56
100100 0 00 O0 O (8:56)
0O 0 000 O
-2 0 0 0 0 O
The state |1g) is non-degenerate, so
AWeo = (vo|A|1o)
= cOTAHcO
_ B
=—55" (8.57)

The next two orbitals are degenerate, so we need to use degenerate perturbation theory. We
evaluate

S _ B
<’¢lc AH’wlc> - 30 (858)
(vrs|aftvrs) =0 (8.59)
(vre AFI‘¢15> =0, (8.60)
so the matrix
B
AH= (T2 O (8.61)
0 0
is already diagonalised. The variations in energies are
A=+ 5 . 62
€ +30,O (8.62)

It turns out that the matrix AH is automatically diagonalised for us because we have chosen a
good basis. If we instead rotate the unperturbed orbitals to

(e _ 1 T
c =—(1 -1 -2 -1 1 2 8.63
7 ) (863
1 T
' — 2 (1 10 -1 -1 0) (8.64)
using the same perturbation matrix, then we would get
/ 2 / _ ﬂ
/ 24y E
Clafly )= 8 , 8.67
<wlc 1/115> 20\/@ ( )
giving
im0
I
AH = | 1 20f . (8.68)
20V12 40

Diagonalising these will still give us the correct eigenvalues A(De = +%7 0.

A lesson is to put nodes on special atoms.
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9 Many-electron Wavefunction

Throughout the last chapter, we assumed the wavefunction to take the form of a Hartree product

U(ry,...,rn) =1(r1) ... ¥n(ry). (9.1

This makes the problem simple and easy to solve, but it has a severe problem — a Hartree product
does not obey Pauli principle. To take a step further, we must consider spins.

9.1 Spin

Recall that electron has spin s = %, so it has two possible spin states s, = +%,f%. The two

S, = —|—%, —% spin eigenfunctions are represented by a(w) and S(w) respectively, where w is a fictitious
coordinate to keep track of which electron a spin belongs to (and is a simplification of some quantum
field theory formulation). We have the spin magnitude squared operator §2(w), and the operator for
the z component of spin §,(w), which acts on the spin eigenstate o(w) by

320 (w) = h?s(s + 1)o(w) (9.2)

§,0(w) = hs,o(w). 9.3

A many-electron wavefunction also has spin, and corresponding spin operators. The total z
component of spin operator takes the simple form

n

Sz(wl,wg,...,wn) = Zéz(wi) (9.4)

i=1

because the component of a vector is a scalar and we can add them simply. There is a corresponding
total spin square magnitude operator, 52 but its form is not a simple sum and not trivial to apply,
and will not be needed in this course.” For a total spin eigenfunction (w1, ...,w,), the eigenvalue
equations are

S,% = hMgY
825 = h2S(S +1)%, (9.7)
where for a given S, Mg =-5,-S+1,...,5—-1,85.

When writing a complete wavefunction, we must also consider the spin part of the wavefunction
in addition to the spatial part. Therefore, a complete wavefunction should be

U(ry, ..., T Wiy---,Wy)- (9.8)
The most important feature for electrons is that they are fermions. An important rule for fermions

is that the wavefunction must be antisymmetric with respect to exchange of electrons, so that
\Il(...,ri,...,rj,...,wi,...,wj,...) = —\IJ(...,rj,...,ri,...,wj,...,wi,...). (99)

Notice that by exchanging the electrons, we exchange both the spatial coordinates and the spin
coordinates.

As one can easily see, a simple Hartree product does not obey this condition — we need to find
some ways to construct antisymmetric total wavefunction from one-electron wavefunctions (orbitals).

9The most convenient form is written in terms of ladder operators, as

52 =5,5_+(8:)* - hS.. (9.5)
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As you have seen in IB, one strategy of constructing an antisymmetric wavefunction is to construct
symmetric and antisymmetric spatial and spin wavefunctions separately, then combine the symmetric
spatial wavefunction with the antisymmetric spin wavefunction and vice versa. For two electrons with
different spatial wavefunctions, the possible wavefunctions are

a(wr)a(ws)
Viripler = %er)w(rg) — a(r)n (r2)] X ¢ Lfa(wn)Blwa) + Blwn)a(ws)] (9.10)
Blwr)B(w2)
1 1
Ysinglet = 5[1#1(1'1)1?2(1‘2) + ¢2(I‘1)¢1(I‘2)] X ﬁ[a(wl)ﬁ(“@) - B(Wl)a(a&)] . (9.11)

The triplet state has S =1 and Mg = —1,0,1. The singlet state has S = 0 and Mg = 0.

9.2 Slater Determinants

The above method worked well for systems with two electrons, but it becomes increasingly painful
for more and more electrons. We hope to find a more general and convenient method of constructing
antisymmetric wavefunctions. It turns out that in mathematics, there is an object that is always
antisymmetric — that is a determinant.

Because the electron exchanges in Pauli principle affect both the spatial and spin coordinates of
an electron, it is convenient to group them together as a single coordinate x = (r,w). We can also
combine the spatial and spin orbitals together to form a spin-orbital

X(%) = 07 (x) = $(r)o(w). (9.12)

By the property that a determinant changes the sign when we exchange any two columns or rows,
we are guaranteed that

V= % (izgli iig;;) = %[Xa(xl)Xb(Xﬁ — Xb(%1)Xa(x2)] (9.13)

is antisymmetric with respect to the exchange of coordinates x; and x5, since exchanging the
coordinates is equivalent to exchanging the two rows. Additionally, if the spin-orbitals are normalised,
this determinant is also normalised. This can be easily generalised. For n spin-orbitals, a Slater
determinant is defined as

Xa(X1)  xo(x1) - xr(X1)
1 [Xa(x2) Xxo(x2) -+ xr(x2)

U = ﬁ (9.14)
Xa(Xn) Xo(Xn) o Xr(Xn)

This is guaranteed to be antisymmetric, and since a n X n determinant can be expanded into n!
terms, it is normalised given that the spin orbitals are orthonormal. Sometimes, we denote it by the

shorthand 1
U= ﬁ IXaXb - Xxr| - (9.15)
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9.2.1 Two-Electron System

Finally we are going to solve the Schrodinger equation, starting from a simple two-electron system.
Let’s observe the form of the electronic Hamiltonian (in atomic units)*°

1
|r1 — 1o

1 1
H(ry,ry) = _§v31 - §v§2 +V(r)) + V(ry) + + Ve (9.16)

where V' is the potential energy from electron-nucleus interaction. This splits very neatly into one-
electron term for each electron

h(r) = —%Vf +V(r), (9.17)

a two-electron interaction

( ) 1 1
u(ry,ro) = —m8 = —
1,12 |I'1—I'2| ’1"12’

(9.18)

and a constant term V™™, Therefore we can write
2
H(ry,rp) =Y h(r;) + diry, ) + V™. (9.19)
i=1

More generally, for a system with n electrons, we include the one-electron Hamiltonian for all electrons,
and repulsion between all pairs of electrons, so

ﬁ(rl,...,rn):Zhi+2$+vm. (9.20)
i J

r
=1 i<j *

Now let’s calculate the energies for some two-electron systems. First, consider a system where the
electrons have the same spatial parts but different spins, with spin orbitals ¥,a and ,8. We assume
the wavefunctions to be in the form of a Slater determinant

_[pema)) wa()s01)
ba(2al(2) $a(2)5(2)

1
=5 [Ya(D)a(1)$a(2)(2) = ha(1)B(1)Ya(2)a(2)] - (9.21)

Note we have abbreviated the coordinates x;, ri, w; as ¢ — which one it refers to should be clear. An
example of a molecule of this type is Hy in ground state, or a Helium atom.

Y

All we need to do then is to expand the energy expression

b= (oo} (sfiv i+ L v

\1/> . (9.22)

We will do this by brute force — general expression of the energy exists, but the derivation requires
some non-trivial mathematics. This will be done in B10: Electronic Structure. Before we proceed,

let’s introduce some shorthand notations. We will denote matrix elements of & as <’(/JZ‘ fz‘wj> = hyj.
We will also encounter two-electron integrals, which we denote as!'!
1
(a0 || vel1)0a(2)) = fatha (9.29)

10 Again, you can either include V™™ to the electronic Hamiltonian or not — it doesn’t matter. It’s just a constant
term.

11 The notation we use here is known as the physicists’ notation. There is also an alternative called chemists’ notation.
We will not show it here to not confuse you. If you are interested, see B10.
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— —F—

—J—a —F—a

Case 1 Case 2
S=0, Ms=0 S=1 Mg=1

Finally, it’s time to expand the energy expression.

<¢pﬂm>::;<wa1yqnwamﬁ@>—¢@awxnw4ma@ﬂ

A - 1
h(1) + h(2) + — 4+ V™"
T12

Ya(1)a(1)va(2)8(2) — ¢a(1)5(1)¢a(2)a(2)> (9.24)

Since («|B) = 0, while (a|a) = (B|8) = 1, the cross terms all vanish and the expression simplifies to
(fje) = 5 [{w.

> [ttelas (i

h h

Vo) (Yalta)s + (¥a
from h(1)
o), + (Waltha): (ta

from h(2)

wwmm%fﬂ

V), (haltba)s]

Y|

DN |

h h

+
I

[@wmm

1
T12

— N =

— x2xyrr
2

= 2h4q + (aalaa) + VI (9.25)

where the subscripts of the bra-kets indicate the coordinate that is integrated over. The difference
between this and the non-interacting electron picture is just the Coulomb interaction of the electrons
(aalaa). This is known as the Coulomb integral, often denoted J, which you have met in IB.

We now consider an alternative case. This time the two electrons are in different spatial orbitals,
but their spins are aligned. An example would be the triplet excited state of an He atom. We will
denote their spin-orbitals as ¥, and Ypa, where the spatial orbitals v, and 1, are orthogonal, so
the Slater determinant is

_[peatt) wu(1)a(n)
ba(2)a(2) (2a(2)

=%mmwmmmwmwmmwm» (9.26)

v

Again, we expand the energy expression. This time some terms will be eliminated due to the

42



9  Many-electron Wavefunction A4 Theoretical Techniques

orthogonality of spatial wavefunctions (¢, |1p) = 0. We get

(o)) = 3{va0a)n2a - wbaa)

(1) + Ah(2) + L + vy

12
(a|hfa) (oltin)y = (o
~(wolh

ba(Da(L)y(2)a(2) — ¢b<1>a<1>wa<2>a<2>>
o), Ly

h

v by + i) <wa¢a>g]

from h(1)

+ same for h(2)

+ % ((ablab) — (ablba) — (balab) + (ba|ba)) + V™. (9.27)

Note that by exchanging the label of integration,

(balab) = <b(1)a(2) % a1 b(2)>1 2
- <a(1)b(2) % b(l)a(2)>12 — (ablba) , (9.28)
and similarly (ba|ba) = (ab|ab). Therefore,
E = hgq + hep + (abladb) — (ablba) + V™. (9.29)

The electron-electron interaction is now split into two parts, the first is a classical Coulomb integral,
denoted J, and the second the quantum mechanical exchange integral —K you have seen last year.

Also note that this expression has no terms like (aa|aa) or (bb|bb), indicating that there is no
self-interaction error. This is because we have dealt the exchange interactions exactly.

It is important to note that while Slater determinants always obey the antisymmetry of exchange
of electrons, they do not necessarily obey the other symmetries of the Hamiltonian (and thus do not
always have “good quantum numbers”). An example of this is again to consider the excited state of
Helium, where the two spatial orbitals are 1, and . There are four possible Slater determinants,
with either electron being spin up or spin down, as shown in the figure below.

e e =

4+ + +

] 2wy By By |
Mg = +1 Mg =0 Ms =0 Ms = -1
S=1 S not well-defined S=1

The two states with Mg = +1 and Mg = —1 clearly must correspond to S = 1, but the S values
of the two Mg = 0 states are not well defined. This is because these two Slater determinants cannot
be factorised as a product of a spatial part and a spin part, so we can’t assign the .S value based on
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the symmetry of the spin part wavefunction (recall that the triplet S = 1 state has a symmetric spin
wavefunction and the singlet S = 0 state has an antisymmetric wavefunction). On the other hand,
e.g. the Mg = +1 wavefunction can

(03 (07 1
vy | = E[wa(l)a(l)wb@)a@) = ¥p(L)e(1)va(2)(2)]
1
= —=[Ya(D)Y6(2) — ¥6(1)¥a(2)]  x a(1)a(2) : (9.30)
\/§ N——
symmetric spin wavefunction
antisymmetric spatial wavefunction
In fact, you will show in question sheet that the two Mg = 0 determinants above are linear

combinations of the triplet Mg = 0 state and the singlet Mg = 0 states, so they are clearly not
eigenfunctions of S2.

9.2.2 More than Two Electrons

Our above calculations for systems with two electrons are already messy enough, and it will get even
messier for more electrons. See B10: Electronic Structure for details. However, the energy expression
is in a very simple form

E=Y hu+Y (ijlij)— Y (ijlii)+vV™™. (9.31)
i i<j i<j
same spin
This should be reasonably physically intuitive — we first sum over the one-electron energies, then
each pair of electrons gives one Coulomb interaction, and each pair of electrons with the same spin
gives one exchange integral.

Figure 9.1: A three-electron system. The red arrows are the Coulomb interactions and the blue
arrows are the exchange interactions.

For example, the three electron system in the figure would have energy

E = 2hgq + hep + (aalaa) + 2 (ablab) — (ab|ba) . (9.32)

9.3 Hartree—Fock Theory

In the last section, we found an easy way of generating antisymmetric wavefunctions from orbitals
using Slater determinants, and we have calculated the energies of these states. However, it seems
that we have skipped the question of how to find these orbitals.

Although Hiickel theory is a nice and easy way to do so, it actually misses a lot of things, such as
the self-consistent interaction with the other electrons to get relative orbital energies correct. Instead,
we will develop a method called the Hartree—Fock theory (HF).

Unlike Hiickel theory, which finds the stationary values of the orbital energies, the Hartree—Fock

theory assumes the total wavefunction to be a single Slater determinant and it aims to minimise the
total energy.
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J(r1)

J(Tl) — de'Q pa(r2)

T12

Pa (T2)

T2 T1

Figure 9.2: An illustration of forming the Coulomb operator. At first glance it may seem that this
integral diverges — it does diverge in 1 dimension, but it nicely converges in 3 dimensions.

Let’s use ground state helium atom as an example, where the wavefunction is

1
U= — |po? 9.33
75 lvavl] (9-33)
and the energy is
E = 2hg, + (aalaa) . (9.34)

We want to find the v, that minimises the total energy E.

To express the wavefunction, we need some basis function. A sensible basis would be the
hydrogenic orbitals of He™, so we write

n

Yo=Y ", (9.35)

i=1

where {¢;} are the basis functions. Our problem now reduces to finding the coefficients cga) making
the energy stationary. Let’s take a closer look at the energy expression and write it more explicitly:

E:2<¢ah

Ya) + <wa<1>¢a(2)‘

1
G (9.36)
712
The one-electron term looks fine, but the two-electron (Coulomb) terms seem a bit complicated —

because it involves two electrons. We hope to simplify it to a one-electron integral, as electron 1
interacting with the average repulsion of electron 2. We have

Unl1)) = [y iy PRIl

_ / &ry (1) [ / &1y M} Ya(r1)

)
12

1
r12

(ma)(2)

= [ @rivie) [Je0)] vatr). (037

We defined a new operator, J (r), the Coulomb operator. It is the potential energy an electron would
receive on average due to Coulomb repulsion from the other electron.

Therefore, we can write our total energy as
J

E=2<¢aﬁ

) + (a

wa> . (9.38)

We now need to find the 1, that minimises this. Again, the rigorous derivation is in course B10. We
will illustrate everything briefly. Consider a variation v, — ¥4 + §1b,. To meaningfully change 1,
we require (014]tY,) = 0. Then the variation in energy, to the first order, is

J

SE = 4<5¢a h

Ya) +4 (0

wa> . (9.39)
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This first order variation in energy vanishes at the minimum, which is satisfied when

[7(r) + J(£)]tha(r) = €atha(r). (9.40)

We have therefore found a simple one-electron operator which takes into account electron-electron
interactions. If we consider the more general case, with more electrons with different or same spins,
we create what is known as the Fock operator,

F(r) =h(r)+ J(r) — K(r), (9.41)

where the Coulomb operator J accounts for the classical Coulomb repulsion between electrons, and
K is the exchange operator which deals with exchange interactions, defined similarly as J.'2

The key result of these derivations is that we have created a new one-electron operator, the Fock
operator, whose eigenfunctions are the molecular orbitals which minimise the energy of a Slater
determinant. To find the orbitals we solve the Fock equations,

Fpg = €qtha . (9.42)

Since we constructed the molecular orbitals by linear combination of atomic orbitals

Yo=Y ", (9.43)

we may solve the Fock equation in the matrix form. Define Fock matriz F;; = <¢i F

¢j>, the

coeflicients of the molecular orbitals are determined by the eigenvalue equation

Fcl@ = ¢,c@ (9.44)

We may interpret €, as the “orbital energy” of the orbital 1,, but rigorously there is no such thing
as “orbital energy” in Hartree—Fock theory — there is only total energy. Moreover, it is absolutely
wrong to obtain the total energy by adding up the orbital energies. It involves double-counting of
interactions, just as what we discussed for Hiickel theory.

9.3.1 The Self-Consistent Field Procedure

Because the Fock operator, F' is both dependent on a set of orbitals (which are used to make J and
K ), and is used to define the orbitals, it is not entirely straightforward to actually solve the Fock
equations to achieve orbitals which are eigenfunctions of their own Fock operator. The simplest way
of doing this is to start with a guess set of orbitals and iterate until self-consistency, just as what we
did in Kohn-Sham theory. This kind of method is known as self-consistent field (SCF) method.'3
The general procedure goes as follows:

(i) We first need to:

(a) Specify the molecular geometry (coordinates of nuclei)

(c

(d) Pick atomic orbital basis set

)
(b) Specify the charge (the number of electrons)
) Specify spin

)

12More properly, J includes the interaction with all electrons in the system, so <1[)a

f‘wa> actually includes the

interaction of electron in orbital 1, with itself. This isn’t a problem because this is exactly cancelled by an equal
contribution in K where the electron exchanges with itself. This is the cancellation of self-interaction, which only
occurs if we treat exchange interaction exactly (as opposed to DFT).

13Since the Hartree—Fock theory is the first theory in quantum chemistry that uses a SCF procedure, Hartree-Fock
theory itself is sometimes also referred to as the SCF method.
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so that we know the form of the Hamiltonian and the Slater determinant ¥ = \/% IX1X2 - - Xnl-

(ii) Make an initial guess of the orbitals for our system

v = 3, (0.85)

using e.g. Hiickel theory.

(iii) Work out the Fock operator and hence determine the Fock matrix in the atomic orbital basis

Fi; = <¢z’

F‘¢j> . (9.46)

(iv) Diagonalise F to get the new molecular orbitals

Fc™ = e,c™ . (9.47)

(v) Compare the new c(™ to the previous c(™. If they are close enough (i.e. converged), then stop.
Otherwise, go back to (iii).

(vi) Calculate the total energy <\IJ‘EI‘\I/>

9.4 Electron Correlation

The key approximation in Hartree—Fock theory is the factorisation of the n electron wavefunction
into one-electron orbitals. This is displayed in its most elementary form in equation (9.1), and the
Slater determinant form keeps this basic assumption while accounting for antisymmetrisation. In this
product form it can be seen that the distribution of one electron is effectively independent from all
the others — their motion is not correlated with each other. In the true wavefunction, the singularity
of the Coulomb interaction between electrons should give rise to a lowering of probability when they
are close, and so this effect is missing in the Hartree product.

Within a single Slater determinant, the antisymmetrisation does produce a Fermi hole around
electrons of the same spin as the wavefunction vanishes when they are at the same point, so this
approximation does take some correlation into account, but no such effect is present for electrons of
opposite spin. This is observed by the fact that in both Hartree product form ¥ = 1115 and the

singlet Slater determinant form ¥ = % ‘wwﬁ , we have the probability of finding electrons at ry

and ry to be
P(r1,r2) = |1 (r1)]* [tha(r2)[* . (9.48)

This lack of correlation is the origin of the error in the Hartree—Fock limit of equilibrium Hs.

The electron correlation error becomes more serious for stretched bonds, and grows to rather
pathological proportions in the limit of full dissociation. The error in the dissociation limit can be
quantified for Hy by looking at the Hartree—Fock energy in the dissociated limit as R — oo, which

you will show in one exercise.
Ju

lim Ey,(R)=2FEy+ —. (9.49)
R—o 2
We define the dissociation energy
Adiss.oc. - - (EH2 (Req) - ngnoo EH2 (R)> (950)
and the atomisation energy
Aat. = - (EH2 (Req) - 2EH) . (951)
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correlation hole

P(ra|r1) __. Hartree & singlet HF

Ideal opposite spin

Ideal same spin

Fermi hole

Iry ra

Figure 9.3: Dynamic correlation reduces the chances of electrons, even with the same spin, to
approach.

Ru_nu

********************* ===~ Hartree—Fock

J% ~ 820 kJ mol !

——— True answer

Figure 9.4: The Hartree-Fock theory over-predicts the dissociation energy significantly due to the
lack of correlation.
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H, Da Dp ionic
—w @O 7w

s OO0 N\
T s, | ¢, biradical

Figure 9.5: Due to the lack of electron correlation, Hartree-Fock predicts a dissociation into a
superposition of bi-radical and ionic states. We can view this as two %—electrons are attached to
each atom at dissociation.

These energies should be the same, but they are not in HF theory — Hartree—Fock theory over-predicts
the dissociation energy by %JH7 which turns out to be about 820 kJ mol™!, a huge error.

What’s wrong with the Hartree-Fock solution? Let’s have a look again at the ground-state
wavefunction written as a product of molecular orbitals

L1 e v
P2 =05 ey i)
1

= m[%(l) + &(D][6a(2) + 5 (2)][a(1)8(2) — B(1)a(2)], (9.52)

where S = (@4|¢p) is the overlap integral. Expanding the product over the spatial orbitals, after
omitting the spin orbitals which will not affect the final energy, we get

Urp(1,2) ~ ¢a(1)0a(2) + da(1)P6(2) + d(1)¢a(2) + ¢u(1)¢6(2) - (9.53)

ionic bi-radical bi-radical ionic

1

B
g
8
g

We may interpret the terms as either ionic, with both electrons on one of the hydrogens, and a bare
nucleus as the other, or bi-radical, with each hydrogen getting a single electron. Because of these
ionic terms, the Hartree-Fock wavefunction cannot properly describe molecular dissociation (which
should not contain the ionic terms in this limit).

Recall that Hartree-Fock arises from an approximation, and although Uyp is the best possible
single determinant which can describe our molecule, it is not an eigenfunction of the many-electron
Hamiltonian. (This is because the orbitals in HF are eigenfunctions of the Fock operators, while the
total Hamiltonian is not a sum of the Fock operators.) With this single-determinant approach, the
electrons are effectively independent of each other and the probability distributions of electrons are
independent. At dissociation this is very problematic, as we know the correct wavefunction has one
electron on each atom.

In the exact wavefunction at dissociation, the probability of finding both electrons around the
same nucleus is therefore very small indeed, but in this Hartree-Fock wavefunction it is 50%. In
order to improve the description of molecular dissociation, one must introduce electron correlation,
such that if one electron finds itself around one nucleus, the other electron has an enhanced probability
of finding itself around the other nucleus.

9.4.1 Configuration Interaction

How can one introduce such electron correlation? One approach is to go beyond the use of a single
Slater determinant to represent the wavefunction, and use a linear combination of multiple Slater
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determinants. For example, for the two-electron case, we may write the wavefunction as

U(1,2) =Wy + Y ey, (9.54)
I

where Uy is the ground state Slater determinant (Hartree-Fock solution) and ¥; are the Slater
determinants with further excitations. This wavefunction ¥ is known as a multi-determinantal
wavefunction. We can find the best possible coefficients ¢; by variational principles. This method of
introducing electron correlation is called configuration interaction.

A b —H—
v —f- Yo ——

T, 0,

Why is the introduction of excitation states helpful? Let’s consider the Hs molecule again. It
turns out that it will be particularly useful to introduce a second determinant with doubly occupied

anti-bonding orbital ,, = \/ﬁ(% — ¢p)

R W I CY
D= ) vl
1
= m[%(l) = dp(D)][¢a(2) — ¢6(2)][a(1)B(2) — B(1)n(2)]
~ ¢a(1)¢a(2) - ¢a(1)¢b(2) - ¢b(1)¢a(2) + ¢b(1)¢b(2) . (955)
ionic bi-radical bi-radical ionic

We call this Wy because we denote the Hartree-Fock ground state ¥y and we preserve W, for the
singly excited state. Notice that in W the ionic components of the wavefunction come with the
opposite sign to the bi-radical parts. Therefore if we subtract ¥y from ¥ (the Hartree—Fock solution
(9.53)) we remove the troublesome ionic factors, leaving

coWo — c2¥2 ~ [9a(1)dp(2) + d1(1)da(2)][e(1)B(2) — B(1)a(2)], (9.56)
which dissociates correctly.

How do we solve for the coefficients of each Slater determinant in the configuration interaction?
The answer is to use the variational principle. Define the Hamiltonian matrix in the basis of the Slater

determinants Hyy = <\If I‘f[ ‘\If J>. Since the orbitals are orthonormal (as they are the eigenstates of

the Fock operator), so too are the Slater determinants. The secular equation we need to solve is
(H—Es)c™W =o0. (9.57)
The coefficients and energies are the eigenvalues and eigenvectors of H.

Back to our Hs case, the secular equation is

Eo—E
( 0 v )0, (9.58)
U E,-E

where EO = HO(), E2 = H22, U= H02 = H20. The solutions are

_ Ey+ Ep
2

1
E + 5\/(EO — )2 +4U2. (9.59)
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k E(CI)

Figure 9.6: We can retain some of the electron correlation by configuration interaction.

In the limit of small U at large R, we have

U2 I U?
EV~Ey+ —— and ESV~ By — ——— :
0 Tt E—E M 2" By — By’ (9.60)
and similarly one can show that
U
U Wy 4 =Ty 9.61
0 0o+ Bo— B, 2 (9.61)

One can further improve the wavefunction by enlarging the basis and constructing other (indeed
all) possible excited determinants which have the same symmetry and spin (IE;F) as WUy. The limit of
including all determinants it is possible to make with a given set of orbitals is known as Full CI, and is
the best possible answer given our choice of basis set (the atomic orbitals). This provides, in principle,
a systematic technique to introduce correlation. However, it is not in general a practical method,
because the number of possible excited-state determinants grows in a factorial (i.e. exponential)
manner (both with number of basis functions and the number of electrons). Methods to treat
accurately electron correlation remain one of the most active and challenging areas of Theoretical
Chemistry.

9.4.2 Wavefunction-based Methods of Correlation

We have seen that for even a simple molecule like Ho, there is a rich complexity to its wavefunction,
and a technique like Hartree—Fock theory is not able to exactly reproduce the binding-curve — a
treatment of electron correlation is essential. If the Full CI limit is computationally feasible we should
use it, but in practice it can be used only for the very smallest systems because of the exponentially
large size of Slater determinant space.

An appealing option would be to simply truncate the determinant space, including Slater
determinants which differ by at most x electrons from the Hartree-Fock determinant; x is known
as the excitation level. Unfortunately, performing CI in this naively truncated space leads to
wavefunctions whose quality becomes significantly worse as the system size studied increases (because
the z-excitation configuration takes a smaller and smaller proportion of the full CI as the number of
electrons increases) so this is not a generally useful method.

All is not lost, however, and there exist two systematically improvable methods which are routinely
used in electronic structure. Mpller—Plesset (MP) Theory and coupled cluster (CC) Theory. They will
be covered in the B10: Electronic Structure course, but key to their use is that they each form a family
of methods where you can go to a more accurate level to be sure that you are sufficiently converged.
Mpgller—Plesset methods are based on perturbation theory and labelled MP2,.... MPn where n labels the
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Bond length  Atomisation energy

Method Scaling Error / pm Error / kJ mol ™!

HF N3 2.7 423
MP2 N°® 0.5 36
MP3 N6 1.2
MP4 N7 0.4
MPn N3

CCSD NG 0.8 37
CCSDT N8 0.1 3
CC..x N2z+2
CCSD(T) N7 0.2 5
Experiment 0.2 4
Approx. value 150 1500

Table 1: The typical errors of different ab initio methods. CCSD(T) is seen as the golden standard
of quantum chemistry.

level of perturbation theory (see also the C7: Further Quantum Mechanics course). Coupled Cluster
methods are labelled with the level of excitation which is explicitly treated in the wavefunction:
CCSD, CCSDT, CCSDTQ),... These differ from truncated CI methods in that quality of the energies
for a given truncation level does not worsen as the system size increases. Hybrids of these methods
exist where the final level of excitation is treated perturbatively, denoted: CCSD(T), CCSDT(Q),...
These are routinely used as they have a lower computational scaling than the full method and produce
extremely good approximations to the equivalent full CC method.

10 Reaction Theory

Most chemical reactions involve a change in the distribution of electrons, and the journey from
reactants to products usually encounters some form of barrier on the potential energy surface.
To understand the origin of these barriers we will consider how the multiple electronic states of
a molecule change along a reaction pathway. Before this, however, we will consider again the
initial assumptions that went into decoupling the nuclear and electronic wavefunctions in the Born—
Oppenheimer approximation,

Upo(r,R) = ¥ .(r; R)¥,(R). (10.1)

10.1 Beyond the Born—-Oppenheimer Approximation (Not Lectured)

The question arises, how good is the Born—Oppenheimer approximation, and when does it break
down? To analyse this, we must consider a slightly more complicated form of the total wavefunction.
Recall that there are in fact many solutions of the electronic Schrédinger equation, each corresponding

to different electronic states, which we label k; these have energies Eék)(R) and wavefunctions

\Ilék)(r; R). The lowest electronic state, which has k = 0, corresponds to the very lowest energy
configuration of electrons in the system for each nuclear state, as if the electrons were allowed to
relax completely at each geometry. The electronic eigenfunctions are known as the adiabatic electronic
states.*

141n this context, a system being adiabatic means that the conditions are only changing gradually such that the system
is allowed to adapt its configuration. Hence the Born—Oppenheimer approximation is also known as the adiabatic
approximation. We assume that the electronic motion is faster than the nuclear motion, and for each nuclear geometry,
the electrons are in their ground state. This is an example of the adiabatic theorem, which states that a physical
system remains in its instantaneous eigenstate if a given perturbation is acting on it slowly enough and if there is a
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P,

LitF~

Figure 10.1: &, P, are diabatic states, where electrons do not respond to the nuclei. ¥g, ¥; are
adiabatic states where we allow electrons to relax at each nuclear position. When the ground state
Uy LiF dissociates as R increases, it changes from predominantly ®; to ®; + &5 (sign depends on

<(I)1‘}AI"I>2>) then to ‘I)Q.

To each electronic state, we can associate a nuclear wavefunction \Il%k) (R), which could be obtained
by solving the nuclear Schrodinger equation. To a first approximation, one could consider each state
to be independent, but quantum mechanics has a nasty habit of coupling things together, and so to
solve for the correct wavefunctions we must write the total wavefunction as a superposition of these
states. Our first guess might take the form

Tiotal(r, R) = Y ¥ (nRTP(R), (10.2)
k

which linearly combines the electronic states each with its own nuclear wavefunction. Though
there are many solutions to the Schrodinger equation of this form, we are concerned with the
total wavefunction with the lowest total energy. We see that the Born—Oppenheimer approximation
amounts to taking a single term in this sum, and is sometimes called the adiabatic approzimation.
For most chemical purposes, the Born—Oppenheimer approximation proves sufficient, but to achieve
spectroscopically accurate energies, additional corrections must be taken into account, though these
are generally less than 1 kJ mol ™' in magnitude.

10.2 Avoided Crossing and Conical Intersections

Whilst the electronic states which are eigenfunctions of the electronic Schrédinger equation are
convenient, they are not always so easy to interpret, as to minimise the energy the nature of the
electronic state may change rapidly. An example of this is the dissociation of the diatomic LiF.
In its ground equilibrium electronic state, it occurs mostly as LitF~, but by comparing ionization
energies and electron affinities we conclude that at infinite separation this molecule should separate
into neutral fragments, Li~ and F*.' A chemically intuitive view is to consider these two different
pictures as different electronic states. These are known as diabatic states, loosely defined as the states
where the nature of the electronic state changes less quickly as the geometry changes. The diabatic
states are not electronic eigenfunctions, and provide an alternative representation to the adiabatic
electronic states. For most purposes they can be regarded as an interpretative tool.

In LiF, we see that the ionic state will have a considerably higher energy than the bi-radical

gap between the eigenvalue and the rest of the Hamiltonian’s spectrum.
15The jonisation energy of Li is 520 kJ mol~! and the electron affinity of F is 320 kJ mol™1, i.e.

Li— Lit + e~ 520 kJ mol ™!
FT—F+e” 320 kJ mol ™.

In fact, any diatomics would dissociate to atoms because all ionisation energies are larger than electron affinities.
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Figure 10.2: Normally when two diabatic states cross, there will be an avoided crossing. A conical
intersection will occur when His = 0 for symmetry reasons or occasionally accidentally.

state at dissociation, and so the two diabatic states will cross somewhere along the dissociation
curve. Recalling that the diabatic states are not electronic eigenfunctions, we may ask the following
question: What combination of the diabatic states will give us the lowest energy? Calling these
states @1 and ®5, we see that we can simply solve the secular equations in this basis, and diagonalize

H;j = <(I)i
with the lowest energy — the adiabatic state.

H ‘¢j>. The ground state of this will be a linear combination of the two diabatic states

If the states are widely separated in energy (|Hy; — Haz| > 0) the lowest of these will be a good
approximation to the adiabatic state. When |Hy; — Has| = 0, however, we must consider role of the
off-diagonal element Hi5. This controls the mixing of the two diabatic states, and if it is non-zero,
then when these states are close in energy, the adiabatic state will become an approximately equal
mix of the two, smoothly changing from one to the other, splitting the two states apart. This effect
is known as an avoided crossing. In general, unless there are symmetry reasons, His will not be zero,
and so all such crossings will be avoided and the adiabatic ground state will not intersect with the
excited state. This is rigorously true for diatomics, but for higher dimensional systems, there exist
points of accidental degeneracy where Hy; = Hyo and His = 0. These crossing points are known
as conical intersections and have a dramatic effect on the excited electronic states of the molecule
(especially on their relaxation). They are beyond the scope of this course.

10.3 Chemical Reactions

In this section, we will apply what we previously discussed to predict whether a reaction would
be feasible or not. We will use pericyclic reactions as examples. Look at the two reactions in the
figure. Reaction (a) is the [442] (Diels—Alder) cycloaddition, and it occurs readily, whereas the
corresponding [2+2] reaction is forbidden. Why should this be? Presumably, the latter reaction
encounters a substantial barrier which is not present in the former — can the presence or absence of
large barriers be understood solely in terms of the underlying MOs?

10.3.1 Orbital Correlation Diagrams

During a chemical reaction, we can parameterise the progress of the reaction by a reaction coordinate,
along which the geometry of the system evolves smoothly from the reactants to the products. We want
to track how the electronic structure of the system evolves as we move along the reaction coordinate.
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Figure 10.3: (a) The [4+2] Diels—Alder cycloaddition; (b) a [242] forbidden cycloaddition

From now on, we will assume the wavefunctions of each molecule in the reactants and the products can
be well-represented by a single Slater determinant. At the start and end, the electronic structure is
determined by the MOs of the reactants and products respectively. We may trace the diabatic states
along the reaction coordinate by considering Slater determinants made from specific occupations of
these orbitals; along the reaction coordinate the orbitals will adapt to the new geometry, but the
occupancy of the orbitals remains constant for a given diabatic state.

Along the reaction coordinate the molecular orbitals can, in principle, be calculated at every point,
but in practice we only care about the energy ordering of the orbitals so can we may approximate
how the orbitals change along the reaction by lines which join the orbitals of the reactants and the
orbitals of the product. Crucially, orbitals of the same symmetry cannot cross in energy.

In general, to construct an orbital correlation diagram, we follow the following steps:

(i) Specify the reactants and the products.
(ii) Find a symmetry (the point group) during the whole reaction process.

(iii) Draw energy-ordered MOs of the reactants and products. Occupied orbitals corresponding to
bonds which do not change can be ignored.

(iv) Draw the energy levels for each MO (in products and reactants) and label them with the
conserved symmetry.

(v) Working up the diagram from the lowest energy, for each orbital on the left, connect it to the
lowest not-yet-connected orbital of the same symmetry on the right. Lines corresponding to
orbitals of the same symmetry should not cross.

As an example, let us first consider the [242] system in figure 10.4. The unreacted ethene molecules
have two sets of m-orbitals, whereas the cyclobutane product has two newly-formed o-orbitals. In
the unreacted state, the ground-state configuration is (agz)?(bs,)?. If the electrons maintain in their
original orbitals, then this will eventually lead to a doubly excited state in the product. Even if
this double occupancy is not maintained all the way, but just to the transition state (approximately
midway on the diagram), the energy of the system is substantially higher than the initial state. As a
result, the reaction is forbidden if the starting molecule is in the ground state. On the other hand, if
the molecule is photo-excited initially, promoting an electron from b3, to by, the reaction proceeds
without an unduly large barrier. This reaction is photo-active.

10.3.2 State Correlation Diagram

The situation will be clearer by introducing the state correlation diagram. This is similar to the
orbital correlation diagram, but we are correlating the electronic states between the reactants and the
products. Again, there will be avoided crossing when two states with the same symmetry intersects.
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Figure 10.4: The orbital correlation diagram for ethene dimerisation.
€
big b1 big big
b2u - % b3u b2u 417 + b3u

b3u % b2u
w3 e

b3u + 417 b2u

o 71
R %

Figure 10.5: The reaction is forbidden if the reactant is in the electronic ground state. However this

reaction is photo-active.
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Figure 10.6: The state correlation diagram for ethene dimerisation. There is a high energy barrier so
the reaction is thermally forbidden.

In practice, we will consider only the ground electronic state and the first few excited states, and
the states they corresponds to in the product. For our cycloaddition, we will consider

Ground state @5 (A4y) : agbgu (10.3)
Singly excited &1 (Big) : agbéubéu (10.4)
Doubly excited @ (Ay) : agbgu . (10.5)

Since the ground state and the doubly-excited state are of the same symmetry, they can mix, and
do so quite substantially as they become energetically close. The energy and the coefficients of ¥; in
terms of ®; can be obtained by solving secular equations. If we let

By = (o[ 1]
By = <<1>2‘H’¢>2> (10.6)
U = (@olft]e,) .
then solving
Ey—F U _
‘ U By — E‘ =0 (10.7)
gives
Eo+ Es 1 U?

E= + 5\/(EO —E5)2 +4U2 = Ey + (10.8)

2 Eo — By

in the |U| < |Ey — E»| limit.

It appears as if the two states repel each other, irrespective of the sign of U; the ground-state
is lowered in energy and the excited state pushed up. This is the basis for the non-crossing rule for
states with the same symmetry. The first excited state, being of a different symmetry, is unaffected.
The magnitude of the repulsion depends both on U and on the energy difference of the two diabatic
states. At the transition state, the energy difference is small and so the ‘repulsion’ is greatest.

Nevertheless, even with the above lowering of energy, there remains a large barrier (compared
to the thermal energy available to the molecules) to reaction for the ground-state, and ethene
dimerisation remains therefore thermally forbidden.

Turning now to the [4+2] cycloaddition. We notice that only a o symmetry is preserved during
the process, so we label everything under the Cy point group symmetry. Using the same process as
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Figure 10.7: The orbital correlation diagrams for the Diels—Alder reaction. Figure adapted from the

official course notes by Dr. Alex Thom.

before, we can see from the state correlation diagram that there is no energy barrier for the transitions
of the electronic ground states between the reactants and the product, so the reaction is thermally

allowed.

Similar considerations work for ring-opening and ring-closing, where different mechanisms, called
con-rotatory and dis-rotatory can be allowed or forbidden, which leads to methods for selective
synthesis of cis- or trans- products. You will investigate this in one of the exercises. These symmetry

considerations are codified more generally in the Woodward—Hoffmann rules which you may encounter

in the further study of pericyclic reactions.
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Figure 10.8: The state correlation diagram of the Diels—Alder reaction. The reaction of the ground
state is thermally allowed.
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