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1 Path Integrals

1.1 The Story

Will write it later…

1.2 Classical Limit

1.3 Equivalence to Schrödinger Equation
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2 Configuration Space Path Integral Path Integrals

2 Configuration Space Path Integral

For the time independent Hamiltonian

Ĥ = T̂ + V̂ =
p̂2

2m
+ V (q̂) , (2.1)

we want to derive the path integral expression of the propagator

Û(t, 0) = exp

(
− it

ℏ
Ĥ

)
(2.2)

which evolves the quantum states
|ψ(t)⟩ = Û(t, 0) |ψ(0)⟩ . (2.3)

The first thing we will do is to split the time evolution from t ≡ tN to t0 ≡ 0 into N equal intervals
tN , tN−1, . . . , t0. It is apparent that

Û(tN , t0) = Û(tN , tN−1)Û(tN−1, tN−2) . . . Û(t1, t0) , (2.4)

so we can write

Û(tN , t0) =

[
exp

(
− iϵ

ℏ
Ĥ

)]N
, (2.5)

where we denoted the time interval ϵ = t/N . We will write everything in the position representation,
so

U(qN , tN ; q0, t0) =
〈
qN

∣∣∣Û(tN , t0)
∣∣∣q0〉

=

〈
qN

∣∣∣∣∣
[
exp

(
− iϵ

ℏ
Ĥ

)]N ∣∣∣∣∣q0
〉
, (2.6)

where qN is the coordinate at tN and q0 is the coordinate at t0. We will denote this quantity by U
in the future for compactness. We have the freedom to insert identity operators

1 =

ˆ
dqk |qk⟩ ⟨qk| (2.7)

anywhere we want. We can insert N − 1 of them, each sandwiched between two of the N exponential
operators, giving

U =

ˆ N−1∏
k=1

dqk

〈
qN

∣∣∣∣exp(− iϵ

ℏ
Ĥ

)∣∣∣∣qN−1

〉
. . .

〈
q1

∣∣∣∣exp(− iϵ

ℏ
Ĥ

)∣∣∣∣q0〉

=

ˆ N−1∏
k=1

dqk

N∏
n=1

〈
qn

∣∣∣∣exp(− iϵ

ℏ
Ĥ

)∣∣∣∣qn−1

〉
. (2.8)

Now qk has the interpretation of the coordinate at t = tk.

This is actually a bit tricky to deal with because the Hamiltonian contains both a kinetic part that
depends on momenta and a potential part that depends on coordinates. The momentum operator
and the coordinate operator do not commute and this brings us trouble. This is because if X and Y
are non-commutative, we no longer have eXeY = eX+Y — otherwise this will be same as eY eX and
the non-commutativity will be broken. Instead, we have the following result:

Lemma 2.1 (Baker–Campbell–Hausdorff formula). For possibly non-commutative X̂ and Ŷ
in the Lie algebra of a Lie group,

eX̂eŶ = eẐ , (2.9)
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2 Configuration Space Path Integral Path Integrals

where Z is given by

Ẑ = X̂ + Ŷ +
1

2
[X̂, Ŷ ] +

1

12
([X̂, [X̂, Ŷ ]] + [Ŷ , [Ŷ , X̂]]) + . . . , (2.10)

in which [−,−] is the commutator.

We can see that the commutators are introduced into the exponential.

But luckily, all the troubles are gone in the N → ∞ limit since

exp

(
− iϵ

ℏ
T̂

)
exp

(
− iϵ

ℏ
V̂

)
= exp

(
− iϵ

ℏ
(T̂ + V̂ )− ϵ2

2ℏ2
[T̂ , V̂ ] +O(ϵ3)

)
, (2.11)

and we can ignore all the higher order infinitesimals as ϵ → 0. Therefore, we can expand each term
in the propagator as 〈

qn

∣∣∣∣exp(− iϵ

2mℏ
p̂2
)
exp

(
− iϵ

ℏ
V̂

)∣∣∣∣qn−1

〉
(2.12)

Since V̂ is just a function of q̂, we have〈
qn

∣∣∣∣exp(− iϵ

2mℏ
p̂2
)
exp

(
− iϵ

ℏ
V̂

)∣∣∣∣qn−1

〉
=

〈
qn

∣∣∣∣exp(− iϵ

2mℏ
p̂2
)∣∣∣∣qn−1

〉
exp

(
− iϵ

ℏ
V (qn−1)

)
(2.13)

To evaluate the kinetic matrix element, we insert an identity operator in the p basis and get〈
qn

∣∣∣∣exp(− iϵ

2mℏ
p̂2
)∣∣∣∣qn−1

〉
=

ˆ
dp ⟨qn|p⟩

〈
p

∣∣∣∣exp(− iϵ

2mℏ
p̂2
)∣∣∣∣qn−1

〉
=

ˆ
dp ⟨qn|p⟩ ⟨p|qn−1⟩ exp

(
− iϵ

2mℏ
p2
)

=
1

2πℏ

ˆ
dp exp

(
− iϵ

2mℏ
p2 +

ip(qn − qn−1)

ℏ

)
=
( m

2πiℏϵ

) 1
2

exp

[
im(qn − qn−1)

2

2ℏϵ

]
(2.14)

by completing the square and performing the Gaussian integral. Therefore the propagator becomes

U = lim
N→∞

ˆ N−1∏
k=1

dqk

N∏
n=1

( m

2πiℏϵ

) 1
2

exp

[
im(qn − qn−1)

2

2ℏϵ

]
exp

[
− iϵ

ℏ
V (qn−1)

]

= lim
N→∞

( m

2πiℏϵ

)N
2

ˆ N−1∏
k=1

dqk︸ ︷︷ ︸´
Dq

exp

(
N∑

n=1

im(qn − qn−1)
2

2ℏϵ
− iϵ

ℏ
V (qn−1)

)
. (2.15)

The term with a brace is integrating over all possible intermediate positions, and hence has the
interpretation of integrating over all possible paths that the particle can take. Hence it is called a
path integral, denoted ˆ

Dq . (2.16)

The integrand can be rewritten as

exp

[
i

ℏ
ϵ

N∑
n=1

m

2

(
qn − qn−1

ϵ

)2

− V (qn−1)

]
= exp

[
i

ℏ
ϵ

N∑
n=1

T − V

]
. (2.17)

In the limit of N → ∞, the sum is replaced by an integral over time, and T − V is exactly the
Lagrangian L, and so this becomes

exp

[
i

ℏ

ˆ t

0

dt′ L

]
= exp

(
iS

ℏ

)
, (2.18)
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2 Configuration Space Path Integral Path Integrals

where S is the action of the path. Hence we get the configuration space path integral expression of
the propagator

U =

ˆ
Dq exp

(
iS

ℏ

)
. (2.19)
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3 Phase Space Path Integral

We go back to the expression

U =

ˆ N−1∏
k=1

dqk

N∏
n=1

〈
qn

∣∣∣∣exp(− iϵ

ℏ
Ĥ

)∣∣∣∣qn−1

〉

= lim
N→∞

ˆ N−1∏
k=1

dqk

N∏
n=1

〈
qn

∣∣∣∣exp(− iϵ

2mℏ
p̂2
)
exp

(
− iϵ

ℏ
V̂

)∣∣∣∣qn−1

〉
. (3.1)

This time we will not work out the momentum space explicitly. Instead, we insert an identity operator
expanded in pn basis in each matrix element between the kinetic exponent and the potential exponent
and get

U = lim
N→∞

ˆ N−1∏
k=1

dpk

ˆ N∏
ℓ=1

dqℓ

N∏
n=1

〈
qn

∣∣∣∣exp(− iϵ

2mℏ
p̂2
)∣∣∣∣pn〉〈pn∣∣∣∣exp(− iϵ

ℏ
V̂

)∣∣∣∣qn−1

〉
. (3.2)

This time, each matrix element is much easier to evaluate. We have〈
qn

∣∣∣∣exp(− iϵ

2mℏ
p̂2
)∣∣∣∣pn〉 = ⟨qn|pn⟩ exp

(
− iϵp2n
2mℏ

)
= exp

(
− iϵp2n
2mℏ

+
ipnqn
ℏ

)
1√
2πℏ

(3.3)

and 〈
pn

∣∣∣∣exp(− iϵ

ℏ
V̂

)∣∣∣∣qn−1

〉
= exp

(
− iϵV (qn−1)

ℏ

)
⟨pn|qn−1⟩

= exp

(
− iϵV (qn−1)

ℏ
− ipnqn−1

ℏ

)
1√
2πℏ

. (3.4)

Collecting the terms, we have

U = lim
N→∞

ˆ N−1∏
k=1

dqk

N∏
ℓ=1

dpℓ
2πℏ︸ ︷︷ ︸´

DpDq

exp

[
i

ℏ
ϵ

N∑
n=1

(
pn(qn − qn−1)−

p2n
2m

− V (qn−1)

)]
. (3.5)

Again, the terms with a brace underneath has the interpretation of integrating over all possible paths
with all possible momenta, and hence it is denoted

ˆ
DpDq . (3.6)

The integrand is more interesting. In the N → ∞ limit, we can again replace the sum by an integral:

exp

[
i

ℏ

ˆ t

0

dt′ pq̇ −H(p, q)

]
, (3.7)

where H is exactly the Hamiltonian. You know from classical mechanics that

L = pq̇ −H(p, q) , (3.8)

so this is actually a Lagrangian in disguise. Integrated over time, we again get the action of the path,
and hence the phase space path integral expression of the propagator is

U =

ˆ
DpDq exp

(
iS

ℏ

)
. (3.9)
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4 Coherent State Path Integral

4.1 Coherent States

We’ll now go back to harmonic oscillators. For simplicity, we will remove the constant zero point
energy so the Hamiltonian can be written as

Ĥ = ℏωâ†â (4.1)

in terms of the raising and lowering operators. The eigenstates of the harmonic oscillator are labelled
by a non-negative integer n so that

Ĥ |n⟩ = nℏω |n⟩ . (4.2)
The raising and lowering operators, as their names suggest, raise and lower the states:

â |n⟩ =
√
n |n− 1⟩ , (4.3)

â† |n⟩ =
√
n+ 1 |n+ 1⟩ . (4.4)

This allows us to construct the excited states |n⟩ by repeatedly applying â† to the ground state:

|n⟩ = (â†)n√
n!

|0⟩ . (4.5)

Now we will introduce the coherent states, each labelled by a complex number z ∈ C, defined as

|z⟩ = exp(zâ†) |0⟩

=

∞∑
n=0

zn√
n!

|n⟩ . (4.6)

The coherent state has the nice property that if we act the lowering operator on it, we get

â |z⟩ = â

∞∑
n=0

zn√
n!

|n⟩

=
∑
n=1

zn
√
n√

n!
|n− 1⟩

=
∑
n′=0

z
zn

′√
n′ + 1√

(n′ + 1)!
|n′⟩

= z |z⟩ , (4.7)

where we substituted n′ = n− 1 in the second last line.

Similarly, for the bras, we have

⟨z| = ⟨0| exp[z∗â] , (4.8)
⟨z| â† = ⟨z| z∗ . (4.9)

Therefore, the inner product of two coherent states is

⟨z2|z1⟩ =
〈
0
∣∣exp[z∗2 â] exp[z1â†]∣∣0〉 = ez

∗
2z1 . (4.10)

Coherent states labelled by different values of z are not orthonormal. They are an example of an
overcomplete basis, meaning that they form a basis with enough vectors to expand any vector but
with more than the smallest number one could have gotten away with. The completeness of the
coherent states can be shown by the resolution of identity.
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Proposition 4.1.
Î =

ˆ
dz dz∗

2πi
|z⟩ ⟨z| e−z∗z . (4.11)

where z = x+ iy, x and y are real.

Proof. Defining z = x+ iy, where x and y are real. Then
ˆ

dz dz∗

2πi
|z⟩ ⟨z| e−z∗z =

ˆ
dx dy

π
|z⟩ ⟨z| e−z∗z

=

ˆ
dr dθ

π
r

( ∞∑
n=0

zn√
n!

|n⟩

)( ∞∑
m=0

z∗m√
m!

⟨m|

)
e−r2

=

ˆ
dr dθ

π
r

∞∑
n=0

∞∑
m=0

rn+me(n−m)iθ

√
n!m!

|n⟩ ⟨m| e−r2

=

∞∑
n=0

∞∑
m=0

1

π
√
n!m!

|n⟩ ⟨m|
ˆ

dr rn+m+1e−r2
ˆ 2π

0

dθ e(n−m)iθ

=

∞∑
n=0

∞∑
m=0

1

π
√
n!m!

|n⟩ ⟨m|
ˆ

dr rn+m+1e−r22πδmn

=

∞∑
n=0

1

n!
|n⟩ ⟨n|

ˆ ∞

0

dr 2r2n+1e−r2

=

∞∑
n=0

|n⟩ ⟨n| = Î . (4.12)

□

Suppose there is an operator built up from the raising and lowering operators,

X̂ ≡ X(â†, â) , (4.13)

we define the normal ordering of the operator to be the same operator with all the raising operators
pushed to the left, and the lowering operator pushed to the right. It is denoted as : X̂ : . For example,
if X̂ = â†âââ†, then

: X̂ : = â†â†ââ . (4.14)
The difference between : X̂ : and X̂ can be easily worked out by the commutator of â† and â. This is
a particularly useful concept in quantum field theory. The benefit of defining this here is that by (4.7)
and (4.9), we can easily evaluate the matrix element of a normally ordered operator in the coherent
states basis by associating all the â† to the bra and all the â to the ket, and therefore〈

z2
∣∣ : X(â†, â) :

∣∣z1〉 = X(z∗2 , z1) ⟨z2|z1⟩ = X(z∗2 , z1)e
z∗
2z1 . (4.15)

In particular, the Hamiltonian we introduced is already normally ordered, so〈
z2
∣∣H(â†, â)

∣∣z1〉 = H(z∗2 , z1)e
z∗
2z1 = ℏωz∗2z1ez

∗
2z1 . (4.16)

A surprisingly nice property of the coherent state is that it remains coherent over time, just
evolving to a state with different label.

Proposition 4.2.
Û(t, 0) |z⟩ =

∣∣ze−iωt
〉
. (4.17)

Proof. We have

Û(t) |z⟩ = Û(t) exp[â†z]Û†(t)Û(t) |0⟩

= exp
[
Û(t)â†Û †(t)z

]
Û(t) |0⟩ . (4.18)
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4 Coherent State Path Integral Path Integrals

We have
Û(t)â†Û†(t) = Û†(−t)â†Û(−t) = â†H(−t) , (4.19)

where â†H is the raising operator in the Heisenberg picture. By the Heisenberg equation of motion,
we have

dâ†H
dt

=
i

ℏ
[Ĥ, â†H] = +iωâ†H , (4.20)

so
â†H(−t) = â†H(0)e

+iω(−t) = â†e−iωt . (4.21)
Therefore,

Û(t) |z⟩ = exp[â†e−iωtz]Û(t) |0⟩ . (4.22)
Since we have removed the zero point energy in our definition of the Hamiltonian,

Û(t) |0⟩ = e−iĤt/ℏ |0⟩ = |0⟩ , (4.23)

so we get
Û(t) |z⟩ = exp[â†e−iωtz] |0⟩ =

∣∣ze−iωt
〉

(4.24)
as claimed. □

4.2 Propagator in Coherent State Representation

With Proposition 4.2, the propagator in the coherent state representation is easy to evaluate:

U(zN , t; z0, 0) =
〈
zN

∣∣∣Û(t, 0)
∣∣∣z0〉

=
〈
zN
∣∣z0e−iωt

〉
= exp[z∗Nz0e

−iωt] . (4.25)

But instead, we are interested in the path integral formulation of the propagator. Again, we split
the propagator into N → ∞ parts and insert identity operators (4.11) between each slice. Again,
denoting ϵ = t/N , we get

U(zN , t; z0, 0) = lim
N→∞

〈
zN

∣∣∣Û(ϵ)N
∣∣∣z0〉

= lim
N→∞

ˆ N−1∏
k=1

dz dz∗

2πi
e−z∗

kzk

N∏
n=1

〈
zn

∣∣∣Û(ϵ)
∣∣∣zn−1

〉
= lim

N→∞

ˆ N−1∏
k=1

dz dz∗

2πi︸ ︷︷ ︸´
DzDz∗

ez
∗
0z0

N∏
n=1

e−z∗
n−1zn−1

〈
zn

∣∣∣∣exp(− iϵ

ℏ
Ĥ

)∣∣∣∣zn−1

〉
. (4.26)

where in the last step, by moving product of e−z∗
kzk for 1 ≤ k ≤ N − 1 to the product of e−z∗

n−1zn−1

for 1 ≤ n ≤ N , we have multiplied an extra e−z∗
0z0 so we are dividing it outside the products. Again,

we can interpret the integral as a path integral over all possible z and z∗ values with appropriate
normalisation, so we write

U =

ˆ
DzDz∗ ez

∗
0z0

N∏
n=1

e−z∗
n−1zn−1

〈
zn

∣∣∣∣exp(− iϵ

ℏ
Ĥ

)∣∣∣∣zn−1

〉
. (4.27)

We can expand the exponential as

exp

(
− iϵ

ℏ
Ĥ

)
= Î − iϵ

ℏ
Ĥ +O(ϵ2) , (4.28)
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where the higher order infinitesimals can be ignored so〈
zn

∣∣∣∣exp(− iϵ

ℏ
Ĥ

)∣∣∣∣zn−1

〉
=

〈
zn

∣∣∣∣Î − iϵ

ℏ
Ĥ

∣∣∣∣zn−1

〉
= ⟨zn|zn−1⟩ −

iϵ

ℏ
〈
zn
∣∣H(â†, â)

∣∣zn−1

〉
=

[
Î − iϵ

ℏ
H(z∗n, zn−1)

]
⟨zn|zn−1⟩

=

[
Î − iϵ

ℏ
H(z∗n, zn−1)

]
ez

∗
nzn−1

= exp

[
− iϵ

ℏ
H(z∗n, zn−1)

]
ez

∗
nzn−1 (4.29)

in the N → ∞ limit. Therefore the propagator is

U = lim
N→∞

ˆ
DzDz∗ ez

∗
0z0

N∏
n=1

exp

[
− iϵ

ℏ
H(z∗n, zn−1)

]
ez

∗
nzn−1e−z∗

n−1zn−1

= lim
N→∞

ˆ
DzDz∗ exp

[
− i

ℏ
ϵ

N∑
n=1

H(z∗n, zn−1)

]
exp

[
z∗0z0 +

N∑
n=1

(z∗nzn−1 − z∗n−1zn−1)

]
. (4.30)

Let’s consider each exponential in turn. The sum in the first exponent, in the continuum limit,
becomes an integral, so

lim
N→∞

exp

[
− i

ℏ
ϵ

N∑
n=1

H(z∗n, zn−1)

]
= exp

[
− i

ℏ

ˆ t

0

dt′H(z∗, z)

]
. (4.31)

We have two ways to write the second exponential. In the first way, we have

lim
N→∞

exp

[
z∗0z0 +

N∑
n=1

(z∗nzn−1 − z∗n−1zn−1)

]
= lim

N→∞
exp

[
z∗0z0 +

N∑
n=1

(z∗n − z∗n−1)zn−1

]

= lim
N→∞

exp

[
z∗0z0 +

N∑
n=1

ϵ
dz(tn)

∗

dt
z(tn)

]

= exp

[
z∗(0)z(0) +

ˆ t

0

dt′
dz∗

dt′
z

]
(4.32)

in the continuum limit. However, we can rearrange this sum and get

lim
N→∞

exp

[
z∗0z0 +

N∑
n=1

(z∗nzn−1 − z∗n−1zn−1)

]
= lim

N→∞
exp

[
z∗NzN +

N∑
n=1

(−z∗nzn + z∗nzn−1)

]

= lim
N→∞

exp

[
z∗NzN +

N∑
n=1

(zn − zn−1)z
∗
n

]

= lim
N→∞

exp

[
z∗NzN − ϵ

N∑
n=1

dz(tn)

dt
z∗(tn)

]

= exp

[
z∗(t)z(t)−

ˆ t

0

dt′
dz

dt′
z∗
]
. (4.33)

We can proceed with either one of the two form, but we can also use a symmetric form

exp

[
z∗(0)z(0) + z∗(t)z(t)

2
+

i

ℏ

ˆ t

0

dt′
iℏ
2

(
z∗

dz

dt′
− dz∗

dt′
z

)]
. (4.34)
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Combining the results, we get the coherent state path integral in the symmetric form

U =

ˆ
DzDz∗ exp

[
z∗(t)z(t) + z∗(0)z(0)

2
+

i

ℏ

ˆ t

0

dt′
[
iℏ
2

(
z∗

dz

dt′
− dz∗

dt
z

)
−H(z∗, z)

]]
, (4.35)

or we may simply use one of the asymmetric form, say

U =

ˆ
DzDz∗ exp

[
z∗(t)z(t) +

i

ℏ

ˆ t

0

dt′
[
iℏz∗

dz

dt
−H(z∗, z)

]]
. (4.36)

5 Imaginary Time Path Integral
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